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Abstract. Human shape estimation is an important task for video edit-
ing, animation and fashion industry. Predicting 3D human body shape
from natural images, however, is highly challenging due to factors such
as variation in human bodies, clothing and viewpoint. Prior methods
addressing this problem typically attempt to fit parametric body models
with certain priors on pose and shape. In this work we argue for an alter-
native representation and propose BodyNet, a neural network for direct
inference of volumetric body shape from a single image. BodyNet is an
end-to-end trainable network that benefits from (i) a volumetric 3D loss,
(ii) a multi-view re-projection loss, and (iii) intermediate supervision of
2D pose, 2D body part segmentation, and 3D pose. Each of them results
in performance improvement as demonstrated by our experiments. To
evaluate the method, we fit the SMPL model to our network output
and show state-of-the-art results on the SURREAL and Unite the Peo-
ple datasets, outperforming recent approaches. Besides achieving state-
of-the-art performance, our method also enables volumetric body-part
segmentation.

1 Introduction

Parsing people in visual data is central to many applications including mixed-
reality interfaces, animation, video editing and human action recognition.
Towards this goal, human 2D pose estimation has been significantly advanced by
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Fig. 1. Our BodyNet predicts a volumetric 3D human body shape and 3D body parts
from a single image. We show the input image, the predicted human voxels, and the
predicted part voxels.

recent efforts [1-4]. Such methods aim to recover 2D locations of body joints and
provide a simplified geometric representation of the human body. There has also
been significant progress in 3D human pose estimation [5-8]. Many applications,
however, such as virtual clothes try-on, video editing and re-enactment require
accurate estimation of both 3D human pose and shape.

3D human shape estimation has been mostly studied in controlled settings
using specific sensors including multi-view capture [9], motion capture mark-
ers [10], inertial sensors [11], and 3D scanners [12]. In uncontrolled single-view
settings 3D human shape estimation, however, has received little attention so far.
The challenges include the lack of large-scale training data, the high dimension-
ality of the output space, and the choice of suitable representations for 3D human
shape. Bogo et al. [13] present the first automatic method to fit a deformable
body model to an image but rely on accurate 2D pose estimation and intro-
duce hand-designed constraints enforcing elbows and knees to bend naturally.
Other recent methods [14-16] employ deformable human body models such as
SMPL [17] and regress model parameters with CNNs [18,19]. In this work, we
compare to such approaches and show advantages.

The optimal choice of 3D representation for neural networks remains an open
problem. Recent work explores voxel [20-23], octree [24-27], point cloud [28-30],
and surface [31] representations for modeling generic 3D objects. In the case of
human bodies, the common approach has been to regress parameters of pre-
defined human shape models [14-16]. However, the mapping between the 3D
shape and parameters of deformable body models is highly nonlinear and is cur-
rently difficult to learn. Moreover, regression to a single set of parameters cannot
represent multiple hypotheses and can be problematic in ambigous situations.
Notably, skeleton regression methods for 2D human pose estimation, e.g., [32],
have recently been overtaken by heatmap based methods [1,2] enabling repre-
sentation of multiple hypotheses.

In this work we propose and investigate a volumetric representation for body
shape estimation as illustrated in Fig. 1. Our network, called BodyNet, generates
likelihoods on the 3D occupancy grid of a person. To efficiently train our network,
we propose to regularize BodyNet with a set of auxiliary losses. Besides the main
volumetric 3D loss, BodyNet includes a multi-view re-projection loss and multi-
task losses. The multi-view re-projection loss, being efficiently approximated on
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Fig. 2. BodyNet: End-to-end trainable network for 3D human body shape estimation.
The input RGB image is first passed through subnetworks for 2D pose estimation
and 2D body part segmentation. These predictions, combined with the RGB features,
are fed to another network predicting 3D pose. All subnetworks are combined to a
final network to infer volumetric shape. The 2D pose, 2D segmentation and 3D pose
networks are first pre-trained and then fine-tuned jointly for the task of volumetric
shape estimation using multi-view re-projection losses. We fit the SMPL model to
volumetric predictions for the purpose of evaluation

voxel space (see Sect. 3.2), increases the importance of the boundary voxels. The
multi-task losses are based on the additional intermediate network supervision
in terms of 2D pose, 2D body part segmentation, and 3D pose. The overall
architecture of BodyNet is illustrated in Fig. 2.

To evaluate our method, we fit the SMPL model [13] to the BodyNet output
and measure single-view 3D human shape estimation performance in the recent
SURREAL [33] and Unite the People [34] datasets. The proposed BodyNet app-
roach demonstrates state-of-the-art performance and improves accuracy of recent
methods. We show significant improvements provided by the end-to-end training
and auxiliary losses of BodyNet. Furthermore, our method enables volumetric
body-part segmentation. BodyNet is fully-differentiable and could be used as a
subnetwork in future application-oriented methods targeting e.g., virtual cloth
change or re-enactment.

In summary, this work makes several contributions. First, we address single-
view 3D human shape estimation and propose a volumetric representation for
this task. Second, we investigate several network architectures and propose an
end-to-end trainable network BodyNet combining a multi-view re-projection
loss together with intermediate network supervision in terms of 2D pose, 2D
body part segmentation, and 3D pose. Third, we outperform previous regression-
based methods and demonstrate state-of-the art performance on two datasets
for human shape estimation. In addition, our network is fully differentiable and
can provide volumetric body-part segmentation.
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2 Related Work

3D Human Body Shape. While the problem of localizing 3D body joints
has been well-explored in the past [5-8,35-38], 3D human shape estimation
from a single image has received limited attention and remains a challenging
problem. Earlier work [39,40] proposed to optimize pose and shape parameters
of the 3D deformable body model SCAPE [41]. More recent methods use the
SMPL [17] body model that again represents the 3D shape as a function of pose
and shape parameters. Given such a model and an input image, Bogo et al. [13]
present the optimization method SMPLify estimating model parameters from
a fit to 2D joint locations. Lassner et al. [34] extend this approach by incor-
porating silhouette information as additional guidance and improves the opti-
mization performance by densely sampled 2D points. Huang et al. [42] extend
SMPLify for multi-view video sequences with temporal priors. Similar temporal
constraints have been used in [43]. Rhodin et al. [44] use a sum-of-Gaussians vol-
umetric representation together with contour-based refinement and successfully
demonstrate human shape recovery from multi-view videos with optimization
techniques. Even though such methods show compelling results, inherently they
are limited by the quality of the 2D detections they use and depend on priors
both on pose and shape parameters to regularize the highly complex and costly
optimization process.

Deep neural networks provide an alternative approach that can be expected
to learn appropriate priors automatically from the data. Dibra et al. [45] present
one of the first approaches in this direction and train a CNN to estimate the 3D
shape parameters from silhouettes, but assume a frontal input view. More recent
approaches [14-16] train neural networks to predict the SMPL body parameters
from an input image. Tan et al. [14] design an encoder-decoder architecture that
is trained on silhouette prediction and indirectly regresses model parameters at
the bottleneck layer. Tung et al. [15] operate on two consecutive video frames
and learn parameters by integrating re-projection loss on the optical flow, sil-
houettes and 2D joints. Similarly, Kanazawa et al. [16] predict parameters with
re-projection loss on the 2D joints and introduce an adversary whose goal is to
distinguish unrealistic human body shapes.

Even though parameters of deformable body models provide a low-
dimensional embedding of the 3D shape, predicting such parameters with a net-
work requires learning a highly non-linear mapping. In our work we opt for an
alternative volumetric representation that has shown to be effective for generic
3D objects [21] and faces [46]. The approach of [21] operates on low-resolution
grayscale images for a few rigid object categories such as chairs and tables. We
argue that human bodies are more challenging due to significant non-rigid defor-
mations. To accommodate for such deformation, we use segmentation and 3D
pose as proxy to 3D shape in addition to 2D pose [46]. Conditioning our 3D shape
estimation on a given 3D pose, the network focuses on the more complicated
problem of shape deformation. Furthermore, we regularize our voxel predictions
with additional re-projection loss, perform end-to-end multi-task training with
intermediate supervision and obtain volumetric body part segmentation.
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Others have studied predicting 2.5D projections of human bodies.
DenseReg [47] and DensePose [48] estimate image-to-surface correspondences,
while [33] outputs quantized depth maps for SMPL bodies. Differently from
these methods, our approach generates a full 3D body reconstruction.

Multi-task Neural Networks. Multi-task networks are well-studied. A com-
mon approach is to output multiple related tasks at the very end of the neural
network architecture. Another, more recently explored alternative is to stack
multiple subnetworks and provide guidance with intermediate supervision. Here,
we only cover related works that employ the latter approach. Guiding CNNs
with relevant cues has shown improvements for a number of tasks. For example,
2D facial landmarks have shown useful guidance for 3D face reconstruction [46]
and similarly optical flow for action recognition [49]. However, these methods
do not perform joint training. Recent work of [50] jointly learns 2D/3D pose
together with action recognition. Similarly, [51] trains for 3D pose with inter-
mediate tasks of 2D pose and segmentation. With this motivation, we make use
of 2D pose, 2D human body part segmentation, and 3D pose, that provide cues
for 3D human shape estimation. Unlike [51], 3D pose becomes an auxiliary task
for our final 3D shape task. In our experiments, we show that training with a
joint loss on all these tasks increases the performance of all our subnetworks (see
Appendix C.1).

3 BodyNet

BodyNet predicts 3D human body shape from a single image and is composed
of four subnetworks trained first independently, then jointly to predict 2D pose,
2D body part segmentation, 3D pose, and 3D shape (see Fig.2). Here, we first
discuss the details of the volumetric representation for body shape (Sect. 3.1).
Then, we describe the multi-view re-projection loss (Sect. 3.2) and the multi-task
training with the intermediate representations (Sect. 3.3). Finally, we formulate
our model fitting procedure (Sect. 3.4).

3.1 Volumetric Inference for 3D Human Shape

For 3D human body shape, we propose to use a voxel-based representation. Our
shape estimation subnetwork outputs the 3D shape represented as an occupancy
map defined on a fixed resolution voxel grid. Specifically, given a 3D body, we
define a 3D voxel grid roughly centered at the root joint, (i.e., the hip joint) where
each voxel inside the body is marked as occupied. We voxelize the ground truth
meshes (i.e., SMPL) into a fixed resolution grid using binvox [52,53]. We assume
orthographic projection and rescale the volume such that the zy-plane is aligned
with the 2D segmentation mask to ensure spatial correspondence with the input
image. After scaling, the body is centered on the z-axis and the remaining areas
are padded with zeros.
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Our network minimizes the binary cross-entropy loss after applying the sig-
moid function on the network output similar to [46]:

W H D

EU = Z Z Z waz log Va:yz + (1 - waz) log(l - waz)y (1)

r=1y=1z=1

where V. and nyz denote the ground truth value and the predicted sigmoid
output for a voxel, respectively. Width (W), height (H) and depth (D) are 128
in our experiments. We observe that this resolution captures sufficient details.

The loss L, is used to perform foreground-background segmentation of the
voxel grid. We further extend this formulation to perform 3D body part seg-
mentation with a multi-class cross-entropy loss. We define 6 parts (head, torso,
left /right leg, left/right arm) and learn 7-class classification including the back-
ground. The weights for this network are initialized by the shape network by
copying the output layer weights for each class. This simple extension allows the
network to directly infer 3D body parts without going through the costly SMPL
model fitting.

3.2 Multi-view Re-projection Loss on the Silhouette

Due to the complex articulation of the human body, one major challenge in
inferring the volumetric body shape is to ensure high confidence predictions
across the whole body. We often observe that the confidences on the limbs away
from the body center tend to be lower (see Fig.5). To address this problem, we
employ additional 2D re-projection losses that increase the importance of the
boundary voxels. Similar losses have been employed for rigid objects by [54,55]
in the absence of 3D labels and by [21] as additional regularization. In our case,
we show that the multi-view re-projection term is critical, particularly to obtain
good quality reconstruction of body limbs. Assuming orthographic projection,
the front view projection, SEV s obtained by projecting the volumetric grid to
the image with the maz operator along the z-axis [54]. Similarly, we define S5V
as the maz along the z-axis:

SFVi(z,y) = maxV,,. and S5V (y,z) = max V.. (2)

The true silhouette, SV, is defined by the ground truth 2D body part segmen-
tation provided by the datasets. We obtain the ground truth side view silhouette
from the voxel representation that we computed from the ground truth 3D mesh:
SV (y, z) = max, Vzyz. We note that our voxels remain slightly larger than the
original mesh due to the voxelization step that marks every voxel that intersects
with a face as occupied. We define a binary cross-entropy loss per view as follows:

w H
LyV =" " S(z,y)log SV (w,y) + (1 — S(x,y)) log(1 — SV (z,9)), (3)
z=1y=1

H D
£5V =373 Sy, 2)10g §% (4,2) + (1 - 5(y, =) log(1 — SV (y.2).  (4)

y=1z=1
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We train the shape estimation network initially with £,,. Then, we continue train-
ing with a combined loss: A\, L, + /\5‘/65‘/ + )\gvﬁgv, Sect. 3.3 gives details on
how to set the relative weighting of the losses. Sect. 4.3 demonstrates experi-
mentally the benefits of the multi-view re-projection loss.

3.3 Multi-task Learning with Intermediate Supervision

The input to the 3D shape estimation subnetwork is composed by combining
RGB, 2D pose, segmentation, and 3D pose predictions. Here, we present the
subnetworks used to predict these intermediate representations and detail our
multi-task learning procedure. The architecture for each subnetwork is based on
a stacked hourglass network [1], where the output is over a spatial grid and is,
thus, convenient for pixel- and voxel-level tasks as in our case.

2D Pose. Following the work of Newell et al. [1], we use a heatmap representa-
tion of 2D pose. We predict one heatmap for each body joint where a Gaussian
with fixed variance is centered at the corresponding image location of the joint.
The final joint locations are identified as the pixel indices with the maximum
value over each output channel. We use the first two stacks of an hourglass net-
work to map RGB features 3 x 256 x 256 to 2D joint heatmaps 16 x 64 x 64 as
in [1] and predict 16 body joints. The mean-squared error between the ground
truth and predicted 2D heatmaps is L',?D .

2D Part Segmentation. Our body part segmentation network is adopted
from [33] and is trained on the SMPL [17] anatomic parts defined by [33]. The
architecture is similar to the 2D pose network and again the first two stacks are
used. The network predicts one heatmap per body part given the input RGB
image, which results in an output resolution of 15 x 64 x 64 for 15 body parts.
The spatial cross-entropy loss is denoted with L.

3D Pose. Estimating the 3D joint locations from a single image is an inherently
ambiguous problem. To alleviate some uncertainty, we assume that the camera
intrinsics are known and predict the 3D pose in the camera coordinate system.
Extending the notion of 2D heatmaps to 3D, we represent 3D joint locations
with 3D Gaussians defined on a voxel grid as in [6]. For each joint, the network
predicts a fixed-resolution volume with a single 3D Gaussian centered at the joint
location. The xy—dimensions of this grid are aligned with the image coordinates,
and hence the 2D joint locations, while the z dimension represents the depth.
We assume this voxel grid is aligned with the 3D body such that the root joint
corresponds to the center of the 3D volume. We determine a reasonable depth
range in which a human body can fit (roughly 85cm in our experiments) and
quantize this range into 19 bins. We define the overall resolution of the 3D grid
to be 64 x 64 x 19, i.e., four times smaller in spatial resolution compared to the
input image as is the case for the 2D pose and segmentation networks. We define
one such grid per body joint and regress with mean-squared error E?D .

The 3D pose estimation network consists of another two stacks. Unlike 2D
pose and segmentation, the 3D pose network takes multiple modalities as input,
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all spatially aligned with the output of the network. Specifically, we concatenate
RGB channels with the heatmaps corresponding to 2D joints and body parts. We
upsample the heatmaps to match the RGB resolution, thus the input resolution
becomes (3 + 16 + 15) x 256 x 256. While 2D pose provides a significant cue for
the x,y joint locations, some of the depth information is implicitly contained
in body part segmentation since unlike a silhouette, occlusion relations among
individual body parts provide strong 3D cues. For example a discontinuity on the
torso segment caused by an occluding arm segment implies the arm is in front of
the torso. In Appendix C.4, we provide comparisons of 3D pose prediction with
and without using this additional information.

Combined Loss and Training Details. The subnetworks are initially trained
independently with individual losses, then fine-tuned jointly with a combined
loss:

L=XPLP 4+ NLo+ XL+ 0Ly + XV LS+ VLY. (5)

The weighting coefficients are set such that the average gradient of each loss
across parameters is at the same scale at the beginning of fine-tuning. With this
rule, we set (A37, X, X3P, X, AFV, A5V oc (107,107,109, 101, 1,1) and make the
sum of the weights equal to one. We set these weights on the SURREAL dataset
and use the same values in all experiments. We found it important to apply
this balancing so that the network does not forget the intermediate tasks, but
improves the performance of all tasks at the same time.

When training our full network, see Fig. 2, we proceed as follows: (i) we train
2D pose and segmentation; (ii) we train 3D pose with fixed 2D pose and segmen-
tation network weights; (iii) we train 3D shape network with all the preceding
network weights fixed; (iv) then, we continue training the shape network with
additional re-projection losses; (v) finally, we perform end-to-end fine-tuning on
all network weights with the combined loss.

Implementation Details. Each of our subnetworks consists of two stacks to
keep a reasonable computational cost. We take the first two stacks of the 2D
pose network trained on the MPII dataset [56] with 8 stacks [1]. Similarly, the
segmentation network is trained on the SURREAL dataset with 8 stacks [33]
and the first two stacks are used. Since stacked hourglass networks involve inter-
mediate supervision [1], we can use only part of the network by sacrificing slight
performance. The weights for 3D pose and 3D shape networks are randomly
initialized and trained on SURREAL with two stacks. Architectural details are
given in Appendix B. SURREAL [33], being a large-scale dataset, provides pre-
training for the UP dataset [34] where the networks converge relatively faster.
Therefore, we fine-tune the segmentation, 3D pose, and 3D shape networks on
UP from those pre-trained on SURREAL. We use RMSprop [57] algorithm with
mini-batches of size 6 and a fixed learning rate of 10~2. Color jittering aug-
mentation is applied on the RGB data. For all the networks, we assume that
the bounding box of the person is given, thus we crop the image to center the
person. Code is made publicly available on the project page [58].
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3.4 Fitting a Parametric Body Model

While the volumetric output of BodyNet produces good quality results, for some
applications, it is important to produce a 3D surface mesh, or even a parametric
model that can be manipulated. Furthermore, we use the SMPL model for our
evaluation. To this end, we process the network output in two steps: (i) we first
extract the isosurface from the predicted occupancy map, (ii) next, we optimize
for the parameters of a deformable body model, SMPL model in our experiments,
that fits the isosurface as well as the predicted 3D joint locations.

Formally, we define the set of 3D vertices in the isosurface mesh that is
extracted [59] from the network output to be V. SMPL [17] is a statistical model
where the location of each vertex is given by a set V*(8, 3) that is formulated
as a function of the pose () and shape () parameters [17]. Given V™, our goal
is to find {0*, 5*} such that the weighted Chamfer distance, i.e., the distance
among the closest point correspondences between V™ and V*(, (3) is minimized:

0%, 3*} = argmin min  w"||p"” — p°*||2+
05} = ogmin 3 i, ol - ol

J
> Jin w"{|p” ps||§+/\ZIIJ'? — 330, 9)3- (6)
P EVS(6.5) i=1

We find it effective to weight the closest point distances by the confidence of the
corresponding point in the isosurface which depends on the voxel predictions
of our network. We denote the weight associated with the point p™ as w™. We
define an additional term to measure the distance between the predicted 3D joint
locations, {j?'}7/_;, where .J denotes the number of joints, and the correspond-
ing joint locations in the SMPL model, denoted by {j$ (6, 3)}7/_,. We weight the
contribution of the joints’ error by a constant A (empirically set to 5 in our
experiments) since J is very small (e.g., 16) compared to the number of vertices
(e.g., 6890). In Sect. 4, we show the benefits of fitting to voxel predictions com-
pared to our baseline of fitting to 2D and 3D joints, and to 2D segmentation,
i.e., to the inputs of the shape network.

We optimize for Eq. (6) in an iterative manner where we update the
correspondences at each iteration. We use Powell’s dogleg method [60] and
Chumpy [61] similar to [13]. When reconstructing the isosurface, we first apply
a thresholding (0.5 in our experiments) to the voxel predictions and apply the
marching cubes algorithm [59]. We initialize the SMPL pose parameters to be
aligned with our 3D pose predictions and set 8 = 0 (where 0 denotes a vector
of zeros).

4 Experiments

This section presents the evaluation of BodyNet. We first describe evalua-
tion datasets (Sect. 4.1) and other methods used for comparison in this paper
(Sect. 4.2). We then evaluate contributions of additional inputs (Sect. 4.3) and
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losses (Sect. 4.4). Next, we report performance on the UP dataset (Sect. 4.5).
Finally, we demonstrate results for 3D body part segmentation (Sect. 4.6).

4.1 Datasets and Evaluation Measures

SURREAL Dataset [33] is a large-scale synthetic dataset for 3D human body
shapes with ground truth labels for segmentation, 2D /3D pose, and SMPL body
parameters. Given its scale and rich ground truth, we use SURREAL in this work
for training and testing. Previous work demonstrating successful use of synthetic
images of people for training visual models include [62-64]. Given the SMPL
shape and pose parameters, we compute the ground truth 3D mesh. We use the
standard train split [33]. For testing, we use the middle frame of the middle
clip of each test sequence, which makes a total of 507 images. We observed that
testing on the full test set of 12,528 images yield similar results. To evaluate the
quality of our shape predictions for difficult cases, we define two subsets with
extreme body shapes, similar to what is done for example in optical flow [65].
We compute the surface distance between the average shape (8 = 0) given the
ground truth pose and the true shape. We take the 10** (s10) and 20*" (s20)
percentile of this distance distribution that represent the meshes with extreme
body shapes.

Unite the People Dataset (UP) [34] is a recent collection of multiple datasets
(e.g., MPII [56], LSP [66]) providing additional annotations for each image. The
annotations include 2D pose with 91 keypoints, 31 body part segments, and 3D
SMPL models. The ground truth is acquired in a semi-automatic way and is
therefore imprecise. We evaluate our 3D body shape estimations on this dataset.
We report errors on two different subsets of the test set where 2D segmentations
as well as pseudo 3D ground truth are available. We use notation T'1 for images
from the LSP subset [34], and T2 for images used by [14].

3D Shape Evaluation. We evaluate body shape estimation with different mea-
sures. Given the ground truth and our predicted volumetric representation, we
measure the intersection over union directly on the voxel grid, i.e., voxel IOU.
We further assess the quality of the projected silhouette to enable comparison
with [14,16,34]. We report the intersection over union (silhouette IOU), Fl-score
computed for foreground pixels, and global accuracy (ratio of correctly predicted
foreground and background pixels). We evaluate the quality of the fitted SMPL
model by measuring the average error in millimeters between the correspond-
ing vertices in the fit and ground truth mesh (surface error). We also report
the average error between the corresponding 91 landmarks defined for the UP
dataset [34]. We assume the depth of the root joint and the focal length to be
known to transform the volumetric representation into a metric space.

4.2 Alternative Methods

We demonstrate advantages of BodyNet by comparing it to alternative methods.
BodyNet makes use of 2D /3D pose estimation and 2D segmentation. We define
alternative methods in terms of the same components combined differently.
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SMPLify++. Lassner et al. [34] extended SMPLify [13] with an additional
term on 2D silhouette. Here, we extend it further to enable a fair comparison
with BodyNet. We use the code from [13] and implement a fitting objective with
additional terms on 2D silhouette and 3D pose besides 2D pose (see Appendix D).
As shown in Table 2, results of SMPLify++ remain inferior to BodyNet despite
both of them using 2D/3D pose and segmentation inputs (see Fig. 3).

Shape Parameter Regression. To validate our volumetric representation,
we also implement a regression method by replacing the 3D shape estimation
network in Fig.2 by another subnetwork directly regressing the 10-dim. shape
parameter vector § using L2 loss. The network architecture corresponds to the
encoder part of the hourglass followed by 3 additional fully connected layers (see
Appendix B for details). We recover the pose parameters 6 from our 3D pose
prediction (initial attempts to regress 6 together with 8 gave worse results).
Table 2 demonstrates inferior performance of the § regression network that often
produces average body shapes (see Fig. 3). In contrast, BodyNet results in better
SMPL fitting due to the accurate volumetric representation.

Shape
parameter

Shape
parameter
regression regression

Input SMPLify++  BodyNet Ground Tnput

truth

SMPLify++ BodyNet Ground
truth

Fig. 3. SMPL fit on BodyNet predictions compared with other methods. While shape
parameter regression and the fitting only to BodyNet inputs (SMPLify++) produce
shapes close to average, BodyNet learns how the true shape observed in the image
deviates from the average deformable shape model. Examples taken from the test
subset s10 of SURREAL dataset with extreme shapes.

Table 1. Performance on the SURREAL dataset using alternative combinations of
intermediate representations at the input.

voxel IOU (%) | SMPL surface error (mm)
2D pose 47.7 80.9
RGB 51.8 79.1
Segm 54.6 79.1
3D pose 56.3 74.5
Segm + 3D pose 56.4 74.0
RGB + 2D pose + Segm + 3D pose | 58.1 73.6
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input 2D 3D pose 3D voxels SMPL Groun input 2D 3D pose 3D voxels SMPL Ground
image  predictions prediction prediction  fit truth image predictions  prediction prediction fit truth

Fig. 4. Our predicted 2D pose, segmentation, 3D pose, 3D volumetric shape, and SMPL
model alignments. Our 3D shape predictions are consistent with pose and segmentation,
suggesting that the shape network relies on the intermediate representations. When one
of the auxiliary tasks fails (2D pose on the right), 3D shape can still be recovered with
the help of the other cues.

4.3 Effect of Additional Inputs

We first motivate our proposed architecture by evaluating performance of 3D
shape estimation in the SURREAL dataset using alternative inputs (see Table 1).
When only using one input, 3D pose network, which is already trained with addi-
tional 2D pose and segmentation inputs, performs best. We observe improve-
ments as more cues, specifically 3D cues are added. We also note that intermedi-
ate representations in terms of 3D pose and 2D segmentation outperform RGB.
Adding RGB to the intermediate representations further improves shape results
on SURREAL. Figure4 illustrates intermediate predictions as well as the final
3D shape output. Based on results in Table 1, we choose to use all intermediate
representations as parts of our full network that we call BodyNet.

4.4 Effect of Re-projection Error and End-to-End Multi-task
Training

We evaluate contributions provided by additional supervision from Sects. 3.2-3.3.

Effect of Re-projection Losses. Table2 (lines 4-10) provides results when
the shape network is trained with and without re-projection losses (see also
Fig.5). The voxels network without any additional loss already outperforms
the baselines described in Sect. 4.2. When trained with re-projection losses, we
observe increasing performance both with single-view constraints, i.e., front view
(FV), and multi-view, i.e., front and side views (FV+SV). The multi-view re-
projection loss puts more importance on the body surface resulting in a better
SMPL fit.

Effect of Intermediate Losses. Table2 (lines 7-10) presents experimental
evaluation of the proposed intermediate supervision. Here, we first compare the
end-to-end network fine-tuned jointly with auxiliary tasks (lines 9-10) to the
networks trained independently from the fixed representations (lines 4-6). Com-
parison of results on lines 6 and 10 suggests that multi-task training regular-
izes all subnetworks and provides better performance for 3D shape. We refer to
Appendix C.1 for the performance improvements on auxiliary tasks. To assess
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Table 2. Volumetric prediction on SURREAL with different versions of our model
compared to alternative methods. Note that lines 2-10 use same modalities (i.e., 2D /3D
pose, 2D segmentation). The evaluation is made on the SMPL model fit to our voxel
outputs. The average SMPL surface error decreases with the addition of the proposed
components.

full |s20 |s10
1. | Tung et al. [15]  (using GT 2D pose and segmentation) | 74.5 |- -
Alternative methods:
2 | SMPLify++ (6, 3 optimized) 75.3 |79.7 | 86.1
3. | Shape parameter regression (3 regressed, 6 fixed) 74.3 | 82.1 | 88.7
BodyNet:
4 | Voxels network 73.6 | 81.1 |86.3
5 | Voxels network with [FV] silhouette re-projection 69.9 | 76.3 | 81.3
6 | Voxels network with [FV+SV] silhouette re-projection | 68.2 | 74.4 | 79.3
7 | End-to-end without intermediate tasks [FV] 72.7 | 78.9 | 83.2
8 | End-to-end without intermediate tasks [FV+SV] 70.5 | 76.9 | 81.3
9 |End-to-end with intermediate tasks [F'V] 67.7 | 74.7 |81.0
10 | End-to-end with intermediate tasks [FV+4SV] 65.8 | 72.2|76.6

the contribution of intermediate losses on 2D pose, segmentation, and 3D pose,
we implement an additional baseline where we again fine-tune end-to-end, but
remove the losses on the intermediate tasks (lines 7-8). Here, we keep only the
voxels and the re-projection losses. These networks not only forget the interme-
diate tasks, but are also outperformed by our base networks without end-to-end
refinement (compare lines 8 and 6). On all the test subsets (i.e., full, s20, and
s10) we observe a consistent improvement of the proposed components against
baselines. Figure 3 presents qualitative results and illustrates how BodyNet suc-
cessfully learns the 3D shape in extreme cases.

Comparison to the State of the Art. Table2 (lines 1,10) demonstrates a
significant improvement of BodyNet compared to the recent method of Tung
et al. [15]. Note that [15] relies on ground truth 2D pose and segmentation on
the test set, while our approach is fully automatic. Other works do not report
results on the recent SURREAL dataset.

4.5 Comparison to the State of the Art on Unite the People

For the networks trained on the UP dataset, we initialize the weights pre-trained
on SURREAL and fine-tune with the complete training set of UP-3D where
the 2D segmentations are obtained from the provided 3D SMPL fits [34]. We
show results of BodyNet trained end-to-end with multi-view re-projection loss.
We provide quantitative evaluation of our method in Table3 and compare to
recent approaches [14,16,34]. We note that some works only report 2D metrics
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Table 3. Body shape performance and comparison to the state of the art on the UP
dataset. Unlike in SURREAL, the 3D ground truth in this dataset is imprecise.

2D metrics 3D metrics (mm)
Acc. (%) |I0OU |F1 |Landmarks | Surface
T1 | 3D ground truth [34] 92.17 - 0.88 |0 0
Decision forests [34] 86.60 - 0.80 |- -
HMR [16] 91.30 |- 0.86 - -
SMPLify, UP-P91 [34] 90.99 - 0.86 |- -
SMPLify on DeepCut [13]* 91.89 - 0.88 |- -
BodyNet (end-to-end multi-task) | 92.75 0.73 | 0.84 83.3 102.5
T2 | 3D ground truth [34]° 95.00 0.82 |- 0 0
Indirect learning [14] 95.00 0.83 |- 190.0 -
Direct learning [14] 91.00 0.71 |- 105.0 -
BodyNet (end-to-end multi-task) | 92.97 0.75 | 0.86 | 69.6 80.1

@ This result is reported in [34].
® This result is reported in [14].

measuring how well the 3D shape is aligned with the manually annotated seg-
mentation. The ground truth is a noisy estimate obtained in a semi-automatic
way [34], whose projection is mostly accurate but not its depth. While our results
are on par with previous approaches on 2D metrics, we note that the provided
manual segmentations and the 3D SMPL fits [34] are noisy and affect both the
training and the evaluation [48]. Therefore, we also provide a large set of visual
results in Appendices A, E to illustrate our competitive 3D estimation quality.
On 3D metrics, our method significantly outperforms both direct and indirect
learning of [14]. We also provide qualitative results in Fig. 4 where we show both
the intermediate outputs and the final 3D shape predicted by our method. We
observe that voxel predictions are aligned with the 3D pose predictions and pro-
vide a robust SMPL fit. We refer to Appendix E for an analysis on the type of
segmentation used as re-projection supervision.

4.6 3D Body Part Segmentation

As described in Sect. 3.1, we extend our method to produce not only the fore-
ground voxels for a human body, but also the 3D part labeling. We report quanti-
tative results on SURREAL in Table 4 where accurate ground truth is available.
When the parts are combined, the foreground IOU becomes 58.9 which is com-
parable to 58.1 reported in Table 1. We provide qualitative results in Fig.6 on
the UP dataset where the parts network is only trained on SURREAL. To the
best of our knowledge, we present the first method for 3D body part labeling
from a single image with an end-to-end approach. We infer volumetric body parts
directly with a network without iterative fitting of a deformable model and obtain
successful results. Performance-wise BodyNet can produce foreground and per-
limb voxels in 0.28s and 0.58s per image, respectively, using modern GPUs.
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L, Lo+Ly5esY L, LoHLpe;Y
’ & 1,/,
input image original view other view
Fig. 5. Voxel predictions color-coded Fig. 6. BodyNet is able to directly regress
based on the confidence values. volumetric body parts from a single image
Notice that our combined 3D and on examples from UP.

re-projection loss enables our network
to make more confident predictions
across the whole body. Example taken
from SURREAL.

Table 4. 3D body part segmentation performance measured per part on SURREAL.
The articulated and small limbs appear more difficult than torso.

Head|Torso|Left arm |Right arm |Left leg|Right leg|Background Foreground
Voxel IOU (%) | 49.8 | 67.9 29.6 28.3 46.3 46.3 99.1 58.9

5 Conclusion

We have presented BodyNet, a fully automatic end-to-end multi-task network
architecture that predicts the 3D human body shape from a single image. We
have shown that joint training with intermediate tasks significantly improves the
results. We have also demonstrated that the volumetric regression together with
a multi-view re-projection loss is effective for representing human bodies. More-
over, with this flexible representation, our framework allows us to extend our
approach to demonstrate impressive results on 3D body part segmentation from
a single image. We believe that BodyNet can provide a trainable building block
for future methods that make use of 3D body information, such as virtual cloth-
change. Furthermore, we believe exploring the limits of using only intermediate
representations is an interesting research direction for 3D tasks where acquiring
training data is impractical. Another future direction is to study the 3D body
shape under clothing. Volumetric representation can potentially capture such
additional geometry if training data is provided.
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