
A Foundat ion  for Formal R e u s e  of  Hardware  

Ana C. V. de Melo and Howard Barringer 

Department of Computer Science 
University of Manchester 

Manchester M13 9PL - UK 
e-maih {melo,howard} @cs.man.ac.uk 

fax: +44 161 275 6204 

Abst rac t .  This paper presents a basis for the formal reuse of hardware 
components as a strategy to reduce the task of verifying new hardware 
elements. Assuming the existence of a library of formally verified hard- 
ware components, we propose to make effective reuse of these existing 
elements when creating new ones. The strategy used is to formally create 
an interface element with which an existing hardware component is com- 
posed in order to implement a new desired component. In doing so, the 
verification task of the whole system is reduced to verifying the interface 
element. 
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1 I n t r o d u c t i o n  

The complexity of digital systems has grown rapidly over the past decade with 
the developments in the technologies for their fabrication. The problem of veri- 
fying systems in the large has been a challenging task due to the computational 
problem involved. Although the widespread application of hardware components 
requires a variety of elements which are sometimes similar t o  components already 
designed, many of these similar elements are today redesigned (and re-verified) 
due to the absence of mechanisms to recognize their similarities. The problem of 
verification in the large can then be alleviated if verified components are formally 
reused. 

The application of formal methods has now produced a number of hardware 
components that  are formally verified. Having such elements stored in a library, 
they can be reused to build new components that are similar to them in some 
sense. If the communication between the system elements not found in the library 
and the reused elements is formally stated, only those non-reused elements are 
required to be verified. In doing so, the problem of verifying the overall system 
is reduced to the verification of the non-existing components. 

Informally~ hardware design has been reused by the time the component is 
produced in bulk, or from libraries of standard elements when designers know 
the functionality of certain elements they wish to reuse. A wide, and more for- 
real, form of reuse hardware components has been addressed by techniques to 
synthesize hardware design. Synthesis of hardware design has now been treated 
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at the various levels of hardware description, from system down to logic level 
[20]. Formal methods have been employed to provide verification of hardware 
such as HOL Proof System [15] and Circal [21], but very little synthesis-related 
work has been developed [6]. 

Despite being a kind of reuse, the system-level synthesis methods [13] do not 
cover all the ways existing components can be reused. The system-level synthesis 
is very concerned with partitioning of systems by adding structure to behavioural 
objects (in general, the systems are partitioned into standard components). By 
contrast, reusable components might not fit a natural partitioning of the desired 
components; a library component could, for example, embed some functionality 
not required by the specification element and still be useful for reuse. System- 
level synthesis is indeed an instance of reusability in the sense that  the existing 
component could eventually be a subsystem of the desired one. 

Apart from the restricted form of reuse addressed by synthesis, not much 
attention has been paid to the reuse of complex hardware components. In the 
current stage of hardware development, high-level specifications of hardware are 
similar to software specifications. So, the reuse techniques developed for software 
are also applicable to hardware development. But even in the software domain, 
where the problem of reuse was first addressed by McIlroy [19], only a few works 
use a formal approach [11, 14, 18, 35, 28, 36]. 

This paper presents a foundation for formal reuse of hardware design 1 based 
on an interface approach. That  is, an interface component is formally created 
to be composed with the existing one in order to provide the behaviour of the 
desired element. A process algebra is used for the behavioural representation of 
hardware, and as a foundation for formally reasoning about the reuse of hard- 
ware design. The interface component is then constructed via application of a 
decomposition operator created for the particular process algebra. Section 2 in- 
troduces the process algebra used for representing hardware components; Sect. 3 
presents the interface approach in terms of the process algebra; Sect. 4 presents 
the decomposition operator; and Sect. 5 shows minimization of interface processes 
by examples. 

2 Represent ing  Hardware C o m p o n e n t s  using a Process  
Algebra 

A formal approach for reusing hardware components requires a semantic def- 
inition of the representations of these components. EPA [3] is a synchronous 
process algebra based on SCCS [22] and originally created for describing the 
formal foundations of ELLA [23]. It is used in the present work as a model for 
representing hardware components, and as a mathematical  foundation for hard- 
ware verification. In this section we only present the features of EPA which are 
used in the current work. 

1 This work is embedded in a project for formal reuse of hardware components using 
ELLA [23]. 
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Processes and Ports of Communication. EPA processes are essentially reac- 
tive elements that  transform an input event into an output  one. They have a 
predefined set of input and output  ports of communication through which the 
information is interchanged with the environment. The EPA process definition 
and call have then typed parameters to represent these ports of communication. 
For example, the elementary hardware component boolean-delay, 

process DelBool(x: bool; c1: bool/e2: bool) Z~ 

el(t)/e2(x) :: DelBool(t; cl/c2) + 

cl(f)lc (x) : :  OdBool( ; c lc ), 

is a process defined over three groups: x defines the "state" of process DelBool; 
{ct} is the set of input channels; and {c2} is the set of output  channels. The 
process chooses (+) one of the initial actions depending on the input event bound 
to cl, and binds the actual "state" to the output  channel c2. By undertaking an 
initial action, it evolves into a recursive call in which the actual input value is 
bound to the process "state". 

The set of communication ports of a process P is defined as Chs(P), while 
the sets of input and output  channels are Chsi(P) and Chso(P) respectively. 

Combinators. Consider P and Q are processes (or agent expressions), C is a set 
of channel names (C C_ ChanNames), x is a set of variables and a is an action 
(~ E Act). The EPA combinators are as follows: 

a :: P prefixing operator P\C  hiding operator 

P + Q binary summation P [ c  C restriction to channels 

x �9 P process choice P [  Q composition 

The prefixing and summation operators have the usual semantics. The pro- 
cess choice is a generalization of the binary summation in the sense that  x is 
a set of typed variables and the action to be performed depends on the actual 
value bound to variables x. The hiding operator makes the ports of communica- 
tion in C no longer observable; it hides the structure of process definitions. By 
contrast, restriction to channels makes only the channels in set C observable. 
The composition operator will be discussed later. 

Structured Actions. EPA actions are represented by a simultaneous activation 
of an input and an output  action. Moreover, they have an enriched structure of 
channels: 

oe E A c t : : = e  I [] I (i/o) 

i, oE IOAct: : - -e  I [] I iot@io2 I c(v) 

[] (zero action) is a distinguished action that  has "no meaning" in terms 
of behaviour. It was introduced in EPA to give a uniform treatment  for partial 
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behaviour and hiding [2]. e is an empty action, and i and 0 are, respectively, 
input and output  actions that  simultaneously occur to form a single event. At 
the ground level, an io-action is a summation (or sequence as a shor t -hand - 

i / o  = e l ( v 1 ) ,  ...,  . . . ,  o f  p imiti e a c t i o n s  
All actions that  represent process behaviour, such as ( i /o)  and e, are called 
"proper" actions. [] is, however, an "improper" action. The sort of actions a 
process P can perform is given by Sort(P), its initial actions are in Sortl(P),  and 
its sets of input and output  actions are Sorti(P) and Sorto(P), respectively. 

For a synchronous calculus the concept of conflict freedom emerges [2]: 

D e f i n i t i o n  l .  Suppose action c~ is defined over the set of channels C1, fl is 
defined over C2 and C = C1 N C2. Then, a is conflict free with fl (denoted as 
a CF f~) iff res-ch(a, C) = res-ch(fl, C) 2. 

Composition. The EPA parallel composition provides communication of pro- 
cesses in a synchronous manner. Transitions of the composite process are given 
by a synchronous communication of actions from the component processes. The 
transitional semantics of such an operator is as follows: 

p ~ )p I ,  Q ~ ~QI 

* : Act u --~ Act 

V ip/Op,iq/Oq e Act �9 

(i, l o , ) ,  (i lo ) : ((i, �9 e (o, �9 �9 

A meaning of the EPA combinators is given by using a general notion of 
labeled transition systems [1]. A Transition system for P (TS (P)  = {Stsp,  Ap,  
T P, sP}) consists of a set of states Stsp representing the process terms, a set 
of labels .Ap representing actions, a transition relation T P over process terms 
which gives the semantics of the system, and an initial state s P. The transition 
of composite processes are defined in terms of the transitions of the component 
elements. 

Two other operators are used to define the action product: summation (@) 
and subtraction (O). Roughly speaking, summation of actions iol and io2 (iol �9 
io2) combines all subactions of iol and io~ if they are conflict free, and returns 
[] otherwise. On the other hand, subtraction (iol (3 io2) results in all elements 
in iOl that  have no match with elements in io2 if they are conflict free. 

Semantics. A variety of process behavioural equivalences have been defined for 
deterministic and nondeterministic processes [26, 33, 34]. In the present work, 
strong bisimulation [3] is adopted to provide substitutivity of components; reuse 
requires substitution of processes. From now on, we use the term "bisimulation" 
to mean "strong bisimulation". 

res-ch(c~, C) restricts action a to be observable only for channels in the set C. 
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D e f i n i t i o n 2 .  Bisimulation B is a symmetric binary relation on processes such 
that  i f (P ,  Q) E B (abbreviated by P ~ Q), then for every proper action a E Act: 

1. whenever P ~ , P~then Q ~ ~ Q ' f o r s o m e  Q ' s u c h t h a t  P~-~ Q~, 

2. whenever Q ~ ' O ' t h e n  P ~ ~ P~ for some P~ such that  P~..~ QI. 

Transition graphs [1] are used for behavioural representation of processes. 
The present work will interchange algebraic and graphic representations depend- 
ing on the problem being presented. EPA actions are graphically represented as 
input and output actions. The directed graph has the usual meaning: processes 
are represented by nodes, and arrows represent actions coming from a process 
to another. The graphical representation of processes showing the action values 
will drop the channel names for simplification; only the action values are shown 
as sequences of elements for input and output actions. An action like (c~(v~), 
c2(v2)/c3(v3)) is represented in the graph by (vl, v2/v3) or (vtv2/v3) .  

Delermin ism.  Apart from the determinism defined over input actions for EPA 
processes (as in Automata  Theory), determinacy of processes can also be defined 
over the pairs of input /output  actions. In order to simplify future definitions, 
let us define the concepts of processes deterministically defined for a particu- 
lar action, and determinism of processes upon the synchronous input /output  
actions: 

De f in i t i on  3. A process P is deterministically defined for action a (denoted as 
I)!~(P)) if whenever P ~ ~ P '  and P ~ > P~' then P~ ..~ P'~. 

D e f i n i t i o n 4 .  Determinism over input /output  action is a property defined over 
processes such that  if a process P is deterministic on input /output  actions (de- 
noted as ~P!(P)), then for every proper action a E Act ,  whenever P ~ > p /  
9!~(P)  and 9! (P ' ) .  

3 T h e  R e u s e  I n t e r f a c e  A p p r o a c h  

The reuse of software/hardware design involves managerial as much as descrip- 
tive information of these elements [9, 17]. Due to the formal approach being 
taken for reuse in the present work, we confine ourselves to reusing the descrip- 
tive information of hardware components. 

As with software reuse [10i 5, 4, 16, 30], different approaches can be adopted 
for hardware reuse, such as creating generators of hardware components from 
patterns, or defining hardware description languages that  capture reusability 
principles. But, what we actually have, in practice, are libraries of components 
described in a hardware description language. So, we propose reuse of hardware 
design by identifying similarities between a desired and an existing component, 
and then automatically generating the context in which the existing component 
must be embedded to achieve the desired behaviour. Given a desired and an 



129 

existing process, we want to be able to "transform" the existing process into the 
desired behaviour. 

Basically, two approaches can be adopted to transform an existing process 
into a desired one: modifying the design of such a component,  or composing 
the existing process with another one to achieve the desired behaviour. The 
task involved in the first approach is redesigning an existing system into a new 
one. There, design of the existing process is reused to build the desired one 
under application of transformation rules. In the second approach, the Interface 
Approach, the existing process is reused without any change in design, but  a new 
process (the interface process) must be developed. Hence, the existing process 
has its behaviour "transformed" by composition with the new process. 

From a practical point of view, the interface approach is attractive for reuse 
hardware design because the hardware components are reused without redesign- 
ing. Another aspect which makes this approach attractive is the possibility of 
having an automatic procedure to find the interface process. But, what does 
"creation of an interface process" mean when the desired and existing processes 
are defined in a process algebra? 

As we have stated above, the interface process must be composed with an 
existing component to provide the behaviour of the desired process. Considering 
that  (strong) bisimulation is adopted as the behavioural equivalence relation in 
EPA, the resulting composition must be bisimilar to the desired process. The 
Interface Equation for this particular reuse problem (synchronous composition 
and hiding channels) can be defined as: 

(P I X )  [r Chs(,9) ,.-., ,9 ( i )  

In this equation, S is the desired process while P is the existing component,  
and X is the interface process to be found. Notice that  the observable channels of 
the compound process are restricted to the set of channels of the desired process; 
any other communication port is internalized in this compound process. 

4 Interface P r o c e s s e s -  Correct  by Construct ion  

Since reuse has as one of the main goals to minimize the effort of developing 
new processes by making use of existing ones, these processes must indicate 
some similarity in behaviour. So, a solution for the reuse problem must provide 
the interface process and make the best reuse of similarities between the desired 
and existing processes. The strategy to yield so is find the similarities between 
the desired and existing processes, and then createn an interface process based 
on their disimilarities. 

In this section we present certain similarities between synchronous processes 3 
which are useful for reuse when the interface approach is adopted, and then show 
the construction of the interface processes via a decomposition operator. 

3 A number of similarity relations useful for reuse has been defined in [7], but we 
confine ourselves to showing only one of them in the present paper. 
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4.1 Similarities between Synchronous Processes 

To compare the behaviour of processes in order to enable effective reuse of an 
existing component, various notions of similarity can be defined. To realize poten- 
tial reusable processes, mechanisms other than a conventional equality of actions 
must be provided. So, a relation considering partial identification of actions is 
required for effective reuse of synchronous processes. 

In a synchronous calculus like EPA, compound actions (actions performed 
by compound processes) are realized by all component processes running syn- 
chronously. Therefore, similarity of processes in a synchronous interface approach 
is useful only if each action of the specification can be identified with an action 
of the given component. Otherwise, synchronous composition of the component 
with the interface process would never yield the behaviour of the specification. 

For EPA, in particular, actions can be "identical" in a subset of channels. 
For instance, comparing action (c1(0), e2(1))/(c3(0), c4(0)) with (c5(1), c2(1))/ 
(c3(0), c4(0)), it can be noticed that they coincide in channels e2, e3 and c4. 
These actions are then identical when restricted to the set of channels {c2, c3, 
c4}. Scaling this comparison up to processes, we may also find processes that are 
identical when restricted to a set of channels. A relation for comparing processes 
restricted to the set of their coincident channel names is defined as follows: 

Definition 5. Channel Restricted Bisimulation Bc (CR-Bisimulation) is a sym- 
metric binary relation on processes such that if (P, Q) E Bc (abbreviated by 
P ~ Q), then there exists a non-empty set of channels C = (Chs(P) N Chs(Q)) 
such that P [ c  C ,.~ Q [c C. 

Since this relation is indexed by the set of channels of both processes that 
have identical names, a family of bisimuIations emerges with the definition of 
CR-bisimulation. 

Note that it is only possible to have P CR-bisimilar to Q if all input channels 
of P are distinct from the output channels of Q and vice-versa. If an input 
channel name of P coincides with an output channel name of Q, actions of both 
processes could never be identified with each other: 

L e m m a 6 .  Suppose P ~ Q, then Q is CR-bisimilar to P only if Chsi(P)N 
' Chso(Q) = r and Chso(P) A Chsi(Q) = r  

Example .  Our example ranges over variants of traffic light controllers. Suppose 
a Major/Minor roads traffic light controller is needed when a particular compo- 
nent has already been designed. In this section we first present a library traffic 
light component, the specification of the major/minor roads process, and then 
show the behavioural similarity between these elements. 

A Library Component. At an abstract level, a traffic light controller is a process 
that cycles through a trivial sequence of three light colours: green, amber and red, 
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and then restarts the sequence 4. Some variations on sequences of light colours 
can be obtained if a particular colour is given priority. Moreover, this kind of 
system must receive a signal to make it change the light colour. So, at a more 
detailed level, the traffic light controller must be defined with at least one port 
of communication through which a "change colour" event is input. 

Our library traffic light controller gives priority to green, and it depends on 
two events to change the light colour: a signal for time units, and a signal to 
communicate the presence or absence of cars. It has some predefined intervals 
during which a colour must remain and after which such a colour can be changed. 
A time counter synchronized with a master clock is necessary for signaling these 
time units. Additionally, a sensor is wired to signal the other incoming event. 
Thus, this traffic light controller, TLC1, is an agent that  interacts with both a 
sensor (Sens) and a time counter (Tcnt) processes - Fig. 1. 

The sensor communicates, via channel s, the signal car when a car is detected 
and c-~ when this event does not occur. TLC1 communicates with the time 
counter through two channels: setc to initialize such a counter when a light 
colour is changed, and l to receive a t ime unit from the counter. The interval 
t/ is given to control the traffic flow, and ts to control the safely t ime of the 
system (the light amber, for example, is given for safety, then t~ is concerned 
with the t ime interval during which this kind of light must be signaled). If the 
time unit signaled by the t ime counter is within these intervals, they are signaled 
positive (ts, t]); they are negated (~, ~ )  otherwise. And finally, the light colour is 
communicated to the environment through channel I. The sorts of these incoming 
and outcoming events are as follows: 

type colour ~__ {G, A, R} type intervs A_ {ts,L-s, t$,~/} 

type seount A__ { s t , ~ )  type sensor A__ { ear, -~-f } 

The light must remain green for a minimum interval t I and should only cy- 
cle to amber with the presence of cars waiting to cross the road. Furthermore, 
whenever a car is no longer detected, the system must choose the shortest se- 
quence of cycles to reach the green light. The transition graph for this traffic 
light controller 5 is shown in Fig. 1. 

Note that  the light remains red for both intervals. A traffic light controller for 
a single light, like this one, is supposed to have an opposite traffic light running 
in parallel, such that  their light colours do not overlap. By the t ime the opposite 
traffic light is green, this light must be red. In order to allow the opposite light 
to cycle through amber to red, this traffic light must remain red for a safety 
period. 

A Major/Minor Roads Traffic Light Controller. Now, suppose we want to de- 
velop a hardware component to control a traffic light at a junction of a major  

This example is a variation of a traffic light controller presented in [27]. 
5 The transition graphs of processes are shown in this paper to facilitate the discussion 

on comparison of behaviour of processes. 
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ckl 

l 
TLC1 

~ setc 

~,~~, Ts/c, 77 
~ O  c<.', Is~G,77 

TL C ~ / ~  ' ~/ / G ' ~ 

Fig. 1. Structural Definition and Transition Graph for TLC1 (s, t/l, setc) 

and minor road. The major road is assumed to be busy and so the traffic light 
gives opportunity to cars coming through the minor road to cross the major  
road. The minor road has sensors that  activate the traffic light only when a car 
is detected. The major road does not need any sensor because, by default, its 
light is green. 

Thus, the major  road traffic light is given priority, but not to the extent that  
the minor road traffic can be stalled indefinitely. The major road light can only 
cycle through amber to red if it has been green for a pre-established minimal 
period of time. Also, the minor road light can only remain green for a maximum 
period while the sensors indicate the presence of cars. In order to control the 
time cars are waiting on the minor road and also how long a red light is signaled 
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to the major road, a time counter must be introduced. 
As with the previously defined traffic light controller, the time interval to 

maintain both lights amber is the safety interval (ts, t--)~, and the minimum or 
the maximum intervals for green are specified by the traffic flow interval (tf, T]). 
This major /minor  roads traffic light controller has its structural and behavioural 
specifications shown in Fig. 2. 

i if s > TLC2 ] lm& 
I 

ck ~ e t c  

"~F,~/ G,R,~ 
~ )  car, q/G,R,~7 

T L ~ , t ] / G , R , ~  

-,,,, iR, J . . . .  
car, ~/R, G, st 

~ R e d 2  . . . .  

Fig. 2. Structural Definition and Transition Graph for TLC2(s, t/I,~j, lm~, setc) 

Clearly, the top partitioning of this system can be defined as two processes 
running in parallel: a major and a minor road processes. The major road process 
is a controller for a single traffic light which gives priority to green, and is 
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activated by a sensor and a time counter. It is indeed an instance of the library 
component previously defined, 

process TLCmj(s: sensor, t: intervs/lmj: colour, setc: stcounl) A_ 
TLCI(s, t/lmj, setc), 

which can be reused to implement this new system. 
Adopting the interface approach as proposed above, an interface process must 

be found instead of creating the minor road process separately. But to create 
such an interface element, the behaviour of the whole system and the major  road 
process must be previously compared. 

The processes major /minor  and major road can only be found bisimilar for 
a restricted set of channels: {s, t, lmj, setc}. Their input channels coincide but 
the traffic light controller has an output  channel not defined for the major  road 
process. Restricting these processes to the set of channels above, we can real- 
ize that  process TLCmj, for example, can perform all the restricted actions for 

"~1, car~A, R, st 
which TLC2 is able to move. Transition TLC2 ~ Amb2, for ex- 

ample, is channel restricted identical to TLC,~j ~, car/A, st ; Ambrnj. TLC2 
and TLCmj have identical sets of channel restricted initial actions and, be- 
sides that,  they reach processes that  are also CR-bisimilar.  These processes 
are then CR-bisimilar: TLC2 ~ TLCmj, Amb2 ~ Ambmj, FRed2 ~ FRedmj and 

C STted~ ,.~ SRed,#. 

4.2 B u i l d i n g  In ter face  P r o c e s s e s  

We are particularly interested in solving the interface equation by providing an 
algebraic combinator. Such solution requires the creation of a unique interface 
process. We must then check the theoretical limitations of reusing components 
using the synchronous interface approach, and define the operator.  

In this section we state the constraints, the necessary and sufficient condi- 
tions to solve Equation 1, and show that  the application of our decomposition 
operator is a solution for such an equation. An example is given to illustrate the 
construction of an interface process. To facilitate the discussion, we assume S 
as the specification process, P is the existing component, and X is the interface 
process 6. 

C o n s t r a i n t s .  In a synchronous approach, each specification action (action from 
the specification component) is simulated by a synchronous execution of an ex- 
isting and an interface action that  are conflict free. So, for each specification 
action, there exists an action in the existing component which partially sim- 
ulates it. Also, such an existing action must be conflict free only with actions 

6 As an abuse of notation, we use the variable X to represent a generic process that 
satisfies Equation 1. 
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from the interface process whose composition is bisimilar with th'e required spec- 
ification action. To hold uniqueness on combination of actions, the component 
processes must have the following property: 

P r o p o s i t i o n  7. Suppose C = Chs(P)N Chs(Q). Process P has its initial actions 
uniquely combined with actions from Q only if, for all action (~ E Sortl(P), there 
exists a unique ~ e Sortl(Q) such that res-ch(~, C) = res-ch(1), C). 

This property defines what is necessary for P to achieve uniqueness of conflict 
freedom of its initial actions with Q initial actions. For a general case, consider 
processes P and Q, and the set of channels C = Chs(P)N Chs(Q). If (Q rc C) is 
not deterministically defined for its input/output actions that are conflict free 
with P, then uniqueness of combination of P with Q actions cannot be achieved 
since some of the Q actions could be combined with more than one action from 
P. Determinism of a process for its set of actions that are conflict free with 
another process is defined as follows: 

Def in i t ionS .  Suppose C = Chs(P)n Chs(Q). Q is deterministically defined for 
its input/output actions that are conflict free with P (denoted as T)!p(Q)), if 

for every proper actions a, fl E Act, whenever Q ~ Q' and P ~ P'  such 
that a CF t3, then 7)!~(Q) and 7)!p,(Q'). 

Then, the necessary condition to have P actions combined with exactly one 
action from Q is as follows: 

P r o p o s i t i o n  9. Suppose C = Chs(P) NChs(Q). P actions are uniquely combined 
with Q actions only i fO!p(Q Ic C). 

As a consequence, a solution for the interface equation can only be found 
if the property defined in Proposition 9 holds for the existing and the interface 
processes. 

Considering that the interface process X must be constructed from infor- 
mation of S and P corresponding actions, the P actions that are conflict free 
with the interface actions are also conflict free with the corresponding S ac- 
tion. So, the constraint :D!x(P) is reduced to :D!s(P). The property required for 
uniqueness of combination of X with P in order to reuse P is defined as follows: 

L e m m a  10. Suppose S ~ P, then P can be reused to simulate S only ifT)!s(P). 

In fact, if the properties in Lemma 10 hold, then the interface equation can 
be solved: 

Corollary11. Suppose S ~ P and O!s(e) .  Then, (P I X) rc chs(s) ~ s 
(Equation 1) can be solved. 

Since these constraints are necessary to allow reuse, we assume the given and 
the desired processes satisfy them whenever an interface process is required. 
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T h e  N e c e s s a r y  a n d  Suf f ic ien t  C o n d i t i o n s  to  So lve  t h e  I n t e r f a c e  E q u a -  
t i on .  Bisimilarity between processes depends on the ability of both processes 
performing identical initial actions and then reaching bisimilar processes. There- 
fore, a solution for Equation 1 depends upon these premises. Let us name process 
Q as a possible solution for this equation. The following theorem gives the nec- 
essary and sufficient conditions to have Q as a solution for such an equation: 

T h e o r e m  12. Assume S s P and O!s(P) .  Suppose is/os, ip/Op and iq/Oq are 
proper actions. I f  

1. Sorh( (P  I Q) [c Chs(S)) = Sorh(S), and 

2. Q' is a solution for (P '  I X)  rc Chs(S) ,-~ S' 

whenever Q i,/o, ~. Q,, S i,/o~ , $1 ' p i,/op ~ p~ and res-ch(ip/op * iq/oq, 
Chs(S)) = is/os, then Q is a solution for (P  ] X) [c Chs(S) ,,~ S. 

A proof for this theorem is included in [7]. 

A D e c o m p o s i t i o n  O p e r a t o r .  Here we present our decomposition operator 
and claim that  its use yields a particular solution for the interface equation in 
which minimal solutions are included. 

CR-bisimulation abstract on a set of channels to compare processes. As a 
result, CR-bisimilar processes may coincide only in part of their behaviour. 
This means that  neither the whole behaviour of S is substituted, nor the entire 
behaviour of P can be reused. The interface process must then provide the 
unmatched behaviour and, at the same time, enable P to be run in synchrony. 

To solve the interface equation, each S action must be simulated by com- 
position of its CR-bisimilar P action with an interface action (an action from 
the interface process X). We first discuss the input and output  information that  
needs to be provided by X, and then present the decomposition operator. 

The Input and Output Behaviour. To achieve bisimilarity with S, each X action 
must comprise sufficient information to ensure that  its combination with the 
range of P actions exclusively provides the corresponding S action; considering 
C = Chs(P) A Chs(X), then property 7) ! z (P  [c C) must hold (Proposition 9). 
Such a property is accomplished, in particular, if the interface process comprises 
all information of P which simulates S. As a mat ter  of creating a generic interface 
process, it must include the set of channels of the existing process. To do so, we 
must check the minimal information that  has to be supplied as input and output  
of the interface process. 

The coincident output  channels of P and S denote which output  behaviour 
of P can substitute for the S's output  behaviour. But the output  behaviour of S 
not matched to P must be supplied by the interface process. Hence, to provide 
the entire output  behaviour of S, only those output  channels of S that  do not 
coincide with the P 's  need to be provided: ChSo(S) - Chso(P). 

On the other hand, the external environment is only prepared to gener- 
ate/accept  events that interact with S - it is only able to communicate through 
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S input and output  channels. But, to reuse P, all of its input channels must be 
provided in order to make it run, in synchrony, with the interface process. Those 
input channels of P which coincide with the S ones can be obtained directly from 
the environment. Those other non-coincident input channels, however, must be 
provided by the interface process. Thus, the output  channels of the interface 
process must comprise at least the following elements: 

Chso(X) = (Chso(S) - Chso(P)) U (Chsi(P) - Chsi(S)) 

A similar analysis can be made for the input information that  must be sup- 
plied by the interface process. In doing so, we find that  all the S input channels 
that  do not coincide with P's  must be given as input channels of the interface 
process (Chs~(S) - Chsi(P)). This is indeed the minimal set of input channels 
that  must be provided as interface behaviour. However, the input and output  
behaviour of X must comprise the whole set of P channels to hold uniqueness of 
conflict freedom. So, apart from the minimal set of channels, we "overeonnect" 
the input actions of the interface process with all the coincident channels of both 
pro cesses: 

Chsi(X) = Chsi(S) U Chso(P). 

Consider S ~,/o, ; S~ and P #/% ~ P' such that  S L p,  S ~ s U ,  and 
i~/os and ip/op are channel restricted identical. The corresponding X action 
which interfaces the above S and P actions is as follows: 

i.lo  = (i, �9 op)l(o, e op) r (ip e i,). 

Bisimilarity of the compound process with the desired one is achieved if each 
compound action is identical to a desired one. In fact, as with the interface action 
above, the compound action is identical to the specification one: 

C o r o l l a r y  13. Suppose is/Os, ip/Op and ix/ox = ( i , e % ) / ( o , e %  ) r  are 
w-actions such that chs-of(i~)Nchs-of(op) = r and chs-of(o~)Nchs-of(ip) = O, 
the.  res-ch(iplop . i lo , c h s ( i , / o , ) )  = i, lo , .  

Once we have checked that  a single action from S and the compound process 
are identical when X actions are defined as above, the set of initial actions of S 
and the compound process can also be checked as identical. The X initial actions 
are defined as suggested above. 

D e f i n i t i o n l 4 .  Assume S c p and:D!s(P) .  Whenever S --i'/~ ~ S~ and P ip/% 
P'  such that  S' s P '  and res-ch(i~/os, C) = res-ch(ip/%, C), then X has the 

transition X i , / o ,  X '  for some X '  such that  ix/o,~ = (i~ | %) / (0 ,  G %) G 
(ip e is). 

7 ehs-o](io) denotes the set of channels defined for io. 
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As a consequence of property :P!s(P), if X initial actions are defined as 
above, then each of these actions can be combined only with the action from P 
which was used to define it: 

P r o p o s i t i o n l 5 .  Suppose S ~ P, O! s (P)  and X ' s  initial actions are built up as 
in Def. 14. Then, for any action ix/ox E Sortl(X), there exists only one action 
ip/Op C SOrtl(P) such that ix/ox CF ip/Op. 

Thus, equality of sets of initial actions of S and the compound process is 
defined as follows: 

T h e o r e m l 6 .  I f  S • P,  7)!s(P) and X ' s  prefixing actions are built up as in 
Def. 1.~, then Sortl((P [ X) [c Chs(S)) = Sort,(S). 

The Operator. Actions of the interface process are created by taking each action 
from the desired process and "dividing" it by the similar action from the existing 
one, as suggested in Def. 14. Interface actions are therefore created for each pair 
of similar actions from S and P actions. Suppose is/os and ip/op are CR- 
identical actions from S and P respectively. Then, the interface process must 
move via actions that are "divisions" of S by P actions: 

+: Act 2 --~ Act 

V iv~or, i,~/o~ E A c t .  

(iplop) + (i lox) = (ip �9 o )1(o, e �9 (ix e ip) 

Since the creation of the interface actions depends on the similarities be- 
tween S and P actions, as previously defined, the decomposition operator must 
only permit division of CR-identical actions. To do so, decomposition of pro- 
cess S by P must embed conditions which guarantee that only CR-identical 

actions are going to be divided. Using Def. 14 as basis, (S / P) ~'/~ + ~P/~ -+ 

(S' / P') only if S i,/o, ) S', P ip/% ) p, ,  res-ch(is/O,,Chs(P) OChs(S)) = 

res-ch(ip/op, Chs(P) N Chs(S)) and S' s P'. 
By the second property required to solve the interface equation (Theorem 

12), the reachable processes must solve equations like (P ' [  X) [c Chs(S) -~ S'. 
But it is reduced to the problem of finding a decomposed process for S' with 
respect to P'. So, the process reached by S / P when performing that division 
action must be a decomposition of S ~ with respect to P'. 

Based on these definitions of initial actions and reachable processes, a tran- 
sitional semantics for the decomposition operator is as follows: 

S._.E_+S, ' p Z . p , ,  { ( S , P ) , ( S ' , P ' ) } c B c ,  

res-ch( , Chs(P) n Chs(S)) = res-ch( , Chs(P) n Chs(S)) 

S / P  c~+Z , S ' / P '  
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Due to the fact that  the decomposed processes satisfies all properties of 
Theorem 12, the application of the decomposition operator provides a solution s 
for Equation 1. 

T h e o r e m  17. Suppose S L p and :D!s(P). Then, process S / P is a solution 
for (P  I X )  [c Chs(S) --~ S. 

This operator constructs "overconnected" processes which can be minimized. 
In principle, the new process is created on the size of pairs of S and P that  are 
related by CR-bisimulation. So, a further minimization must be performed based 
on minimal interactive processes. Also a minimization of connections must be 
performed to remove unnecessary inputs. 

E x a m p l e :  T h e  Traf f ic  L i g h t  I n t e r f a c e  P r o c e s s .  Having established a de- 
composition operator to solve the interface equation, we can now create the 
interface process to be composed with the major  road process in order to yield 
bisimilarity with major /minor  roads process. Once these processes have been 
checked to be CR-bisimilar and property ~D]TLC~(TLCrnj) holds, the decompo- 
sition operator can be applied to those processes (TLC2 /TLC,,~j) in order to 
find the interface element. As checked in Sect. 4.1, 

{ ( TLC2, TLC,v); ( Amb2, Amb,nj), (FRed2, FRed,,d), ( SRed2, SRedmj ) } C Bc. 

So, for each action from TLC2 there exists an action from TLCmj which par- 
tially simulates it. For instance, action (s(car), t(~)/lmj(A), l,,,(R), setc(st)) 9 
from TL C~ is channel restricted identical to action (s(car), t(~)/lmj (A), setc(s~t)) 
from TLCmj, and they reach CR-bisimilar processes. The interface process, 
therefore, comprises an action which interfaces these actions. The interface ac- 
tion for the actions above is as follows: 

(s(car), t(~)/&~(A), l...(R), setc(st)) + (s(car), t (~/l .~i(A),  setc(st)) = 
(s(car), t(~), I,~j(A), setc(st)/Im,~(R)) 

The transition graph for TLCdiv ~ TLC2 / TLCmj is shown in Fig. 3. 

5 Minimizing the Interface Process 

A solution for the interface equation requires bisimilarity with the desired pro- 
cess. So, this section is devoted to minimization of target concurrent processes 
in such a way that  the final compound processes are bisimilar to their origi- 
nal ones 1~ Consider Po ( TS(Po) = {Stspo,.Apo, TP~ and Qo ( TS(Po) -= 

s The soundness of the decomposition operator has been proved in [7]. 
9 The channel names are introduced here to facilitate the comparison of actions. 

10 The minimization technique used here is based on minimization under compatible 
states [12, 32] and interacting automata [8], and is presented in [7]. 
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~-v, V, c,~/R 
car, t], G, st ir  

~,~ / ~-~V, 9, C,~7/R 

-~,~, c,~tlR/ ~",~-~,f:,c, ~lS~ 

FReddiv . . . .  

Fig. 3. Interface between the Traffic Light Controller and the Major Road Process 

{StsQo,.AQo, T Q~ Q0}) are run in parallel and restricted to the set of observable 
channels E= ((P0 I Q0) [~ Ex), and Q0 is the target process to be minimized. 

For concurrent processes (arbitrarily connected), the key point of minimiza- 
tion is "joining" states of the target process and still maintaining bisimilarity 
with the original compound process. To do so, composition of each subprocess 
reachable from P0, say Pi, with a Q0's joint process m , say LQz, Q,~], must ex- 
clusively result in the behaviour of ((Pi [ Qz) [c E~) or ((P~ I Q-~) [c Ez); 

E~. Since actions of the compound process are obtained by composition of con- 
flict free actions from the component processes, Pi actions must be exclusively 
conflict free with Qz or Qm actions. 

For example, the interface traffic light TLCdi, is combined with TLC~j in 
such a way that  

(TLCmj I TLCdi~) [c Chs(TLC2), (Ambmj I Ambd~,) Ic Chs(TLC2), 
( FRed,,j ] FRedd~v) [c Cks( TLC2) and (SRedrnj [ SReddiv) [c Chs( TLC2) 

are the reachable processes. This means that  TLCdi, can only be joined to 
Ambdi,, for example, if 

la Suppose p -- {B~ Q .... Bn Q} is a partition of StSQ. The process constructed from 
partition p is defined by: [Bk Q] = {B Q a ~ BQ [ (Q, ~ > Qj) e T Q, Qi E 
B Q and Qj e B Q} and [p] = {I.B~] I B~ �9 p} 
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( TLC,~j l TLCd,,) [c Chs( TLC2)..~ ( TLCmj I [ TLCd~v, Ambdiv]) [~ Chs( TLC2) 
and 

(Amb,~j I Ambd,,) [~ Chs(TLC2) ..~ (Ambmj I LTLCdi,,Ambdi,]) Io Chs(TLC2) 

hold. Compatibility of concurrent processes is more formally defined as follows: 

D e f i n i t i o n  18. Compatibility of Concurrent Processes (abbreviated by ~_,,) is a 
symmetric binary relation on processes such that  if Qi ~-,, Qj, considering the 
sets of interacting channels C and external channels E~, then for every proper 
action ~, f l  C Act such that  a E Sorh(Q~),/) E Sortl(Qj) and res-ch(a, C) = 
rcs-ch(fl, C): 

1. whenever Q, -2--+ Q~ then Qj z ~ Q~ for some Qj such that  

res-ch(a, Ex) = res-ch(fl, Ex) and Q~ ~_,, Q~, 

2. whenever Qj ~ > Qj then Q~ ~ ~ Q~ for some Q~ such that  

res-ch(a, E=) = res-ch(Z, E~) and Q~ _~,, Q~. 

Concurrently compatible processes perform identical observable actions when- 
ever their actions equals for a restricted set of channels C, and then reach con- 
currently compatible processes. 

Since concurrent compatibility is not an equivalence relation (it is intran- 
sitive), various partitions of a process states can be obtained under such rela- 
tion. The interface traffic light process (Figure 3) can be minimized with re- 
spect to its interaction with TLCmj. Considering the set of external channels 
Ex = Chs(TLC2), the sets of concurrently compatible subprocesses reachable 
from TLCdiv under composition with TLCmj are as follows: 

{{ TLCdiv}, {Ambd~v}, {FReddiv}, {SReddiv}, { TLCdiv, Ambdiv}, 
{ TLCdi~, FReddiv}, { TLCdiv, SReddiv}, {Ambdi~, FReddiv}, 
{ TLCdiv, Ambdiv, FReddiv}}. 

The minimal partitions that  can be constructed from those sets of concur- 
rently compatible processes are as follows: 

fll : {{ TLCdiv, SRcddiv } , { Ambdi~, FReddiv } } 
P2 : { {SReddiv}, { TLCdi,, Ambdi,, FReddie}} 

These partition elements are named as: 
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process Gmj.mn(s: sensor, t: intervs, lmj: colour, selc: stcounl/Im~: colour) ~_~ 

[ TL Cdiv, SReddiv] 

process A~ i_~( s :  sensor, t: in*e~vs, lm~: colou~, se~c: s*~oun~/lm.: eolou~) 
[Arabdi., FRedd,v] 

process R.~j_..~(s: sensor, 5: inlervs, lmj: colour, setc: stcount/lmn: colour) 

[SRedd.,] 

process CAR,~._~,~(~: sensor, ~: in~e,'vs, Z,~: eolo~r, set~: s~oun~/lm,~: coZo~r) A 
L TL Cdiv, A m bdiv, FReddie] 

Apart from minimizing the number of states, ports of communication of in- 
teracting processes must also be minimized. The communication ports can be 
deleted as far as the possibility of communication with the existing process is 
maintained, and the minimal set of input and output channels (defined in Sect. 
4.2) are included. So, the minimal set of channels that maintain the communica- 
tion between TLCmj and Gmj.mn (or TLCmj and GARmj_m~) is { lmn, lmj, setc). 
Figure 4 shows the behaviour of both patitioned processes restricted to the set 
of channels mentioned above. 

i 
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R, st/A 

A _ 
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I 
i G, s~/R 
I A, ~ I R  
, R, s~l G 

I 
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R, ~/A 

R, s,/G 

tf 

G , -iT / R 
G, st/R 

) A,~/R 
_ A, s~/R 

R,~/A 

R, st/A 
R, st/A 

R,-~I G 

Fig. 4. The Minimal Interface Processes for the TLC 

Any of these processes can be picked up as interface to construct the desired 
traffic light controller by reusing the major road component. It is important to 
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note that these processes do not represent the minor road process; they are only 
synchronous interfaces between the major road process and the traffic light con- 
troller. However, they are less complex than the minor road process (a four state 
process) and the verification of the whole system is restricted to the verification 
of their refinements; they are correct by construction. 

6 D i s c u s s i o n  

The reuse of hardware components through formal means is still in its infancy. 
Most works in the hardware area which address a kind of reuse are synthesis- 
based, or based on an informal approach, such as [24]. Even in the software 
domain, a formal approach to reuse has only been attempted by a few works 
that concentrate on partial definition of processes to accomplish reuse [14, 18, 
35, 28, 36]. In fact, abstract definition of processes is essential to obtain effective 
reuse. In the present work we have assumed an existing model for representing 
hardware to concentrate on mechanisms to identify processes by making certain 
abstractions. This work has indicated that besides abstraction on representation 
of processes, mechanisms based on abstractions to identify processes are also 
useful for reuse. 

Reuse undertaking the interface approach is very much concerned with the 
idea of decomposing the desired process into submodules, so that one of those 
submodules matches the existing component. This decomposition problem has 
already been solved, by Shields [31] and his peers [29, 25], for deterministic 
processes represented in CCS, taking weak bisimulation as equational equality. 
Here, we have presented a solution for the decomposition problem considering 
nondeterminisr processes represented in EPA, and taking strong bisimulation 
as the equivalence relation. 

In our work, we indicated the theoretical limits of reusing synchronous pro- 
cesses undertaking the interface approach. Such an approach depends critically 
on the composition operator used, and then for each process algebra the essential 
preconditions must be calculated accordingly. The appropriate limits have not 
been considered in solutions for the interface equation defined for CCS; as a re- 
sult, only deterministic specification processes were considered there. It makes us 
believe that nondeterministic processes can be implemented by reuse of others in 
many process algebras as long as the behavioural similarities between processes 
are checked in advance. 

A formal reuse of hardware design leads to a decompositional verifieatibn of 
processes. With the reuse of components formally verified, only the new elements 
being constructed need to be verified. Since composition of the interface with 
the existing process is proved bisimilar to the desired specification, verification 
of the interface element assures verification of the whole system. In fact, the 
topmost definition of the interface process is correct by construction, and only 
its refinements must be verified. 
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