
Vector-Based Segmentation of Text Connected 
to Graphics in Engineering Drawings 

Dov Doff Liu Wenyin 

Faculty of Industrial Engineering and Management 
Tectmion-Israel Institute of Technology, Haifa 32000, Israel 

{dori,liuwy} @ie.tectmion.ac.il 

Abstract: A method for segmentation of text that may be connected to 
graphics in engineering drawings is presented. It consists of three steps: 
growing individual characterbox regions, using a recursive merging 
scheme by stroke linking; merging the detected characterboxes into a 
textbox and determining its orientation; and re-segmenting the textbox 
back into the refined characterbox that can be input to an OCR subsystem. 
The method can segment dimensioning text as well as other classes of 
text. It handles both isolated and touching characters, aligned at any slant. 
The capability of segmenting characters that touch either themselves or 
graphics, which is an important feature in handling real life drawings, is 
obtained by focusing on intermediate vector information rather that on tile 
raw pixel data. We present tile details of tile algorithm and show both 
successful and unsuccessful exvanples from an experimental set of 36 
dimensioning textboxes, in which 94% segmentation rate was achieved 
with 3% false alann rate. 
Keywords: Text Segmentation, Engineering Drawing Interpretation, 
Primitive Recognition 

1 Introduction 
In spite of the current common use of Computer Aided Design (CAD) systems to 

produce and manage engineering drawings, a CAD conversion system capable of 
understanding paper based engineering drawings and translating them into CAD 
representation is highly demanded [1]. As one of the two rather different classes of 
primitives in engineering drawings, text needs to be processed separately from 
graphics. Hence, segmentation of text from graphics, followed by text recognition, is 
a basic step in text processing of engineering drawings, which, in turn, is an 
important part of engineering drawings interpretation. 

Due to the complexity of text patterns in engineering drawings, there is no single 
text segmentation method which works effectively on real life paper based drawings. 
Most current systems can only cope with high quality drawings, where the text 
characters are detached both from the graphics and from each other. Fletcher and 
Kasturi [2] developed an algorithm for text string separation from mixed 
text/graphics image. It is based on the generation of connected components and the 
application of Hough Transform to group together the components into logical 
character strings, which may then be separated from the text. Lai and Kasturi [3] 
presented a system for detecting dimension-sets in engineering drawings that follow 
the ANSI dr,'ffting standard. It is also based on the generation of components and 
composing them into text strings, which are associated with dimension lines. Neither 
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one of these algorithms treat the problem of text/graphics connectivity, nor do they 
detect text strings consisting of a single character. Chai and Dori [4] proposed an 
algorithm for textbox extraction, that is preceded by OZZ vectorization, arc 
segmentation and arrowhead recognition [5]. The textbox extraction is done by 
clustering short bars that are close to each other through a region growing process. 
As noted by the authors themselves, the algorithm is designed only for detection of 
text areas without string extraction, and may lead to some detection errors. On the 
basis of [4], Dori and Velkovich [6] proposed a higher level text segmentation and 
recognition method. The improvement is in that the algorithm handles the 
connectivity problem. It groups the basic textboxes into basic and logical textbox and 
extracts the basic textboxes for string separation and OCR. These methods depend to 
some extent on the presence of other primitives, such as arrowheads, which must be 
correctly recognized from the drawings prior to text segmentation. Since most 
methods work with rather ideal drawings, the rate of correct text segmentation for 
complex and noisy real life drawings is usually not satisfactory. 

In this paper, a robust method for text segmentation is developed and 
implemented. The method does not refer to the pixel data of the image, neither does 
it depend on arrowheads as evidence of the existence of text. It depends only on bars 
and polylines, which are basic primitives extracted by the vectorization process. 
Dimensioning text and other kinds of text with various orientations, including 
special symbols, such as surface quality and other manufacturing instruction 
symbols, are detected by this method. 

2 T h e  T e x t  S e g m e n t a t i o n  A l g o r i t h m  

2.1 Problem Definition 
The following definitions, demonstrated in Fig. 1, are used throughout our work. 
Stroke: wire, the basic vector extracted from the binary character image by 

vectorization. It may be a bar, which is a straight line segment with non-zero line 
width, a polyline, which is a chain of bars, or a circular arc with non-zero line width. 

Charbox: characterbox, the bounding rectangle of the character image, i.e., a 
minimal rectangle enclosing the strokes of this character, without any non-text 
element or stroke of any other character. 

Coarse Charbox: an upright (straight) charbox that bounds the character (which 
may be slanted) as if it were horizontal or vertical. 

Normal Charbox: an upright charbox that tightly bounds the character in its 
normal orientation, i.e., after it was rotated to a horizontal position. 

Fine (Tight) Charbox: a charbox that tightly bounds the character, whose slant is 
the same as the orientation of the character. The fine charbox is calculated by finding 
its normal charbox and rotating the normal charbox back to its original orientation. 

Text: a string of any kind of characters and symbols. 
Textbox: a minimal rectangle, enclosing a particular text without any non-text 

element, and any part of other text. The textbox of a text is the union of the 
charboxes of its character components. 

Coarse Textbox: an upright rectangle formed by the union of the coarse 
charboxes of its constituent characters. 
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Figure 1. Textbox example and related concepts. 

Normal Textbox: an upright rectangle that is formed by the union of the normal 
charboxes of its constituent characters and tightly bounds the character string in its 
horizontally rotated image. 

Fine (TighO Textbox: an oriented textbox that tightly bounds the text, whose 
slant coincides with the orientation of the character string. 

Textbox Center: the intersection of the two diagonal lines of the textbox. 
Textbox Baseline: a straight line passing through the basis of the textbox. 
Textbox Centerline: a straight line passing through the textbox center. 
Basic textbox [6]: a textbox, in which the text is a single string. 
Logical textbox [6]: a textbox, in which all elements are logically connected and 

refer to a common element of an engineering drawing. A logical textbox is usually 
used for the dimensioning text, which consists of a basic textbox as the nominal 
dimension and optionally one or two basic textboxes as its tolerance (e.g., 5i~0.5). 

Using these definitions, the problem of text segmentation in engineering 
drawings can be decomposed into three main steps of work. Fig. 2 is a top-level 
Object-Process Diagram (OPD) representation [8] of this subsystem. These three 
steps are shown in Fig. 3, which is the blow-up and unfolding of Fig. 2. The first step 
is recursive merging-segmentation of charboxes from the graphics, which is done as 
a specialization of the unified generic object recognition methodology [9]. In this 
step, we find coarse charboxes-upright bounding rectangles of isolated characters. In 
the second step-grouping, we perform statistics on the size of individual characters, 
which is used to combine adjacent charboxes into textboxes with determined 
orientation. Finally, in the third step-refinement, the textboxes are re-segmented into 
precise individual charboxes, which can be used as input to OCR. 

Our text segmentation takes place immediately following vectorization [7], 
which results in strokes: bars and polylines. We do not work with the pixel data, 
neither do we need to depend on detected arrowheads as evidence for the existence of 
text, although such information may be helpful when searching for missed text. 
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Figure 2. Top level OPD of the Text Segmentation Algorithm. 
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Figure 3. Blow-up of Text Segmentation and unfolding of stroke of Figure 2. 

2.2 The Initial Charbox Segmentation 
Based on the features of characters, we start to find each charbox by finding the 

first key component as a stroke, whose length is less than both a predefined maximal 
character size and n times the stroke width, where typically n=10. A recursive 
algorithm is then used to realize the merging procedure for growing the charbox 
region by collecting strokes that are close enough and meet the above two maximal 
length requirements. 

The recursive merging algorithm for charbox growing works in a depth-first 
fashion. The charbox of tile current character is initialized with the bounding 
rectangle of the first stroke---the found key component. The algorithm accepts this 
stroke (and the rectangle) as its input parameter, and returns a complete charbox. 
Pseudo-code of the recursive charbox merging algorithm is listed in Fig. 4. 

The algorithm merges the areas covered by linked strokes. Its main purpose is 
finding the minimal bounding boxes of single isolated characters, but it may also 
return coarse charboxes resulting from two or more touching characters. Merging 
graphic elements with characters that touch the graphics rarely occurs, because 
graphic objects are usually longer than character strokes, so they are precluded from 
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being stroke candidates in the first place. In case a non-text element is contained in 
the charbox, it may be carried on to the OCR stage and prevent correct recognition, 
Algorithm 1: Recursive Coarse Charbox Merging 
Rectangle Recursive Charbox( Stroke S ) 
Begin 

For each stroke close to Stroke S and is unmarked 
Begin H finding~estokelistSL 

If the stroke is shorter than max char height 
and shorter than n times its w~dth - 

then put it into Stroke list SL; 
Else return NULL; 

End; 
For each stroke s in SL 
Begin H me~ingstrokesinSL 

Mark stroke s; 
Rectangle r = Recursive Charbox(s); 
If (r = NULL) return NULL; 
Else CBOX = Union of CBOX and r; 
If CBOX > MaximumCharbox return NULL; 

End; 
return CBOX; 

End. 

Figure4. Pseudo-codeofAlgorittnnl-RecursiveCoarseCh~box Me~ing. 

2.3 Grouping Charboxes into Textboxes 
As shown in tile OPD of Fig. 3, the single coarse charboxes extracted by 

Algorithm 1 are the input for the grouping process. According to ISO and ANSI 
drawing standards, the height of the character is usually 1.5 times its width. The 
character size can therefore be expressed by its area. The coarse charboxes are first 
used to compute the average area (height by width in pixel units) of the charbox. Let 
S; be the area of the ith charbox and N the total number of charboxes, then the 
average charbox area Sr is 

Let We be the average charbox width and H~ the average charbox height (see 
Fig. 1). Since I~ = 1.5W~, we get that 

W~ = ~ / 1 . 5  
Having found the average character width and height, neighboring charboxes are 

grouped into textboxes, as shown by the grouping process in the OPD of Fig. 3. The 
sizes of the individual charboxes are used to determine the search directions. For 
example, if the height of the coarse charbox is less than its width, the character is 
likely to be more vertical than horizontal, so the top and bottom, rather than the left 
and right areas of the character, should be searched for additional character 
components of the textbox to which the character inside the coarse charbox belongs. 

The orientation of a textbox is roughly determined first by the centers of its 
component characters. This orientation is then tested and refined by finding a bar 
beneath/under (in the sense of the roughly determined orientation) this textbox. If 
such a bar is found, it is likely to be the tail of the leader of the corresponding 
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dimension-set, and this text should have a center line parallel to tiffs bar. In that 
case, the textbox orientation is set to be identical to that of the bar tail. If such a bar 
cannot be found, the orientation of the textbox is determined by the ratio of its height 
to its width when the textbox is horizontal or vertical, or by the coarse textbox 
orientation otherwise. The reason is that, for a single character the height is bigger 
than the width, and for a character string consisting of more than one characters the 
height is smaller than the width. If there is only one charbox in the textbox and the 
height is bigger than the width, or, there are more than one charboxes in this textbox 
and the width is bigger than the height, the coarse orientation is taken as the refined, 
final orientation. Otherwise, the refined orientation is orthogonal to the coarse 
orientation. 

The charbox average size and the textbox orientation are useful in the 
refinement process for detecting characters touching other characters or graphic 
objects and lines. The orientation is used to detect graphics-touching characters, 
which were overlooked in the first step. The average size is used to filter out these 
graphics-touching characters. For example, new charboxes which are too large are 
excluded as non-characters. The average size is also used to divide charboxes that are 
larger than a certain threshold into two or more individual charboxes. 

2.4 Charbox Refinement 
As the OPD in Fig. 3 shows, the final step of our text segmentation algorithm is 

refinement. The textbox is re-segmented into more accurate, refined charboxes. This 
step concurrently solves the following four problems: (1) finding the individual fine 
(tight) charboxes and the fine tcxtbox according to the textbox orientation; (2) 
cutting merged charboxes, which may contain more than one individual character, 
into two or more correct and fine charboxes; (3) separating graphics-touching 
characters, which may belong to the textbox under consideration, from the graphics, 
and adding them to that textbox; and, (4) arranging the collection of charboxes in 
this textbox in the correct reading order from left to right, for correct OCR results. 
The refinement proceeds in the following way. 

Initially, the normal textbox and its normal charbox list are empty. Every coarse 
charbox in the coarse charbox list of the coarse textbox undergoes the following 
operations. First, we rotate the stokes of the currently taken coarse charbox around 
the center of the coarse textbox (which is also supposed to be the center of the final 
fine textbox) to an upright position and calculate its normal charbox. If this normal 
charbox is wider than a threshold, then we try to split it into two or more charboxes, 
each having approximately an average width, while avoiding split of integral strokes. 
The resulting normal charbox (or each of the resulting charboxes, if split occurs) is 
inserted into the normal charbox list of this textbox, ordered from left to right. If the 
inserted normal charbox shares a significantly overlapping position in the width 
direction with its neighbor normal charboxes in the list, they may belong to the same 
individual character in this text. In this case we try to merge the overlapping textbox 
such that the resulting merged normal charbox contains only one character. The 
current normal textbox is then adjusted to enclose all the normal charboxes in the 
current list. A possibly skewed rectangular area (PSR), which stretches from the 
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current fine textbox (which can be obtained by rotating the current normal textbox to 
its original orientation) to both (left and right) sides by an average character width, is 
searched for strokes of touching characters, which may touch both graphics and/or 
characters. Every stroke, whose bounding box is less than the maximal charbox and 
most of it lies within the search area, is taken as a temporary character and its coarse 
charbox is added to the coarse charbox list of the coarse textbox. This charbox waits 
its turn to be treated as a coarse charbox, which may then be merged with yet another 
charbox. Upon termination of the above processing on the current coarse charbox, 
the next coarse charbox in the coarse charbox list undergoes the same processing. 
This is repeated until all the coarse charboxes in the coarse charbox list of the 
current coarse textbox are processed. At that point, the normal textbox and its 
normal charboxes are rotated back to their original orientation, and the final fine 
textbox and its constituent fine charboxes are computed. 

The refinement process described above is listed in the Pseudo-code of Fig. 5 and 
illustrated by the OPD in Fig. 6. The horizontally rotated pixel image of each 
Refined Charbox can be used as input to any OCR algorithm and the recognized 
characters would be combined into a whole string. 

Algorithm 2: Charbox Refinement 
Fine Textbox Charbox Refinement (C0arse_Textbox CT) 
Begin 

Set  NCL /*the Nomml CharboxList*/ and  NT /*the Normal Textbox*/ empty.  
For ( e a c h  CC /*Coarse Charbox*/ i n  CCL /*Coarse Charbox List of CT*/) 
Begin 

//1. Rotate Horizontally: 
NC = R o t a t e _ H o r i z o n t a l l y  (CC) ;//Rotate CC to get Normal Charbox. 

//2. Split&Merge: 
If (CC >= Threshold) TNCL = Try Split(CC); 
for ( each TNC in TNCL ) //take a Tem~6rary Normal Charbox in TNCL. 
Begin 

Insert (TNC, NCL) ; //insert TCC intoNCL. 
if(TNC overlaps its neighbor) Try Merge(TNC,NCL); 

End; 
NT = U n i o n  ( NCL ) ;//nonnal textbox bounds all of its normal charboxes. 

//3. Search for graphics-touching characters: 
TCCL = S e a r c h  ( PSR ) ;//Search PSR for Temporary Coarse Charboxes. 
for (each TC in TCCL) Add(TC, CCL);//AddTCinCCL. 

End; 
for (each NC in NT) 
Begin 

FC = R o t a t e  Back  (NC) ;//Rotate back NC to get tile Fine Charbox (FC). 
Add (FC, FCL]-; //Add FC to the Fine Charbox List. 

End; 
return Union(FCL) ; 

End. 
I I 

Figure 5. Pseudo-code ofAlgoritlun 2-Charbox Refinement 

3 Exper imental  Results 
We applied our text segmentation algorithm on a series of portions of medium to 

poor quality engineering drawings, in which a total of 36 textboxes appeared. 94% 
were correctly segmented with about 3% false alarm rate. Table 1 shows the statistics 
of the experimental results of five test drawings. Figs. 7-9 show three of them. In Fig. 
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7, all eight textboxes are horizontal, but four of them are underlined with a thick 
line, such that all the characters are connected to the graphics. Nevertheless, all are 
successfully detected, including the - symbols, which are correctly associated with 
the appropriate textboxes. In Fig. 8, one textbox is missed. It is the dimension text 
11, which is really hard to detect, because each of the two l ' s  touches the back of one 
arrowhead, and 1 is hard to segment even when it is not connected to graphics. 
However, the two 45 ~ textboxes are successfully detected in their correct slants along 
with their degree symbols. The two = symbols are not detected because we have not 
programmed the system to recognize = as text. Likewise, the two triangles, 
symbolizing surface quality, are correctly dismissed in the refinement process as non- 
text. In Fig. 9, the ~R8 and 20 ~ are correctly detected in the precise orientation, as 
are the vertical ~770 and ~774+1 
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Figure 6. Tile Refinement process of OPD of Figure 3 blown up. 

Table 1: Statistics of tile experimental results of text se~tnentation 
Test Actual # of # of detected % # of false % false 

detection alarms Drawin~ Textboxes Textboxes 
Figure 7 8 8 100 0 0 
Figure 8 8 7 88 0 0 
Figure 9 4 4 100 0 0 
Unlisted 1 9 9 100 1 11 
Unlisted 2 7 6 86 0 0 
Total 36 34 94 1 3 

alarms 
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Figure 7. Portion of an engineering drawing: (a) Coarse Charbox Segmentation; 
(b) Textboxes and their constituent Refined Charboxes. 

Figure 8. Portion of an engineering drawing: (a) Coarse Charl~ox Segmentation; 
(b) Textboxes and flleir constituent Refined Charboxes. 

Figure 9. Portion ofval engineering drawing: (a) Coarse Charbox Segmentation; 
(b) Textboxes and their constituent Refined Charboxes. 

4 D i scus s ion  a n d  F u t u r e  W o r k  
A method for accurate textbox are charbox segmentation from engineering 

drawings has been described and implemented. The method handles text at any 
orientation and carries out accurate segmentation of individual characters even if 
they touch each other and/or graphic primitives. Thus, an integrated OCR subsystem 
can be supplied with raster images of characters that can be recognized correctly with 
high likelihood. Applied to a set of intermediate to poor quality engineering 
drawings, we obtained 94% textbox detection rate with 3% false alarms. 

There is an obvious tradeoff between the detection and false alarm rates: 
Increasing the detection rate by taking a higher threshold for the stroke length is 
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accompanied by an adverse increase in the false alarm rate. To better understand this 
phenomena we show in Fig. 10 the histograms of length distribution of text strokes 
(left) and graphics bars (right) of Fig. 8. Clearly, there is an overlap at the short 
strokes region. Increasing the stroke length threshold from 12 to 20, for example, 
increases the overlapping, which, in turn, yields more false alarms. However, we are 
ready to increase the rate of false alarms if this is the price for increasing the 
detection rate, because those false alarms can be easily recognized as such due to 
considerations of incorrect syntax and/or lack of OCR results. 
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(a) (b) 
Figure 10. Histogram of length distribution of (a) the text strokes 

and (b) the graphic lines of the test drawing in Figure 8. 

We have tried a neural network based OCR subsystem and obtained satisfactory 
results. Work is under way to integrate the various components and apply 
verification based on comparing actual direct dimension measurements from the 
drawing with OCR output. 
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