
A Foundat ion for Formal R e u s e of Hardware

Ana C. V. de Melo and Howard Barringer

Department of Computer Science
University of Manchester

Manchester M13 9PL - UK
e-maih {melo,howard} @cs.man.ac.uk

fax: +44 161 275 6204

Abst rac t . This paper presents a basis for the formal reuse of hardware
components as a strategy to reduce the task of verifying new hardware
elements. Assuming the existence of a library of formally verified hard-
ware components, we propose to make effective reuse of these existing
elements when creating new ones. The strategy used is to formally create
an interface element with which an existing hardware component is com-
posed in order to implement a new desired component. In doing so, the
verification task of the whole system is reduced to verifying the interface
element.
Keywords: Reusability, High-Level Synthesis, Formal Methods, Process
Algebras, Bisimulation, Interface Equation.

1 I n t r o d u c t i o n

The complexity of digital systems has grown rapidly over the past decade with
the developments in the technologies for their fabrication. The problem of veri-
fying systems in the large has been a challenging task due to the computational
problem involved. Although the widespread application of hardware components
requires a variety of elements which are sometimes similar t o components already
designed, many of these similar elements are today redesigned (and re-verified)
due to the absence of mechanisms to recognize their similarities. The problem of
verification in the large can then be alleviated if verified components are formally
reused.

The application of formal methods has now produced a number of hardware
components that are formally verified. Having such elements stored in a library,
they can be reused to build new components that are similar to them in some
sense. If the communication between the system elements not found in the library
and the reused elements is formally stated, only those non-reused elements are
required to be verified. In doing so, the problem of verifying the overall system
is reduced to the verification of the non-existing components.

Informally~ hardware design has been reused by the time the component is
produced in bulk, or from libraries of standard elements when designers know
the functionality of certain elements they wish to reuse. A wide, and more for-
real, form of reuse hardware components has been addressed by techniques to
synthesize hardware design. Synthesis of hardware design has now been treated

125

at the various levels of hardware description, from system down to logic level
[20]. Formal methods have been employed to provide verification of hardware
such as HOL Proof System [15] and Circal [21], but very little synthesis-related
work has been developed [6].

Despite being a kind of reuse, the system-level synthesis methods [13] do not
cover all the ways existing components can be reused. The system-level synthesis
is very concerned with partitioning of systems by adding structure to behavioural
objects (in general, the systems are partitioned into standard components). By
contrast, reusable components might not fit a natural partitioning of the desired
components; a library component could, for example, embed some functionality
not required by the specification element and still be useful for reuse. System-
level synthesis is indeed an instance of reusability in the sense that the existing
component could eventually be a subsystem of the desired one.

Apart from the restricted form of reuse addressed by synthesis, not much
attention has been paid to the reuse of complex hardware components. In the
current stage of hardware development, high-level specifications of hardware are
similar to software specifications. So, the reuse techniques developed for software
are also applicable to hardware development. But even in the software domain,
where the problem of reuse was first addressed by McIlroy [19], only a few works
use a formal approach [11, 14, 18, 35, 28, 36].

This paper presents a foundation for formal reuse of hardware design 1 based
on an interface approach. That is, an interface component is formally created
to be composed with the existing one in order to provide the behaviour of the
desired element. A process algebra is used for the behavioural representation of
hardware, and as a foundation for formally reasoning about the reuse of hard-
ware design. The interface component is then constructed via application of a
decomposition operator created for the particular process algebra. Section 2 in-
troduces the process algebra used for representing hardware components; Sect. 3
presents the interface approach in terms of the process algebra; Sect. 4 presents
the decomposition operator; and Sect. 5 shows minimization of interface processes
by examples.

2 Represent ing Hardware C o m p o n e n t s using a Process
Algebra

A formal approach for reusing hardware components requires a semantic def-
inition of the representations of these components. EPA [3] is a synchronous
process algebra based on SCCS [22] and originally created for describing the
formal foundations of ELLA [23]. It is used in the present work as a model for
representing hardware components, and as a mathematical foundation for hard-
ware verification. In this section we only present the features of EPA which are
used in the current work.

1 This work is embedded in a project for formal reuse of hardware components using
ELLA [23].

126

Processes and Ports of Communication. EPA processes are essentially reac-
tive elements that transform an input event into an output one. They have a
predefined set of input and output ports of communication through which the
information is interchanged with the environment. The EPA process definition
and call have then typed parameters to represent these ports of communication.
For example, the elementary hardware component boolean-delay,

process DelBool(x: bool; c1: bool/e2: bool) Z~

el(t)/e2(x) :: DelBool(t; cl/c2) +

cl(f)lc (x) : : OdBool(; c lc),

is a process defined over three groups: x defines the "state" of process DelBool;
{ct} is the set of input channels; and {c2} is the set of output channels. The
process chooses (+) one of the initial actions depending on the input event bound
to cl, and binds the actual "state" to the output channel c2. By undertaking an
initial action, it evolves into a recursive call in which the actual input value is
bound to the process "state".

The set of communication ports of a process P is defined as Chs(P), while
the sets of input and output channels are Chsi(P) and Chso(P) respectively.

Combinators. Consider P and Q are processes (or agent expressions), C is a set
of channel names (C C_ ChanNames), x is a set of variables and a is an action
(~ E Act). The EPA combinators are as follows:

a :: P prefixing operator P\C hiding operator

P + Q binary summation P [c C restriction to channels

x �9 P process choice P [Q composition

The prefixing and summation operators have the usual semantics. The pro-
cess choice is a generalization of the binary summation in the sense that x is
a set of typed variables and the action to be performed depends on the actual
value bound to variables x. The hiding operator makes the ports of communica-
tion in C no longer observable; it hides the structure of process definitions. By
contrast, restriction to channels makes only the channels in set C observable.
The composition operator will be discussed later.

Structured Actions. EPA actions are represented by a simultaneous activation
of an input and an output action. Moreover, they have an enriched structure of
channels:

oe E A c t : : = e I [] I (i/o)

i, oE IOAct: : - -e I [] I iot@io2 I c(v)

[] (zero action) is a distinguished action that has "no meaning" in terms
of behaviour. It was introduced in EPA to give a uniform treatment for partial

127

behaviour and hiding [2]. e is an empty action, and i and 0 are, respectively,
input and output actions that simultaneously occur to form a single event. At
the ground level, an io-action is a summation (or sequence as a shor t -hand -

i / o = e l (v 1) , ..., . . . , o f p imiti e a c t i o n s
All actions that represent process behaviour, such as (i /o) and e, are called
"proper" actions. [] is, however, an "improper" action. The sort of actions a
process P can perform is given by Sort(P), its initial actions are in Sortl(P), and
its sets of input and output actions are Sorti(P) and Sorto(P), respectively.

For a synchronous calculus the concept of conflict freedom emerges [2]:

D e f i n i t i o n l . Suppose action c~ is defined over the set of channels C1, fl is
defined over C2 and C = C1 N C2. Then, a is conflict free with fl (denoted as
a CF f~) iff res-ch(a, C) = res-ch(fl, C) 2.

Composition. The EPA parallel composition provides communication of pro-
cesses in a synchronous manner. Transitions of the composite process are given
by a synchronous communication of actions from the component processes. The
transitional semantics of such an operator is as follows:

p ~)p I , Q ~ ~QI

* : Act u --~ Act

V ip/Op,iq/Oq e Act �9

(i, l o ,) , (i lo) : ((i, �9 e (o, �9 �9

A meaning of the EPA combinators is given by using a general notion of
labeled transition systems [1]. A Transition system for P (TS (P) = {Stsp, Ap,
T P, sP}) consists of a set of states Stsp representing the process terms, a set
of labels .Ap representing actions, a transition relation T P over process terms
which gives the semantics of the system, and an initial state s P. The transition
of composite processes are defined in terms of the transitions of the component
elements.

Two other operators are used to define the action product: summation (@)
and subtraction (O). Roughly speaking, summation of actions iol and io2 (iol �9
io2) combines all subactions of iol and io~ if they are conflict free, and returns
[] otherwise. On the other hand, subtraction (iol (3 io2) results in all elements
in iOl that have no match with elements in io2 if they are conflict free.

Semantics. A variety of process behavioural equivalences have been defined for
deterministic and nondeterministic processes [26, 33, 34]. In the present work,
strong bisimulation [3] is adopted to provide substitutivity of components; reuse
requires substitution of processes. From now on, we use the term "bisimulation"
to mean "strong bisimulation".

res-ch(c~, C) restricts action a to be observable only for channels in the set C.

128

D e f i n i t i o n 2 . Bisimulation B is a symmetric binary relation on processes such
that i f (P , Q) E B (abbreviated by P ~ Q), then for every proper action a E Act:

1. whenever P ~ , P~then Q ~ ~ Q ' f o r s o m e Q ' s u c h t h a t P~-~ Q~,

2. whenever Q ~ ' O ' t h e n P ~ ~ P~ for some P~ such that P~..~ QI.

Transition graphs [1] are used for behavioural representation of processes.
The present work will interchange algebraic and graphic representations depend-
ing on the problem being presented. EPA actions are graphically represented as
input and output actions. The directed graph has the usual meaning: processes
are represented by nodes, and arrows represent actions coming from a process
to another. The graphical representation of processes showing the action values
will drop the channel names for simplification; only the action values are shown
as sequences of elements for input and output actions. An action like (c~(v~),
c2(v2)/c3(v3)) is represented in the graph by (vl, v2/v3) or (vtv2/v3) .

Delermin ism. Apart from the determinism defined over input actions for EPA
processes (as in Automata Theory), determinacy of processes can also be defined
over the pairs of input /output actions. In order to simplify future definitions,
let us define the concepts of processes deterministically defined for a particu-
lar action, and determinism of processes upon the synchronous input /output
actions:

De f in i t i on 3. A process P is deterministically defined for action a (denoted as
I)!~(P)) if whenever P ~ ~ P ' and P ~ > P~' then P~ ..~ P'~.

D e f i n i t i o n 4 . Determinism over input /output action is a property defined over
processes such that if a process P is deterministic on input /output actions (de-
noted as ~P!(P)), then for every proper action a E Act , whenever P ~ > p /
9!~(P) and 9! (P ') .

3 T h e R e u s e I n t e r f a c e A p p r o a c h

The reuse of software/hardware design involves managerial as much as descrip-
tive information of these elements [9, 17]. Due to the formal approach being
taken for reuse in the present work, we confine ourselves to reusing the descrip-
tive information of hardware components.

As with software reuse [10i 5, 4, 16, 30], different approaches can be adopted
for hardware reuse, such as creating generators of hardware components from
patterns, or defining hardware description languages that capture reusability
principles. But, what we actually have, in practice, are libraries of components
described in a hardware description language. So, we propose reuse of hardware
design by identifying similarities between a desired and an existing component,
and then automatically generating the context in which the existing component
must be embedded to achieve the desired behaviour. Given a desired and an

129

existing process, we want to be able to "transform" the existing process into the
desired behaviour.

Basically, two approaches can be adopted to transform an existing process
into a desired one: modifying the design of such a component, or composing
the existing process with another one to achieve the desired behaviour. The
task involved in the first approach is redesigning an existing system into a new
one. There, design of the existing process is reused to build the desired one
under application of transformation rules. In the second approach, the Interface
Approach, the existing process is reused without any change in design, but a new
process (the interface process) must be developed. Hence, the existing process
has its behaviour "transformed" by composition with the new process.

From a practical point of view, the interface approach is attractive for reuse
hardware design because the hardware components are reused without redesign-
ing. Another aspect which makes this approach attractive is the possibility of
having an automatic procedure to find the interface process. But, what does
"creation of an interface process" mean when the desired and existing processes
are defined in a process algebra?

As we have stated above, the interface process must be composed with an
existing component to provide the behaviour of the desired process. Considering
that (strong) bisimulation is adopted as the behavioural equivalence relation in
EPA, the resulting composition must be bisimilar to the desired process. The
Interface Equation for this particular reuse problem (synchronous composition
and hiding channels) can be defined as:

(P I X) [r Chs(,9) ,.-., ,9 (i)

In this equation, S is the desired process while P is the existing component,
and X is the interface process to be found. Notice that the observable channels of
the compound process are restricted to the set of channels of the desired process;
any other communication port is internalized in this compound process.

4 Interface P r o c e s s e s - Correct by Construct ion

Since reuse has as one of the main goals to minimize the effort of developing
new processes by making use of existing ones, these processes must indicate
some similarity in behaviour. So, a solution for the reuse problem must provide
the interface process and make the best reuse of similarities between the desired
and existing processes. The strategy to yield so is find the similarities between
the desired and existing processes, and then createn an interface process based
on their disimilarities.

In this section we present certain similarities between synchronous processes 3
which are useful for reuse when the interface approach is adopted, and then show
the construction of the interface processes via a decomposition operator.

3 A number of similarity relations useful for reuse has been defined in [7], but we
confine ourselves to showing only one of them in the present paper.

130

4.1 Similarities between Synchronous Processes

To compare the behaviour of processes in order to enable effective reuse of an
existing component, various notions of similarity can be defined. To realize poten-
tial reusable processes, mechanisms other than a conventional equality of actions
must be provided. So, a relation considering partial identification of actions is
required for effective reuse of synchronous processes.

In a synchronous calculus like EPA, compound actions (actions performed
by compound processes) are realized by all component processes running syn-
chronously. Therefore, similarity of processes in a synchronous interface approach
is useful only if each action of the specification can be identified with an action
of the given component. Otherwise, synchronous composition of the component
with the interface process would never yield the behaviour of the specification.

For EPA, in particular, actions can be "identical" in a subset of channels.
For instance, comparing action (c1(0), e2(1))/(c3(0), c4(0)) with (c5(1), c2(1))/
(c3(0), c4(0)), it can be noticed that they coincide in channels e2, e3 and c4.
These actions are then identical when restricted to the set of channels {c2, c3,
c4}. Scaling this comparison up to processes, we may also find processes that are
identical when restricted to a set of channels. A relation for comparing processes
restricted to the set of their coincident channel names is defined as follows:

Definition 5. Channel Restricted Bisimulation Bc (CR-Bisimulation) is a sym-
metric binary relation on processes such that if (P, Q) E Bc (abbreviated by
P ~ Q), then there exists a non-empty set of channels C = (Chs(P) N Chs(Q))
such that P [c C ,.~ Q [c C.

Since this relation is indexed by the set of channels of both processes that
have identical names, a family of bisimuIations emerges with the definition of
CR-bisimulation.

Note that it is only possible to have P CR-bisimilar to Q if all input channels
of P are distinct from the output channels of Q and vice-versa. If an input
channel name of P coincides with an output channel name of Q, actions of both
processes could never be identified with each other:

L e m m a 6 . Suppose P ~ Q, then Q is CR-bisimilar to P only if Chsi(P)N
' Chso(Q) = r and Chso(P) A Chsi(Q) = r

Example . Our example ranges over variants of traffic light controllers. Suppose
a Major/Minor roads traffic light controller is needed when a particular compo-
nent has already been designed. In this section we first present a library traffic
light component, the specification of the major/minor roads process, and then
show the behavioural similarity between these elements.

A Library Component. At an abstract level, a traffic light controller is a process
that cycles through a trivial sequence of three light colours: green, amber and red,

131

and then restarts the sequence 4. Some variations on sequences of light colours
can be obtained if a particular colour is given priority. Moreover, this kind of
system must receive a signal to make it change the light colour. So, at a more
detailed level, the traffic light controller must be defined with at least one port
of communication through which a "change colour" event is input.

Our library traffic light controller gives priority to green, and it depends on
two events to change the light colour: a signal for time units, and a signal to
communicate the presence or absence of cars. It has some predefined intervals
during which a colour must remain and after which such a colour can be changed.
A time counter synchronized with a master clock is necessary for signaling these
time units. Additionally, a sensor is wired to signal the other incoming event.
Thus, this traffic light controller, TLC1, is an agent that interacts with both a
sensor (Sens) and a time counter (Tcnt) processes - Fig. 1.

The sensor communicates, via channel s, the signal car when a car is detected
and c-~ when this event does not occur. TLC1 communicates with the time
counter through two channels: setc to initialize such a counter when a light
colour is changed, and l to receive a t ime unit from the counter. The interval
t/ is given to control the traffic flow, and ts to control the safely t ime of the
system (the light amber, for example, is given for safety, then t~ is concerned
with the t ime interval during which this kind of light must be signaled). If the
time unit signaled by the t ime counter is within these intervals, they are signaled
positive (ts, t]); they are negated (~, ~) otherwise. And finally, the light colour is
communicated to the environment through channel I. The sorts of these incoming
and outcoming events are as follows:

type colour ~__ {G, A, R} type intervs A_ {ts,L-s, t$,~/}

type seount A__ { s t , ~) type sensor A__ { ear, -~-f }

The light must remain green for a minimum interval t I and should only cy-
cle to amber with the presence of cars waiting to cross the road. Furthermore,
whenever a car is no longer detected, the system must choose the shortest se-
quence of cycles to reach the green light. The transition graph for this traffic
light controller 5 is shown in Fig. 1.

Note that the light remains red for both intervals. A traffic light controller for
a single light, like this one, is supposed to have an opposite traffic light running
in parallel, such that their light colours do not overlap. By the t ime the opposite
traffic light is green, this light must be red. In order to allow the opposite light
to cycle through amber to red, this traffic light must remain red for a safety
period.

A Major/Minor Roads Traffic Light Controller. Now, suppose we want to de-
velop a hardware component to control a traffic light at a junction of a major

This example is a variation of a traffic light controller presented in [27].
5 The transition graphs of processes are shown in this paper to facilitate the discussion

on comparison of behaviour of processes.

132

ckl

l
TLC1

~ setc

~,~~, Ts/c, 77
~ O c<.', Is~G,77

TL C ~ / ~ ' ~/ / G ' ~

Fig. 1. Structural Definition and Transition Graph for TLC1 (s, t/l, setc)

and minor road. The major road is assumed to be busy and so the traffic light
gives opportunity to cars coming through the minor road to cross the major
road. The minor road has sensors that activate the traffic light only when a car
is detected. The major road does not need any sensor because, by default, its
light is green.

Thus, the major road traffic light is given priority, but not to the extent that
the minor road traffic can be stalled indefinitely. The major road light can only
cycle through amber to red if it has been green for a pre-established minimal
period of time. Also, the minor road light can only remain green for a maximum
period while the sensors indicate the presence of cars. In order to control the
time cars are waiting on the minor road and also how long a red light is signaled

133

to the major road, a time counter must be introduced.
As with the previously defined traffic light controller, the time interval to

maintain both lights amber is the safety interval (ts, t--)~, and the minimum or
the maximum intervals for green are specified by the traffic flow interval (tf, T]).
This major /minor roads traffic light controller has its structural and behavioural
specifications shown in Fig. 2.

i if s > TLC2] lm&
I

ck ~ e t c

"~F,~/ G,R,~
~) car, q/G,R,~7

T L ~ , t] / G , R , ~

-,,,, iR, J
car, ~/R, G, st

~ R e d 2

Fig. 2. Structural Definition and Transition Graph for TLC2(s, t/I,~j, lm~, setc)

Clearly, the top partitioning of this system can be defined as two processes
running in parallel: a major and a minor road processes. The major road process
is a controller for a single traffic light which gives priority to green, and is

134

activated by a sensor and a time counter. It is indeed an instance of the library
component previously defined,

process TLCmj(s: sensor, t: intervs/lmj: colour, setc: stcounl) A_
TLCI(s, t/lmj, setc),

which can be reused to implement this new system.
Adopting the interface approach as proposed above, an interface process must

be found instead of creating the minor road process separately. But to create
such an interface element, the behaviour of the whole system and the major road
process must be previously compared.

The processes major /minor and major road can only be found bisimilar for
a restricted set of channels: {s, t, lmj, setc}. Their input channels coincide but
the traffic light controller has an output channel not defined for the major road
process. Restricting these processes to the set of channels above, we can real-
ize that process TLCmj, for example, can perform all the restricted actions for

"~1, car~A, R, st
which TLC2 is able to move. Transition TLC2 ~ Amb2, for ex-

ample, is channel restricted identical to TLC,~j ~, car/A, st ; Ambrnj. TLC2
and TLCmj have identical sets of channel restricted initial actions and, be-
sides that, they reach processes that are also CR-bisimilar. These processes
are then CR-bisimilar: TLC2 ~ TLCmj, Amb2 ~ Ambmj, FRed2 ~ FRedmj and

C STted~ ,.~ SRed,#.

4.2 B u i l d i n g In ter face P r o c e s s e s

We are particularly interested in solving the interface equation by providing an
algebraic combinator. Such solution requires the creation of a unique interface
process. We must then check the theoretical limitations of reusing components
using the synchronous interface approach, and define the operator.

In this section we state the constraints, the necessary and sufficient condi-
tions to solve Equation 1, and show that the application of our decomposition
operator is a solution for such an equation. An example is given to illustrate the
construction of an interface process. To facilitate the discussion, we assume S
as the specification process, P is the existing component, and X is the interface
process 6.

C o n s t r a i n t s . In a synchronous approach, each specification action (action from
the specification component) is simulated by a synchronous execution of an ex-
isting and an interface action that are conflict free. So, for each specification
action, there exists an action in the existing component which partially sim-
ulates it. Also, such an existing action must be conflict free only with actions

6 As an abuse of notation, we use the variable X to represent a generic process that
satisfies Equation 1.

135

from the interface process whose composition is bisimilar with th'e required spec-
ification action. To hold uniqueness on combination of actions, the component
processes must have the following property:

P r o p o s i t i o n 7. Suppose C = Chs(P)N Chs(Q). Process P has its initial actions
uniquely combined with actions from Q only if, for all action (~ E Sortl(P), there
exists a unique ~ e Sortl(Q) such that res-ch(~, C) = res-ch(1), C).

This property defines what is necessary for P to achieve uniqueness of conflict
freedom of its initial actions with Q initial actions. For a general case, consider
processes P and Q, and the set of channels C = Chs(P)N Chs(Q). If (Q rc C) is
not deterministically defined for its input/output actions that are conflict free
with P, then uniqueness of combination of P with Q actions cannot be achieved
since some of the Q actions could be combined with more than one action from
P. Determinism of a process for its set of actions that are conflict free with
another process is defined as follows:

Def in i t ionS . Suppose C = Chs(P)n Chs(Q). Q is deterministically defined for
its input/output actions that are conflict free with P (denoted as T)!p(Q)), if

for every proper actions a, fl E Act, whenever Q ~ Q' and P ~ P' such
that a CF t3, then 7)!~(Q) and 7)!p,(Q').

Then, the necessary condition to have P actions combined with exactly one
action from Q is as follows:

P r o p o s i t i o n 9. Suppose C = Chs(P) NChs(Q). P actions are uniquely combined
with Q actions only i fO!p(Q Ic C).

As a consequence, a solution for the interface equation can only be found
if the property defined in Proposition 9 holds for the existing and the interface
processes.

Considering that the interface process X must be constructed from infor-
mation of S and P corresponding actions, the P actions that are conflict free
with the interface actions are also conflict free with the corresponding S ac-
tion. So, the constraint :D!x(P) is reduced to :D!s(P). The property required for
uniqueness of combination of X with P in order to reuse P is defined as follows:

L e m m a 10. Suppose S ~ P, then P can be reused to simulate S only ifT)!s(P).

In fact, if the properties in Lemma 10 hold, then the interface equation can
be solved:

Corollary11. Suppose S ~ P and O!s(e) . Then, (P I X) rc chs(s) ~ s
(Equation 1) can be solved.

Since these constraints are necessary to allow reuse, we assume the given and
the desired processes satisfy them whenever an interface process is required.

136

T h e N e c e s s a r y a n d Suf f ic ien t C o n d i t i o n s to So lve t h e I n t e r f a c e E q u a -
t i on . Bisimilarity between processes depends on the ability of both processes
performing identical initial actions and then reaching bisimilar processes. There-
fore, a solution for Equation 1 depends upon these premises. Let us name process
Q as a possible solution for this equation. The following theorem gives the nec-
essary and sufficient conditions to have Q as a solution for such an equation:

T h e o r e m 12. Assume S s P and O!s(P) . Suppose is/os, ip/Op and iq/Oq are
proper actions. I f

1. Sorh((P I Q) [c Chs(S)) = Sorh(S), and

2. Q' is a solution for (P ' I X) rc Chs(S) ,-~ S'

whenever Q i,/o, ~. Q,, S i,/o~ , $1 ' p i,/op ~ p~ and res-ch(ip/op * iq/oq,
Chs(S)) = is/os, then Q is a solution for (P] X) [c Chs(S) ,,~ S.

A proof for this theorem is included in [7].

A D e c o m p o s i t i o n O p e r a t o r . Here we present our decomposition operator
and claim that its use yields a particular solution for the interface equation in
which minimal solutions are included.

CR-bisimulation abstract on a set of channels to compare processes. As a
result, CR-bisimilar processes may coincide only in part of their behaviour.
This means that neither the whole behaviour of S is substituted, nor the entire
behaviour of P can be reused. The interface process must then provide the
unmatched behaviour and, at the same time, enable P to be run in synchrony.

To solve the interface equation, each S action must be simulated by com-
position of its CR-bisimilar P action with an interface action (an action from
the interface process X). We first discuss the input and output information that
needs to be provided by X, and then present the decomposition operator.

The Input and Output Behaviour. To achieve bisimilarity with S, each X action
must comprise sufficient information to ensure that its combination with the
range of P actions exclusively provides the corresponding S action; considering
C = Chs(P) A Chs(X), then property 7) ! z (P [c C) must hold (Proposition 9).
Such a property is accomplished, in particular, if the interface process comprises
all information of P which simulates S. As a mat ter of creating a generic interface
process, it must include the set of channels of the existing process. To do so, we
must check the minimal information that has to be supplied as input and output
of the interface process.

The coincident output channels of P and S denote which output behaviour
of P can substitute for the S's output behaviour. But the output behaviour of S
not matched to P must be supplied by the interface process. Hence, to provide
the entire output behaviour of S, only those output channels of S that do not
coincide with the P 's need to be provided: ChSo(S) - Chso(P).

On the other hand, the external environment is only prepared to gener-
ate/accept events that interact with S - it is only able to communicate through

137

S input and output channels. But, to reuse P, all of its input channels must be
provided in order to make it run, in synchrony, with the interface process. Those
input channels of P which coincide with the S ones can be obtained directly from
the environment. Those other non-coincident input channels, however, must be
provided by the interface process. Thus, the output channels of the interface
process must comprise at least the following elements:

Chso(X) = (Chso(S) - Chso(P)) U (Chsi(P) - Chsi(S))

A similar analysis can be made for the input information that must be sup-
plied by the interface process. In doing so, we find that all the S input channels
that do not coincide with P's must be given as input channels of the interface
process (Chs~(S) - Chsi(P)). This is indeed the minimal set of input channels
that must be provided as interface behaviour. However, the input and output
behaviour of X must comprise the whole set of P channels to hold uniqueness of
conflict freedom. So, apart from the minimal set of channels, we "overeonnect"
the input actions of the interface process with all the coincident channels of both
pro cesses:

Chsi(X) = Chsi(S) U Chso(P).

Consider S ~,/o, ; S~ and P #/% ~ P' such that S L p, S ~ s U , and
i~/os and ip/op are channel restricted identical. The corresponding X action
which interfaces the above S and P actions is as follows:

i.lo = (i, �9 op)l(o, e op) r (ip e i,).

Bisimilarity of the compound process with the desired one is achieved if each
compound action is identical to a desired one. In fact, as with the interface action
above, the compound action is identical to the specification one:

C o r o l l a r y 13. Suppose is/Os, ip/Op and ix/ox = (i , e %) / (o , e %) r are
w-actions such that chs-of(i~)Nchs-of(op) = r and chs-of(o~)Nchs-of(ip) = O,
the. res-ch(iplop . i lo , c h s (i , / o ,)) = i, lo , .

Once we have checked that a single action from S and the compound process
are identical when X actions are defined as above, the set of initial actions of S
and the compound process can also be checked as identical. The X initial actions
are defined as suggested above.

D e f i n i t i o n l 4 . Assume S c p and:D!s(P) . Whenever S --i'/~ ~ S~ and P ip/%
P' such that S' s P ' and res-ch(i~/os, C) = res-ch(ip/%, C), then X has the

transition X i , / o , X ' for some X ' such that ix/o,~ = (i~ | %) / (0 , G %) G
(ip e is).

7 ehs-o](io) denotes the set of channels defined for io.

138

As a consequence of property :P!s(P), if X initial actions are defined as
above, then each of these actions can be combined only with the action from P
which was used to define it:

P r o p o s i t i o n l 5 . Suppose S ~ P, O! s (P) and X ' s initial actions are built up as
in Def. 14. Then, for any action ix/ox E Sortl(X), there exists only one action
ip/Op C SOrtl(P) such that ix/ox CF ip/Op.

Thus, equality of sets of initial actions of S and the compound process is
defined as follows:

T h e o r e m l 6 . I f S • P, 7)!s(P) and X ' s prefixing actions are built up as in
Def. 1.~, then Sortl((P [X) [c Chs(S)) = Sort,(S).

The Operator. Actions of the interface process are created by taking each action
from the desired process and "dividing" it by the similar action from the existing
one, as suggested in Def. 14. Interface actions are therefore created for each pair
of similar actions from S and P actions. Suppose is/os and ip/op are CR-
identical actions from S and P respectively. Then, the interface process must
move via actions that are "divisions" of S by P actions:

+: Act 2 --~ Act

V iv~or, i,~/o~ E A c t .

(iplop) + (i lox) = (ip �9 o)1(o, e �9 (ix e ip)

Since the creation of the interface actions depends on the similarities be-
tween S and P actions, as previously defined, the decomposition operator must
only permit division of CR-identical actions. To do so, decomposition of pro-
cess S by P must embed conditions which guarantee that only CR-identical

actions are going to be divided. Using Def. 14 as basis, (S / P) ~'/~ + ~P/~ -+

(S' / P') only if S i,/o,) S', P ip/%) p, , res-ch(is/O,,Chs(P) OChs(S)) =

res-ch(ip/op, Chs(P) N Chs(S)) and S' s P'.
By the second property required to solve the interface equation (Theorem

12), the reachable processes must solve equations like (P ' [X) [c Chs(S) -~ S'.
But it is reduced to the problem of finding a decomposed process for S' with
respect to P'. So, the process reached by S / P when performing that division
action must be a decomposition of S ~ with respect to P'.

Based on these definitions of initial actions and reachable processes, a tran-
sitional semantics for the decomposition operator is as follows:

S._.E_+S, ' p Z . p , , { (S , P) , (S ' , P ') } c B c ,

res-ch(, Chs(P) n Chs(S)) = res-ch(, Chs(P) n Chs(S))

S / P c~+Z , S ' / P '

139

Due to the fact that the decomposed processes satisfies all properties of
Theorem 12, the application of the decomposition operator provides a solution s
for Equation 1.

T h e o r e m 17. Suppose S L p and :D!s(P). Then, process S / P is a solution
for (P I X) [c Chs(S) --~ S.

This operator constructs "overconnected" processes which can be minimized.
In principle, the new process is created on the size of pairs of S and P that are
related by CR-bisimulation. So, a further minimization must be performed based
on minimal interactive processes. Also a minimization of connections must be
performed to remove unnecessary inputs.

E x a m p l e : T h e Traf f ic L i g h t I n t e r f a c e P r o c e s s . Having established a de-
composition operator to solve the interface equation, we can now create the
interface process to be composed with the major road process in order to yield
bisimilarity with major /minor roads process. Once these processes have been
checked to be CR-bisimilar and property ~D]TLC~(TLCrnj) holds, the decompo-
sition operator can be applied to those processes (TLC2 /TLC,,~j) in order to
find the interface element. As checked in Sect. 4.1,

{ (TLC2, TLC,v); (Amb2, Amb,nj), (FRed2, FRed,,d), (SRed2, SRedmj) } C Bc.

So, for each action from TLC2 there exists an action from TLCmj which par-
tially simulates it. For instance, action (s(car), t(~)/lmj(A), l,,,(R), setc(st)) 9
from TL C~ is channel restricted identical to action (s(car), t(~)/lmj (A), setc(s~t))
from TLCmj, and they reach CR-bisimilar processes. The interface process,
therefore, comprises an action which interfaces these actions. The interface ac-
tion for the actions above is as follows:

(s(car), t(~)/&~(A), l...(R), setc(st)) + (s(car), t (~/l .~i(A), setc(st)) =
(s(car), t(~), I,~j(A), setc(st)/Im,~(R))

The transition graph for TLCdiv ~ TLC2 / TLCmj is shown in Fig. 3.

5 Minimizing the Interface Process

A solution for the interface equation requires bisimilarity with the desired pro-
cess. So, this section is devoted to minimization of target concurrent processes
in such a way that the final compound processes are bisimilar to their origi-
nal ones 1~ Consider Po (TS(Po) = {Stspo,.Apo, TP~ and Qo (TS(Po) -=

s The soundness of the decomposition operator has been proved in [7].
9 The channel names are introduced here to facilitate the comparison of actions.

10 The minimization technique used here is based on minimization under compatible
states [12, 32] and interacting automata [8], and is presented in [7].

140

~-v, V, c,~/R
car, t], G, st ir

~,~ / ~-~V, 9, C,~7/R

-~,~, c,~tlR/ ~",~-~,f:,c, ~lS~

FReddiv

Fig. 3. Interface between the Traffic Light Controller and the Major Road Process

{StsQo,.AQo, T Q~ Q0}) are run in parallel and restricted to the set of observable
channels E= ((P0 I Q0) [~ Ex), and Q0 is the target process to be minimized.

For concurrent processes (arbitrarily connected), the key point of minimiza-
tion is "joining" states of the target process and still maintaining bisimilarity
with the original compound process. To do so, composition of each subprocess
reachable from P0, say Pi, with a Q0's joint process m , say LQz, Q,~], must ex-
clusively result in the behaviour of ((Pi [Qz) [c E~) or ((P~ I Q-~) [c Ez);

E~. Since actions of the compound process are obtained by composition of con-
flict free actions from the component processes, Pi actions must be exclusively
conflict free with Qz or Qm actions.

For example, the interface traffic light TLCdi, is combined with TLC~j in
such a way that

(TLCmj I TLCdi~) [c Chs(TLC2), (Ambmj I Ambd~,) Ic Chs(TLC2),
(FRed,,j] FRedd~v) [c Cks(TLC2) and (SRedrnj [SReddiv) [c Chs(TLC2)

are the reachable processes. This means that TLCdi, can only be joined to
Ambdi,, for example, if

la Suppose p -- {B~ Q Bn Q} is a partition of StSQ. The process constructed from
partition p is defined by: [Bk Q] = {B Q a ~ BQ [(Q, ~ > Qj) e T Q, Qi E
B Q and Qj e B Q} and [p] = {I.B~] I B~ �9 p}

141

(TLC,~j l TLCd,,) [c Chs(TLC2)..~ (TLCmj I [TLCd~v, Ambdiv]) [~ Chs(TLC2)
and

(Amb,~j I Ambd,,) [~ Chs(TLC2) ..~ (Ambmj I LTLCdi,,Ambdi,]) Io Chs(TLC2)

hold. Compatibility of concurrent processes is more formally defined as follows:

D e f i n i t i o n 18. Compatibility of Concurrent Processes (abbreviated by ~_,,) is a
symmetric binary relation on processes such that if Qi ~-,, Qj, considering the
sets of interacting channels C and external channels E~, then for every proper
action ~, f l C Act such that a E Sorh(Q~),/) E Sortl(Qj) and res-ch(a, C) =
rcs-ch(fl, C):

1. whenever Q, -2--+ Q~ then Qj z ~ Q~ for some Qj such that

res-ch(a, Ex) = res-ch(fl, Ex) and Q~ ~_,, Q~,

2. whenever Qj ~ > Qj then Q~ ~ ~ Q~ for some Q~ such that

res-ch(a, E=) = res-ch(Z, E~) and Q~ _~,, Q~.

Concurrently compatible processes perform identical observable actions when-
ever their actions equals for a restricted set of channels C, and then reach con-
currently compatible processes.

Since concurrent compatibility is not an equivalence relation (it is intran-
sitive), various partitions of a process states can be obtained under such rela-
tion. The interface traffic light process (Figure 3) can be minimized with re-
spect to its interaction with TLCmj. Considering the set of external channels
Ex = Chs(TLC2), the sets of concurrently compatible subprocesses reachable
from TLCdiv under composition with TLCmj are as follows:

{{ TLCdiv}, {Ambd~v}, {FReddiv}, {SReddiv}, { TLCdiv, Ambdiv},
{ TLCdi~, FReddiv}, { TLCdiv, SReddiv}, {Ambdi~, FReddiv},
{ TLCdiv, Ambdiv, FReddiv}}.

The minimal partitions that can be constructed from those sets of concur-
rently compatible processes are as follows:

fll : {{ TLCdiv, SRcddiv } , { Ambdi~, FReddiv } }
P2 : { {SReddiv}, { TLCdi,, Ambdi,, FReddie}}

These partition elements are named as:

142

process Gmj.mn(s: sensor, t: intervs, lmj: colour, selc: stcounl/Im~: colour) ~_~

[TL Cdiv, SReddiv]

process A~ i_~(s : sensor, t: in*e~vs, lm~: colou~, se~c: s*~oun~/lm.: eolou~)
[Arabdi., FRedd,v]

process R.~j_..~(s: sensor, 5: inlervs, lmj: colour, setc: stcount/lmn: colour)

[SRedd.,]

process CAR,~._~,~(~: sensor, ~: in~e,'vs, Z,~: eolo~r, set~: s~oun~/lm,~: coZo~r) A
L TL Cdiv, A m bdiv, FReddie]

Apart from minimizing the number of states, ports of communication of in-
teracting processes must also be minimized. The communication ports can be
deleted as far as the possibility of communication with the existing process is
maintained, and the minimal set of input and output channels (defined in Sect.
4.2) are included. So, the minimal set of channels that maintain the communica-
tion between TLCmj and Gmj.mn (or TLCmj and GARmj_m~) is { lmn, lmj, setc).
Figure 4 shows the behaviour of both patitioned processes restricted to the set
of channels mentioned above.

i

G, st/R
R, st/A

A _

I

I
i G, s~/R
I A, ~ I R
, R, s~l G

I
I

I

R, ~/A

R, s,/G

tf

G , -iT / R
G, st/R

) A,~/R
_ A, s~/R

R,~/A

R, st/A
R, st/A

R,-~I G

Fig. 4. The Minimal Interface Processes for the TLC

Any of these processes can be picked up as interface to construct the desired
traffic light controller by reusing the major road component. It is important to

143

note that these processes do not represent the minor road process; they are only
synchronous interfaces between the major road process and the traffic light con-
troller. However, they are less complex than the minor road process (a four state
process) and the verification of the whole system is restricted to the verification
of their refinements; they are correct by construction.

6 D i s c u s s i o n

The reuse of hardware components through formal means is still in its infancy.
Most works in the hardware area which address a kind of reuse are synthesis-
based, or based on an informal approach, such as [24]. Even in the software
domain, a formal approach to reuse has only been attempted by a few works
that concentrate on partial definition of processes to accomplish reuse [14, 18,
35, 28, 36]. In fact, abstract definition of processes is essential to obtain effective
reuse. In the present work we have assumed an existing model for representing
hardware to concentrate on mechanisms to identify processes by making certain
abstractions. This work has indicated that besides abstraction on representation
of processes, mechanisms based on abstractions to identify processes are also
useful for reuse.

Reuse undertaking the interface approach is very much concerned with the
idea of decomposing the desired process into submodules, so that one of those
submodules matches the existing component. This decomposition problem has
already been solved, by Shields [31] and his peers [29, 25], for deterministic
processes represented in CCS, taking weak bisimulation as equational equality.
Here, we have presented a solution for the decomposition problem considering
nondeterminisr processes represented in EPA, and taking strong bisimulation
as the equivalence relation.

In our work, we indicated the theoretical limits of reusing synchronous pro-
cesses undertaking the interface approach. Such an approach depends critically
on the composition operator used, and then for each process algebra the essential
preconditions must be calculated accordingly. The appropriate limits have not
been considered in solutions for the interface equation defined for CCS; as a re-
sult, only deterministic specification processes were considered there. It makes us
believe that nondeterministic processes can be implemented by reuse of others in
many process algebras as long as the behavioural similarities between processes
are checked in advance.

A formal reuse of hardware design leads to a decompositional verifieatibn of
processes. With the reuse of components formally verified, only the new elements
being constructed need to be verified. Since composition of the interface with
the existing process is proved bisimilar to the desired specification, verification
of the interface element assures verification of the whole system. In fact, the
topmost definition of the interface process is correct by construction, and only
its refinements must be verified.

144

A c k n o w l e d g e m e n t s . We would like to thank Alan J. Wil l iams for his helpful
comments on this paper. This work was suppor ted by a grant f rom C A P E S
(Brazil), to w h o m we are indebted for the financial support .

References

1. Andr6 Arnold. Finite Transition Systems. International Series in Computer Sci-
ence. Prentice-Hall, 1994.

2. H. Barringer, G. Gough, B. Monahan, and A. Williams. An algebraic framework
for action and process. D2.3c, Formal Verification Support for ELLA, IED project
4/1/1357, University of Manchester, May 1993.

3. H. Barringer, G. Gough, B. Monahan, and A. Williams. A process algebra foun-
dation for reasoning about core ELLA. Technical Report 94-12-1, University of
Manchester, Dec 1994.

4. T. J. Biggerstaff and A. 3. Perils. Software Reusability - Applications and Experi-
ence, volume 2. Addison-Wesley Publishing Company, first edition, 1989.

5. T. J. Biggerstaff and A. J. Perlis. Software Reusability - Concepts and Models,
volume 1. Addison-Wesley Publishing Company, first edition, 1989.

6. H. Busch, H. Nusser, and T. RSssel. Formal methods for synthesis. In P. Michael,
U. Lauther, and P. Duzy, editors, The Synthesis Approach to Digital System De-
sign. Kluwer Academic Publishers, 1993.

7. Ana C. V. de Melo. Formal Reuse of Hardware Design. PhD thesis, University of
Manchester, March 1995.

8. Srinivas Devadas. Optimizing interacting finite state machines using sequential
don' t cares. IEEE Transactions on Computer-Aided Design, December 1991.

9. P. Freeman. A perspective on reusability. In Peter Freeman, editor, Tutorial:
Software Reusability. IEEE - The Computer Society Press, 1987.

10. Peter Freeman. Tutorial: Software Reusability. IEEE - The Computer Society
Press, 1987.

11. M. C. Gaudel and T. Moineau. A theory of software reusability. In ESOP'88,
volume 300 of LNCS. Springer Verlag, 1988.

12. Arthur Gill. Introduction to the Theory of Finite-State Machines. McGraw-Hill
Book Company, first edition, 1962.

13. W. Glunz, A. Pyttel, and G. Venzl. System-level synthesis. In P. Michael,
U. Lauther, and P. Duzy, editors, The Synthesis Approach to Digital System De-
sign. Kluwer Academic Publishers, 1993.

14. Joseph A. Goguen. Principles of parameterized programming. In T. J. Biggerstaff
and A. J. Perils, editors, Software Reusability - Concepts and Models, volume 1.
Addison-Wesley Publishing Company, 1989.

15. M. 3. Gordon. Why higher-order logic is a good formalism for specifying and
verifying hardware. In G. J. Milne and P. A. Subrahmanyam, editors, Formal
Aspects of VLSI Design. North-Holland, 1986.

16. J. W. ttooper and R. O. Chester. Software Reuse - Guidelines and Methods. Soft-
ware Science and Engineering. Plenum Press, 1991.

17. T. C. Jones. Reusability in programming: A survey of the state of the art. In Peter
Freeman, editor, Tutorial: Software Reusability. IEEE - The Computer Society
Press, 1987.

145

18. Shmuel Katz, Charles A. Richer, and Khe-Sing The. PARIS: A system for reusing
partially interpreted schemas. In T. J. Biggerstaff and A. J. Perlis, editors, Soft-
ware Reusability - Concepts and Models, volume 1. Addison-Wesley Publishing
Company, 1989.

19. M. D. McIlroy. Mass-produced software components. In J. M. Buxton, P. Naur,
and B. Randel], editors, Software Eng. Concepts and Techniques -1968 NATO
Conf. Software Eng. Petrocell i /Charter , 1976.

20. P. Michael, U. Lauther, and P. Duzy. The Synthesis Approach to Digital System
Design. Kluwer Academic Publishers, 1993.

21. George Milne. Formal Specification and Verification of Digital Systems. McGraw-
Hill, first edition, 1994.

22. Robin Mflner. Communication and Concurrency. Prentice-Hall, first edition,
1989.

23. J D Morison and A S Clarke. ELLA2000: A Language for Electronic System De-
sign. McGraw-Hill, 1993.

24. N. S. Nagaraj. OPSYN - OASYS based pseudosynthesis tool. In VLSI Design
I992 - The fifth International Conference on VLSI Design. IEEE - The Computer
Society Press, 1992.

25. Joachim Parrow. Submodule construction as equation solving in CCS. Theoretical
Computer Science, 68:175-202, 1989.

26. Lucia Pomello. Some equivalence notions for concurrent systems, an overview. In
Advances in Petri Nets 1985, volume 222 of LNCS. Springer-Verlag, 1985.

27. Franklin P. Prosser and David E. Winkel. The art of Digital Design. Pentice Hall
International Editions, second edition, 1987.

28. Noah S. Prywes and Evan D. Lock. Use of the model equational language and pro-
gram generator by management professionals. In T. J. Biggerstaff and A. J. Perlis,
editors, Software Reusability - Applications and Experience, volume 2. Addison-
Wesley Publishing Company, 1989.

29. Huajan Qin and Philip Lewis. Factorization of finite state machines under obser-
vational equivalence. In J. C. M. Baeten and J. F. Groote, editors, CONCUR'91,
volume 527 of LNCS. Springer-Verlag, 1991.

30. W. Schs R. Prieto-Diaz, and M. Matsumoto. Software Reusability. Ellis Hor-
wood, 1994.

31. M. W. Shields. Implicit system specification and the interface equation. The
Computer Journal, 32(5), 1989.

32. Stephen H. Unger. Asynchronous Sequential Switching Circuits. Wiley-
Interscience; first edition, 1969.

33. R. J. van Glabbeek. The Linear Time - Branching Time Spectrum. In CON-
CUR'90, volume 458 of LNCS. Springer-Verlag, 1990.

34. R. J. van Glabbeek. The Linear Time - Branching Time Spectrum II. In CON-
CUR'93, volume 715 of LNCS. Springer-Verlag, 1993.

35. Dennis M. Volpano and Richard B. Kieburtz. The templates approach to software
reuse. In T. J. Biggerstaff and A. J. Perlis, editors, Software Reusability- Concepts
and Models, volume 1. Addison-Wesley Publishing Company, 1989.

36. M. Wirsing, R. Hennieker, and R. Stahl. Menu - an example for the systematic
reuse of specifications. In 2nd European Software Engineering Conference, volume
387 of LNCS. Springer Verlag, 1989.

