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Abst rac t .  l3y carefully measuring the amourit of time required tm per- 
forin private key operalions, attackers m a y  t)P able to find fixed Diffie- 
IieUirian exponents, fac-t,or RSA keys, aid break other crypt,osysteins. 
Against, a vrilnerablc system, t,he atlack is corriprit,atiorially inexpensive 
and ofteri requires only known ciphertext. Actual systems are potentially 
at risk, ind I idi ng cryptographic t okeris, net work-based cryptosystems, 
arid other applica1,ions where attackers can make reasonably accilrate 
timing measurements. Techniques for preventing the attack for RSA and 
Iliffie-Hellman are presented. Some cryptJosysterrrs will need to be re- 
vised to  protect against thc: at,tack. and new protocols and algorithms 
may need to incorporate measures to  prevenl timing attacks. 
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1 Introduction 

Chyptosysterns ofteri t8ake slightly diffcrerit. amounts of time to process different 
inputs. Reasons include performance optirrlizations to bypass unnecessary op- 
erations, branching and conditional statements, R,A bl cache hits, processor in- 
structions (such as multiplication and division) that run in non-fixed time, and 
a wide variet.y of othcr causes. Perforrriance characteristics typically depend on 
both the ericryption key arid the input data (e.g., plaintext, or ciphert,ext). While 
it is known tha t  timing channels can leak d a h  or keys across a controlled perime- 
ter,  intuition might suggest tha t  unint,entional timing characteristics would only 
reveal a sniall amount of information from a cryptosystem (such as the Ham- 
ming weight of the key). Howwer, attacks are presented which can exploit timing 
measurements from vulnerable systems t80 find t.hc entire secret, key. 

2 

Diffic-Hellman[2] and R S h [ 8 ]  privat,c-key operations consist of computing R = 
y" mod 71, whcre n is public arid y can b e  found by an eavesdropper. Thc  at- 
ta.cker's goal is t,o find x ,  the secret key. For tlir att,ack, the victim must coin- 
pule  y" mod 71 for several values of y, where y, 7 1 ,  and the computation time are 
known to  the  at,t>acker. (If a new secret rxyonerit T is chosen for each operation, 
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the attack does not, work.)  The necessary information and timing measurements 
might be obtained by passively eavesdropping on an interactive protocol, since 
an attacker could record the messages received by the target and measure the 
amount of tirne taken to respond to each y. The attack assumes that thc attacker 
knows the design of the target system , although in practice this coiild probably 
be infcrred from timing information. 

The attack can bc tailored to work wi th  virtually ariy implementation that 
does not run in fixed time, but, is first outlined using the simple modular expo- 
nentiation algorithm below which compnt,es R = y" rriod n,  where z is w bits 
long: 

L e t  SO = 1 .  
For k = 0  u p t o  i l l -  I :  

If (bit k of z) i s  1 t h e n  

Else 

L e t  s k + l  = t2; rriocI 7 1 .  

L e t  tzk = ( s k  . y) iriod 1 1 .  

L e t  Hk = s k .  

EndFor . 
R e t u r n  ( & , - I ) .  

The attack allows ~oiiieoiie who knows rxponcnt bits 0..(6-1) t,o find bit, b .  'I'o 
obtain the entire exponent, start, with b equal t o  0 and repeat, the attack until 
the entire exponcnt is known. 

Because the first b exponent are known, the at,t,zrker can compute the 
first b iterations of the F o r  loop to find the valuc of S b .  The next iteration requires 
the first unknown exponent bit If this bit, is set! & = (s( ,  . y) mod n will be 
computed. If it  is zero, the operation will he skipped. 

The att3ack will be described first in an extreme hypothetical case. Sup- 
pose the target, systerri uses a modular multiplication function that, is nor- 
mally extremely fast but occasionally takes rnuch more time than an entire 
normal modular exponentiation. For a few s b  and y values the calculation of 
Rb = ( s b  . y) mod 11 will be extremely slow, and by using knowledge about the 
target system's design the attacker can dctcrInine which these are. If the total 
modular exponentihon t,ime is ever fast when R h  = ( s b .  y) rnod n is slow, expo- 
nent bit b must, be zero. Conversely, if slow Rb = ( s b  . y )  Iriod n operations always 
result in slow total modular exponentiation times, the exponent bit is probably 
set. Once exponent hit, 6 is known, the at,t,acker can verify that the overall oper- 
ation time is slow whenever sb+l  = I?: mod T I  is expected to be slow. The same 
set of timing measurements can then be reused to find the following exponent 
bitss. 

3 Error Correctioii 

If exponent hit, b is guessed incorre:ctly, t,hr. values computed for &>b - will be 
incorrect and, so far  as t,he attack is conc-ernd, csscritially random. '11he time 



106 

required for rriultiplies following the error will not be reflected in the overall 
exponentiation time. The attack thus has an emor-detection property; after an 
incorrect exponent bit guess, no more rrieaningfiil correlations are observed. 

The error detection property can be used fur error correction. For example, 
the attacker can maintain a list of the most likely exponent intermediates along 
with a value corresponding to the probability each is correct. The attack is 
continued for only the most likely candidate. If the currently-favored value is 
incorrect, it will tend to fall in ranking, while correct values will tend to rise. 
Error correction techniques increase the memory and processing requirements 
for the attack, but can greatly reduce tfie number of samples required. 

4 The General Attack 

The attack can be trea.ted as a signal detection problem. The “signal” consists 
of the timing variation due tdo the target exporieril bit, and “noise” results from 
nieasurernent inaccuracies and timing variations due to unknown exponent bits. 
The properties of the signal arid noise det,ermine the number of timing measure- 
rrierils required to for the attack. 

Given j messages yo, y1, ..., y j -  1 wit,li corresponding timing measurements 
To, T I ,  . . . ,  73-1 ~ the probability that, a guess z5 for the first b exponent, bits is 
correct is proportional t,o 

where t(y; ,xb) is the amount, of time required for the first b iterations of the 
y? mod 71 cornputmation using exponent bits x b ,  arid F is the expected probability 
distribution function of T - t ( y ,  z5) over all y values and correct z b .  Because F 
is defined as the probabilit,y distribution of 7: - t ( y ;  , z b )  if z5 is correct, it  is the 
best function for predicting T, - L(y;;,zb). Note that the timing measurements 
and intermediate s values can be used improve the estimate of F .  

Given a correct guess for 26-1 ,  there are two possible values for 25. The 
probability that xb is correct and zk is incorrect can be found as 

In practice, this formula is not very useful because finding F would require 
extraordinary effort. 

5 Simplifying the Attack 

Fortunately it is generally not necessary to compute F .  Each timing observation 
consists of T = e + t i  ~ where ti  is the time required for the multiplication 
and squaring steps for bit i and E iricludes measurement error, loop overhead, 
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etc. Given guess z b ,  the attacker can find cp=,'ti for each sample y. If zb is 
correct, subtracting from T yields e + Cy=il t i  - x:z: li = e + Cy=i' t i .  Since 
the modular multiplication times are effectively independent from each other 
and from the mea~nremerit~ error, the variance of e + Cy'il t i  over all observed 
samples is expected to be Var(e) + (ui - b)Var(l). However if only the first c < b 
bits of the exponent guess are correct, the expected variance will be Var(e) + 
(w - b + 2c)Var(t). Correctly-emulated iterations decrease the expected variance 
by Var(t), while iterations following an  incorrect exponent bit each increase the 
variance by Var(t). Computing the variances is easy and provides a good way to 
identify correct exponent bit guesses. 

It is now possible to estimate the number of samples required for the attack. 
Suppose an attacker has j accurate timing measurements and has two guesses 
for the first b bits of a w-bit exponetit, one correct and the other incorrect with 
the first error at  bit c .  For each guess the timing measurements can be adjusted 
by cpi,' t i .  The correct guess will be identified successfully if its adjusted values 
have the srrialler variance. 

It is possible to approximate i; using independent standard normal variables. 
If Var(e) is negligible, the expected probability of a correct guess is 

where X and Y are normal random variables with p = 0 and u = 1. Because j 
is relatively large, x:zd y2 w j and C::,' >YtY, is approximately normal with 
p = 0 and D = A, yielding 

2 J 2 ( b  - c)(w - 6)('Z) + 2 ( b  - c ) j  > 0 

where Z is a standard normal random variable. Finally, integrating to find the 

probability of a correct guess yields Qi (JH), where @(z) is the area under 
the standard normal ciirvc from --co to z. The required number of samples ( j )  is 
thus proportional to the exponent, size ( w ) .  The riuriiber of measurements might 
be reduced if attackers choose inputs known to have ext,reme timing character- 
istics at, exponent locations of interest. 

6 Experimental Results 

Figure 1 shows the distribution of 106 modular multiplication times observed 
using the RSAREF toolkit[lO] on a 120-MIlz PentiumTM computer running 
MSDOSTM. The distribution was preparccl by timing one million ( u  . b iiiod n) 
calculations using a and 6 values from actual modular exponentiation operations 



with random inputs. The 512-bit sainple prirne # I  frorri the RSAREF Difie- 
IIellmaii demonstration prograin was used for 7 1 .  A few wildly aberrant s ~ ~ i p l e s  
(which took over 1300ps) were discarded. 'I'lic Figure 1 distribution has mean p 
= 1167.8~s arid standard deviation = 12.Olps. The measurement error is sinall; 
the tests were run twice and the average measurement difference was found to 
be under l p s .  RSAREF uses the same function for squaring and multliplicatiorl, 
so squaring and rnultiplicatiori h i e s  have identical distributions. 

RSAREF precomputes y2 and y3 mod R and processes two exponent hits 
a t  a time. I n  total, a 5 12-hit modular exponentiation with a raridorri 256-bil 
exponent requires 1% iterations of the rnodular exponentiation loop and a total 
of about 352 rnodular multiplication arid squaring operations. Each iteration 
of the modular cxponentiatiori loop does two squaring operations and, if either 
exponent bit is nonzero, one multiply. The attack can be adjusted to append 
pairs of exponent bits and to evaluak four candidate values at  each exponent 
position instead of two. 

Since modular niult<iplications C ~ I I S U I I I C  mosi, of the total modular exponen- 
tiatiori time, it is expected that the dist#rihution of modular exponentiation 
tirries will be approximately normal with p 2 (1  167.8)(352) = 411,065.6ps and 
IT 2 I 2 . 0 l m  = 225.3p.  Figure 2 shows measurements from 5000 actual mod- 
ular exponentiation operations using the same computer and modulus, which 
yielded / A  = 419, 9 0 1 ~ s  aiicl IT = 235ps .  

FICUKE 1: RSAREF Modular Multiplication Tiincs 1;IGUKE 2: RSAREF Modular Expuncntiation 'l'irnes 

Wit,li 250 tiiiiing trieas\irerrieritms, the prohability that subtracting the lime for 
a correct niodexp loop iteration from each sample will rcduce the total variance 

more than subtracting an incorrect, itcrathn is estimated to he @ (d-), 
where j = 250, h = 1, c = 0,  and UJ = 127. (There arc 1'28 iterations of tlhe 
RSAREF rnodexp loop for a 25G-bit. exponent, hut the first iteration is ignored.) 

Correct, guesses are thus expected rvit,li prohability Qi (dw) FZ 0.84. The  
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5000 samples from Figure 2 were divided into 20 groups of 250 samples each, 
and variances from subtracting the time for incorrect and correct modexp loop 
iterations were compared at  each of the 127 exponent bit, pairs. Of the 2450 
trials, 2168 prodiicerl a larger variance after subtracting an incorrect modexp 
loop time than after snbtracting the time for a correct modexp loop, yielding a 
probability of 0.885. The first, exponcnt bits are most difficult, since b becomes 
larger as more exponent bits become known and the probabilities should improve. 
(The test above did not take advantage of this property.) I t  is important to note 
that accurate timing measurements were used; nieasiirenient errors which are 
large relative to t)hc total modular exponentiation time standard deviation will 
increase the number of samples needed. 

The attack is compntationally quite easy. Witlh RSAREF, the attacker has 
to evaluate four choices yrr pair of bits. Thus the attacker only has to do four 
times the number of operations clone by t,he victim, not, counting effort wastcd 
by incorrect guesses. 

7 Montgomery Multiplication and the CRT 

Modular reduction stcps usually cause most, of the timing variation in a modu- 
lar multiplication operation. M~nt~gorriery rriultiplication[6] eliniinates the mod 12, 

reduction steps and, as a result,, tends t a  reduce the size of the tirriing character- 
istics. However, some variation usually remains. If the remaining “signal” is not 
dwarfed by measurement errors, the variaiice in tl, and the variance of cy=i:, t i  
would be reduced proportionally and the att,ack would still work. However if the 
measurement error e is large, t,hc required number of samples will increase in 
proportion to 

The Chinese Remainder Theorem (CK‘L’) i s  also oft>en used to optimize RSA 
private key operations. With CRT, (y rriod p )  and (y  mod q )  are computed first, 
where y is t,he message. ‘These initial niodular reduction sttps can be vulnerable 
to timing attacks. The simplest such attack is to choose values of y that  are 
close to p or q ,  then use timing measurements to determine whether the guessed 
value is larger or smaller than the actual value of p (or q ) .  If y is less than 
p ,  computing y mod p has no effect, whilc if y is larger than p ,  it is necessary 
to subtract p from y at  least once. Also, if tshc message is very slightly larger 
than p ,  y mod p will have leading zero digits, which may reduce the amount of 
time required for the first, multiplication step. The specific timing characteristics 
depend on the implementation. R.SAH.EF’s modular reduction function with a 
512-bit modulus hhe Pentium computer with y chosen randomly between 0 and 
2 p  takes an average of 42.11”s if y < p ,  as opposed to 7 3 . 9 ~ ~  if y > p .  Timing 
measuremcnts from many y could be combined t,o successively approximate p ,  

In some cases it, may be possible to improw the Cliiiiesr Remainder Theorem 
RSA at,tack to use known (not, chosen) ciphertexts, reducing t,lie number of rnes- 
sages required and making it possible t,CJ attack RSA digital signatures. Modular 
reduction is done by subtracting multiples of the modiilus, and exploitable timing 
variations can be caused by variations i n  the number of compare-and-subtract 

f-/aro’ 
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steps. For example, R S A  REF'S division loop irlleger-divides the uppermost, two 
digits of y by one more than the upper digit, of p ,  miiltiplies p by the quotient, 
shifts left, the appropriate number of digits, then subtracts the result from y. If 
the result is larger than p (shifted left), a extra subt,raction is performed. 'The 
decision whether to perform an extra subtraction step in the first loop of the 
division algorithm usually depends only on y (which is known) and the upper 
two digits of p .  A timing attack could be used to determine the upper digits 
of p. For example, an exhaustive search over all possible values for the upper 
two digits of p (or more efficient techniques) could identify value for which the 
observed times correlate most closely with the expected number of subtraction 
operations. As with the Iliffie-Hellman/non-CRT attack, once one digit of p has 
been found, the timing measurements could be reused to find subsequent digits. 

It is not yet known whether timing attacks can be adapted to directly attack 
the mod p arid mod q modular exponent,iations performed with the Chinese 
R,emainder Theorem. 

8 Timing Cryptanalysis of DSS 

The Digital Signature Standard[S] computes s = ( k - ' ( H ( m )  + 3: . r ) )  mod q ,  
where T and q are known to attackers, k-' is usually precomputed, H(m) is the 
hash of the message, and x is the private key. In prahce ,  (H(m) + z . r )  mod q 
would normally be computed first, then is rriultiplied by k-' (mod q ) .  

If the modular reduction funct,ion runs  in rim-fixed time, the overall signa- 
ture time should be correlated with the time for the ( x  . r mod q)  cornputatlion. 
The attacker can calciilatc and compensate for the time required to compute 
H ( m ) .  Since H(m)  is of approximately the same size as q ,  its addition has little 
effect on the reduction time. The most significant bits of z . T are typically the 
first used in the modular reduction. These depend on r ,  which is known, and 
the most significant bit,s of the secret, value c. There would thus be a correla- 
tion between values of the upper bit,s of 1: and the total time for the modular 
reduction. By looking for the strongest probabilities over the samples, the at- 
tacker wonld try to identify the iippcr bits of z. A s  mure upper bits of 1: become 
known, more of z . r becomes known, allowing the attacker to proceed through 
more iterations of the modular reduction loop to attack new bits of z. If k-' is 
precomputated, DSS signat,ures require just two modular multiplication opera- 
tions, potentially making the amount of additional timing noise which must be 
filtered out relatively small. 

9 Masking Timing Characteristics 

The most, obvious way t,o prevent timing attacks is l o  make all operations take 
exactly the same amount of time. LJrifortiinately this is often difficult. Making 
software ~ U I I  in fixed time, especially in  a platform-independent manner, is hard 
because compiler optimizations, RAM cache hits, instruction timings, and other 
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factors can introduce unexpected tirriirig variations. Lf a tinier is used to delay 
returning results until a pre-specified time, factors such as the system respon- 
siveness or power consurription may still change detectably when the operation 
finishes. Some operating systems also reveal processes' CPU usage. Fixed time 
implementations are also likely to be slow; many perforniance optimizations 
cannot be used since all operations must take as long as the slowest operation. 
(Note: Always perforrriing the optional IZi = (s, y) mod n step does not make 
an implementation run in constmt time, since timing characteristics from the 
squaring operation and subsequent loop iterations can be exploited .) 

Another approach is to make timing measurements so inaccurate that the 
attack becomes unfeasible. Random delays acldcd to the processing time do in- 
crease the number of ciphertexts required, but attackers can compensate by col- 
lecting more measurements. The number of samples required increases roughly 
as the square of the tiniing noise. For example, if a rriodiilar exponentiator whose 
timing characteristics have a standard deviation of 10 ms can be broken success- 
fully with 1000 timing measurement,s, adding a random normally distributed 
delay with 1 second standard deviation will make the attack require approxi- 
mately (-) (1000) = lo7 samples. ( Notme: The  mean delay would have l o  
be several seconds to get a standard deviation of 1 second.) While lo7  samples 
is probably more than most attackers can gat,lier, a security factor of lo7 is not 
usually considered adequate. 

10 Preventing the Attack 

Fortunately there is a better solution. Techniqnes used for blinding signatures[l] 
can be adapted to prevent attackers from knowing the input to the modular ex- 
ponentiation function. Before computing the modular exponentiation operation, 
choose a random pair (ui, v j )  such that u;' = v,' mod n. For Diffie-Hellman, 
it is simplest t,o choose a random 7ij t,hen compute uf = ( u ~ ~ ' ) "  mod n. For 
KSA it is faster to choose a randorri i i j  relatively prime to n then compute 
v, = (u;')~ mod 71 ,  where P is the public exponent. Before the modular expo- 
nentiation operation, the input message should be multiplied by ui (mod n ) ,  and 
afterward the result is corrected by multiplying with uf (mod n) .  The system 
should reject messages equal to 0 (mod n ) .  

Computing inverses mod n is slow, so it is often not practical to generate a 
new random (vi, v ~ f )  pair for each new exponentiation. The v j  = (zl i ' ) "  mod n 
calculation itself might even be subject to timing attacks. However (vi ,  vt) pairs 
shonld not be reused, since t,hey themselves might be compromised by timing 
attacks, leaving the secret exponent vulnerable. An efficient solution to this 
problem is update ~ i i  and vj before each modular exponentiation step by com- 
puting wi = v; and U ;  = ~i;. The total performance cost is small (2  modular 
squarings, which can be precomputed, plus 2 modular multiplications). More 
sophisticated update operations nsing exponents other than 2,  multiplicat,ion 
with other (vi, vj) pairs, etc. can also be used, but, do not appear to offer any 
advantages. 



112 

If ( w i , ~ ~ )  is secret,, atkickers have no useful knowledge about the input to 
the modular exponentiator. Consequently the most an attacker can learn is the 
general timing distribution for exponentiation operations. In practice, distribu- 
tions are close to normal and the 2” exponents cannot possibly be distinguished. 
However, a maliciously-designed modular exponentiator could theoretically have 
a distribution with sharp spikes corresponding to  exponent bits, so blinding does 
not, provably prevent timing attacks. 

Even with blinding, the distribution will reveal the average time per op- 
eration, which can be used to infer the Hamming weight of the exponent. If 
anonymity is important or if further masking is reqiiired, a random multiple of 
( ~ ( 7 1 )  can be added to the exponent before each modular exponentiation. If this is 
done, care must be t,aken to ensure that t,he addition process itself does not have 
timing characterist,ics which reveal ( ~ ( 7 1 ) .  This techniqiie may be helpful in pre- 
venting attacks that  gain information leaked during t,he modular exponentiat,ion 
operation due to electromagnetic radiation, system performance fluctuations, 
changes in power rorisumpt,ion, etc. sinre Ihe exponent bits change with each 
operation. 

11 Further Work 

’I’iming attacks can potentially tie used against other cryptosysterris, includ- 
ing symmetric functions. For example, in software the 28-bit C and D values 
in tjhe DES[4] key scticdule are often rotmated using a conditional which tests 
whether a one-bit, must, be wrapped around. The additional time required to 
move nonzero bits could slightly degrade the cipher’s throughput or key setup 
time. The cipher’s performance can thus reveal the Hamming weight of the key, 

which provides an average of 56 +- ( 5 6 )  logz (6) cz 3.95 bits of key infot- 

tnation. IDEA[3] uses an f ( )  function with a modulo (216 + 1) rriultiplication 
operation, whirl] will iisually run i r i  non-constant time. ItC5[7] is at risk on 
platfornis where rotates run in non-constant, time. RAM cache hits can produce 
timing charact’eristics in implerrientatioris of Rlowfsh[ l l ] ,  SEAL[9], DES, and 
nt>her ciphers if tables in mcrriory are not used iclerikically iri every encryption. 

Additional research is needed to determine whether specific implementations 
are a t  risk and, if so,  the degree of t,hc+- vulnerability. So far, only a few specific 
systems have h e n  st,udied i n  detail and t)tie attacks against, CRT/Montgomcry 
RSA and DSS are currently theoretical. 

Further refinertnents to the attack rriay also be possible. A direct attack 
against p arid q i n  RSA with t,he Chinese H.emainder ‘l’hrorem would bc partic- 
ularly iriiport,ant, 

12 Conclusions 

In general, any channel which van carry information from a secure area to the 
outside shoiild he stlidled as a potential risk. Implertientation-specifir timing 
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characteristics provide o m  siich channel arid can sometimes be used to corn- 
promise secret keys. Vulnerable algorithinb, protocols, and systems need to  be 
revised to incorporate nieasiires to resist tinling cryptanalysis and  related at- 
tacks. 
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