
Vector-Based Segmentation of Text Connected
to Graphics in Engineering Drawings

Dov Doff Liu Wenyin

Faculty of Industrial Engineering and Management
Tectmion-Israel Institute of Technology, Haifa 32000, Israel

{dori,liuwy} @ie.tectmion.ac.il

Abstract: A method for segmentation of text that may be connected to
graphics in engineering drawings is presented. It consists of three steps:
growing individual characterbox regions, using a recursive merging
scheme by stroke linking; merging the detected characterboxes into a
textbox and determining its orientation; and re-segmenting the textbox
back into the refined characterbox that can be input to an OCR subsystem.
The method can segment dimensioning text as well as other classes of
text. It handles both isolated and touching characters, aligned at any slant.
The capability of segmenting characters that touch either themselves or
graphics, which is an important feature in handling real life drawings, is
obtained by focusing on intermediate vector information rather that on tile
raw pixel data. We present tile details of tile algorithm and show both
successful and unsuccessful exvanples from an experimental set of 36
dimensioning textboxes, in which 94% segmentation rate was achieved
with 3% false alann rate.
Keywords: Text Segmentation, Engineering Drawing Interpretation,
Primitive Recognition

1 Introduction
In spite of the current common use of Computer Aided Design (CAD) systems to

produce and manage engineering drawings, a CAD conversion system capable of
understanding paper based engineering drawings and translating them into CAD
representation is highly demanded [1]. As one of the two rather different classes of
primitives in engineering drawings, text needs to be processed separately from
graphics. Hence, segmentation of text from graphics, followed by text recognition, is
a basic step in text processing of engineering drawings, which, in turn, is an
important part of engineering drawings interpretation.

Due to the complexity of text patterns in engineering drawings, there is no single
text segmentation method which works effectively on real life paper based drawings.
Most current systems can only cope with high quality drawings, where the text
characters are detached both from the graphics and from each other. Fletcher and
Kasturi [2] developed an algorithm for text string separation from mixed
text/graphics image. It is based on the generation of connected components and the
application of Hough Transform to group together the components into logical
character strings, which may then be separated from the text. Lai and Kasturi [3]
presented a system for detecting dimension-sets in engineering drawings that follow
the ANSI dr,'ffting standard. It is also based on the generation of components and
composing them into text strings, which are associated with dimension lines. Neither

323

one of these algorithms treat the problem of text/graphics connectivity, nor do they
detect text strings consisting of a single character. Chai and Dori [4] proposed an
algorithm for textbox extraction, that is preceded by OZZ vectorization, arc
segmentation and arrowhead recognition [5]. The textbox extraction is done by
clustering short bars that are close to each other through a region growing process.
As noted by the authors themselves, the algorithm is designed only for detection of
text areas without string extraction, and may lead to some detection errors. On the
basis of [4], Dori and Velkovich [6] proposed a higher level text segmentation and
recognition method. The improvement is in that the algorithm handles the
connectivity problem. It groups the basic textboxes into basic and logical textbox and
extracts the basic textboxes for string separation and OCR. These methods depend to
some extent on the presence of other primitives, such as arrowheads, which must be
correctly recognized from the drawings prior to text segmentation. Since most
methods work with rather ideal drawings, the rate of correct text segmentation for
complex and noisy real life drawings is usually not satisfactory.

In this paper, a robust method for text segmentation is developed and
implemented. The method does not refer to the pixel data of the image, neither does
it depend on arrowheads as evidence of the existence of text. It depends only on bars
and polylines, which are basic primitives extracted by the vectorization process.
Dimensioning text and other kinds of text with various orientations, including
special symbols, such as surface quality and other manufacturing instruction
symbols, are detected by this method.

2 T h e T e x t S e g m e n t a t i o n A l g o r i t h m

2.1 Problem Definition
The following definitions, demonstrated in Fig. 1, are used throughout our work.
Stroke: wire, the basic vector extracted from the binary character image by

vectorization. It may be a bar, which is a straight line segment with non-zero line
width, a polyline, which is a chain of bars, or a circular arc with non-zero line width.

Charbox: characterbox, the bounding rectangle of the character image, i.e., a
minimal rectangle enclosing the strokes of this character, without any non-text
element or stroke of any other character.

Coarse Charbox: an upright (straight) charbox that bounds the character (which
may be slanted) as if it were horizontal or vertical.

Normal Charbox: an upright charbox that tightly bounds the character in its
normal orientation, i.e., after it was rotated to a horizontal position.

Fine (Tight) Charbox: a charbox that tightly bounds the character, whose slant is
the same as the orientation of the character. The fine charbox is calculated by finding
its normal charbox and rotating the normal charbox back to its original orientation.

Text: a string of any kind of characters and symbols.
Textbox: a minimal rectangle, enclosing a particular text without any non-text

element, and any part of other text. The textbox of a text is the union of the
charboxes of its character components.

Coarse Textbox: an upright rectangle formed by the union of the coarse
charboxes of its constituent characters.

324

[- - : -~Z' .q . fi;~'3~ , . ". : i r ; ~ : " ; . % ' : ~ . . f f - ~ ~-~..., Rotate Rotate i: ', ,' 't : c ~ l ~
i . ~ ' . - " , > L:.~.;I:~..:, > "" �9 %"" "" I
["-~-' - - - , Horizontally Back

Coarse Charboxes Normal Charboxes Fine Charboxes
and Coarse Textbox and Normal Textbox and Fine Textbox

Charboxes Textbox Center
Textbox ~ ~ t

Textbox Centerline ~ 14
Textbox Baseline ... ~' (Textbox/eharbox

height) /

�9 W

(Textbox Width)

Figure 1. Textbox example and related concepts.

Normal Textbox: an upright rectangle that is formed by the union of the normal
charboxes of its constituent characters and tightly bounds the character string in its
horizontally rotated image.

Fine (TighO Textbox: an oriented textbox that tightly bounds the text, whose
slant coincides with the orientation of the character string.

Textbox Center: the intersection of the two diagonal lines of the textbox.
Textbox Baseline: a straight line passing through the basis of the textbox.
Textbox Centerline: a straight line passing through the textbox center.
Basic textbox [6]: a textbox, in which the text is a single string.
Logical textbox [6]: a textbox, in which all elements are logically connected and

refer to a common element of an engineering drawing. A logical textbox is usually
used for the dimensioning text, which consists of a basic textbox as the nominal
dimension and optionally one or two basic textboxes as its tolerance (e.g., 5i~0.5).

Using these definitions, the problem of text segmentation in engineering
drawings can be decomposed into three main steps of work. Fig. 2 is a top-level
Object-Process Diagram (OPD) representation [8] of this subsystem. These three
steps are shown in Fig. 3, which is the blow-up and unfolding of Fig. 2. The first step
is recursive merging-segmentation of charboxes from the graphics, which is done as
a specialization of the unified generic object recognition methodology [9]. In this
step, we find coarse charboxes-upright bounding rectangles of isolated characters. In
the second step-grouping, we perform statistics on the size of individual characters,
which is used to combine adjacent charboxes into textboxes with determined
orientation. Finally, in the third step-refinement, the textboxes are re-segmented into
precise individual charboxes, which can be used as input to OCR.

Our text segmentation takes place immediately following vectorization [7],
which results in strokes: bars and polylines. We do not work with the pixel data,
neither do we need to depend on detected arrowheads as evidence for the existence of
text, although such information may be helpful when searching for missed text.

325

m O..m
Basic

Textbox

1..m t

I Fine Charbox I

Legend
objoct
Process 0
Effect link >
Instrument link ~ o
Participation constraint l..m
(min .. max)
Aggregation relation �9

Figure 2. Top level OPD of the Text Segmentation Algorithm.

m

I Stroke I
A

Legend
Object [.]
Process
Effect link >
Instrument link o
Participation constraint l..m
Aggregation relation �9
Fractal relation
Blow-up frame ":i:.::i::iii:iiiiiiiiii:':':.: ::::;:

:ii

�9:.:..:.:.:-:.:.'.'.'.'.:.:.:.:..:.:.:......
..:.::.':"" ":%=. O..m

.... ~ ~ ] Basic Fine fV" �9 ~ .

........... ~ I Textbo x

.::ii!:" 0..m ::::::i::ii~i?i.
Coarse Textbox I

I 1..m [
Coarse Charbox I

:::::::::::::::::::::::: 1..m

.................. : +.. ~ . '- ' ~ ..:." , CharboxRefined]
"<';:::.>.:.:..:+;..:,:.: + :.:.:+ :. +:+ +:.':":'::':""

ii
Text ~ii

Segmentat ion :iii
.~?

::!
::!:

.:>

Figure 3. Blow-up of Text Segmentation and unfolding of stroke of Figure 2.

2.2 The Initial Charbox Segmentation
Based on the features of characters, we start to find each charbox by finding the

first key component as a stroke, whose length is less than both a predefined maximal
character size and n times the stroke width, where typically n=10. A recursive
algorithm is then used to realize the merging procedure for growing the charbox
region by collecting strokes that are close enough and meet the above two maximal
length requirements.

The recursive merging algorithm for charbox growing works in a depth-first
fashion. The charbox of tile current character is initialized with the bounding
rectangle of the first stroke---the found key component. The algorithm accepts this
stroke (and the rectangle) as its input parameter, and returns a complete charbox.
Pseudo-code of the recursive charbox merging algorithm is listed in Fig. 4.

The algorithm merges the areas covered by linked strokes. Its main purpose is
finding the minimal bounding boxes of single isolated characters, but it may also
return coarse charboxes resulting from two or more touching characters. Merging
graphic elements with characters that touch the graphics rarely occurs, because
graphic objects are usually longer than character strokes, so they are precluded from

326

being stroke candidates in the first place. In case a non-text element is contained in
the charbox, it may be carried on to the OCR stage and prevent correct recognition,
Algorithm 1: Recursive Coarse Charbox Merging
Rectangle Recursive Charbox(Stroke S)
Begin

For each stroke close to Stroke S and is unmarked
Begin H finding~estokelistSL

If the stroke is shorter than max char height
and shorter than n times its w~dth -

then put it into Stroke list SL;
Else return NULL;

End;
For each stroke s in SL
Begin H me~ingstrokesinSL

Mark stroke s;
Rectangle r = Recursive Charbox(s);
If (r = NULL) return NULL;
Else CBOX = Union of CBOX and r;
If CBOX > MaximumCharbox return NULL;

End;
return CBOX;

End.

Figure4. Pseudo-codeofAlgorittnnl-RecursiveCoarseCh~box Me~ing.

2.3 Grouping Charboxes into Textboxes
As shown in tile OPD of Fig. 3, the single coarse charboxes extracted by

Algorithm 1 are the input for the grouping process. According to ISO and ANSI
drawing standards, the height of the character is usually 1.5 times its width. The
character size can therefore be expressed by its area. The coarse charboxes are first
used to compute the average area (height by width in pixel units) of the charbox. Let
S; be the area of the ith charbox and N the total number of charboxes, then the
average charbox area Sr is

Let We be the average charbox width and H~ the average charbox height (see
Fig. 1). Since I~ = 1.5W~, we get that

W~ = ~ / 1 . 5
Having found the average character width and height, neighboring charboxes are

grouped into textboxes, as shown by the grouping process in the OPD of Fig. 3. The
sizes of the individual charboxes are used to determine the search directions. For
example, if the height of the coarse charbox is less than its width, the character is
likely to be more vertical than horizontal, so the top and bottom, rather than the left
and right areas of the character, should be searched for additional character
components of the textbox to which the character inside the coarse charbox belongs.

The orientation of a textbox is roughly determined first by the centers of its
component characters. This orientation is then tested and refined by finding a bar
beneath/under (in the sense of the roughly determined orientation) this textbox. If
such a bar is found, it is likely to be the tail of the leader of the corresponding

327

dimension-set, and this text should have a center line parallel to tiffs bar. In that
case, the textbox orientation is set to be identical to that of the bar tail. If such a bar
cannot be found, the orientation of the textbox is determined by the ratio of its height
to its width when the textbox is horizontal or vertical, or by the coarse textbox
orientation otherwise. The reason is that, for a single character the height is bigger
than the width, and for a character string consisting of more than one characters the
height is smaller than the width. If there is only one charbox in the textbox and the
height is bigger than the width, or, there are more than one charboxes in this textbox
and the width is bigger than the height, the coarse orientation is taken as the refined,
final orientation. Otherwise, the refined orientation is orthogonal to the coarse
orientation.

The charbox average size and the textbox orientation are useful in the
refinement process for detecting characters touching other characters or graphic
objects and lines. The orientation is used to detect graphics-touching characters,
which were overlooked in the first step. The average size is used to filter out these
graphics-touching characters. For example, new charboxes which are too large are
excluded as non-characters. The average size is also used to divide charboxes that are
larger than a certain threshold into two or more individual charboxes.

2.4 Charbox Refinement
As the OPD in Fig. 3 shows, the final step of our text segmentation algorithm is

refinement. The textbox is re-segmented into more accurate, refined charboxes. This
step concurrently solves the following four problems: (1) finding the individual fine
(tight) charboxes and the fine tcxtbox according to the textbox orientation; (2)
cutting merged charboxes, which may contain more than one individual character,
into two or more correct and fine charboxes; (3) separating graphics-touching
characters, which may belong to the textbox under consideration, from the graphics,
and adding them to that textbox; and, (4) arranging the collection of charboxes in
this textbox in the correct reading order from left to right, for correct OCR results.
The refinement proceeds in the following way.

Initially, the normal textbox and its normal charbox list are empty. Every coarse
charbox in the coarse charbox list of the coarse textbox undergoes the following
operations. First, we rotate the stokes of the currently taken coarse charbox around
the center of the coarse textbox (which is also supposed to be the center of the final
fine textbox) to an upright position and calculate its normal charbox. If this normal
charbox is wider than a threshold, then we try to split it into two or more charboxes,
each having approximately an average width, while avoiding split of integral strokes.
The resulting normal charbox (or each of the resulting charboxes, if split occurs) is
inserted into the normal charbox list of this textbox, ordered from left to right. If the
inserted normal charbox shares a significantly overlapping position in the width
direction with its neighbor normal charboxes in the list, they may belong to the same
individual character in this text. In this case we try to merge the overlapping textbox
such that the resulting merged normal charbox contains only one character. The
current normal textbox is then adjusted to enclose all the normal charboxes in the
current list. A possibly skewed rectangular area (PSR), which stretches from the

328

current fine textbox (which can be obtained by rotating the current normal textbox to
its original orientation) to both (left and right) sides by an average character width, is
searched for strokes of touching characters, which may touch both graphics and/or
characters. Every stroke, whose bounding box is less than the maximal charbox and
most of it lies within the search area, is taken as a temporary character and its coarse
charbox is added to the coarse charbox list of the coarse textbox. This charbox waits
its turn to be treated as a coarse charbox, which may then be merged with yet another
charbox. Upon termination of the above processing on the current coarse charbox,
the next coarse charbox in the coarse charbox list undergoes the same processing.
This is repeated until all the coarse charboxes in the coarse charbox list of the
current coarse textbox are processed. At that point, the normal textbox and its
normal charboxes are rotated back to their original orientation, and the final fine
textbox and its constituent fine charboxes are computed.

The refinement process described above is listed in the Pseudo-code of Fig. 5 and
illustrated by the OPD in Fig. 6. The horizontally rotated pixel image of each
Refined Charbox can be used as input to any OCR algorithm and the recognized
characters would be combined into a whole string.

Algorithm 2: Charbox Refinement
Fine Textbox Charbox Refinement (C0arse_Textbox CT)
Begin

Set NCL /*the Nomml CharboxList*/ and NT /*the Normal Textbox*/ empty.
For (e a c h CC /*Coarse Charbox*/ i n CCL /*Coarse Charbox List of CT*/)
Begin

//1. Rotate Horizontally:
NC = R o t a t e _ H o r i z o n t a l l y (CC) ;//Rotate CC to get Normal Charbox.

//2. Split&Merge:
If (CC >= Threshold) TNCL = Try Split(CC);
for (each TNC in TNCL) //take a Tem~6rary Normal Charbox in TNCL.
Begin

Insert (TNC, NCL) ; //insert TCC intoNCL.
if(TNC overlaps its neighbor) Try Merge(TNC,NCL);

End;
NT = U n i o n (NCL) ;//nonnal textbox bounds all of its normal charboxes.

//3. Search for graphics-touching characters:
TCCL = S e a r c h (PSR) ;//Search PSR for Temporary Coarse Charboxes.
for (each TC in TCCL) Add(TC, CCL);//AddTCinCCL.

End;
for (each NC in NT)
Begin

FC = R o t a t e Back (NC) ;//Rotate back NC to get tile Fine Charbox (FC).
Add (FC, FCL]-; //Add FC to the Fine Charbox List.

End;
return Union(FCL) ;

End.
I I

Figure 5. Pseudo-code ofAlgoritlun 2-Charbox Refinement

3 Exper imental Results
We applied our text segmentation algorithm on a series of portions of medium to

poor quality engineering drawings, in which a total of 36 textboxes appeared. 94%
were correctly segmented with about 3% false alarm rate. Table 1 shows the statistics
of the experimental results of five test drawings. Figs. 7-9 show three of them. In Fig.

329

7, all eight textboxes are horizontal, but four of them are underlined with a thick
line, such that all the characters are connected to the graphics. Nevertheless, all are
successfully detected, including the - symbols, which are correctly associated with
the appropriate textboxes. In Fig. 8, one textbox is missed. It is the dimension text
11, which is really hard to detect, because each of the two l ' s touches the back of one
arrowhead, and 1 is hard to segment even when it is not connected to graphics.
However, the two 45 ~ textboxes are successfully detected in their correct slants along
with their degree symbols. The two = symbols are not detected because we have not
programmed the system to recognize = as text. Likewise, the two triangles,
symbolizing surface quality, are correctly dismissed in the refinement process as non-
text. In Fig. 9, the ~R8 and 20 ~ are correctly detected in the precise orientation, as
are the vertical ~770 and ~774+1

IlL 1..m

._1 ..s:'::':"'"

:~iii.. ~ C h a r b o x

textboxes.

 fo:g,

qormalTextbox

Legend
Object [__~1
Process
Effect link >
Instrument link o
Participation constraint 1..m
Aggregation relation �9
Soft Atrribute ~x
Blow-up frame "~i!:::iii::i:.iiiiiiiii:i::i::iii:ili:

"i~ii~::

+

~] : j

::ii??i~!::
"::::::..

, 2::
..S; i::'

e r g ~ ~ ========================
..:+-

:-- �9 . ..5:::':" ".'-::.:...
=========================== Refinement:.::.::'::'::'::':::':""

�9 . ===-

Figure 6. Tile Refinement process of OPD of Figure 3 blown up.

Table 1: Statistics of tile experimental results of text se~tnentation
Test Actual # of # of detected % # of false % false

detection alarms Drawin~ Textboxes Textboxes
Figure 7 8 8 100 0 0
Figure 8 8 7 88 0 0
Figure 9 4 4 100 0 0
Unlisted 1 9 9 100 1 11
Unlisted 2 7 6 86 0 0
Total 36 34 94 1 3

alarms

330

Figure 7. Portion of an engineering drawing: (a) Coarse Charbox Segmentation;
(b) Textboxes and their constituent Refined Charboxes.

Figure 8. Portion of an engineering drawing: (a) Coarse Charl~ox Segmentation;
(b) Textboxes and flleir constituent Refined Charboxes.

Figure 9. Portion ofval engineering drawing: (a) Coarse Charbox Segmentation;
(b) Textboxes and their constituent Refined Charboxes.

4 D i scus s ion a n d F u t u r e W o r k
A method for accurate textbox are charbox segmentation from engineering

drawings has been described and implemented. The method handles text at any
orientation and carries out accurate segmentation of individual characters even if
they touch each other and/or graphic primitives. Thus, an integrated OCR subsystem
can be supplied with raster images of characters that can be recognized correctly with
high likelihood. Applied to a set of intermediate to poor quality engineering
drawings, we obtained 94% textbox detection rate with 3% false alarms.

There is an obvious tradeoff between the detection and false alarm rates:
Increasing the detection rate by taking a higher threshold for the stroke length is

331

accompanied by an adverse increase in the false alarm rate. To better understand this
phenomena we show in Fig. 10 the histograms of length distribution of text strokes
(left) and graphics bars (right) of Fig. 8. Clearly, there is an overlap at the short
strokes region. Increasing the stroke length threshold from 12 to 20, for example,
increases the overlapping, which, in turn, yields more false alarms. However, we are
ready to increase the rate of false alarms if this is the price for increasing the
detection rate, because those false alarms can be easily recognized as such due to
considerations of incorrect syntax and/or lack of OCR results.

0 .14 .]][raction of strokes 0.12 11 0.25 Fraction of bars o, o!111
0.08 0.15

o.o !l! o . .
. . . . ,11 g, 0 fl,, ,fl,g , , i

3 15 27 39 51 63 75 87 3 12 21 30 39 48 57 66 75 84
stroke length (pixels) bar length (pixels)

(a) (b)
Figure 10. Histogram of length distribution of (a) the text strokes

and (b) the graphic lines of the test drawing in Figure 8.

We have tried a neural network based OCR subsystem and obtained satisfactory
results. Work is under way to integrate the various components and apply
verification based on comparing actual direct dimension measurements from the
drawing with OCR output.

References
1 D. Dori and K. Tombre, "From Engineering Drawings to 3D CAD Models: Are We Ready
Now?", Computer Aided Design, 1995, 27(4), 243-254.
2 L.A. Fletcher and R. Kasturi, "A Robust Algoritlun for Textbox String Separation from
Mixed TexffGraphics hnages", IEEE PAMI, 1988, 10(6), 900-918.
3 C.P. Lai and R. Kasturi, "Detection of Dimension Sets in Engineering Drawings", Proc. of
2rid ICDAR, Tsukuba, Japan, 1993,606-613.
4 I. Chai and D. Dori, "Extraction of Text Boxes from Engineering Drawings", Proc.
SPIE/IS&T Symposium on Electronic hnaging Science and Technology, Conference on
Character Recognition and Digitizer Teclmologies, San Jose, 1992, SPIE Vol. 1661, 38-49.
5 D. Dori, Y. Liang and I. Chai, "Spare Pixel Recognition of Primitives in Engineering
Drawings", Machine Vision and Applications, 6, 1993, 69-82.
6 D. Dori and Y. Velkovitch, "Se~gnentation and Recognition of Dimensioning Text from
Engineering Drawings", Pre Proc. GREC'95, The Petal. State U., USA, Aug., 1995, 141-150.
7 Liu W. and D. Dori, "Sparse Pixel Tracking: A Fast Vectorization Algorittun Applied to
Engineering Drawings", Proc. of the 13th ICPR, Viemm, Austria, Aug.,1996
8 D. Dori, "Object-process Analysis: Maintaining file Balance between System Structure
and Behaviour", J. Logic Computation, 1995, 5(2), 227-249.
9 Liu W., D. Dori, Tang L. and Tang Z., "Object Recognition in Engineering Drawings
Using Planar Position hldexing", PreProc. GREC'95, The Pelm. State U., Aug., 1995, 53-61.

