
Results of the Verification of a Complex

Pipelined Machine Model

Jun Sawada1 and Warren A. Hunt, Jr.2

1 Department of Computer Sciences, University of Texas at Austin
2 IBM Austin Research Laboratory

Abstract. Using a theorem prover, we have verified a microprocessor
design, FM9801. We define our correctness criterion for processors with
speculative execution and interrupts. Our verification approach defines
an invariant on an intermediate abstraction that records the history of
instructions. We verified the invariant first, and then proved the correct-
ness criterion. We found several bugs during the verification process.

1 FM9801 and Correctness Criterion

We argue that even complex microprocessor design can be formally verified. As
an evidence of our claim, we have mechanically verified our FM9801 micropro-
cessor design. It has various features such as out-of-order issue and completion
of instructions with Tomasulo’s algorithm, speculative execution with branch
prediction, precise handling of internal exceptions and external interrupts, and
supervisor/user modes.
The FM9801 is formally specified in the ACL2 logic[KM96] at the instruction-

set architecture (ISA) level and the microarchitecture (MA) level. These formal
definitions are publicly available along with the FM9801 verification scripts[Saw].
The ISA sequentially executes instructions. Its behavior is specified with function
ISA-step(ISA, intr), which returns the ISA state after executing one instruction
from state ISA, with interrupt signal intr. The MA is a clock cycle accurate model
of the pipelined hardware design. Its behavioral function MA-step(MA, sigs) re-
turns the MA state after one clock cycle of execution with external signals sigs.
We define ISA-stepn(ISA, intr-list, m) as the recursive function that repeat-
edly applies the next state function ISA-step to state ISA m times, where
intr-list is a list of interrupt signals for each execution step. Similarly, we de-
fine MA-stepn(MA, sig-list, n) as n applications of MA-step with a list of signals
sig-list. Projection function proj(MA) returns the ISA state consisting of the
program counter, the register file, and the memory in MA.
Our correctness criterion is whether our machine designs satisfy the commu-

tative diagram shown in Fig. 1. For an arbitrary initial MA state MA0, a list of
signals sig-list, and a natural number n, if the initial state MA0 and the final
state MAn = MA-step(MA0, sig-list, n) are both pipeline flushed states, then

proj(MA-stepn(MA0, sig-list, n)) = ISA-step(proj(MA0), intr-list, m)

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 313–316, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

314 Jun Sawada and Warren A. Hunt, Jr.

should hold for an appropriate list of interrupt signals intr-list and a natural
number m. We additionally assume that the executed program does not modify
itself.

MA , sig-list, n0

ISA , intr-list, m0()
ISA m

state
flushed

state
flushed

MA 0 MA n

ISA

proj

0

MA-stepn)(

ISA-stepn
proj

Fig. 1. Correctness Diagram

2 Invariant and Correctness Proof

We use an intermediate model of the MA state that mimics the behavior of spec-
ulative execution, exceptions, and external interrupts. This abstraction, which
is called a MAETT, records executed instructions, each of which is represented
with a data-structure holding the values related to the instruction[SH98].
Table 1 gives a list of properties we defined during our verification. Let Π

be the set of properties in the table. Additionally, we define predicate CMI-p
that holds iff the MA has committed any self-modifying code. Then

∧
P∈Π P is

an invariant under the constraint ¬CMI-p [LL90], that is, every property in Π
is preserved as long as no self-modifying program is committed. Since

∧
P∈Π P

holds for any flushed pipeline states,
∧

P∈Π P is true for any reachable state
from a flushed state, as long as no self-modifying code is committed.
Given that the final MA state MAn in Fig. 1 satisfies

∧
P∈Π P , we can show

the commutative diagram holds. In fact, all we need to know is that the proper-
ties labeled 1 through 6 hold for MAn. The rest of the properties are necessary
for our inductive proofs.
The properties in Table 1 were obtained interactively during the verification

process. Initially we started invariant verification by only considering the con-
junction of properties labeled 1 through 6. Naturally, our first proof attempt
failed. Then, we analyzed the failed proof, and added more properties to the
conjunction. Eventually we identified all properties in Π . This was the most
time consuming part of the verification.
The proof of the correctness criterion must bridge the complex time abstrac-

tion between the ISA level and the MA level. The state of each programmer
visible component in the MA is related to different ISA states. These relations
are expressed with properties labeled 1 through 4 in Table 1. The proof of the
criterion can be found in our report.[SH].

Results of the Verification of a Complex Pipelined Machine Model 315

Table 1. List of the properties used to define our invariant.

Property Name Brief Description
0 weak-invariants: A well-formedness predicate for a MAETT.
1 pc-match-p: Correct state of the program counter.
2 sregs-match-p: Correct state of the special register file.
3 regs-match-p: Correct state of the general register file.
4 mem-match-p: Correct state of the memory.
5 no-speculative-commit-p: No speculatively executed instruction commits.
6 MT-inst-invariants: Valid intermediate data values in the pipeline.
7 correct-speculation-p: Instructions following a mis-predicted branch are speculatively executed.
8 correct-exintr-p: Externally interrupted instructions retires immediately.
9 in-order-dispatch-commit-p: Instructions dispatch and commit in program order.

10 in-order-DQ-p: The dispatch queue is a FIFO queue.
11 in-order-ROB-p: The re-order buffer is a FIFO queue.
12 no-stage-conflict: No structural conflict at pipeline stages.
13 no-robe-conflict: No structural conflict in the re-order buffer.
14 in-order-LSU-inst-p: Certain orders are preserved for instructions in the load-store unit.
15 consistent-RS-p: Reservation stations keep track of instruction dependencies.
16 consistent-reg-tbl-p: The register reference table keeps track of the newest instruction that up-

dates each general register.
17 consistent-sreg-tbl-p: The register reference table keeps track of the newest instruction that up-

dates each special register.
18 consistent-MA-p: The conjunction of miscellaneous conditions.
19 misc-invariants: The conjunction of miscellaneous conditions.

3 Verification Summary

The FM9801 verification was carried out with the ACL2 theorem prover. First,
we simulated our FM9801 specification using ACL2’s execution capability. This
eliminated most of the bugs in our original design before we started the formal
verification process.
The size of the ACL2 verification scripts and the time to certify the proofs

for each stage of the verification are given in Table 2. The whole verification
project took about 15 months. The verification of invariant

∧
P∈Π P occupied

the largest portion in the ACL2 proof scripts and in our verification effort. This
is not surprising because the proof of the invariant is the core of our verification
process. We found several bugs that were not detected in the simulation, and all
these bugs were detected during the verification of the invariant.

Table 2. ACL2 script size and CPU time with Pentium Pro 200MHz.

Type of ACL2 Script ACL2 Script Size CPU Time to Certify

Definitions of ISA and MA 140 KBytes 14 minutes
MAETT modeling 55 KBytes 6 minutes
Definitions of Our Invariant 89 KBytes 7 minutes
Proof of Shared Lemmas 481 KBytes 58 minutes
Proof of Our Invariant 1034 KBytes 211minutes
Proof of Criterion 37 KBytes 11 minutes

We found 14 design faults in our machine design during the verification pro-
cess. For instance, one bug was found in the control logic for the speculative
execution and the branch prediction. A prediction is usually made for the branch
instruction at the instruction fetch unit (IFU). If the branch instruction stalls

316 Jun Sawada and Warren A. Hunt, Jr.

in the IFU, then more than one branch predictions are made for a single branch
instruction. In the original design, if the branch prediction outcomes differed,
the machine did not correctly execute instructions from the branching point.

Table 3. Sizes of ACL2 proof scripts for different machines.

Verified Machine Machine Spec Total Verification

Small Example Machine 13 KBytes 169 KBytes
Pipelined Design presented in CAV ’97 78 KBytes 757 KBytes
FM9801 140 KBytes 1909 KBytes

Although this verification was labor intensive, our technique seems to scale
well with the size of machine. In Table 3, we compare the size of our machine
specification and verification scripts with two other proof efforts, each with dif-
ferent machine sizes, where we employed a similar approach. The ratio of the size
of the verified machine design and its verification script does not change much.
We also note that the CPU time in Table 2 is relatively small. This is because
we decompose a complex verification problem into small lemmas to avoid case
explosions. Typically, the ACL2 theorem prover proves single lemmas in less
than a minutes during our verification.
We have demonstrated that the pipelined machine with complex control fea-

tures can be mechanically verified. Although the verification cost was high, we do
not see any major difficulty in scaling the verification process for a more complex
design. Until now, we have only used an theorem prover, but the combination
of algorithmic approach could improve the verification efficiency. Improving in-
variant verification processes will make our technique more practical.

References

KM96. Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version of
nqthm. In Eleventh Annual Conference on Computer Assurance (COMPASS-
96), pages 23–34. IEEE computer Society Press, June 1996. 313

LL90. Leslie Lamport and Nancy Lynch. Distributed computing models and methods.
In Handbook of Theoretical Computer Science, volume B, pages 1159–1199. The
MIT Press, Cambridge, Ma., 1990. 314

Saw. Jun Sawada. Verification scripts for FM9801 pipelined microprocessor design.
Web page http://www.cs.utexas.edu/users/sawada/FM9801/. 313

SH. Jun Sawada and Warren A. Hunt, Jr. Verification of FM9801: Out-of-order
processor with speculative execution and exceptions that may execute self-
modifying code. Unpublished Report. Personal contact: sawada@cs.utexas.edu.
314

SH98. Jun Sawada and Warren A. Hunt, Jr. Processor verification with precise excep-
tions and speculative execution. In Alan J. Hu and Moshe Y. Vardi, editors,
computer Aided Verification (CAV ’98), volume 1427 of LNCS, pages 135–146.
Springer Verlag, 1998. 314

	FM9801 and Correctness Criterion
	Invariant and Correctness Proof
	Verification Summary

