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Abstract. Environmental sustainability is a major concern for urban
and rural development. Actors and stakeholders need economic, effective
and efficient simulations in order to predict and evaluate the impact of
development on the environment and the constraints that the environ-
ment imposes on development. Numerical simulation models are usually
computation expensive and require expert knowledge. We consider the
problem of hydrological modelling and simulation. With a training set
consisting of pairs of inputs and outputs from an off-the-shelves simula-
tor, We show that a neural network can learn a surrogate model effec-
tively and efficiently and thus can be used as a surrogate simulation
model. Moreover, we argue that the neural network model, although
trained on some example terrains, is generally capable of simulating ter-
rains of different sizes and spatial characteristics.

Keywords: Surrogate model · Neural networks hydrological ·
Simulation

1 Introduction

An article in the Nikkei Asian Review dated 13 September 2019 warns that both
the cities of Jakarta and Bangkok are sinking fast. These iconic examples are
far from being the only human developments under threat. The United Nation
Office for Disaster Risk Reduction reports that the lives of millions were affected
by the devastating floods in South Asia and that around 1,200 people died in the
Bangladesh, India and Nepal [30]. Climate change, increasing population den-
sity, weak infrastructure and poor urban planning are the factors that increase
the risk of floods and aggravate consequences in those areas. Under such scenar-
ios, urban and rural development stakeholders are increasingly concerned with
the interactions between the environment and urban and rural development.
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In order to study such complex interactions, stakeholders need effective and
efficient simulation tools.

A flood occurs with a significant temporary increase in discharge of a body
of water. In the variety of factors leading to floods, heavy rain is one of the
prevalent [17]. When heavy rain falls, water overflows from river channels and
spills onto the adjacent floodplains [8]. The hydrological process from rainfall
to flood is complex [13]. It involves nonlinear, time-varying interactions between
rain, topography, soil types and other components associated with the physical
process. Several physics-based hydrological numerical simulation models, such
as HEC-RAS [26], LISFLOOD [32], LISFLOOD-FP [6], are commonly used to
simulate floods. However, such models are usually computation expensive and
expert knowledge is required for both design and for accurate parameter tuning.

We consider the problem of hydrological modelling and simulation. Neural
network models are known for their flexibility, efficient computation and capac-
ity to deal with nonlinear correlation inside data. We propose to learn a flood
surrogate model by training a neural network with pairs of inputs and outputs
from the numerical model. We empirically demonstrate that the neural network
can be used as a surrogate model to effectively and efficiently simulate the flood.

The neural network model that we train learns a general model. With the
trained model from a given data set, the neural network is capable of simulating
directly spatially different terrains. Moreover, while a neural network is generally
constrained to a fixed size of its input, the model that we propose is able to
simulate terrains of different sizes and spatial characteristics.

This paper is structured as follows. Section 2 summarises the main related
works regarding physics-based hydrological and flood models as well as statistical
machine learning models for flood simulation and prediction. Section 3 presents
our methodology. Section 4 presents the data set, parameters setting and evalu-
ation metrics. Section 5 describes and evaluates the performance of the proposed
models. Section 6 presents the overall conclusions and outlines future directions
for this work.

2 Related Work

Current flood models simulate the fluid movement by solving equations derived
from physical laws with many hydrological process assumptions. These models
can be classified into one-dimensional (1D), two-dimensional (2D) and three-
dimensional (3D) models depending on the spatial representation of the flow.
The 1D models treat the flow as one-dimension along the river and solve 1D
Saint-Venant equations, such as HEC-RAS [1] and SWMM [25]. The 2D mod-
els receive the most attention and are perhaps the most widely used models
for flood [28]. These models solve different approximations of 2D Saint-Venant
equations. Two-dimensional models such as HEC-RAS 2D [9] is implemented for
simulating the flood in Assiut plateau in southwestern Egypt [12] and Bolivian
Amazonia [23]. Another 2D flow models called LISFLOOD-FP solve dynamic
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wave model by neglecting the advection term and reduce the computation com-
plexity [7]. The 3D models are more complex and mostly unnecessary as 2D
models are adequate [28]. Therefore, we focus our work on 2D flow models.

Instead of a conceptual physics-based model, several statistical machine
learning based models have been utilised [4,21]. One state-of-the-art machine
learning model is the neural network model [27]. Tompson [29] uses a combina-
tion of the neural network models to accelerate the simulation of the fluid flow.
Bar-Sinai [5] uses neural network models to study the numerical partial differen-
tial equations of fluid flow in two dimensions. Raissi [24] developed the physics
informed neural networks for solving the general partial differential equation and
tested on the scenario of incompressible fluid movement. Dwivedi [11] proposes
a distributed version of physics informed neural networks and studies the case
on Navier-Stokes equation for fluid movement.

Besides the idea of accelerating the computation of partial differential equa-
tion, some neural networks have been developed in an entirely data-driven man-
ner. Ghalkhani [14] develops a neural network for flood forecasting and warning
system in Madarsoo river basin at Iran. Khac-Tien [16] combines the neural
network with a fuzzy inference system for daily water levels forecasting. Other
authors [31,34] apply the neural network model to predict flood with collected
gauge measurements. Those models, implementing neural network models for one
dimension, did not take into account the spatial correlations. Authors of [18,35]
use the combinations of convolution and recurrent neural networks as a surrogate
model of Navier-Stokes equations based fluid models with a higher dimension.

The recent work [22] develops a convolutional neural network model to pre-
dict flood in two dimensions by taking the spatial correlations into account. The
authors focus on one specific region in the Colorado River. It uses a convolutional
neural network and a conditional generative adversarial network to predict water
level at the next time step. The authors conclude neural networks can achieve
high approximation accuracy with a few orders of magnitude faster speed.

Instead of focusing on one specific region and learning a model specific to the
corresponding terrain, our work focuses on learning a general surrogate model
applicable to terrains of different sizes and spatial characteristics with a data-
driven machine learning approach.

3 Methodology

We propose to train a neural network with pairs of inputs and outputs from
an existing flood simulator. The output provides the necessary supervision. We
choose the open-source Python library Landlab, which is LISFLOOD-FP based.
We first define our problem in Subsect. 3.1. Then, we introduce the general ideas
of the numerical flood simulation model and Landlab in Subsect. 3.2. Finally,
we present our solution in Subsect. 3.3.
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3.1 Problem Definition

We first introduce the representation of three hydrological parameters that we
use in the two-dimensional flood model. A digital elevation model (DEM) D is
a w × l matrix representing the elevation of a terrain surface. A water level H
is a w × l matrix representing the water elevation of the corresponding DEM. A
rainfall intensity I generally varies spatially and should be a matrix representing
the rainfall intensity. However, the current simulator assumes that the rainfall
does not vary spatially. In our case, I is a constant scalar.

Our work intends to find a model that can represent the flood process. The
flood happens because the rain drives the water level to change on the terrain
region. The model receives three inputs: a DEM D, the water level Ht and the
rainfall intensity It at the current time step t. The model outputs the water level
Ht+1 as the result of the rainfall It on DEM D. The learning process can be
formulated as learning the function L: Rl×w ×R

l×w ×R → R
l×w, which predicts

Ht+1 = L(D,Ht, It).

3.2 Numerical Flood Simulation Model and Landlab

Physics-driven hydrology models for the flood in two dimensions are usually
based on the two-dimensional shallow water equation, which is a simplified ver-
sion of Navier-Stokes equations with averaged depth direction [28]. By ignoring
the diffusion of momentum due to viscosity, turbulence, wind effects and Cori-
olis terms [10], the two-dimensional shallow water equations include two parts:
conservation of mass and conservation of momentum shown in Eqs. 1 and 2,
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where h is the water depth, g is the gravity acceleration, (u, v) are the velocity
at x, y direction, Z(x, y) is the topography elevation function and Sfx

, Sfy
are

the friction slopes [33] which are estimated with friction coefficient η as
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For the two-dimensional shallow water equations, there are no analytical solu-
tions. Therefore, many numerical approximations are used.

LISFLOOD-FP is a simplified approximation of the shallow water equations,
which reduces the computational cost by ignoring the convective acceleration
term (the second and third terms of two equations in Eq. 2) and utilising an
explicit finite difference numerical scheme. The LISFLOOD-FP firstly calculate
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the flow between pixels with mass [20]. For simplification, we use the 1D version
of the equations in x-direction shown in Eq. 3,

qt+Δt
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i+1/2,j − ght
i+1/2,jΔt

(
ght

i+1/2,j

∂Z(x, y)
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+
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i+1/2,j

ht
i+1/2,j

10/3

)
(3)

where the qt
i+1/2,j = ht

i+1/2,j × ui+1/2,j is the discharge per unit width in x-
direction. The result of 1D can be directly transferable to 2D due to the uncou-
pled nature of those equations [3]. Then, for each pixel, its water level h is
updated as Eq. 4,

ht+Δt
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+ qt+Δt
i,j−1/2/Δy − qt+Δt
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(4)

To sum up, for each pixel at location i, j, the solution derived from
LISFLOOD-FP can be written in a format shown in Eq. 5,

Ht+1
i,j = Θ([Ht

i+1,j ,H
t
i−1,j ,H

t
i,j+1,H

t
i,j−1], I

t,D) (5)

where Ht
i,j is the water level at location i, j of time step t, or in general as

Ht+1 = Θ(D,Ht, It). However, the numerical solution as Θ is computationally
expensive including assumptions for the hydrology process in flood. There is an
enormous demand for parameter tuning of the numerical solution Θ once with
high-resolution two-dimensional water level measurements mentioned in [36].

Therefore, we use such numerical model to generate pairs of inputs and
outputs for the surrogate model. We choose the LISFLOOD-FP based open-
source Python library, Landlab [2] since it is a popular simulator in regional
two-dimensional flood studies. Landlab includes tools and process components
that can be used to create hydrological models over a range of temporal and
spatial scales. In Landlab, the rainfall and friction coefficients are considered to
be spatially constant and evaporation and infiltration are both temporally and
spatially constant. The inputs of the Landlab is a DEM and a time series of
rainfall intensity. The output is a times series of water level.

3.3 Proposed Neural Network Model

We propose here that a neural network model can provide an alternative solution
for such a complex hydrology dynamic process. Neural networks are well known
as a collection of nonlinear connected units, which is flexible enough to model
the complex nonlinear mechanism behind [19]. Moreover, a neural network can
be easily implemented on general purpose Graphics Processing Units (GPUs) to
boost its speed. In the numerical solution of the shallow water equation shown
in Subsect. 3.2, the two-dimensional spatial correlation is important to predict
the water level in flood. Therefore, inspired by the capacity to extract spatial
correlation features of the neural network, we intend to investigate if a neural
network model can learn the flood model L effectively and efficiently.
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We propose a small and flexible neural network architecture. In the numer-
ical solution Eq. 5, the water level for each pixel of the next time step is only
correlated with surrounding pixels. Therefore, we use, as input, a 3 × 3 sliding
window on the DEM with the corresponding water levels and rain at each time
step t. The output is the corresponding 3 × 3 water level at the next time step
t+1. The pixels at the boundary have different hydrological dynamic processes.
Therefore, we pad both the water level and DEM with zero values. We expect
that the neural network model learns the different hydrological dynamic pro-
cesses at boundaries. One advantage of our proposed architecture is that the
neural network is not restricted by the input size of the terrain for both training
and testing. Therefore, it is a general model that can be used in any terrain size.
Figure 1 illustrates the proposed architecture on a region with size 6 × 6.

Fig. 1. Visualisation of the proposed architecture.

4 Performance Evaluation

In this Section, we empirically evaluate the performance of the proposed model.
In Subsect. 4.1, we describe how to generate synthetic DEMs. Subsect. 4.2
presents the experimental setup to test our method on synthetic DEMs as a
micro-evaluation. Subsect. 4.3 presents the experimental setup on the case in
Onkaparinga catchment. Subsect. 4.4 presents details of our proposed neural
network. Subsect. 4.5 shows the evaluation metrics of our proposed model.

4.1 Generating Synthetic DEM

In order to generate synthetic DEMs, we modify Alexandre Delahaye’s work1.
We arbitrarily set the size of the DEMs to 64 × 64 and its resolution to 30
metres. We generate three types of DEMs in our data set that resembles real
world terrains surface as shown in Fig. 2a, namely, a river in a plain, a river with
a mountain on one side and a plain on the other and a river in a valley with
mountains on both sides.

1 https://beyondthemaps.wordpress.com/2017/11/01/random-dem-generator/,
visited on 6th September 2019.

https://beyondthemaps.wordpress.com/2017/11/01/random-dem-generator/
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(a) Three types of synthetic DEM with
size 64×64. Left: river on a plain, middle:
river with a mountain on one side and a
plain on another side, right: river in the
valley with mountains on both sides.

(b) Two DEMs selected from Lower
Onkaparinga river region. Left: size 64×
64, middle: size 128 × 128, right: Lower
Onkaparinga river region from Google
Map.

Fig. 2. DEMs used for experiements

4.2 Experiments on Synthetic DEM

We evaluate the performance in two cases. In Case 1, the network is trained
and tested with one DEM. This DEM has a river in the valley with mountains
on both sides, as shown in Fig. 2a right. In Case 2, the network is trained and
tested with 200 different synthetic DEMs.

The data set is generated with Landlab. For all the flood simulations in
Landlab, the boundary condition is set to be closed on four sides. This means
that rainfall is the only source of water in the whole region. The roughness
coefficient is set to be 0.003. We control the initial process, rainfall intensity and
duration time for each sample. The different initial process is to ensure different
initial water level in the whole region. After the initial process, the system run
for 40 h with no rain for stabilisation. We run the simulation for 12 h and record
the water levels every 10 min. Therefore, for one sample, we record a total of
72 time steps of water levels. Table 1 summarises the parameters for generating
samples in both Case 1 and Case 2.

Table 1. Parameters for synthetic floods on Case 1 and Case 2. The initial process
contains two parts as (Initial rainfall intensity, duration time)

Parameter Case 1 Case 2

Value Value

Initial process (2,1), (2,2)
(6,1), (6,2)

(6,1)

Flood rainfall intensity (mm/hr) 1 to 20 5,10,15

Flood duration time (hr) 1 to 12 3,6,9,12

DEM 1 200

Total number of samples 960 2400
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4.3 Case of the Onkaparinga Catchment

The Onkaparinga catchment, located at Lower Onkaparinga river, south of Ade-
laide, South Australia, has experienced many notable floods, especially in 1935
and 1951. Many research and reports have been done in this region [15]. We get
two DEM data with size 64 × 64 and 128 × 128 from the Australia Intergovern-
mental Committee on Surveying and Mapping’s Elevation Information System2.
Figure 2b shows the DEM of Lower Onkaparinga river. We implement the neural
network model under three cases. In Case 3, we train and test on 64×64 Onka-
paringa river DEM. In Case 4, we test 64×64 Onkaparinga river DEM directly
with Case 2 trained model. In Case 5, we test 128 × 128 Onkaparinga river
DEM directly with Case 2 trained model. We generate the data set for both
64 × 64 and 128 × 128 DEM from Landlab. The initial process, rainfall intensity
and rain duration time of both DEM are controlled the same as in Case 1.

4.4 Neural Network Models

The architecture of the neural network model is visualized as in Fig. 1. It firstly
upsamples the rain input into 3 × 3 and concatenates it with 3 × 3 water level
input. Then, it is followed by several batch normalisation and convolutional
layers. The activation functions are ReLU and all convolutional layers have the
same size padding. The total parameters for the neural network are 169. The
model is trained by Adam with the learning rate as 10−4. The batch size for
training is 8. The data set has been split with ratio 8:1:1 for training, validation
and testing. The training epoch is 10 for Case 1 and Case 3 and 5 for Case 2.

We train the neural network model on a machine with a 3 GHz AMD Ryzen
TM

7-1700 8-core processor. It has a 64 GB DDR4 memory and an NVIDIA GTX
1080Ti GPU card with 3584 CUDA cores and 11GB memory. The operating
system is Ubuntu 18.04 OS.

4.5 Evaluation Metrics

In order to evaluate the performance of our neural network model, we use global
measurements metrics for the overall flood in the whole region. These metrics are
global mean squared error: global MSEt = 1

mn

∑
m

∑
n[Pt(i, j)−Tt(i, j)]2, global

mean absolute percentage error: global MAPEt = 1
mn

∑
m

∑
n |Pt(i,j)−Tt(i,j)

Tt(i,j)
|,

where Pt(i, j), Tt(i, j) is the predicted and the ground truth water level at loca-
tion i, j at the t-th time step. We measure the global MSE and the global MAPE
both at each time step and their mean for all time steps.

From the hydrological point of view, some areas are more important for
observation and model calibration. For instance, the exit point of river or a
watershed exit. Therefore, we propose two local measurements metrics at the
watershed exit: local mean squared error: local MSE = 1

steps

∑
t[Pt −Tt]2, local

mean absolute percentage error: local MAPE = 1
steps

∑
t |Pt−Tt

Tt
|, where Pt, Tt

2 https://elevation.fsdf.org.au/, visited on 30th September 2019.

https://elevation.fsdf.org.au/
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are the means of predicted and ground truth water level of pixels near watershed
exit at t-th time step. For all evaluation metrics the lower the value, the better.

5 Results and Discussion

5.1 Results

Experiments on Synthetic DEM. In this section, we show the results of
our neural network model on Case 1 and Case 2. For global performance, our
model shows increasing trend of MSE and MAPE in both Case 1 and Case 2
according to Fig. 3c and 3f. Our model yields higher mean and variance of MAPE
under Case 2 according to Table 2a. For both cases, the maximum MAPE at
first 6 h is less than 25%, the maximum MAPE at 12 h is less than 50%. For local
performance, Case 2 has lower mean of MAPE in Table 2a. Thus, our model
works effectively on both one DEM and multiple DEMs cases.

(a) Global MSE (b) Global MAPE

(c) The global performance metrics for
each time step of our neural network
models under Case 1.

(d) Global MSE (e) Global MAPE

(f) The global performance metrics for
each time step of our neural network
models under Case 2.

Fig. 3. The global performance metrics for each time step of our neural network models
under Case 1 and Case 2.

Table 2. The mean of evaluation metrics over all time steps Case 1 to Case 5.

(a) The mean of evaluation metrics over
all time steps under Case 1 and Case
2.

Case 1 Case 2

Global
MSE

Mean 0.0168 0.0606
Var 0.0024 0.0232

MAPE
Mean 0.2108 0.2920
Var 0.0254 0.0742

Local
MSE

Mean 0.1726 1.0667
Var 0.0001 0.7122

MAPE
Mean 0.2468 0.1652
Var 0.00001 0.0172

(b) The mean of evaluation metrics over
all time steps under Case 3, Case 4 and
Case 5.

Case 3 Case 4 Case 5

Global
MSE

Mean 0.0577 0.0529 0.0516
Var 0.0072 0.0250 0.0212

MAPE
Mean 1.0542 0.5321 0.5254
Var 0.1267 0.1404 0.1317

Local
MSE

Mean 0.1171 0.2137 0.2014
Var 0.00001 0.0247 0.0121

MAPE
Mean 0.1630 0.2149 0.3445
Var 0.00001 0.0121 0.0162
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Table 3. Time consumption of the neural network model and Landlab for floods.

Case 1 Case 2 Case 3 Case 4 Case 5 Landlab

Size 64 × 64 Size 128 × 128

Train 4.05 h 7.00 h 4.22 h 47 s 8 min

Test 1.20 s 2.10 s 1.13 s 2.04 s 4.23 s

Case of the Lower Onkaparinga River. In this section, we show the results
of our neural network model on the case of the Lower Onkaparinga river (Case 3
and Case 4). For global performance, the mean of MSE and MAPE in Case 4
is lower than in Case 3, while the variance is higher in Case 4 than in Case 3
according to Table 2b. For local performance, Case 3 is better than Case 4 in
all metrics according to Table 2b. Thus, without retraining the existing model,
the trained neural network from Case 2 can be applied directly on new DEM
with a good global performance.

Case 5 is to test the scalability of our model for the different size DEM. In
Table 2b, for global performance, the MAPE of Case 5 is around 50% less than
both Case 3 and Case 4, and for local performance, the MAPE of Case 5
is 34.45%. Similarly, without retraining the existed model, the trained neural
network from Case 2 can be applied directly on DEM with different size with
a good global performance.

5.2 Efficiency

We present the time needed for the flood simulation of one sample in Landlab
and in our neural network model (without the training time) in Table 3. The
average time of the neural network model for a 64 × 64 DEM is around 1.6 s,
while it takes 47 s in Landlab. Furthermore, for a 128×128 DEM, Landlab takes
110 more time than the neural network model. Though the training of the neural
network model is time consuming, it can be reused without further training or
tuning terrains of different sizes and spatial characteristics. It remains effective
and efficient (Fig. 4).

6 Conclusion and Future Work

We propose a neural network model, which is trained with pairs of inputs and
outputs of an off-the-shelf numerical flood simulator, as an efficient and effective
general surrogate model to the simulator. The trained network yields a mean
absolute percentage error of around 20%. However, the trained network is at least
30 times faster than the numerical simulator that is used to train it. Moreover, it
is able to simulate floods on terrains of different sizes and spatial characteristics
not directly represented in the training. We are currently extending our work
to take into account other meaningful environmental elements such as the land
coverage, geology and weather.
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(a) Global MSE (b) Global MAPE

(c) The global performance metrics for
each time step of our neural network
models under Case 3.

(d) Global MSE (e) Global MAPE

(f) The global performance metrics for
each time step of our neural network
models under Case 4.

(g) Global MSE (h) Global MAPE

(i) The global performance metrics for
each time step of our neural network
models under Case 5.

Fig. 4. The global performance metrics for each time step of our neural network models
under Case 3, Case 4 and Case 5.
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