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The overall research goal of GMD´s RoboCup team is to increase both, (1) the speed of
mobile robots acting as team in a dynamic environment and (2) the speed of design for
behavior-based robot control. Therefore, we started in 1998 to develop a proprietary
fast robot platform and the integrated Dual Dynamics Design Environment.

In Melbourne, our middle-size league team achieved the second rank during round-
robin. In the Quarter Finals our Robots were beaten by Sharif CE, the World Champion
1999 and current European Champion 2000.
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Ansgar Bredenfeld (DD-Designer, team leader)
Horst Guenther (technical support)
Jörg Hermes (ball guidance)
Giovanni Indiveri (control engineering of goalie) 
Herbert Jaeger (Dual Dynamics) 
Hans-Ulrich Kobialka (beTee) 
Paul-Gerhard Plöger (Hardware) 
Peter Schoell (DDSim)
Michael Severin (kicking device)
Andrea Siegberg (technical support)

Web Page: http://ais.gmd.de/BE 
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Our robot hardware is a custom-built platform. We use two 20 Watt, high-quality
Maxon motors that are mounted on a very solid, mill-cut aluminium frame. A piezo-
gyroscope senses the angular velocity of the robot. Obstacle avoidance is supported by
four infrared-based range detectors and standard bumper ring sensors. Our robots kick
the ball with a pneumatic device. The camera of the Newton Lab's Cognachrome vision
system is mounted on a 360 degree panning unit. 

The computer system of the robot consists of a Pentium PC notebook connected to two
C167 micro controller subsystems for sensor drivers and actuator interfaces. The

P. Stone, T. Balch, and G. Kraetzschmar (Eds.): RoboCup 2000, LNAI 2019, pp. 579-582, 2001. 
c Springer-Verlag Berlin Heidelberg 2001



communication between the PC and the micro-controllers is via CAN bus and between
the PC and other robots or a remote-logging PC is via WaveLAN.
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Our approach to robot programming is based on Dual Dynamics (DD) [1], a
mathematical model for robot behaviors which we developed. It integrates central
aspects of a behavior-based approach, robust control, and a dynamical systems
representation of actions and goals. Robot behaviors are specified by differential
equations. In the whole they build a dynamical system consisting of subsystems which
interact through specific coupling and bifurcation-induction mechanisms. Behaviors
are organized in levels where higher levels have a larger time scale than lower levels.
Since the activation of behaviors (activation dynamics) is separated from their actuator
control laws (target dynamics), we named our approach "Dual Dynamics". An
important feature of DD is that it allows for robust and smooth changes between
different behavior modes, which results in very reactive, fast and natural motions of the
robots.
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Dual dynamics behavior systems use symbolic sensors to represent the locally
percepted environment of the robot. We do not maintain a global world model shared
by all robots. Self localisation of the robot is performed based on odometry and
gyroscope data. Since these data is noisy and subject to be disturbed, we compensate
odometry errors by improving the self-localization of our robots using (�
��	�% Monte
Carlo sampling [2]. This approach re-adjusts the pose of the robot using the bearing of
the goals measured by our vision system.
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Our team communication mechanism allows to establish real-time point-to-point
connections between all robots of a team. During robot software development all
behaviors are kept in a common central source code repository (CVS). Thus we can
determine the data flow network within a team of robots in advance. This allows to
communicate shared variables between the robots efficiently without any protocol
overhead. The variables shared among different behaviour systems are simply tagged
in the specification tool DD-Designer. The technical implementation of the team
communication mechanism is based on TCP/IP and uses WaveLAN. 
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Our vision system relies on the well-known Newton Lab’s Cognachrome system for ball
and goal detection. Since it is mounted on a 360 degree panning unit, we are able to
perform “radar-like” optical scans of the robots surrounding. The angle encoder of the
panning unit delivers a precise relative angle of each camera picture, which is used in
the target dynamics of our behaviors.
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Kicking is done with a pneumatic device which is mechanically integrated in the ball
guidance of the robot. Kicking is triggered by the behavior system dependent on the
pose and the mode of the robot. A neural network is used to anticipate whether the ball
will be lost in near future.

The goalie has a slightly different sensor configuration (infrared range detectors
pointing to the back of the goal) and of course a specific behavior system. It is
essentially a two-dimensional controller, which maintains a fixed distance to the back
of the goal and a certain angle to the visible ball. If the robot should be hit by opponent
robots thus losing its position in front of the goal, a homing behavior is activated in
order to recover the correct position in front of the goal and to re-start the keep goal
behavior.
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The successful design of robot software requires means to specify, implement and
simulate as well as to run and debug the robot software in real-time on a team of
physical robots. The integrated Dual Dynamics design environment [2][3] we develop
allows to specify DD-models on a high-level of abstraction and to synthesize all code
artifacts required to make these models operative in practice: a simulation model, a
control program for a real robot, a team communication layer and set-up parameters for
real-time monitoring and tracing. In this environment the following steps are performed
iteratively in order to design a behavior system for a robot. 

�)����+. The specification and code generation tool ������
���� comprises a
graphical editor to enter the specification of a DD-model in terms of sensors, actors,
sensor filters and behaviors. Sensor filters and behaviors are further detailed using the
equation editor of DD-Designer. We use multi-target code generation to refine the DD-
model to code artifacts required by the simulator, the robot and the real-time monitoring
tool. DD-Designer continuously evolved from a first shot prototype [4] to a full-fledged
design tool. This development process was an ideal test case to investigate the evolution
of software prototypes in design environments [5].

��������. The Java simulator ���
� is specifically tailored to simulate a team of
robots with different behavior systems. The simulator is capable of simulating the
whole sensor equipment of the robots including the vision system. The implementation
of the behavior system, i.e. the robot control program, is a Java class generated by DD-
Designer. 

���. The code for the real robot implements the behavior system in C/C++. This code
is directly derived from the high-level specification edited in DD-Designer. Since both
artifacts, simulation model (Java) and robot control program (C++), are derived from
the same specification, we avoid all problems that occur if a migration from a
simulation model to a robot control program has to be performed manually.

��	�, ���+	�. The real-time trace tool $�)�� allows to capture and analyse internal
variable states of an implemented behavior system in real-time [6]. The configuration
of beTee is carried out by a Java class generated by DD-Designer. It contains a
dictionary of all variables including their dependencies.
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Future work will further focus on our main research goals. 

In order to further increase the speed of our mobile robots, the sensor information flow
needs to be raised. This will be achieved by adding optical flow sensors to the robot.
We will investigate these sensors in close connection with the behavior systems of the
robot in order to make them more reactive even at higher speeds than that we already
achieved. In addition, we focus on extensions to the Dual Dynamics scheme and on
"Observable Operator Models" [7]. Both emphasize the dynamical systems nature of
behaviors, with OOMs additionally capturing the stochastic nature of a robot’s
experience and acting.

In order to further increase the speed of our behavior development process, we have to
further narrow the still existing gap between simulation and the real robot. At present,
we are able to simulate the robot with its complete sensor equipment in our simulator
DDSim. Therefore, we are able to design functional correct behavior systems using
simulation only. Nevertheless, parameter tuning is left to real experiments with real
robots on the field. We will investigate approaches allowing to adapt the sensor models
in the simulator to the precise sensor behavior as measured on individual robots. This
will further decrease the number of time-consuming experiments with the robots on the
field.

In 2001, it is planned to participate in the 1st GermanOpen in Paderborn and in the
5th RoboCup World Championship in Seattle. Results achieved up to these events will
be demonstrated on the GMD-robots.
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