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Abstract. A large part of “image processing” involves the computation
of significant points, curves and areas (“features”). These can be defined
as loci where absolute differential invariants of the image assume fiducial
values, taking spatial scale and intensity (in a generic sense) scale
into account. “Differential invariance” implies a group of “similarities”
or “congruences”. These “motions” define the geometrical structure
of image space. Classical Euclidian invariants don’t apply to images
because image space is non–Euclidian. We analyze image structure from
first principles and construct the fundamental group of image space
motions. Image space is a Cayley–Klein geometry with one isotropic
dimension. The analysis leads to a principled definition of “features”
and the operators that define them.

Keywords. Image features, texture, image indexing, scale–space, image
transformations, image space

1 Introduction

“Images” are often considered to be distributions of some “intensity” (a density
of “stuff”) over some spatial extent (the “picture plane” say). One thinks of
a graph (“image surface”) in the three dimensional product space defined by
the picture plane and an intensity axis. Numerous conventional methods (of-
ten implicitly) involve the computation of differential invariants of this surface.
One conventionally draws upon the large body of knowledge on the differential
geometry of surfaces in E

3.
There are grave problems with this approach though:

— the physical dimensions of the image plane are incommensurable with the
dimension of the image intensity domain. The former are distances or angles,
the latter radiances or irradiances;
— classical differential geometry deals with invariance under the Euclidian group
of congruences. But to turn a region of “image space” about an axis parallel to
the picture plane is impossible;
— the intensity domain is unlike the Euclidian line in that it is only a half–line
and translations are undefined.
Thus the aforementioned methods lack a principled basis.
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To accept that these methods are ad hoc doesn’t necessarily mean that one
should abandon them altogether. Rather, one should look for the proper group
of congruences and adjust the differential geometry to be the study of invariants
of that group[11]. One should investigate the proper geometry of the intensity
domain. This is the quest undertaken in this paper: First we investigate the
structure of the intensity domain, then we identify the proper group of congru-
ences and similarities. We then proceed to develop the differential geometry of
surfaces under the group actions in order to arrive at a principled discipline of
“image processing”.

2 Geometrical Structure of the “Intensity” Domain

“Intensity” is a generic name for a flux, the amount of stuff collected within
a certain aperture centered at a certain location. In the case of a CCD array
the aperture is set by the sensitive area and the flux is proportional with the
number of absorbed photons collected in a given time window. One treats this as
the continuous distribution of some “density”, in the case of the CCD chip the
number of absorbed photons per unit area per unit time, that is the irradiance.
This goes beyond the observable and is often inadvisable because the “stuff”
may be granular at the microscale. In the case of the CCD chip the grain is set
by the photon shot noise. It is also inadvisable because natural images fail to be
“nice” functions of time and place when one doesn’t “tame” them via a finite
collecting aperture or “inner scale”. Only such tamed images are observable[4],
this means that any image should come with an inner scale. This often is nilly
willy the case. For instance, in the case of the CCD chip the inner scale is set
by the size of its photosensitive elements. But no one stops you from changing
the inner scale artificially. When possible this is a boon, because it rids one of
the artificial pixelation. “Pixel fucking” is in a different ballpark from image
processing proper, though it sometimes is a necessary evil due to real world
constraints. Because of a number of technical reasons the preferred way to set the
inner scale is to use Gaussian smoothing[4]. Here we assume that the “intensity”
z(x, y) is a smooth function of the Cartesian coordinates {x, y} of the picture
plane with a well defined inner scale. We assume that the intensity is positive
definite throughout.

The photosensitive elements of the CCD chip can be used to illustrate another
problem. Suppose we irradiate the chip with a constant, uniform beam. We count
photons in a fixed time window. The photon counts are known to be Poisson dis-
tributed with parameter λ (say). Suppose a single measurement (“pixel value”)
yields n photons. What is the best estimate of the “intensity” λ on the basis of
this sample? Let two observers A and B measure time in different units, e.g., let
ta = µtB , then their intensities must be related as λA dtA = λB dtB . Let A and B
assign priors fA(λA) dλA and fB(λB) dλB . We have to require that these be mu-
tually consistent, that is to say, we require fA(λA) dλA = fB(λB) dλB . Both A
and B are completely ignorant, and since their states of knowledge are equal, one
arrives at the functional equation f(λ) = µf(µλ), from which one concludes[9]



160 J.J. Koenderink and A.J. van Doorn

that the prior that expresses complete ignorance and doesn’t depend on the unit
of time is λ−1 dλ, that is to say a uniform prior on the log–intensity scale.

This means that we only obtain some degree of symmetry between the
Cartesian dimensions {x, y} (where no particular place is singled out, and no
particular scale has been established) and the intensity dimension if we use
Z(x, y) = log(z(x, y)/z0) instead of the intensity itself. Here the constant z0 is
an (arbitrary) unit of intensity. The choice of unit cannot influence the differen-
tial geometry of image space because it represents a mere shift of origin along the
affine Z–dimension. Then the Z–axis becomes the affine line. Of course the global
{x, y, Z} space still fails to be Euclidian because the (log–)intensity dimension
is incommensurable with the {x, y} dimensions, whereas the {x, y} dimensions
are mutually compatible. The latter are measured as length or optical angle,
the former in some unrelated physical unit (for instance photon number flux per
area in the case of the CCD chip). But the approach to Euclidian space is much
closer than with the use of intensity as such: As shown below we arrive at one
of the 27 (three–dimensional) Cayley–Klein geometries[10,2] (of which Euclidian
space is another instance).

3 The Geometry of Image Space

Consider “image space” I
3 with coordinates {x, y, Z}. It is a (trivial) fiber bundle

with the “picture plane” P
2 as base space and the “log–intensity domain L”

as fibers. An image Z(x, y) is a cross section of the bundle. We will use the
term “pixels” for the fibers. A point {x, y, Z} is said to have log–intensity Z
and “trace” {x, y}. Image space is an infinite three dimensional space with the
Euclidian metric in planes parallel to the xy–plane and a—quite independent—
metric on the Z–axis. I

3 can hardly be expected to be anything like a Euclidian
space E

3. For instance, it is hard to conceive of a rotation of an object by a
quarter turn about the x–axis, because that would align the y-directions in the
object with the Z–axis. What sense can anyone make of a “coincidence” of a
distance in the picture plane with the intensity domain? P

2 and L are absolutely
incommensurable. This entails that such operations should be forbidden by the
geometry of I

3. To be precise, any geometrical operation should leave the pixels
invariant[13].

We refer to these invariant lines (pixels) as “normal lines” (for reasons to
be explained later) and planes that contain normal lines “normal planes”. Such
entities clearly cannot occur as tangent planes or lines in images because that
would entail that the image gradient wouldn’t exist. When we say “line” or
“plane” we exclude the normal ones. This means that any plane can be repre-
sented as Z(u, v) = Z0 + (gxu+ gyv). Here Z0 is the intercept with the normal
line through the origin and g = ∇Z = {gx, gy} is the (log intensity) gradient
of the plane. The normal planes cannot thus be represented, they are special. A
similar reasoning applies to lines.



Image Processing Done Right 161

3.1 The Group of Congruences

Thus the space we are after is a three–dimensional space, such that the intensity
domain (one–dimensional) and the picture plane (two–dimensional) “don’t mix”.
The only transformations of any relevance thus leave a family of parallel lines
(the “pixels”) invariant. What other constraints does one a priori have? One
obvious candidate is to require the space to be “homogeneous”, i.e., to require
that a group of “congruences” exists, such that “free mobility” of configurations
is guaranteed all over space. This assumption merely expresses the fact that one
piece of picture is as good as the next, it expresses our total prior ignorance
and simply extends the assumption needed to arrive at the structure of the
intensity domain. But then the case is settled: The space has to be of constant
curvature (or free mobility is jeopardized) and is one of the 27 Cayley–Klein
geometries. The invariance of a family of parallel lines fixes it to the “simple
isotropic geometry”. This geometry is obtained from projective geometry when
one singles out two intersecting lines in the plane at infinity as the “absolute
conic”. One may take the lines x = ±iy in the plane Z = ∞ with intersection
{x, y, Z} = {0, 0,∞} as the absolute conic. Then all lines parallel to the Z–axis
meet in the “vanishing point” {0, 0,∞}. The group G8 (8 parameters) of “direct
isotropic similarities” that is the analog of the (7 parameter) group of Euclidian
similarities[15] contains the projective transforms that leave the absolute conic
invariant. (In this paper we stick to the notation introduced by Sachs[15] for
this group and its subgroups.) We write it in a form such that the identity is
obtained when all parameters are set to zero and such that the factors eh and
eδ are positive definite.

x′ = eh(x cosφ− y sinφ) + tx
y′ = eh(x sinφ+ y cosφ) + ty
Z ′ = eδZ(x, y) + αxx+ αyy + ζ

(1)

G8 is indeed the only group of transformations that conserves normal lines and
generic planes as families (see figure 1).

The “movements” are thus very simple, namely (a special kind of) linear
transformations combined with a shift. It is not likely to be a coincidence that the
familiar transformations that apparently leave the picture “invariant” are mem-
bers of G8. Examples include the use of various “gradations” (“soft”, “normal”,
“hard”) in photography, the introduction of lightness gradients when enlarging
negatives[1], etc. The latter equalize “uneven density” in the negative, often in-
troduced when an off–axis piece of the image is being enlarged. Similar transfor-
mations are common in many image processing packages. The use of paper grada-
tions is aptly caught by the “gamma transformations” of the form z′ = (z/z0)γ ,
whereas gradients are approximated with z′(x, y) = z(x, y) exp(σxx+σyy). Here
the exponential serves to ensure the definite positiveness of the intensity, neces-
sary because a “linear gradient” is a nonentity. Such gradients commonly occur in
unevenly lit scenes. Notice that all these “image preserving” operations are linear
in the log–intensity domain. The transformations affect only the log–intensity
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Fig. 1. Orbits of significant one–parameter subgroups. These groups appear either as
identities, translations, or rotations in their traces on the picture plane. In image space
the groups are far richer, for instance, the “rotations” may appear as screw motions
with a normal line as axis, or as periodic motions that transform a paraboloid of
rotation with normal axis in itself.

domain, not the traces. We suggest that the popularity of “gamma transforma-
tions” and “lightness gradients” derives from this fact. Image structure in the
sense of curvatures of surfaces in I

3 is indeed not in the least affected.
These transformations leave the “image” invariant (see figure 2) in the sense

that photographers apply such transformations as they see fit, merely to “op-
timize” the image without in any way “changing” it[1]. Thus it is apt to say
that images are the invariants of G8. Hence we will consider G8 as the group of
congruences and similitudes of image space.

For any two points {x1,2, y1,2, Z1,2} we define the “reach” as the unsigned
quantity r12 = +

√
(x2 − x1)2 + (y2 − y1)2. When the reach vanishes but the

points are distinct we call them “parallel”. In that case (and in that case only!)
we define the “span” s12 = Z2 −Z1 (a signed quantity). Both reach and span are
relative invariants of G8. Consider the subgroups B7 of reach preserving and S7

of span preserving “isotropic similarities”. Their intersection is the group B(1)
6

of “simple isotropic movements” (also known as “unimodular isotropic move-
ments”). The group B7 is characterized by h = 0, S7 by δ = 0, and B(1)

6 by
h = δ = 0. We define the “distance” between points as their reach when the
reach is different from zero and their span if not. The distance is an absolute
invariant of the simple isotropic movements.

Planes Z(x, y) = Z0 + (gxx + gyy) have “plane coordinates” {u, v, w} =
{gx, gy, Z0}. Two planes {u1,2, v1,2, w1,2} subtend a “skew”, that is the unsigned
quantity s12 = +

√
(u2 − u1)2 + (v2 − v1)2. When the skew vanishes but the

planes are distinct we call them “parallel”. In that case (and in that case only!)
we define the “gap” g12 = w2 − w1 (a signed quantity). The “angle” subtended



Image Processing Done Right 163

Fig. 2. An “image” is an invariant over variations such as these. Thus the figure sug-
gests only a single image, not six! Infinitely other variations might be given of course.

by the planes is defined as the skew if the skew is not zero or the gap if it is. The
skew is an absolute invariant of the subgroup W7 defined through h = δ. The
group of isotropic movements is the intersection of W7 and B7. Notice that there
exist two types of similarities: Those of the “1st kind” (W7) scale distances and
preserve angles, whereas those of the “2nd kind” (B7) scale angles and preserve
distances (these are gamma transformations). There exists a full metric duality
between points and planes, planes and points behave the same under the group
G8.

The metric ds2 = dx2+dy2 that is respected by B(1)
6 is of course degenerate.

It is perhaps best understood as a degenerate Minkowski metric[7]. Then the
pixels appear as degenerated “light cones” (of relativistic kinematics). All points
on the normal line “above” a point (higher intensity) and “below” a point (lower
intensity) are inside the light cone and thus comparable whereas a generic pair
of points is outside the light cone (“elsewhere” in the relativistic kinematics)
and not comparable. Such points only have a reach, namely their distance in the
trace. Their log–intensities are not in a fixed relation but are typically changed
by isometries of I

3.

3.2 The Structure of Normal Planes

Much of the structure of image space can be understood from a study of the
structure of normal planes[14]. In a way this is the study of one dimensional
images and thus has frequent applications by itself. We use coordinates {x, y},
with the y–coordinate being interpreted as log–intensity, the x–coordinate as
the distance in the image. This should yield no confusion since it will always be
clear when we confine the discussion to normal planes.

It is often convenient to identify the Euclidian plane with the complex number
plane (z = x + iy with i2 = −1). The reason is that linear transformations
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induce the similarities: z′ = pz + q implies a scaling by |p|, rotation over arg p
and translation by q. The distance between two points is |z1 − z2|. It is no
less convenient to identify the normal planes with the dual number plane. Dual
numbers[3,8] are written z = x + εy where the dual unit is nilpotent (ε2 = 0).
The distance |z1 − z2| is x1 − x2 when we define the modulus |z| as x (signed
quantity!). A linear transformation z′ = pz + q with p = p1 + εp2, q = q1 + εq2
implies x′ = p1x + q1, y′ = p2x + p1y + q2, which is in G8. We have a scaling
of distances by |p| = p1, a “rotation” over p2/p1 = arg p, and a translation over
q. Notice that we can indeed write p1 + εp2 = p1(1 + εp2/p1) = |p| exp arg p.
Almost all of the structure of the familiar complex plane can immediately be
put to good use in the study of the normal planes. This study is much simplified
by the nilpotency of the dual unit, for instance, the Taylor expansion truncates
after the first order. Thus sin εψ = εψ, cos εψ = 1, exp εψ = 1+εψ and so forth.

The unit circle is given by x2 = 1 and consists of the two normal lines x = ±1.
The normal line x = 0 contains points that may equally be considered “centers”
of the unit circle (thus all real lines are “diameters”!). The group of pure shears
x′ = x, y′ = y+φx moves the unit circle in itself, leaving the centers invariant. It
is called a “rotation over φ”, for apparently the group is to be understood as the
group of rotations about the origin. If we define the orientation of a line through
the origin as the (special) arc length of the arc cut from the unit circle, then
the line from the origin to {x, y} has an orientation φ = y/x and is transformed
into the x–axis by the rotation over −φ. It is perhaps disconcerting at first that
this orientation is not periodic. Angles in the normal plane take on values on
(−∞,+∞), you cannot make a full turn in the normal plane. This is of course
exactly what is called for given the incommensurability of the log–intensity and
picture plane dimensions. Notice that the rotations correspond to the application
of gradients in image processing.

The normal plane differs from the Euclidian plane in that the angle metric
(like the distance metric) is parabolic (the Euclidian plane has an elliptic angle
metric). This has the virtue that one enjoys full duality between points and
lines. In the E

2 one has parallel lines, but no parallel points (points that cannot
be connected by a line), thus duality fails in this respect. Due to this fact the
structure of the normal plane is much simpler than that of the Euclidian plane.

The bilinear expression y+Y = xX defines a line (as a set of collinear points
in point coordinates {x, y}) when we consider constant {X,Y } and a point (as
a set of concurrent lines in line coordinates {X,Y }) when we consider constant
{x, y}. We define the distance of two points as d12 = x2 − x1, except when the
points are “parallel”, then we substitute the “special” distance δ12 = y2 − y1.
Similarly, we define the distance of two lines as the angle subtended by them,
thus δ12 = X2 − X1, except when the lines are parallel, then we substitute the
“special” distance d12 = Y2 − Y1. These definitions make sense because either
distance is invariant under general movements. Consider the polarity π which
interchanges the point p with (point–)coordinates {x, y} and the line P with
(line–)coordinates {X,Y }, such that (numerically) X = x, Y = y. Suppose that
p is on Q, thus yp + YQ = xpXQ: then q = π(Q) must be on P = π(p) because
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yq + YP = xqXP . If π(A) = a and π(B) = b then δAB = dab in the generic case,
whereas when a and b are parallel δab = dAB . We also define the distance between
a point u and a line V (say) as the distance between u and the point u on V such
that u and u are parallel (the point on V nearest to u, or the “projection of u on
V ). You have |duV | = |xuXV − (yu + YV )| = |dUv| = |XUxv − (YU + yv)|, which
implies that when u is on V (thus xuXV = yu +YV ) then dUv = duV = 0. These
properties indeed imply full metric duality of lines and points in the normal
plane.

A circle like x = ±1 is more aptly called “circle of the 1st kind” to distin-
guish it from more general “cycles” defined as entities that can be moved into
themselves (a circle of the 1st kind can also be rotated into itself and thus is
a cycle too). In the normal plane the cycles include (apart from the circles of
the 1st kind), the so called “circles of the 2nd kind” (which look like parabolas
with normal axes), the generic lines and the normal lines. The circles are es-
pecially interesting. A circle x + εx2/2ρ can be “rolled” over a line. One shows
that distance traveled is ρ times the angle of rotation, which identifies ρ as “the
radius” of the circle. The motion actually moves a whole family of “concentric”
circles x+ε(x2/2ρ+µ) in themselves. The “curvature” (reciprocal of the radius)
equals yxx. Notice that this expression is simpler than—and different from—the
Euclidian (y′′/(1 + y′2)3/2). The circles of the 2nd kind hold many properties in
common with the circles of the E

2. Notice that the radius (or the curvature)
may be negative though. The sign indicates whether the circle is a concave or
convex one.

Since there exist two types of circles there exist two distinct notions of “in-
version in a circle”. Since we are only interested in transformations that conserve
the normal rays (pixels!) individually, only the inversions in more general cycles
are of interest though. Since lines are degenerated circles, inversions in lines are
included. For instance the inversion induced by the x–axis turns an image into
its negative and vice versa. Since inversions are conformal, they preserve local
image structure.

Because of the full duality there exist two distinct types of similitudes in the
normal plane. One type conserves distances and scales all angles by a common
factor. The other type conserves angles and scales all distances by a common fac-
tor. Because of the constraint that normal lines should be conserved individually
only the first mentioned type is of interest to us. Of course these transformations
are nothing but the familiar gamma transformations.

Curves that run fully in the normal planes (“normal curves” say) are impor-
tant in the study of surfaces via normal cuts. A curve y(x) is parameterized by
arc length x, thus the unit tangent is T(x) = {1, y′(x)}. The curve’s normal is
simply N = {0, 1}. The derivative of the tangent is Ṫ(x) = y′′(x)N, whereas
Ṅ = 0. Thus the curvature of the curve is κn(x) = y′′(x). Here we distinguish
the “normal curvature κn” from the curvature κ which vanishes identically since
the projection of the curve in P

2 is a straight line. The osculating circle at x = x0
is x+ε[y(x0)+κn(x0)(x−x0)2/2]. When you specify the curvature as a function
of arc length (its “natural equation”) the curve is determined up to a motion.



166 J.J. Koenderink and A.J. van Doorn

3.3 The Geometry of Image Space Proper

In image space I
3 the new (as compared with the normal planes) linear entities

are planes. It is obvious how to define the distance between planes or of a plane
and a line. One takes a point on one entity and drops a plumb line (normal
line) on the other. The length of the gap divided by the distance to the common
point(s) is the angle between the planes or the plane and the line. It is invariant
under arbitrary motions and can thus serve as the distance measure. In case the
entities are parallel one uses the gap.

It is convenient to introduce an orthonormal basis {e1, e2, e3}, e1 and e2
spanning the picture plane P

2, and e3 the log–intensity dimension L. One has
ei · ej = 0 for i �= j, ei · ei = 1 for i = 1, 2 and e3 · e3 = 0. This introduces the
degenerate metric

d212 = (x2 − x1)2 + (y2 − y1)2. (2)

For parallel points we again use the special distance.
The bivector π = e1 × e2 represents the unit oriented area in the picture

plane. The bivectors σ1 = e2 ×e3 and σ2 = e3 ×e1 represent oriented unit areas
in normal planes and are of a different nature. The trivector τ = e1 × e2 × e3 is
the oriented unit volume of the space. Notice that you have π2 = −1, a regular
“pseudoscalar” in the picture plane, but σ2

i = 0 and also τ2 = 0. It is easy to
set up the complete “geometric algebra” for image space. Many operations and
geometrical relations can be handled elegantly in this framework. For instance,
the bivector π generates the Euclidian rotations in the picture plane, whereas
the bivectors σi generate shears in normal planes (also “rotations”, but in the
sense of image space).

Some properties of I
3 may appear unfamiliar at first sight. For instance, two

parallel lines in the picture plane are indeed parallel lines (in the sense of the
metric) in I

3, yet typically have different intensity gradients and thus are not
necessarily coplanar. Any pair of points on a common perpendicular can be
given equal intensities through a congruence, thus all such pairs of points are
equivalent. This is similar to the phenomenon of “Clifford parallels” of elliptic
space. There even exist surfaces (“Clifford planes”) which are nonplanar, yet
carry two mutually transverse families of parallel lines.

In the remainder of this paper we will be predominantly interested in differ-
ential properties of image space. Some of these are well known to photographers
and universally used in the darkroom. An example is the practice of “burning”
and “dodging” by which one introduces essentially arbitrary modulations of the
type z′(x, y) = z(x, y) expw(x, y), where w(x, y) is quite arbitrary. Notice that
Z ′(x, y) = Z(x, y) + w(x, y), thus locally (to first order) one has (at the point
{x0, y0} say) Z ′(x0+dx, y0+dy) = Z(x0, y0)+a+b dx+c dy (with a = w(x0, y0),
{b, c} = ∇(Z +w)(x0, y0)), which is a congruence of image space. Thus dodging
and burning represent conformal transformations of image space[16], which is
most likely why they work as well as they do.

The topic of primary interest here is differential geometry of surfaces in im-
age space[17,18,19,20,15]. We will only consider smooth surfaces (at least three
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times differentiable) with tangent planes that never contain a normal line. No-
tice that the degenerate metric allows us to point out the geodesics on arbitrary
surfaces right away. They are the curves whose projections on the image plane
are straight. The geodesic curvature of any curve on a surface is simply the
Euclidian curvature of its projection on the picture plane.

We will write a generic point on a surface or a curve as R = r+Z(r)e3, where
r is the component in the picture plane. Because the tangent of a curve or tangent
plane of a surface never contains a normal line, we may globally parameterize a
curve as x(s)e1+y(s)e2+Z(s)e3 and a surface as xe1+ye2+Z(x, y)e3, a “Monge
parameterization”. This is typically the most convenient way to represent curves
and surfaces.

3.4 Surfaces

Again, the most natural way to parameterize a surface in image space is as a
“Monge parameterization” xe1 + ye2 + Z(x, y)e3. Because the metric is degen-
erate it is immediately obvious that the “First Fundamental Form” dR · dR (or
metric) is simply

I(dx, dy) = dx2 + dy2 (3)

(thus E = G = 1, F = 0, that is what the Monge parameterization buys us).
Thus all curves on the surface with straight traces are “geodesics”.

A fruitful way to think of curvature is via the “spherical image”. The tan-
gent plane at {x0, y0} is R(x0 + dx, y0 + dy) = R(x0, y0) + [dxe1 + dye2 +
(Zx dx + Zy dy)e3]. When we introduce the “Gaussian sphere” G(x, y) =
xe1 + ye2 + (x2 + y2)/2e3, we see that the tangent plane at R(x, y) is parallel
to that at G(Zx, Zy). Thus the map that takes R(x, y) to G(Zx, Zy) is the ana-
log of the “Gaussian image” of a surface[5]. When one applies a stereographical
projection from the infinite focus of the Gaussian sphere, one obtains a mapping
from a point R(x, y) of the surface to the point {Zx, Zy} of what is generally
known as “gradient space”. Since the stereographic projection is isometric(!),
gradient space is just as apt a representation as the Gaussian sphere itself. We
hence refer to {Zx, Zy} = ∇Z(x, y) as the “attitude image” of the surface. It is
indeed the analog of the spherical image, or Gauss map, of Euclidian geometry.
Although the attitude image is in many respects simpler than the Gaussian im-
age, it shares many of its properties. For instance, rotations of the surface in I

3

lead to translations of the attitude image (of course translations of the surface
don’t affect the attitude image at all). Thus the shape of the attitude image
is an invariant against arbitrary congruences of pictorial space. Similarities of
I
3 simply scale the attitude image (a possibility that cannot occur in Euclidian
space which knows only similarities that conserve orientations.)

The area magnification of the attitude image is the intrinsic curvature
K(x, y). It is given by the determinant of the Hessian of the log–intensity

K(x, y) = ZxxZyy − Z2
xy. (4)

The trace of the Hessian of the log–intensity Zxx + Zyy is another important
invariant. It can be interpreted as twice the “mean curvature” H, for because it
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is invariant against Euclidian rotations of the picture plane the average of normal
curvatures in any pair of orthogonal directions equals the mean curvature.

The magnification of the surface attitude map is typically anisotropic. This is
just another way of saying that the “sectional” curvature of the surface differs for
different orientations of the section. Notice that we need to study the sectional
curvature, as the equivalent of the normal curvature of Euclidian differential
geometry. This is because the only reasonable definition of “surface normal” in
I
3 is to let them be normal directions. But then these “normals” are essentially
useless to measure shape properties since they don’t depend on the nature of the
surface to begin with! However, we certainly have a right to speak of “normal
curvature” as synonymous with “sectional curvature”, just like in classical differ-
ential geometry. (This is also the origin of our term “normal plane” introduced
above.)

In order to measure the curvature of a section we may find the rate of change
of the image in attitude space, or—and this is completely equivalent—we may
find the best fitting (highest “order of contact”) of sectional circles. This latter
definition is obviously the geometer’s choice. As we rotate the planar section the
radius of the best fitting normal circle changes (periodically of course). The sec-
tional planes are indeed normal planes and the circles “normal circles” (parabolas
with normal axis).

Remember that the sectional curvature is simply the second derivative of
the depth in the direction of the section. There will be two directions at which
the radius of the normal circle reaches an extremum, we may call these the
“directions of principal curvature”. Exceptions are points where the radius of
the best fitting circle doesn’t depend on the orientation of the section. Such
points are rare (generically isolated) and may be called “umbilical points” of the
surface.

The orientation of the directions of principal curvature are given by

Zxydx
2 − (Zxx − Zyy)dx dy − Zxydy

2 = 0. (5)

These directions are invariant under arbitrary congruences.
The curvature of a normal section that subtends an angle Ψ with the first

principal direction is

κn(Ψ) = κ1 cos2 Ψ + κ2 sin2 Ψ, (6)

where κ1, κ2 are the principal curvatures. This is identical to Euler’s formula
from the classical differential geometry of surfaces.

At the umbilical points the curvilinear congruences of principal directions
have a point singularity. Such points are key candidates for significant “features”
of the surface.

The osculating paraboloid at a point is simply the Taylor expansion of log–
intensity up to second order terms. For elliptic convex points these best fitting
approximations are biaxial Gaussians in terms of intensity (not log–intensity).

Notice that the formalism is typically much simpler than that for Euclidian
differential geometry, for instance, compare the simple expression for the mean
curvature
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2H = Zxx + Zyy,

with the corresponding expression for Euclidian geometry:

(zxx + zyy) + zyyz
2
x + zxxz

2
y − 2zxyzxzy

(1 + z2x + z2y)3/2 .

Apart from being simpler the new expression has the additional advantage of
being correct for a change and is thus to be recommended, despite the fact that
it runs counter to conventional practice (or wisdom?).

4 Features and Significant Regions

A “feature” is the geometrical locus where some differential invariant vanishes.
The value of the invariant is obtained by running an image operator at some
scale. In most cases the required scale is obvious, in others a “best” scale has
to be established[12]. One needs yet another scale in order to define the vanish-
ing of the invariant, essentially the “bin width” at which one wishes to sample
the values[6]. A “level set” such as I(x, y) = I0 (in this example generically
a curve) is really an (hopefully narrow) area (I(x, y) − I0)2 < ε2, where ε is
the resolution in the I–domain, essentially the “bin–width”. This can easily be
captured in a neat formalism when the image scale space is augmented with a
histogram scale space[6]. Level sets of differential invariants define “fuzzy fea-
tures” exp(−(I(x, y) − I0)2/2ε2), that is to say, they assume the (maximum)
value unity at the location of the feature and are near zero far from the loca-
tion of the feature. This is the robust and principled way to find (or define)
“features”.

Examples of significant features (see figure 3) are the parabolic curves (K =
0), minimal curves (H = 0), ridges and ruts, and umbilical points. Special points
of interest are the inflection points of the parabolic curves, and the points of
crossing of ridges of unlike type. Notice that “points” are detected as fuzzy spots
and “curves” as fuzzy ribbons or even areas. This makes perfect sense when you
think of the nature of level “curves” on shallow slopes and in the presence of
noise. Whether a pixel belongs to the level “curve” is a statistical issue and the
fuzzy membership function expresses this.

Significant regions are obtained through thresholding of differential invari-
ants, usually at zero value. Again, one needs to define “fuzzy” characteristic
functions. One defines the characteristic region via (1 + erf((I(x, y)− I0)/ε))/2.
It equals near unity inside and near zero outside the region.

Here is a simple application: It is tempting to use thresholding as a coarse
way of segmentation. The problem is that it cannot yield an invariant result. A
local extremum is meaningless because I can shift it with a congruence of image
space. In the place of a maximum (or hill area) you may substitute an area where
K > 0 (elliptic) and H < 0 (convex). Any point in such elliptic convex areas
can be turned into a maximum through the application of a suitable movement
whereas no other points can. Likewise, in place of the minima (or valley areas)
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Fig. 3. Features for the case of a face image. Top from left to right: The image at
the resolution of the operators (lighter is “more”), the gradient magnitude and the
curvedness. These display scalar magnitudes. Bottom from left to right: Minimal (H =
0), parabolic (K = 0) loci and ridges (a 3rd–order invariant). These are (fuzzy!) curves.
For all the invariants darker is “more”.

you may put areas where K > 0 and H > 0. Notice that at the boundary of such
areas one principal curvature vanishes and H �= 0. Indeed, K = 0 and H = 0
only occurs at planar points which are not present in the generic case. Thus the
areas are bounded by the parabolic curves and the sign of the mean curvature
merely decides upon the type. One may denote such areas “domes” and “bowls”
which is what they look like. Unlike the results of raw thresholding these are
significant regions because invariant against arbitrary image space movements.

5 Conclusion

We have introduced a geometrical framework that allows one to handle image
structures in a principled manner. The basic structure depends upon two major
considerations. The first is a careful examination of the physical nature of the
intensity domain. It turns out to be the case that only the log–intensity repre-
sentation can be considered “natural” (in the geometrical sense) because it does
not commit one to any particular choice of unit or fiducial intensity. The second
is a careful examination of the group of transformations that leave image struc-
ture invariant (the “similitudes” and proper motions). We identify this group
with the transformations that conserve the spatial structure (“pixels”) and con-
serve lines and planes in image space as families. That this choice is particularly
apt is evident from the fact that many of the common transformations used for
more by a century by photographers and commonly available in image process-
ing packages (of the Photoshop type) are easily identified as subgroups. Even
nonlinear transformations as “dodging” and “burning” are easily identified as
conformal transformations of the space[16].
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Notice that all this derives from a single, very simple assumption, namely
Complete ignorance as to location in image space. From this it follows that no
intensity range is singled out and that the space is homogeneous (that “free
mobility” is guaranteed). That the movements should conserve a family of par-
allel lines can hardly be counted as an “assumption”: It is the only way to be
consistent.

The geometry we obtain is one of the 27 Cayley–Klein geometries. It is the
product of the Euclidian plane (with parabolic distance metric and elliptic angle
metric) and the isotropic line[13] (with parabolic distance metric). This makes
that the geometry of the isotropic planes (called “normal planes” in this paper)
is governed by a degenerate, parabolic distance metric and a parabolic angle
metric. This is exactly what makes this geometry a natural representation of
image space. Since the slant of planes is not periodic but may take values on
the full real axis, one cannot “turn around” in image space. This corrects the
irritating oddity implicit in the conventional Euclidian choice where one may
turn (in principle) the intensity domain so as to lie in the picture plane. Although
we have seen no author explicitly admit this, it is implicit in the (very common)
use of Euclidian expressions (for the curvature of image surfaces for instance) in
image processing. Such Euclidian expressions are invariants under the group of
Euclidian isometries, including rotations about any axis.

“Image processing done right” indeed implies that one uses the isotropic ge-
ometry. This may appear exotic at first blush, but some exposure soon leads to
an intuitive understanding. The fact that the formalism becomes generally much
simpler is perhaps an incentive to move over. The inadvertent use of differen-
tial invariants of G8 is quite widespread in image processing applications. Such
practices are justified through the fact that they work. The present theory puts
such practices upon a principled foundation and—more importantly—allows a
disciplined analysis and extension.
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