Equational Reasoning for Linking
with First-Class Primitive Modules

J. B. Wells'* and René Vestergaard!

Heriot-Watt University

Abstract. Modules and linking are usually formalized by encodings
which use the A-calculus, records (possibly dependent), and possibly
some construct for recursion. In contrast, we introduce the m-calculus,
a calculus where the primitive constructs are modules, linking, and the
selection and hiding of module components. The m-calculus supports
smooth encodings of software structuring tools such as functions (-
calculus), records, objects (s-calculus), and mutually recursive definiti-
ons. The m-calculus can also express widely varying kinds of module
systems as used in languages like C, Haskell, and ML. We prove the m-
calculus is confluent, thereby showing that equational reasoning via the
m-calculus is sensible and well behaved.

1 Introduction

A long version of this paper [44] which contains full proofs, more details and ex-
planations, and comparisons with more calculi (including the calculus of Ancona
and Zucca [0]), is available at http://www.cee.hw.ac.uk/~ jbw/papers/.

1.1 Support for Modules in Established Languages

All programming languages need support for modular programs. For languages
like C, conventions outside the definition of the language provide this support.
Each source file is compiled to an object (“.0”) file which plays the role of the
module. The namespace of modules is simply the file system and linking of mo-
dules is specified via extra-linguistic mechanisms such as makefiles. Connections
are hard-wired to the component name rather than the module name: If module
X uses module Y, modules Z and W supplying components with the same names
as those of Y can be substituted for Y. There is a single global namespace for
component names. Mutual dependencies between modules is possible, but there
is no mechanism for black-box reuse of modules and no support for hierarchical
structuring of modules within modules.

Languages like Ada [10], Modula-3 [26], and Haskell [I] support a kind of
module which we will call packages. With packages, there is a flat namespace of
modules; by convention module names correspond to filenames. Connections are
hard-wired to module names: If module X uses module Y, then any replacement

* Supporting grants: EPSRC GR/L 36963, NSF CCR-9417382 and CCR-9806747.

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 412-[428 2000.
© Springer-Verlag Berlin Heidelberg 2000

Equational Reasoning for Linking with First-Class Primitive Modules 413

for Y must also be named Y and support at least the components used by X. As
with C, mutual dependencies are supported but black-box reuse and hierarchical
structuring are not.

The Standard ML language [36] has a very sophisticated module system
which supports functions from modules to modules. There is again a namespace
of modules, but modules can be nested hierarchically. Connections can be speci-
fied by components of module X referring to a previously defined module Y by
name. Connections can also be specified by defining a functor, a function from
modules to modules: If module X depends on a module named Y, then a functor
F can be defined whose meaning is the function (AY.X). The functor F can be
applied to other modules to yield new concrete modules. This provides flexibi-
lity in linking modules. Although ML supports black-box reuse and hierarchical
structuring, mutually recursive modules are not allowed. (Current research is
addressing this issue, e.g., [15].)

1.2 Reasonable Goals for a Module Formalism

The wide variety of existing module systems have evolved to satisfy a number of
goals. We have designed a formal system, the m-calculus, for specifying and rea-
soning about the behavior of such module systems. In designing the m-calculus,
we believed that it should satisfy as many of the following goals as possible:

Reuse without copying or modification: It should be possible (1) to use an
individual module more than once in a program, (2) for each use of a module
to be connected to other modules in different ways, and (3) for this to be done
without changing or duplicating the source code of the module. This is called
“black-box reuse” or extensibility [32]. Satisfying this requires that inter-module
connections need not be specified inside the modules. We handle this in our
m-calculus with incomplete (or abstract) modules and a linking operator.

Modules within the language: It should be possible to represent modules and
linking together with the features of a core language in a single formalism. Rea-
soning about the behavior of real systems requires reasoning about all of the
components of the real system simultaneously. Satisfying this goal requires eit-
her (1) that the module formalism should be able to represent core language
features or (2) that it should be possible to combine the module formalism with
formal systems for core languages. For our m-calculus we prefer approach (1)
although approach (2) should be possible for many core languages.

First-class modules: Tt should be possible (1) for linking of modules to depend
on arbitrary computations, (2) for modules to be created and loaded dynamically,
(3) for modules to be passed as parameters and stored in data structures. This
kind of power is necessary for reasoning about dynamic linking, a feature which
is used in many C implementations on an ad hoc basis and is even appearing in
language definitions such as that of Java [25]. Satisfying this requires either that
the module formalism should support general computation or that it should be
able to interact with the formalism used to represent the core language.

Closer fit to real systems: The module formalism should closely fit the actual
features of real systems. For example, this means that the coding of modules

414 J.B. Wells and R. Vestergaard

and linking via A-calculus, records, and a fix-point operator is inappropriate
and cumbersome for languages with package-based module systems. This also
means that the module formalism should have direct support for features of
existing module systems such as mutual dependencies between modules as well
as hierarchical structuring of modules. Our m-calculus easily models all three
styles of module system that were described above. (Note that we do not deal
with type issues in this paper.)

Sound and flexible equational reasoning: The module formalism should easily
support (1) defining how a particular program will behave and (2) understan-
ding the effect of program transformations. While many techniques have been
developed for achieving (1), a particularly simple method is to define a reduction
semantics, i.e., to define a set of evaluation contexts and a set of program-to-
program rewrite rules. If this method is followed, (2) can be achieved by allowing
the use of the rewrite rules in any context, not just in evaluation contexts, pro-
vided the consistency of the rules can be established. For our m-calculus, we
establish internal consistency of the rewrite rules by proving the system is con-
fluent.

1.3 A More General Notion of Module

The key to achieving the above-mentioned goals in the m-calculus is the use of a
more general notion of module together with a linking operation. An incomplete
or abstract module (introduced as a mizin module or a mizin in 4], formalized
in a calculus in [5], and related to the notions of mixin in [I7} 18, 13} [12]) is a
collection of components of which some are exported (externally visible), some
are private, and some are declared but not defined. We call the latter deferred
components. For example, consider the following incomplete modules M; and
Ms, where N(f,g,1) is an expression that depends on £, g, and i and similarly
for 0Ch) and P(f,i):

M; = (module Ms = (module
exported f = N(f,g,1) deferred f
deferred g exported g = P(f,1i)
deferred h deferred h
private i = 0(h)) private i = Q)

Although the module components are named, the modules themselves do not
bear names, i.e., they are anonymous, like abstractions in the A-calculus [9]. In
the m-calculus, we would write the above as:

M; ={f>pw=N(w,x,2), gbx=-e, hoy=19, _>z=0(y)}
My ={frw=e gbx=P(w,z), hby=e, _>z=Q}

In the m-calculus, each component has separate external and internal names
from different namespaces (like in [27]). The internal names are subject to a-
conversion and are necessary to support correctness of substitution in the m-
calculus. The private components have only an internal name; the label “”

Equational Reasoning for Linking with First-Class Primitive Modules 415

means “no name”. Using standard m-calculus abbreviations, we can write the
component (_>z = O(y)) as simply (z = O(y)). The component body “e” indi-
cates a deferred component where the body needs to be filled in by linking.
The meaning of deferred components is established by the linking operation.
The result of the operation of linking M; and My, written My & Moy, is the new
module Mj:
M3 = (module

exported f = N(f,g,1)

exported g = P(f,i’)

deferred h

private i = 0(h)

private i’ = Q)

In linking, deferred components are concreted by exported components of the
other module. The two modules must not export components with the same
name. Private components get renamed as necessary to avoid conflicts. Mu-
tually recursive intermodule dependencies are supported — the example £ and
g components above depend on each other. In the m-calculus, M3 is:

M; = {f>w=N(w,x,2), gbx=P(w,7), hepy=e, _>7z2=0(y), ->7 =Q}

The internal name of a component whose name does not match a component
in the other module can be a-converted to a fresh name to avoid conflicts.
The example does not illustrate this, but internal names of components with
matching external names are a-converted to be the same to enable linking. In
the m-calculus, M3 being the result of My & M is expressed by the single rewrite
step M1 D Mg — Mg.

In addition to modules (which may be incomplete) and linking, only two other
kinds of operations are needed for the m-calculus. One is selecting a component
of a module, written M.f. The other needed operations are component hiding
and sieving, written M\ f and M\—F, necessary for certain kinds of namespace
management. (There is also a “letrec” construct (M | D) which we could have
chosen to encode as {f >z = M, D}.f.)

1.4 Contributions of This Paper

In section B] we define the m-calculus, a calculus with modules and linking as
primitive constructs. In the m-calculus modules are first-class. In section Bl we
illustrate how various program construction mechanisms and module systems
can be smoothly encoded in the m-calculus. In section] we give an overview of
the proof of confluence, the bulk of which is treated in [44]. Confluence shows
that equational reasoning via the m-calculus is sensible and well behaved and
effectively means that rewriting is “meaning”-preserving. The m-calculus is the
first calculus of linking for first-class primitive modules which has been proved
confluent. (Modules are not first-class in [I4, [35] and rewriting is not proven
sound in [5].) In addition, in section B, we discuss the related work.

416 J.B. Wells and R. Vestergaard

As limitations, this paper does not deal with issues of types, strict evalua-
tion, imperative effects, or classes and subclassing. As the A-calculus serves for
functions, the m-calculus serves as a theoretical foundation for examining the
essence of modularity and linking. Analyses of further issues can be built on the
m-calculus as they have been built on the A-calculus.

1.5 Acknowledgements

We thank Zena Ariola and Lyn Turbak for inspirational discussions.

2 The m-Calculus

2.1 Syntax: Preterms and Raw Terms

The preterms of the m-calculus (the members of the set PreTerm) are given by
the following grammar for M:

w,x,y,z € Var (variables)
f,9,h € CompName (component names)
F C CompName (sets of component names)
Fu=f]|_ (component label)
B:=M]e (component body)
c:=(Fprx=B) (component)
D:=cy,...,c, wheren >0 (component collection)
M,N = =z (variable)
| (M\f) (component hiding)
| (M\—F) (component sieving)
| (M@ N) (linking)
| (M.f) (component selection)
| {D} (module)
| (M| D) (letrec)

Let < when used on component names be some strict total order. The follo-
wing operations on components and component collections are defined. Given
a component ¢ = (F>xz = B), we define Label(c) = F, Name(c) = Label(c)
if Label(c) # _ (otherwise undefined), Binder(c¢) = z, and Body(c) = B. Gi-

ven a component collection D = ¢,...,¢,, we define |D| = n, D[i| = ¢ if
1 <i < n and is otherwise undefined, D[i :=c] = ¢1,... ,¢i—1,¢,Cit1,... ,Cp if
1 <i < n (otherwise undefined), Names(D) = {Label(c;), ... ,Label(c,)} \ {-},
and Binders(D) = {Binder(c1),...,Binder(c,)}. Let D[I] = DlJii],... , Dliy]
where {i1,...,i,} = IN{l,...,|D|} and 41 < ... < 4i,. Let D[F] =
Dli1], ..., Dlin] where {iy,... ,i,} = {i | Name(D][i]) € F } and Name(D][i;]) <

] =

... < Name(Dli,]) (“components in D with names in F”). Let D[—
D[{i | Label(D[i]) = F' ¢ F }] (“components in D with labels not in F”).

The following terminology is defined. Let ¢ = (F'>a = B) be a component
occurring at the top-level (not nested) in a collection D (i.e., ¢ = D[i] for some

Equational Reasoning for Linking with First-Class Primitive Modules 417

i). If the label F' = Label(c) is a name f (and D belongs to a module), then ¢ can
be referred to by its name from outside the module for the purposes of linking,
selection, or hiding. In this case we may call f an external name to distinguish
it from the binder x which we may call an internal name. If F' is the anonymous
marker, written “_”, then ¢ is unnamed and is only accessible (internally) via its
binder x. The variable = Binder(c) is a binding occurrence of x which binds
free occurrences of x in the bodies of all of the components of D to the body of
c. If D is the environment of a letrec (M | D), then the binder for x also binds
free occurrences of x in M. Non-binding variable occurrences are normal. The
body B = Body(c) is either a preterm M or the empty body, written “e”. The
component ¢ can be of four possible kinds, one of which will be forbidden:

—Ife=(fra= M), then cis an exported or output component.
— Ifc=(fra=e), then cis a deferred or input component.
—Ifc=(_>ax= M), then cis private or a binding.

— If c= (_>x = o), then this is an error (forbidden below).

A module with input components is incomplete or abstract and otherwise is
complete or concrete.

The raw terms of the m-calculus (the members of RawTerm) are the preterms
satisfying these conditions: (1) An unnamed component does not have an empty
body. (2) Two named components in a collection do not have the same name. (3)
Components in a collection bind distinct variables. (4) Components in a letrec
environment are bindings (unnamed, non-empty bodies).

We use the following conventions for syntactic abbreviations. When writing
a member of Term (cf. Section 23)), a component (F >z = B) may be writ-
ten (F'>_= B) if no normal occurrences of z are bound by the component’s
binder. A component (_>xz = B) may be written as (x = B); a component
(f>_-= B) may be written (f = B). The notation M\{f1,..., f,} stands for
M\ fi\fo - -\ fn where fi; < -+ < f,. The expression (let z = M in M’) stands
for (M’ | x = M), provided = ¢ FV(M). Parentheses may be omitted; the pos-
sible ambiguities are resolved as by giving “.”, “\”, and “\—" higher precedence
than “@” and making “®” left associative.

The free variables of a raw term are defined thus:

V(e)=0 FV(z)={z}

FV(M\f) = FV(M\—F) = FV(M.f) = FV(M)
FV(M; ® M) = FV(M;) UFV(M,)
FV({D}) = FV(D) = (Uy<i<|p| FV(Body(D[i]))) \ Binders(D)
)

FV((M | D)

(FV(M) \ Binders(D)) UFV(D)

The expression Capture, (M) denotes the set of bound variables in raw term M
whose binding scope includes a free occurrence of the specific variable x. The
operation M [z := y] renames to y all free occurrences of the variable x in M
that are not in the scope of a binding of y.

A distinguished variable O, which is forbidden from being bound, is used as
the context hole. A context is a raw term with one occurrence of 0. Let C be

418 J.B. Wells and R. Vestergaard

a metavariable over contexts. The result of replacing the hole in C by the raw
term M (without any variable renaming) is written C[M].

2.2 Semantics: Structural and Computational Rewriting on Raw
Terms

A rule “X ~ Y if Z” is a schema which defines a contraction relation ~» such
that M ~» N iff replacing the metavariables in X, Y, and Z by syntactic con-
structs of the appropriate sort yields, respectively, the terms M and N and a
true proposition. A rule schema of the form D ~» D’ abbreviates the pair of rule
schemas {D} ~» {D’} and (M | D) ~» (M | D'). If a rewrite relation —» is the
contextual closure of a contraction relation ~-, this means that — is the least
relation such that M ~~ N implies C[M] — C[N] for any context C.
The structural rewrite rules will use the following auxiliary definitions:

UnsafeNames(z, D) = U, <;<p| Capture, (Body(Dli])) UFV(D) U Binders(D)
UnsafeNames(x, {D}) = UnsafeNames(z, D)
UnsafeNames(z, (M | D)) = Capture, (M) UFV(M) U UnsafeNames(x, D)

BinderRenamed(i, z,y, D, D’)
D = (F1 >r = Bl),... ,(Fibx
< |and D' = (Fi>xy =BY),... ,(Fipy=B)),... (F,>x, = B),
and B} = Bjfz :==y] for 1 <j<n

The structural rewrite rules are as follows:

(a-letrec) (M | D) ~ (M[x:=y] | D)
.. |y & UnsafeNames(z, (M | D)),
BinderRenamed (i, z,y, D, D")

(a-module) {D} ~ {D'}
.. |y & UnsafeNames(z, {D}),
BinderRenamed(s, =, y, D, D)

(comp-order) Dy, ci, D2, c2, D3~ Dy, c2,Dz,c¢1,D3
(link-commute) M; & My ~~ My & M,

The computational rewrite rules, which are presented in Figure [I use the
following auxiliary definitions. The expression PickBody(B, B’) yields B if B’ =
e, B’ if B = e, and is otherwise undefined. DependsOny, is the least transitive,
reflexive relation on {1,...,|D|} such that for all 4,5 € {1,...,|D|},

Binder(D[j]) € FV(Body(D[i])))

DependsOnp, (i, j) <= <or (Body(DJi]) = e and Label(D[j]) # _)

The structural and computational contraction relations, ~»5 and ~»., are
respectively the unions of the contraction relations of the structural and com-
putational rules. The structural and computational rewrite relations, --+; and

Equational Reasoning for Linking with First-Class Primitive Modules

419

(link) {D}® {D'} ~ {D|-F]),D'[-F],D"}
F={f1,...,fn} = Names(D) N Names(D’),
Binders(D[—F]) N (Binders(D') UFV(D")) = 0,
Binders(D’[—F]) N (Binders(D) UFV(D)) = 0,
if D[]‘T :(f1 >$1:Bl), .. (fnl>a:n—B)
D'[Fl = (fivx1=DB1), ... ,(fa>zn = By),
D" = (fivx1=DBY), ... ,(fabxs = By),

B’ = PickBody(B;, B;) is deﬁned for1<i<mn

i)

(subst) D ~ D[i := (Fi>z, = C[M;])]
Dl[i] = (Fi>z; = Clxy]),

. DUl = (5 >0, = M),
Capture, (C) N ({z;} UFV(M;)) = 0,
not DependsOn, (3, %)

(subst-letrec) (C|z]| D)~ (C[M] | D)
i D[i] = (-.>x = M) for some i,
"\ Capture, (CYN{z}UFV(M)) =0

(select) {D}.f ~ (z; | D)

if D = (F1 > T :Ml),... ,(fl>:vi :Mi),... ,(Fnl>$n :Mn),
D = (,Dxl =M1),“. s (,[>$L‘i :Mi),... s (,Dmn :Mn)

(gc-module) {D} ~ {D[I]}

1, J partition {1, ..., |D|},
if J#0,
Binders(D[J]) m FV(D[I]) =0,
Names(D[J]) =
(gc-letrec) (M| D) ~ (M | D[I])
I, J partition {1, ..., |D|},
{J o0
Binders(D[J]) N (FV(M) UFV(D[I])) = 0

(empty-letrec) (M |) ~ M

(closure) ({D}| D"y~ {D,D'}
£ |D’'| >0,
! Binders(D) N (Binders(D') UFV(D")) =0

(hide-present) {D[i := (frx = M)|}\f ~ {D[i := (->x = M)]}

(hide-absent) {D}\f ~~ {D}
if f ¢ Names(D)

(sieve) {D}\-F ~ {D'}
D :(F11>1'1 :B1)7... ,(Fnbmn:Bn),
D/I(Flll>$1 :B1),... ,(F,llbxn:Bn)
F:{,ﬁE¢me&¢o

¢ F it F,eF

if
for1<i<n

Fig. 1. The computational rewrite rules.

420 J.B. Wells and R. Vestergaard

--+., are the contextual closures of ~+5 and ~v., respectively. The structural
equivalence relation, =g, is the transitive, reflexive, and symmetric closure of
--»5. The (combined) contraction relation on raw terms is ~» = ~»g U ~>, and
the (combined) rewrite relation on raw terms is --» = --»3U--».. The relations
--»g, —-»., and --» are the transitive, reflexive closures respectively of --»q,
--3¢, and --».

While variables are subject to a-conversion, component names are not. This
is similar to the way that a linker freely relocates (rename) offsets (internal
names) within object files as necessary but does not generally rename symbol
table entries (external names).

In the presence of cyclic bindings, the usual meta-level substitution and expli-
cit substitution both result in size explosions and generally fail to provide the de-
sired equations between programs. To avoid these difficulties, unlike the calculus
of Ancona and Zucca [0, the m-calculus substitutes for one target at a time (via
the (subst) and (subst-letrec) rules) in a style pioneered by Ariola, Blom, and
Klop [8,[6, [7]. The m-calculus letrec contruct is, in a sense, a delayed substitution
that allows avoiding duplication when a component is selected from a module.

The (subst) rule in Figure [l uses the notion of one component of a collec-
tion depending on another to exclude certain rewriting possibilities. Without
this condition of the (subst) rule, the m-calculus would not be confluent and
would need a more complicated method as in [35] to prove soundness. Read
DependsOnp,(j,¢) as “component D[j] depends on component D[i] in collection
D”. The first condition of DependsOnp, handles syntactically evident dependen-
cies. The second condition handles the possibility that a dependency will arise
after linking the module {D} with another module. Every input component is
presumed to (potentially) depend on every output component, because there is
always a module to link with that will cause the dependency to become real.

Most of the side conditions of the computational rules which concern the
names of bound variables can be met by applying the structural rules first. This
is the case for the use of Binders by (link) and (closure), the use of Capture by
(subst) and (subst-letrec), and the way that (link) ensures that the binders
of common components have the same name before linking. The side condition
in (closure) that the component collection is non-empty merely avoids a trivial
critical pair with (empty-letrec), making proofs easier.

The possible dynamic errors that can occur during computation in the m-
calculus are (1) linking two modules whose output components are not disjoint,
(2) selecting a component from an incomplete module, (3) selecting a component
named f from a module which has no component named f, (4) hiding an input
component, and (5) sieving out an input component. The following are examples
of each of the kinds of errors:

1) {frw=e gox=M}D{fry=N, gpz=N'}
) {f>w=e gbx=M}g
) {fpw=M, gbx=N}h

4) {frw=19 gox=N\f
) {few=e grx=NH—{g}

Equational Reasoning for Linking with First-Class Primitive Modules 421

2.3 The Calculus: Terms and Rewriting

The actual m-calculus is defined as M = (Term,—) = (RawTerm, --+.)/ =s.
By this we mean that:

— The set Term of (real) terms is the set of equivalence classes of the raw terms
under =4 (the structural equivalence relation).

— A term [M]__ (the equivalence class of raw term M under =) rewrites to
a term [N]=_, written [M]=, — [N]=, iff there are raw terms M’ € [M]=

= =s = =s

and N’ € [N]—, such that M’ --». N'.

We assume throughout that raw terms are implicitly coerced to (real) terms when
placed in a context requiring a term, e.g., M — N means [M]|—-, — [N]—,.
Let —» be the transitive, reflexive closure of —.

3 Encoding Features in the m-Calculus

This section illustrates smooth encodings of various program construction me-
chanisms in the m-calculus.

3.1 Functions (A-Calculus)

We define A-calculus as syntactic sugar for m-calculus terms as follows, where
“arg” and “res” are fixed component names (meaning “argument” and “result”):

(M. M) ={arg>xz =o, res = M}
(MM') = (M @ {arg = M'}).res

This encoding is faithful to the meaning of the A-calculus. We can verify the
simulation of B-reduction as follows (where M [z := M’] is defined appropriately):

(Ax.M)M’
= ({argpxz =9, res = M} @ {arg = M'}).res
= ({argbxz =e res>by =M} ® {argbaz = M'}).res
where y ¢ FV(M)UFV(M') and x ¢ FV(M')

(link) — {arg>ax = M’, res>y = M }.res
(select) — (y|lz=M,y=M)
(subst-letrec) — (M |z=M',y=M)
(gec-letrec) — (M |xz=M")

(subst-letrec) —» (M[z:=M']|z=M")
(gc-letrec) — (M[z:=M']])

(

empty-letrec) — Mz := M’]

This encoding is similar to an independently developed encoding in [5]. It is only
superficially related to the encoding of A-calculus in ¢-calculus [3].

422 J.B. Wells and R. Vestergaard

3.2 Records and Record Operations

By the syntactic abbreviations defined in Section P record syntax is already
accepted by the m-calculus. Furthermore, the expected rewrite rule for selection
is simulated.

{f1:M17~-~7fn:Mn}~fi—»Mi 1f1§z§n

The simulation uses (select), (gc-letrec) (which can be applied because the
internal names are not used), and (empty-letrec).

3.3 Objects (¢-Calculus)

The following record-of-methods encoding for the ¢-calculus [3] works fine. We
“I” for the method invocation operator to avoid confusion with our com-

W

write
ponent selection operator

[fl = §(1’)M1, R 7fn = §(x)Mn] = {fl =)“T'Mh ey fn =)‘an}
(M = f=<(z)M') = M\f & [f = ¢(x) M']
M!f =(let x =M in (z.f)z) where x is fresh

It is not hard to verify that the rewrite rules of the ¢-calculus are simulated:

M'fl—»Ml[Qj = M}
where M = [f1 =<(z)My, ..., fn=c(@x)M,]and 1 <i<n

1 =@My, fo = o(2)My] < fi = o(2) M’
— [fi=c@)M,... fi=c@)M,... fo=c(z)M,] wherel<i<n

Of course, the real difficulty in dealing with objects is not in expressing their
computational meaning but rather in devising the type system, an issue which
we do not address in this paper.

3.4 Modules

C-style The m-calculus directly supports the modules of C-like languages. (The
call-by-value evaluation and imperative features of C are left to future work.)
Each object file O can be represented as a module M, and the linking of the
modules Mj, ..., M, to form a program is represented as P = (M1 @ ... ® M,).
Invoking the program start routine is represented as (P.main).

Package-style For the package style of module system, a module named A
which imports modules named By, ..., B, and exports entities named fi, ...,
fm 1s represented by an m-calculus module with one output component named
A, and n input components named Bi, ..., B,,. The output component is in
turn a module with n output components named f, ..., f; and some number
of private components. The linking of modules My, ..., M, to form a program
is again represented as P = (M7 & ...® M,,). Invoking the start routine of

Equational Reasoning for Linking with First-Class Primitive Modules 423

the program is now represented as (P.Main.main), i.e., there is a distinguished
module named “Main” which must export a component named “main”.

Consider for example the following Haskell program, where P(A.f) is an
expression mentioning A.f and similarly for Q(B.f,B.g) and N:

module A (f) where module Main (main) where
f =N import qualified B
f =5
module B (f, g) where main = Q(B.f,B.g,f)
import A
g = P(A.)

This program can be encoded in the m-calculus with these three modules, where
A, B, main, and Main are component names:

My ={A={f=N}}
Mp ={Apx=e B={g=P(xf), f=xf}}
MMain = {B DX =e, Main = {y = 53 main = Q(X'fv X.g, Y)}}

Note that the unexported “f” definition in Main is handled by a private com-
ponent, so a variable “y” must be used instead of a component name. We can
check the meaning of the program by rewriting:

(Ma @ Mg & MuMain)
Apx={f=N}, Brz={g=P(xf), f=xt1},
Main = {y = 5, main = Q(z.f,z.g,y)}
—» {A ={f =N}, B={g=P(N), f =N}, Main = {main = Q(N,P(N),5)}}

Thus, the overall meaning of the program is given by:
(Ma @ Mp @ Mpfain)-Main.main —» Q(N, P(N), 5)

In the Haskell example above, we used qualified names of the form A.f. In
module B we could have used the unqualified name f to refer to the entity A.f.
When a module imports more than one other module, a Haskell implementation
uses its knowledge of the imported modules to determine the correct meaning
of unqualified names. To encode Haskell modules into the m-calculus, we could
use a translation that fully qualifies all names in each using information about
the entire program.

However, it is desirable to reason about unqualified names in order to reason
about modules separately. Consider for example the above Haskell program with
module B replaced by the following modules:

module B (f, g, i) where module C (h) where
import A h=R

import C

i =10

g = P(£f,h,1)

424 J.B. Wells and R. Vestergaard

The name f in module B will end up referring to A.f, because there is no C.f,
but this can not be determined without inspecting modules A and C. The name
i in module B will only be legal if A.1 and C.1i do not exist. We can encode these
modules as the following (extended) m-calculus modules:

X = (y _ {fahvi}’> 69(Z _ {f7hvi}’) @ (W _ {f7hvi})
Mc = {C = {h = R}

M — {Al>y:o7 Crz=e Brw={i=10, g =P(xf,xh,xi), f:x.f}7}
L=

The key idea of this encoding is adding the extra private component defining x
to automatically resolve the unqualified names by picking them from whichever
module is supplying them. Then we can verify that:

(Ma & My @ Mc @ Mpain)-Main.main —» Q(N, P(N, R, 10), 5)

In the above example, observe that if M is linked with two modules M/, and
M¢ whose A and C components both supply f, then the linking operation in Mj
which yields the private definition of x will get stuck. This corresponds to the
fact that this is (usually) illegal in Haskell. (It is legal in Haskell for modules B
and C to import module A and export A.f, and for module D to import both B
and C and refer to the unqualified name f, because both B.f and C.f are aliases
for A.f. It seems that the m-calculus would need to be extended to reason about
sharing in order to encode this behavior.)

The Haskell module system has other features such as the ability to list which
entities to import from a module, the ability to list entities not to import with
unqualified names, local aliases for imported modules, and the ability to reexport
all of the entities imported from another module. All of these features can be
represented in the m-calculus.

ML-style The m-calculus can also represent the type-free aspects of ML-style
modules. (The types, call-by-value evaluation, and imperative features of ML are
left to future work.) Such module systems provide modules called structures as
well as a A-calculus (functors and functor applications) for manipulating them.
A structure is essentially a dependent record; it is dependent in the sense that
later fields can refer to the values of earlier fields. A functor is essentially a A-
abstraction whose body denotes a structure; a functor definition is the top-level
binding of a functor to its name. ML structures can be encoded in the m-calculus
as concrete modules. ML functors and functor applications can be encoded in
the m-calculus via the A-calculus encoding given in Section 311

4 The Well-Behavedness of the Rewrite Rules

This section sketches the proof that the m-calculus is not only confluent but
that it also satisfies the finite developments property. Due to space limitations,
the details are only in the long version [44].

Equational Reasoning for Linking with First-Class Primitive Modules 425

Proving these results uses a variation of the m-calculus which adds redex
marks for tracking residuals of redexes of the computational rules and pre-
venting contraction of freshly created redexes. Redexes of the (link), (select),
(empty-letrec), (closure), (hide-present), (hide-absent), and (sieve) rules
are marked at the root in the usual way. Redexes of (subst) and (subst-letrec)
are marked at the variable which is the substitution target rather than at the
root. Redexes of (gc-module) and (ge-letrec) are also not marked at the root;
instead each component that can be garbage collected is marked. All marks are
0 except for substitution marks which must be 1 greater than all of the marks in
the substitution source component body. (Due to the side condition on (subst)
using DependsOn, it is always possible to mark all redexes in a term.)

Strong normalization (termination of rewriting) of the marked m-calculus is
proved using a decreasing measure, the multiset of all marks in the term, in
the well founded multiset ordering. Weak confluence of the marked m-calculus
is proved by several lemmas established by careful case analyses together with a
top-level proof structure that separately considers structural and computational
rewrite steps. Our proof deals with and accounts for every structural operation
(i-e., a-conversion and re-ordering) explicitly.

The combination of strong normalization and weak confluence of the marked
m-calculus yields confluence of the marked m-calculus. Then developments are
defined as those rewrite sequences of the m-calculus that can be lifted to the
marked m-calculus. Using the confluence of the marked m-calculus, we prove
that the results of any two coinitial developments can be joined by two further
developments. Standard techniques then finish the proof of confluence of the m-
calculus. Confluence is shown both for — (on terms) and --» (on raw terms).

5 Related Work

5.1 Calculi with Linking

Cardelli presents a simply-typed linking calculus for outermost-only modules
without recursion [14]. Drossopoulou, Eisenbach, and Wragg give a module calcu-
lus for reasoning about the quirks of Java [T6]. Ancona and Zucca give a calculus
for linking modules which, although similar to ours, has a notion of substitution
which we believe is less convenient and no published proof of rewriting pro-
perties [5]. Earlier, Ancona and Zucca also presented an algebra for simplifying
module expressions which is not powerful enough to represent general compu-
tation [4]. Machkasova and Turbak give a calculus for linking outermost-only
modules in a call-by-value language [35].

From a non-equational-reasoning point of view, Flatt and Felleisen give a
calculus of modules with similar capabilities to ours [2I]. Glew and Morrisett
present a module calculus tailored towards dealing with linking of object files
containing assembly-language-level code [24]. Waddell and Dybvig show how to
encode modules and linking using Scheme’s macro system [42].

426 J.B. Wells and R. Vestergaard

5.2 Mixins

Duggan and Sourelis present a system of “mixin modules” which has the unique
feature that when both modules have components with the same name, linking
the modules results in a form of merging of the same-named components [I7}
18]. Bracha and Lindstrom encode mixins using A-calculus, records, and fix-
point operators [13, 12]. Findler and Flatt describe using mixins and incomplete
modules in actual programming [19]. Flatt and Krishnamurthi and Felleisen
present a calculus with an operational semantics for mixins and classes in the
context of Java [22].

5.3 Calculi for Cycles

Inspiring much of our formulation, Ariola and Klop did ground-breaking work
on reasoning about A-terms combined with a construct for mutually recursive
definitions [8]. Ariola and Blom refined this work to prove consistency in the
absence of confluence [6] [7].

5.4 ML-Style Modules vs. Types

Crary, Harper, and Puri describe how to extend the ML module system to deal
with recursion [15]. Earlier work to add first-class modules (i.e., higher-order
functors) to ML includes that of Russo [41], Harper and Lillibridge [27, [34], and
Leroy [33]. Harper, Mitchell, and Moggi devised the phase distinction to show the
decidability of type checking for the ML module system [28]. Jones shows how
to avoid much of the complexity of typing ML-style modules via higher-order
(parametric) signatures [31} B30].

5.5 Types vs. Concatenation and Extension for Records and
Objects

When we extend our system with types, we will closely consider previous work on
types for record concatenation [43], 29], extensible records [39} 23], and extensible
objects [20] 40l [11].

References

[1] Haskell 98: A non-strict, purely functional language. Technical report, The Haskell
98 Committee, 1 Feb. 1999. Currently available at http://haskell.org.

[2] LNCS. Springer-Verlag, 2000.

[3] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[4] D. Ancona and E. Zucca. An algebra of mixin modules. In F. P. Presicce, editor,
Recent Trends in Algebraic Development Techniques (12th Int’l Workshop, WADT
97 — Selected Papers), number 1376 in LNCS, pages 92-106. Springer-Verlag,
1998.

[5]

Equational Reasoning for Linking with First-Class Primitive Modules 427

D. Ancona and E. Zucca. A primitive calculus for module systems. In G. Nada-
thur, editor, Proc. Int’l Conf. on Principles and Practice of Declarative Program-
ming, LNCS, Paris, France, 29 Sept. — 1 Oct. 1999. Springer-Verlag.

Z. M. Ariola and S. Blom. Cyclic lambda calculi. In Theoretical Aspects Comput.
Softw. : Int’l Conf., 1997.

Z. M. Ariola and S. Blom. Lambda calculi plus letrec. Submitted, 3 July 1997.
Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Inf. &
Comput., 139:154-233, 1997.

H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, revised edition, 1984.

J. G. P. Barnes. Programming in Ada 95. Addison-Wesley, 1996.

V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping con-
straints for incomplete objects. Fundamenta Informaticae, 199X. To appear.

G. Bracha. The Programming Language Jigsaw: Mizins, Modularity, and Multiple
Inheritance. PhD thesis, Univ. of Utah, Mar. 1992.

G. Bracha and G. Lindstrom. Modularity meets inheritance. In Proc. Int’l Conf.
Computer Languages, pages 282—290, 1992.

L. Cardelli. Program fragments, linking, and modularization. In Conf. Rec. POPL
'97: 24th ACM Symp. Princ. of Prog. Langs., 1997.

K. Crary, R. Harper, and S. Puri. What is a recursive module? In Proc. ACM
SIGPLAN °99 Conf. Prog. Lang. Design € Impl., 1997.

S. Drossopoulou, S. Eisenbach, and D. Wragg. A fragment calculus — towards
a model of separate compilation, linking and binary compatibility. In Proc. 14th
Ann. IEEE Symp. Logic in Computer Sci., July 1999.

D. Duggan and C. Sourelis. Mixin modules. In Proc. 1996 Int’l Conf. Functional
Programmang, pages 262-273, 1996.

D. Duggan and C. Sourelis. Parameterized modules, recursive modules, and mixin
modules. In ACM SIGPLAN Workshop on ML and its Applications, 1998.

R. B. Findler and M. Flatt. Modular object-oriented programming with units
and mixins. In Proc. 1998 Int’l Conf. Functional Programming, 1998.

K. Fisher, F. Honsell, and J. C. Mitchell. A lambda calculus of objects and method
specialization. Nordic Journal of Computing, 1(1):3-37, 1994.

M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In Proc.
ACM SIGPLAN ’98 Conf. Prog. Lang. Design € Impl., 1998.

M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Conf. Rec.
POPL ’98: 25th ACM Symp. Princ. of Prog. Langs., 1998.

B. R. Gaster and M. P. Jones. A polymorphic type system for extensible records
and variants. Technical Report NOTTCS-TR-96-3, Univ. of Nottingham, 1996.
N. Glew and G. Morrisett. Type-safe linking and modular assembly language. In
POPL 99 [38].

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, 1996.

S. P. Harbison. Modula-3. Prentice Hall, 1991.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In POPL 94 [37], pages 123-137.

R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase
distinction. In Conf. Rec. 17th Ann. ACM Symp. Princ. of Prog. Langs., 1990.
R. Harper and B. Pierce. A record calculus based on symmetric concatenation.
Technical Report CMU-CS-90-157R, Carnegie Mellon Univ., 2 July 1991.

M. P. Jones. From Hindley-Milner types to first-class structures. In Proceedings
of the Haskell Workshop, La Jolla, California, U.S.A., 25 June 1995.

428
[31]

[32]

[33]

[34]

J.B. Wells and R. Vestergaard

M. P. Jones. Using parameterized signatures to express modular structure. In
Conf. Rec. POPL ’96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.

S. Krishnamurthi and M. Felleisen. Toward a formal theory of extensible software.
In Sizth ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Nov. 1998.

X. Leroy. Manifest types, modules, and separate compilation. In POPL ’94 [37],
pages 109-122.

M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sy-
stems. PhD thesis, Carnegie Mellon Univ., May 1997.

E. Machkasova and F. Turbak. A calculus for link-time compilation. In Proc.
European Symp. on Programming [2).

R. Milner, M. Tofte, R. Harper, and D. B. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1990.

Conf. Rec. 21st Ann. ACM Symp. Princ. of Prog. Langs., 1994.

Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., 1999.

D. Rémy. Projective ML. In Proc. 1992 ACM Conf. LISP Funct. Program., 1992.
J. G. Riecke and C. A. Stone. Privacy via subsumption. Theory and Practice of
Object Systems, 199X. To appear.

C. V. Russo. Types for Modules. PhD thesis, Univ. of Edinburgh, 1998.

O. Waddell and R. K. Dybvig. Extending the scope of syntactic abstraction. In
POPL 99 [38].

M. Wand. Type inference for record concatenation and multiple inheritance. In
Proc. 4th Ann. Symp. Logic in Computer Sci., pages 92-97, Pacific Grove, CA,
U.S.A., June 5-8 1989. IEEE Comput. Soc. Press.

J. B. Wells and R. Vestergaard. Confluent equational reasoning for linking with
first-class primitive modules (long version). A short version is [45]. Full paper
with three appendices for proofs, Aug. 1999.

J. B. Wells and R. Vestergaard. Equational reasoning for linking with first-class
primitive modules. In Proc. European Symp. on Programming [2]. A long version
is [44].

	Introduction
	Support for Modules in Established Languages
	Reasonable Goals for a Module Formalism
	A More General Notion of Module
	Contributions of This Paper
	Acknowledgements

	The m-Calculus
	Syntax: Preterms and Raw Terms
	Semantics: Structural and Computational Rewriting on Raw Terms
	The Calculus: Terms and Rewriting

	Encoding Features in the m-Calculus
	Functions ($boldsymbol lambda $-Calculus)
	Records and Record Operations
	Objects ($boldsymbol varsigma $-Calculus)
	Modules

	The Well-Behavedness of the Rewrite Rules
	Related Work
	Calculi with Linking
	Mixins
	Calculi for Cycles
	ML-Style Modules vs. Types
	Types vs. Concatenation and Extension for Records and Objects

