
T e m p o r a l O b j e c t R o l e M o d e l l i n g

Andreas Steiner and Moira C. Norrie

Institute for Information Systems
ETH Z/h'ich, CH-8092 Zfirich, Switzerland

Abstract . We present a temporal object model capable of representing
object lifespans and also the history of their roles and associations. We
adopt an approach of temporal generalisation rather than temporal ex-
tension in which a model in its entirety is given a temporal semantics
through an orthogonal generalisatio.n of all model concepts - including
the lifespan of object roles themselves and constraints over these roles.
The model is based on the generic object data model OM and its algebra
has been generalised into a full temporal algebra over object roles.

1 Introduction

Full support for temporal databases requires a complete generalisation of a data
model with a temporal dimension. This means that all aspects of the model
- constructs, operations and constraints - must have temporal generalisations.
Further, the temporal dimension should apply not only to data, but also to
metadata.

Many existing proposals for temporal data models and systems - both rela-
tional and object-oriented - tend to focus on one particular aspect of a model
and ex~end i~ wi~h ~emporal properties. For example, many proposals deal wi~h
extensions to data structures to enable entities or entity properties to be times-
tamped - whether it be with valid or transaction times (e. g. [Wuu91, RS93,
G()93, BFG96] or in [TCG+93]). Typically, the query language is then extended
with temporal properties in the sense of selections with temporal predicates or
temporal joins (e. g. [Wuu91, C593]). However, in many cases, the underlying
algebra is not fully generalised in the sense of providing temporal semantics
to all operations of the algebra. Temporal negation for example is frequently
neglected. Proposals for models and systems with temporal semantics for all
operations (e. g. [Sno95, SBJS96]) and for constraints (e. g. [WD93, SBJS96])
do exist, but tend to be considered separately from each other. The issue of
timestamped metadata has received little consideration.

We advocate an approach of temporal generalisation rather than temporal ex-
tension in which a model in its entirety is given a temporal semantics through an
orthogonal generalisation of all concepts of the model. Previously, we considered
this approach to a limited extent in the context of relational database systems
and developed a prototype temporal database system TimeDB [Ste95] which
supports both valid and transaction times, has a full temporal query language
and, in contrast to many other implemented systems, also supports temporal up-

246

dates, integrity constraints and views. The prototype system TimeDB is based
on the query language ATSQL2 [SBJS96].

More recently, we have fully exploited the generalisation approach in the
context of object-oriented systems and developed a temporal object model and
system, TOM, capable of modelling object role and association histories. TOM
also supports a full temporal algebra, query language and constraints. Addi-
tionally, metadata can have temporal properties allowing the modelling of role,
association and constraint lifespans.

Our temporal object data model is based on the generic object-oriented data
model, OM [Nor93]. The OM model strictly separates typing from classification
in such a way that classification structures model the roles of objects rather than
their representation. The model is therefore independent of any particular type
system and programming language environment. Other key features of the OM
model that impact on the temporal model are its collection algebra which defines
generic operations over collections, the model's support for object and relation-
ship evolution [NSWW96] and the orthogonality with which the constructs of
the model may be applied.

In section 2, we present the main features of the OM model in terms of a
simple example application used throughout the paper. Section 3 then presents
the basic constructs of the temporal object model TOM in terms of temporal
objects, roles and associations. Section 4 discusses the temporal generalisation
of classification and association constraints. The temporal algebra and query
language is presented in section 5. Concluding remarks are given in section 6.

2 O b j e c t D a t a M o d e l O M

In OM, object roles are semantic groupings of objects represented by collections.
The properties of an object in terms of attributes and methods are specified by
the underlying type system. An object may be in many collections simultaneously
and a collection may contain objects of different types as long as they have some
minimal set of properties as specified by an associated member type. We thus
distinguish between issues of representation and semantics by separating the
notions of typing from those of role modelling.

Associations model relationships between objects of certain roles and are
represented by a special form of collection - binary collection - in which each
element is a pair identifying the related objects. Since binary collections are
a specialisation of collections, all operations and constraints which apply over
object roles also apply over associations. An association can be regarded as
modelling relationship roles and therefore, generally, collections represent roles
- be they object or relationship roles.

Collections are grouped into classification structures each of which describes
related roles in terms of a specialisation graph. We illustrate this by means of
the example schema for a property leasing company shown in figure 1.

Figure 1 includes four classification structures. The classification structure
on the right represents properties and consists of the collection P r o p e r t i e s and

247

~ s

Fig. 1. An Example OM Schema Diagram

its subcollections Residences, Offices, Rented, Available and Renovating.
Shaded boxes are used to denote collections with the name of the collection in
the unshaded region and the type of the member values specified in the shaded
region. Subcollections Residences and Offices are constrained to be disjoint
meaning that, at any point in time, no property can be categorised for use as both
a residence and an office. Subcollections Rented, Available and Renovating
form a partition in that they are pairwise disjoint and form a cover of Proper t i es
in that, at any point in time, every property must have exactly one of these three
roles.

A second classification structure represents clients and their roles. Cl ien t s
has subcollections Owners and Tenants. Note that the member type tenant of
Tenants is a subtype of the member type c l i e n t of Cl ien ts . Likewise, owner
is also a subtype of c l i e n t . It is possible that a c l i e n t object belongs to both
Owners and Tenants.

The third and fourth classification structures consist of the single associations
Owns and Rents, respectively. Associations are represented by oval-shaped boxes,
with links to the related collections and their respective cardinality constraints.
Owns would be a collection of pairs of object values such that the first elements
of the pairs belong to Owners and the second to Proper t ies . We refer to Owners
as the source collection and to P rope r t i e s as the target collection.

OM supports object evolution in that objects may change their roles over the
course of time. Such forms of evolution require changes in collection membership
and this in turn may involve changes in the type of an object. For example, if a
t enan t object becomes an owner object, then the object must gain additional
owner attributes. OM supports changes in object types through dress and strip
operations. Further, the model includes mechanisms to control object evolution.
For example, objects can only migrate within a classification structure, thereby
preventing absurd evolutions such as an object in Tenants becoming an object in
Proper t i es . The issue of object (and relationship) evolution and further forms
of control over migration are discussed in detail in [NSWW96].

The operational model of OM is based on an algebra of collections. Descrip-
tions of some of these operations are given in section 5 where the temporal

248

equivalents are described. Further details of the OM model and its algebra are
given in [Nor93].

We have developed our own object-oriented database management system,
OMS, based on the OM model. An interesting aspect of the OMS system with
respect to temporal generalisation is its representation of all information - both
data and metadata - as objects. Our approach of generalising objects to tem-
poral objects, therefore leads immediately to the possibility of timestamping all
information within the system.

Note that, in this paper, we deal only with set collections, but the concepts
generalise to other forms of collections of OM, for example bag collections.

3 Temporal Object Role Model

Our temporal model TOM is based on object-timestamping. We add timestamps
to the names of instances. In other words, we do not extend the types with
timestamp attributes but rather extend the object identifiers with a lifespan.
In this paper, we focus on the valid-time aspects of our model and the lifespan
expresses when an object was valid (existent) in the real world.

Since object roles are represented by collections which are themselves objects,
collections may also be timestamped. As a result, we can model the fact that
roles also exist for limited lifespans and, further, that they may appear and
disappear with respect to the current state of an application domain.

Adding timestamps to objects leads naturally to a more general model than
the usual relational temporal models in that, not only entities and their roles,
but also the roles themselves can have temporal properties. By timestamping
objects (and object-pairs in binary collections), a direct comparison can be made
between lifespans of objects, relationships, object roles and associations. We now
go oll to consider these various aspects of our model in more detail.

3.1 Tempora l Object Identif iers

Our notion of a lifespan is similar to that proposed in [CC87]. The smallest non-
decomposable time unit assumed in a temporal database, for example a second,
is called a chronon [TCG+93]. Let T = {to, t l , . . . } be a set of chronons, at most
countably infinite. The linear order <7 is defined over this set, where ti <~- tj
means tha~ ti occurs before tj.

A lifespan l s is any subset of the set T. [GV85] called this sort of timestamp
temporal elements. We assume that T is isomorphic to the natural numbers. Thus
we can represent a lifespan also as a set of non-overlapping intervals, closed at
the lower bound and open at the upper bound. Lifespans are closed under the
usual set-theoretic operations union, intersect and difference. If lsl and ls2 are
lifespans, then Is1 N ls2, lsl O ls2 and lsl - l s2 are also lifespans.

This definition of lifespan reflects the fact that an object may appear and
disappear several times during its overall time of existence. A lifespan contains
all those time points at which an object existed. For example, the timestamp of

249

a p roper ty object may represent the various periods during which that property
was managed by the leasing company.

Def in i t ion 1. (t empora l objec t identifier) Let 0 be the set of all possible
non-temporal object identifiers. A temporal object identifier t o ld consists of an
object identifier old E 0 and a lifespan ls, t o id := ~ oid; Is >>.

In the following, we use the notation lifespan(toid) to reference the lifespan
contained in the temporal object identifier to id . O v shall denote the set of all
temporal object identifiers, whereas 0 is the set of non-temporal object identi-
fiers. Value w represents the undefined object identifier.

Def in i t ion2 . (snapshot of a t empora l object identifier) Let t o id E 0 v
be a temporal object identifier containing o• E O as object identifier. Let t E T
be a time instant. Then the snapshot of a temporal object identifier at a time
instant t, r t (to id) , is defined as

Tt(goid) := IF t q lifespan(toid) THEN oid ELSE w

The snapshot of a temporal object identifier at time instant t returns the object
identifier oid if the object exists at t, otherwise the special value ~o is returned.

3.2 Val ld-Time Objec ts

We use the term value to mean any form of data item that can be described by
the underlying type system, e.g. a base value such as an integer or a complex
value such as an object value. For simplicity of presentation, we assume here
simply integers and strings as base values.

Let V1 be the set of all integer values and Vs the set of all string values. The
values v E (VI UVs) have an implicit lifespan [0 - o @ The snapshot operation r e
evaluated on an integer or string value thus always returns the integer or string
value itself. We define the set of values available in our temporal data model as

v" :=V~uVsuO".

In this paper, we focus only on temporal values although we have both non-
temporal and temporal values in our system, along with conversion operations.

With definition 2, we can express the snapshot of values v E V v, vt(v). If v
is an integer or string value, the integer or string value itself is returned. If v is
a temporal object identifier, an non-temporal object identifier (or w) is returned.

Valid-time objects are objects having a temporal object identifier. In the
following, we refer to the temporal object identifier of a valid-time object obj by
toid(obj), the lifespan of this object by lifespan(obj) and the object identifier
by oid(obj).

Example 1. When creating a valid-time object in our system, a set of valid-time
periods expressing the object's lifespan has to be provided by the user:

250

create object andreas lifespan { [1964 - inf) };
create object apartl lifespan { [1980 - 1995) };

As mentioned before, these objects will be dressed with a type when added to a
collection. Note that, for example, name andreas is just used as a reference to
the corresponding object. Time instant in f denotes that the object is valid until
further notice. Non-temporal objects are created by leaving away the lifespan
specification.

3.3 Val id-Time Collect ions

In this section, we introduce valid-time collections as collections having a lifespan
and containing valid-time objects which have their own lifespan. We then define
the snapshot of the extension of a valid-time collection and use this notion for
further definitions.

Def ini t ion3. (val id- t ime collection) A valid-time collection C consists of
a temporal object identifier t o l d 6 0 ", toid(C) = t o i d , and an extension
ext(C) c_ V ~

We write C = [t o i d , ext] to denote a valid-time collection. Since a valid-time
collection is also a valid-time object, we can reference the temporal object iden-
tifier of a valid-time collection C by toid(C), the object identifier by oid(C) and
its lifespan by lifespan(C).

Example 2. In order to create the collections depicted in the figure 1 as valid-time
collections, we first have to define the corresponding member types:

create type client(name : string);
create type tenant(profession : string) subtype of client;
create type owner(bank_account : string) subtype of client;
create type property(price : integer; street : string; city : string);

Now we can create the main valid-time collections Cl ien t s and Proper t ies .
Assume that the property leasing company started to exist in 1980.

create collection Clients type client lifespan{ [1980 - inf) };
create collection Properties type property lifespan { [1980 - inf) };

We define the snapshot of an extension ext(C) of a valid-time collection C at a
time instant t to be the set of those values in the extension of C, which exist
at time instant t. Note that these snapshot values have no time information
attached.

Def ini t ion4. (snapshot of an extension) The snapshot of the extension
e x t (C) r V ~ at a t ime in s t an t t, r t (e x t (C)) , is def ined as

251

r'(e=t(C)) :-- {v13~ ~ e,,~ ext(C) A ~ - r'(~") A v r w}

Definition 4 will be needed to define the valid-time subcollection relationship
(definition 5) and the temporal membership relation (definition 8). With defini-
tions 2 and 4, we can also define notions of collection identity and equality at a
time instant and extend these with temporal semantics.

3.4 Va l id -T ime Subcol lec t ion Rela t ionship

Our generalisation approach makes it also necessary to redefine the subcollection
relationship for valid-time collections. In this section, we introduce the valid-time
subcollection relationship used in TOM. We start with its time instant definition.

Def in i t ion5 . (subcol lec t lon re la t ion at a t ime ins tan t) Let C1 and C2 be
valid-time collections. C1 is a subcollection of C2 at time instant t 6 T, C1 ___t C2,
if and only if all of the following conditions hold:

1. r'(toid(Cl)) #
2. r'(to~d(C.)) #
3. rt(ezt(C1)) C_ rt(ezt(C2))

Using definition 5, we can now define the subcollection constraint for our tem-
poral object data model. In our system, this constraint is used to trigger actions
such as update propagations to ensure that database consistency is maintained
[NSWW96].

Def in i t ion6 . (val id- t ime subcol lec t ion re la t ionship) Let C1 and C2 be
valid-time collections. The valid-time subcollection relationship C1 .~v C2 holds
if and only if the following holds: Vt E lifespan(Ci) : C1 ~_t C2

Note that the valid-time subcollection relationship is defined over the lifespan
of the subcollection. The valid-time subcollection relationship demands that, for
each time instant subcollection C1 exists, supercollection C2 also has to exist. So,
in our example, the lifespan of any subcollection of valid-time collection C l i en t s
must be contained in the lifespan [1980 - oo).

Example3. We show how the subcollections Tenants and Owners depicted in
figure 1 can be created. Assume that at first, the property leasing company only
dealt with renting properties owned by a parent company. In 1982, the company
decided to generalise their operations and also lease properties owned by others.

create collection Tenants
subcollection of Clients type tenant lifespan{ [1980-inf) };

create collection Owners
subcollection of Clients type owner lifespan{ [1982-inf) };

252

3.5 A d d i n g and Remov ing Val id-Time Objects to Val id-Time
Collect ions

Adding an object to a valid-time collection restricts the object's visibility in the
collection in several ways. The object is visible only during a certain time period
in the collection as determined by the collection's lifespan, the object's own lifes-
pan and a membership time specified by the user. An object's maximal visibility
in a collection is the collection's lifespan. The notion of visibility contrasts, for
example, with the approach proposed in [G093] where an object's lifespan has
to be contained in the lifespan of the collection to which it is added.

The resulting visible lifespan i s of the added object is the intersection of the
lifespan l s o of the object with the lifespan of the collection l s c , intersected
with the user specified membership time ruses: I s : - 1so N l so N t~s~.

Example 4. We now want to a(td the valid-time object andreas of example 1 to
valid-time collection Tenants created in example 3:

insert object andreas into Tenants during { [1980 - inf) };

Give a value for name: Andreas

Give a value for profession: Assistant

Andreas is a client of the company since 1980. He found a property to rent
with the help of this company and thus is a member of collection Tenants in the
company's database. When inserting objects into a collection, the system dresses
the object with the corresponding member type (if it is not already dressed with
it) and asks for attribute values (e. g. name and profession). Additionally, objects
are propagated automatically to super-collections if needed.

3.6 Objec t Evo lu t ion

As stated in section 2, objects must be allowed to evolve and change roles during
their lifespan. This accounts for the fact that entities in the real world change
their roles during their life. For example, a tenant buys a property in another
city which is then leased by the company. This client plays the role of a tenant
and then gains the role of an owner. Such changes and accumulation of roles is
reflected in our model by the possibility that an object can migrate from one
collection to another and may also be a member of several collections at the
same time.

Each collection has an associated member type. This means that, for a given
collection C and a given type Type, if member_type(C) = Type, then for any
value x in the extension of C, x must be an instance of type Type. Thus, to change
collection membership, an object must also be able to change its type while
retaining the same object identity. This is referred to as object metamorphosis.

Assume classification structures as depicted in figure 1. If an object in collec-
tion C l i en t s is also added to subcollection Owners, then we first have to dress
the object with membertype owner of collection Owners. Then a valid-time pe-
riod t~e~ has to be specified by the user which expresses the time the object

253

was a property owner in the real world. The visibility of this object in the valid-
time collection Owners then results in i s := lso~.r, N lSobjeet N tu,er, where
ls0,~.r, represents the lifespan of collection Owners and lsobject corresponds to
the lifespan of the client object to be added to collection Owners.

Example 5. Assume Andreas decided to buy a property~ but he remained in the
property already rented and asked the leasing company to find tenants for his
property. Thus, he also became owner in the company's database.

insert object andreas into Owners during { [1982 - 1995) };
Give a value for bank_account: SBG 123-456

Andreas bought a property in 1982 and in 1995 he decided to have another com-
pany manage his property. When inserting objects, the system again dresses the
objects with the corresponding member type (if needed) and asks for attribute
values.

3.7 T e m p o r a l Associa t ions

As described previously, relationships between objects are represented by associ-
ations. Relationships may also have valid-times associated with them and these
are represented by temporal associations. A temporal association is a valid-time
binary collection together with constraints specifying the source and target col-
lections and their respective cardinality constraints as before.

Def in i t ion 7. (val id- t ime b ina ry collect ion) A valid-time binary collection
C consists of a temporal object identifier t o i d 6 0 ~, told(C) -- to id , and
an extension ext(C) C_ (V x V) ~ where V is the set of non-temporal values
v~ U Vs U O.

The extension of a valid-time binary collection will be a set of object value pairs
together with a lifespan. Given a valid-time binary collection C, then an element
of ext(C) may be of the form << (o id l ,o id2) ; l s >> where o id l ,o id2 6 0 and
l s is the lifespan of the relationship.

Example 6. According to the database schema depicted in figure 1, we have to
create two valid-time associations Rents and 0wns. The association Rents exists
since 1980, when the company started. Since the company decided in 1982 to
extend their activity and find tenants for property owners, the association Owns
exists since 1982. Of course, both source and target valid-time collections have
to exist during the lifespan of the association. This is checked by the system.
Assume that collection Rented has a lifespan [1980 - oo).

create association Rents
source Tenants target Rented lifespan { [1980-inf) };

create association Owns
source Owners target Properties lifespan { [1982-inf) };

254

Now we can create associations between tenants and the properties they rent,
and between owners and the properties they own. Assume apartment a p a r t i to
be in collection Rented from 1980 to 1995. Tenant andreas has rented apartment
a p a r t l from 1980 to 1993:

i n se r t b inary objec t (andreas, apar t l) to Rents during { [1980 - 1993) };

If a temporal association references an object which does not exist at all or
during the specified t ime period, an error message is produced. This means we
check for temporal referential integrity on both collection and object levels.

4 T e m p o r a l C o n s t r a i n t s

In this section, we discuss the issue of the temporal generalisation of the classifi-
cation constraints in detail. We consider the conditions imposed by the constraint
with respect to a particular time instant and then generalise it over time.

We present the temporal generalisations of the disjoint constraint. Firstly,
we have to redefine the membership relation for a time instant. Then, we define
the valid-time disjoint constraint over valid-time collections. A description of all
temporal constraints can be found in [SN97].

The non-temporal membership relation of a value z in a set S is denoted by
z E~et S. The membership relation at a time instant can be defined as:

D e f i n i t i o n 8 . (m e m b e r s h i p r e l a t i o n at a t i m e i n s t a n t) Let C be a valid-
t ime collection of elements of type Type, member_type(C) = Type, and let t E T
be a t ime instant. Then for any value z : Type, z E V v, x is a member of C at
t ime instant t, x Et,~t C, if and only if both of the following conditions hold:

1. rt(toid(C)) # r
2.

Note that according to definition 4, w is never a member of a set of values
r t (ez t (C)) . With definition 8, we can now define the valid-time disjoint con-
straint.

D e f i n i t i o n 9 . (d i s jo in t c o n s t r a i n t a t a t i m e i n s t a n t) Let t E 7- be a time
instant. The disjoint constraint at time instant t over a set of valid-time collec-
tions CS, dis joint t (CS), is defined as

VCi, Cj E C S : oid(Ci) # oid(Cj) ~ ~3x : x Et~t Ci A x ei~t Cj

Note that if at least one of the two collections Ci or Cj is undefined at t ime
instant t, then Ci and Cj are disjoint due to definition 8.

D e f i n i t i o n lO. (v a l i d - t i m e d i s jo in t c o n s t r a i n t) T h e valid-time disjoint con-
straint over a set of valid-time collections CS, disjoint ~ (CS), is defined as

255

disjoint" (CS) :r Vt 6 [3cjecs li yespan(Cj) : disjoint t (CS)

A set of valid-time collections CS is temporally disjoint, if no pair of member
collections has a common member value at any time point.

The temporal cover and intersection constraints and the semantics of tem-
poral cardinality constraints can be defined accordingly. A temporal partition
constraint can be expressed by a combination of a temporal cover and a temporal
disjoint constraint.

Example 7. The schema depicted in figure 1 demands that the valid-time collec-
tions Residences and Of f i ces are disjoint. In our system, the command

create constraint DisjointRO disjoint ([Residences, Offices]) ;

creates a valid-time disjoint constraint over the valid-time collections Res idences
and Offices.

Previously, we stated that all information is represented as objects, including
constraints. This means that with our object-timestamping approach, constraint
objects may also be extended to temporal objects having a lifespan. At the
moment, we are still investigating this idea of timestamping constraints and the
impact they have.

The above definition of a temporal constraint does not lead directly to a good
implementation. It is not feasible to implement a constraint checking algorithm
which is based on time instants. We use an efficient implementation based on
calculations of time on an interval level, using the set-theoretic operations union,
intersect and difference of time intervals. Additionally, we exploit the fact that,
if a database is consistent at the beginning of a transaction, only the changes
made during the current transactions need to be checked.

5 T e m p o r a l O p e r a t i o n s

So far, we have introduced the temporal constructs of TOM. The other aspect of
the model is the generalisation of the collection algebra of OM to give equivalent
temporal operations. In O M, all algebra operations work on collections of objects
and return a result collection of objects. The model has an extensive set of generic
operations, including convenience forms for operating over binary collections.

The algebra supports the standard set-based operations of union, intersection
anddifference. There are also operations to map a given function over a collection,
to select elements of a collection based on a predicate condition and to flatten a
collection of collections by eliminating one level of nesting. A full description of
the algebra is given in [Nor93].

Proposed temporal algebras and query languages tend to neglect the fact
that, besides different kinds of temporal selections (e. g. DURING, WHEN, MOVING
WINDOW as introduced in [Wuu91, RS93]) or a temporal join, operations such as
temporal set difference (temporal negation) or intersection etc. should also be

256

supported. The TOM model specifies temporal equivalents for all of the algebra
operations in OM. Additionally, temporal comparison operators as introduced
in [Al183] are supported.

There exist two categories of temporal operations in our temporal algebra.
The first category contains those operations which calculate new lifespans for
both result collection and the objects contained in it, for example the temporal
compose operation, the temporal cross product or temporal set operations. The
second category of temporal operations only work on object identifiers while
retaining lifespans. Examples are the temporal inversion or the temporal domain
operations.

We will discuss these operations in more detail by considering an example
query, explaining how it is evaluated and giving definitions for a few temporal
operations. Definitions for all of the operations and more examples are given in
[SN97]. In our system, it is possible to either use algebra expressions or an SQL-
like syntax for querying: We use algebra expressions in the following examples.

Example 8. We would like to know the history of tenants renting one of Herbert's
properties. The temporal algebra expression calculating the corresponding result
looks like

rang ev (~Ye]t.narne='g~rb~t' (Owns) o v inv v (Rents))

This expression can be run as a query in the system the following way:

valid range(compose(select (left.name = 'Herbert') Owns, inv (Rents))) ;

Algebra operations with a superscript v denote that they are evaluated using
temporal semantics with respect to valid-time. In example 8, all of the operations
use temporal semantics. According to the approach proposed in [SBJS96], we
use the keyword valid to denote that temporal evaluation semantics should be
applied for a query. In the above example, the scope of keyword valid is the
whole query.

In example 8, we first select those binary objects in the temporal associa-
tion Owns which have the object denoting owner Herbert on the left side. We
then combine the temporal result collection with binary collection Rents. The
valid-time compose operation (o ~) composes out of two binary collections, a new
binary collection by taking the objects in the domain of the first and the objects
in the range of the second and combining them if they have equal range and
domain objects respectively. This operation belongs to the first category of op-
erations where lifespan calculation is done. The formal definition of the temporal
compose operation is

D e f i n i t l o n l l . (compose of two val id- t ime b ina ry col lect ions) Let B1
and B2 be two vMid-time binary collections. The valid-time composition of B1
and B2, B1 o~e t B2, has a lifespan lifespan(B1)N lifespan(B2) and an extension

ext(B1 o%t B2) = {<< (z,z);Is >> 13y :<< (x,y);Isl >> 6,~t ext(B1)A
<< (y, z);ls >> ext(B:)^ls : : Is1 nls2 ^Is # {}}

257

Since our collections also have lifespans, we have to define what the lifespan of
a resulting valid-time collection shall be. A non-temporal database management
system returns an error if one of the arguments of an operation does not exist.
In our case, we define that a resulting temporal collection should only cover
those time instants when all of the argument collections exist. Thus the result
of a valid-time compose operation is valid only during the intersection of the
two lifespans of the valid-time collections involved. Note that this also holds for
other temporal operations of the first category.

As we can see in definition 11, we combine those pairs of objects where the
right object of the first pair is the same as the left object of the second pair
during their common time period. In example 8, we want to find tenants of
properties owned by Herbert. We combine owner objects in Owns with tenant
objects in Rents through their common property objects. To be able to do that
with a temporal compose operation, we first have to invert collection ttenl;$. The
valid-time inversion operation (inv ~) just switches source and target objects of
a binary collection, leaving the timestamp the same. This operation belongs to
what we earlier called the second category of operations in our temporal algebra.
The formal definition of this operation is

Def in i t ion 12. (inverse of a va l id- t ime b i n a r y collect ion) Let B be a valid-
time binary collection. The valid-time inverse of B, • has a lifespan
l i fespan(B) and an extension

ext(inv (B)) = {<< (y, x); ts >>1<< Y); ls >> e, t e t(B))

The result of the compose operation ~r~eit.,,a,~e=,Herber t, (Owns) o v inv ~ (Rents)
is a binary collection containing pairs having an owner object on its left and a
tenant object on its right side together with their common time periods. Since
we are interested in tenant objects of this binary collection, only the range of the
binary collection is of interest. The corresponding operation is the temporal range
operation (range v), which can be defined similarly to the temporal inversion and
also belongs to the second category of temporal operations.

6 C o n c l u s i o n s

Experiences in developing the model TOM, together with a prototype implemen-
tation, show that our generalisation approach leads naturally to more general
models and systems. The generality and orthogonality of the underlying model,
in this case OM, are major contributing factors and therefore essential to fully
exploit the generalisation approach.

By generMising the notion of an object identifier to a temporal object iden-
tifier, everything considered as an object is automatically timestamped. In OM,
not only entities, but also collections, associations and even constraints are ob-
jects, and hence all may have temporal properties. Additionally, the possibility
that objects may have several roles at the same time and evolve by changing
roles makes both OM and TOM very powerful for role modelling.

258

R e f e r e n c e s

[Al183]

[BFG96]

[cc87]

[GO93]

[Gv851

[Nor93]

~sww96]

[RS93]

[SBJS96]

[SN9~

[Sno95]

[Steg5]

[TCG + 93]

[WD9~

[Wuu91]

J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communi-
cations of the ACM, 16(11), 1983.
E. Bertino, E. Ferrari, and G. Guerrini. A Formal Temporal Object-
Oriented Data Model. In P. Apers, M. Bouzeghoub, and G. Gardarin, ed-
itors, Advances in Database Technology, pages 342-356. Springer, 1996.
J. Clifford and A. Croker. The Historical Relational Data Model (HRDM)
and Algebra Based on Lifespans. In Proceedings of the International
Conference on Data Engineering, pages 528-537. IEEE Computer Society
Press, 1987.
I. A. Goralwalla and M. T. Ozsu. Temporal Extensions to a Uniform Be-
havioral Object Model. In Proceedings of the l Oth International Conference
on the ER Approach, pages 110-121, 1993.
S. K. Gadia and J. H: Vaistmav. A Query Language for a Homogeneous
Temporal Database. In Proceedings of the International Conference on
Principles of Database Systems, 1985.
M. C. Norrie. An Extended Entity-Relationship Approach to Data Man-
agement in Object-Oriented Systems. In Proceedings of the l$th Interna-
tional Conference on the ER Approach, 1993.
M. C. Norrie, A. Steiner, A. Wiirgler, and M. Wunderli. A Model for Clas-

sification Structures with Evolution Control. In Proceedings of the 15th
International Conference on Conceptual Modelling, 1996.
E. Rose and A. Segev. TOOSQL - A Temporal Object-Oriented Query
Language. In Proceedings of the lOth International Conference on the ER
Approach, pages 122-136, Dallas, TX, 1993.
R. T. Snodgrass, M. H. BShlen, C. S. Jensen, and A. Steiner. Adding Valid
Time to SQL/Temporal. SQL/Temporal Change Proposal, ANSI X3H2-96-
501r2, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2, November 1996.
A. Steiner and M. C. Norrie. A Temporal Extension to a Generic Object
Data Model. Technical report, Institute for Information Systems, ETH
Ziirich, 1997.
R. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer Aca-
demic Publishers, i01 Philip Drive, Assinippi Park, Norwell, Massachusetts
02061, USA, 1995.
A. Steiner. The TimeDB Temporal Database Prototype. Institute for In-
formation Systems, ETH Zfirich. Avail-
able at ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz,
September 1995.
A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass.
Temporal Databases: Theory, Design, and Implementation. Benjamin/-
Cummings Publishing Company, 1993.
G.T.J. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned
Object-Oriented Databases. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, and R. Snodgrass, editors, Temporal Databases: Theory, Design,
and Implementation, chapter 10, pages 230-247. Benjamin/Cummings
Publishing Company, 1993.
G.T.J. Wuu. SERQL: An ER Query Language Supporting Temporal Data
Retrieval. In Proceedings of the l Oth International Phoenix Conference on
Computers and Communications, pages 272-279, 1991.

