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Abstract. We suggest a set of complex differential operators, symmetry
derivatives, that can be used for matching and pattern recognition. We
present results on the invariance properties of these. These show that all
orders of symmetry derivatives of Gaussians yield a remarkable invari-
ance : they are obtained by replacing the original differential polynomial
with the same polynomial but using ordinary scalars. Moreover, these
functions are closed under convolution and they are invariant to the
Fourier transform. The revealed properties have practical consequences
for local orientation based feature extraction. This is shown by two appli-
cations: i) tracking markers in vehicle tests ii) alignment of fingerprints.

1 Introduction

We present invariance properties of certain complex derivatives, symmetry deriva-
tives, w.r.t. gaussians and show their applications. By means of these results, the
structure tensor presented in [1,2], which constitute a front end processing to
produce orientation fields, e.g. for texture and fingerprint processing [3], as well
as corner points, [4, 5], in an increasing number of applications, can be extended
to model and match patterns that are more intricate than lines and edges. The
applications we show consist in i) cross marker tracking in vehicle crash tests,
ii) fingerprint alignment. From method point of view both applications are real-
ized as orientation fields filtering. The contribution of the theorems to practice
has been robust pattern recognition with predetermined number of arithmetic
operations that were implemented via 1-D correlates.

The ”angular” encoding representing the orientation fields of parabola and
spiral like shapes were first proposed by [6] and [7]. Also, polynomial approx-
imations of orientation filtering have recently been studied by [8] albeit the
properties of the Gaussian derivatives were not studied.

The popularity of Gaussians as filters, is due to their valuable properties in-
cluding: i) directional isotropy, i.e. in polar coordinates they depend on radius
only, ii) separability in = and y coordinates, and iii) simultaneous concentration
in the spatial and the frequency domain, e.g. [9-12]. In particular, efficient ori-
entation analysis [1-3], and singularity points detection schemes [4, 5] have been
utilizing Gaussians as interpolators and window functions.

We present the results as theorems and lemmas, the proofs of which are given
in [13].
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2 Symmetry derivatives and the structure tensor

Definitions We define the first symmetry derivative as the complex operator

0 0
D, +iDy=—+i— 1
’ Y ox + Oy (1)
which resembles the ordinary gradient in 2-D. When it is applied to a scalar
function f(z,y), the result is a complex field instead of a vector field. Conse-
quently, the important difference is that it is possible to take the (positive integer
or zero) powers of the symmetry derivative e.g.

(Dy +iDy)* = (D — D) +i(2D,Dy) (2)
(D, +iDy)* = (D} - 3D,D}) +i(3D3D, — D}) (3)

The operator, (D +iD,)" will be defined as the n’th symmetry derivative .

In an analogous manner, we define the first conjugate symmetry derivative as
D,—-iDy = % —iai and the nth conjugate symmetry derivative as (D, —iD,)".
We will however, only dwell on the properties of the symmetry derivatives. The
extension of our results to conjugate symmetry derivatives are straight forward.

Sampled functions are denoted as fr i.e. fr = f(xk,yr). A capital letter
represents the Fourier transformed function i.e. the Fourier transform of f(z,y)
is represented by F(wy,w,). The notion power spectrum (of f) refers to |F|>.

We apply the p’th symmetry derivative to the Gaussian and define the func-

tion piPo} as
_=24y?

/L{P’a'z}(x7y) = (D, + z'Dy)p 202 (4)

oz’
with 1{%°°} being the ordinary Gaussian. ¢

Theorem 1. The differential operator D, + iD, and the scalar =z (z + iy)
operate on a Gaussian in an identical manner:

. 2 - . 2
(Da +iDy)Put} = (=5)"(2 +iy) u>" T ¢ (5)
The theorem reveals an invariance property of the Gaussians w.r.t. symmetr
b y 2 y
derivatives. In comparison, the Laplacian of a Gaussian (D2 + D;)N{Ova } =

(=2/0%+ (22 + y2) /o) (%"} a second order derivative too, can not be obtained
by substituting x y with D,, D,.. As the example hints, the result of higher order
derivatives will not automatically resemble the polynomial form of the derivation
operators. Yet, such a form invariance is revealed by the theorem for any order
of symmetry derivatives. Also, By using the linearity of derivation, the theorem
can be generalized to an arbitrary polynomial.

Lemma 1. Let the polynomial @ be defined as Q(q) = 25;01 anq"™. Then

Q. +iD)u®" ) (2,4) = Q5 (2 + )i (2,0)8 (6)
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Theorem 2. The symmetry derivatives of Gaussians are Fourier transformed
on themselves i.e.

Flutpo™ = //N{P«f Ha,y)e @2~ dpdy = 2ro? (U ) 225} wy, w,) KT)

When constructing rotation invariant filters, [14] observed that the (sym-
metry) order n in the functions, h(r) exp(iny) is preserved under the Fourier
transform, however, without guidance on the choice of h for full invariance.
Likewise, the phase angles of the steerable filters, [11,15], are the same as those

of u{p*"z}(as, y), however, without that the invariance properties are explicited.

Theorem 3. The symmetry derivatives of Gaussians are closed under the con-
volution operator so that the order and the variance parameters add under con-

volution.
H{Plydf} % M{szlfg} — H{P1+P2,Jf+0§}’ (8)

The scalar I,,(8) = [[(z + iy)?(z — iy)?B(z,y)dzdy with p and ¢ being
non-negative integers, is the complex moment p, ¢ of the function 5. The order
number and the symmetry number of a complex moment refer to p+ ¢ and p—gq
respectively. Consider only the second order complex moments of the power
spectrum I, (|F|?) and the structure tensor S, [1,2]:

L,(|F|?) // wg+iwy )P (wg—iwy) | F (g, wy) | dwzdw, S = //vatfdwdy

with Iy (|F|?), complex, I11(|F|?), real, and S being a real 2 x 2 matrix. The
two scalars (I2,I11)! and the structure tensor S are fully equivalent. This is
generalized in the next theorem.

3 Pattern modelling and matching

With few correlations (preferably 1-D), can sophisticated patterns and their
directions be found? The next theorem attempts to answer this question.

Theorem 4 (Generalized linear symmetry). There is a structure tensor
also in harmonic coordinates®. In particular, the second order complex moments
determining the minimum inertia axis of the power spectrum, |F(wg,w,)|?, can
be obtained in the (Cartesian) spatial domain as:

1202/ (D¢ +iDy) f)*dédn ©)
= / / ¢! 8(De=D)O* (D 4 iD,) fPdwdy = (Amaz — Amin)e2m (10)
I11:/ (D¢ +iDy) f|*dédn= / (D +iDy) f*dzdy = Amaz + Amin (1)

3 A coordinate pair £(z, ), n(z,y) is harmonic iff D,& = D, and Dy¢é = —D,1, i.e.
the curves &(z,y) = & and n(z,y) = no are perpendicular.
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The quantities Apin, ©min and Anqqe are, respectively, the minimum inertia, the
direction of the minimum inertia axis, and the maximum inertia of the power
spectrum of the harmonic coordinates, |F(wg,wy)|* ¢

Central to generalized structure tensor is the harmonic deformation function
pair z = £(z,y) and y = n(x,y) which creates a new coordinate pair of curves
to represent the points of the 2-D plane. Any analytic function g(z) generates a
harmonic pair via £ = R[g] and n = J[g], representing the real and the imaginary
parts of g. Monomials offer attractive computation schemes, as suggested next.

Lemma 2. Consider the analytic function g(z) with %\‘Zl = 22 and n is any in-

teger, 0,£1,+2, ---. Then the discrete filter uin’ag} is a detector for patterns
generated by the curves aR[g(2)] + bS[g(z)] = constant provided that i) a Gaus-
sian is assumed to be the interpolator and ii) the magnitude of a symmetry
derivative acts as a window function. The discrete scheme

oo (| F(we, wn)|?) = Cul™h w (ui71h & fy)?2 (12)
L (|F (we,wn)[2) = Clut™ 2 [ x |ul ) 5 g2 (13)

with C' = 2n2es?05 and 0 < n estimates the orientation parameter tan~!(a,b)
as well as the error via Isg and I az,ccording to Theorgm 4. For n < 0 the above
scheme applies except that (u{=™72})* replaces u{™o2} ¢

It should be noted that in the proof of the Lemma all previous results are utilized.
To view the detectable patterns, we integrate 3—2 = 2% and obtain

1,241 _o.
log(z), ifn=-2.

(14)

Such patterns are shown in Figure 1 by displaying s(t) = cos(a& + bn). Lemma 2
estimates ¢ = tan~1(a, b) via the argument of Iy regardless of s. In Figure 1 i),
this angle is fixed to ¢ = 7 and n is varied between —4 and 3. Each n represents
a separate pattern class. By changing ¢ and keeping n fixed, the parameter pair
(a,b) is rotated to (a',b'). For n # —2, this results in rotating the iso-curves as
displayed by Figure 1 ii) for increasing values of ¢. When n = —2, the iso-curves
are given by g(z) = log(|z|) + ¢ arg(z), which represents the only case when a
change of the ratio between a and b does not result in a rotation of the image
pattern but instead results in a bending of the the iso-curves, i.e. the spirals
become ’tighter’ or ’looser’ until reaching the limit patterns, circles and radial
patterns.

4  Applications and experimental results

4.1 Symmetry tracker

In vehicle crash tests, the test event is filmed with a high speed camera in order to
quantify the impact of various parameters on human safety, by tracking markers
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Fig. 1. i) On top, the harmonic functions (14) with the corresponding patterns, the
(detection) filters as well as the symmetry orders are shown. ii) At bottom, the patterns

generated by changing ¢ is shown for n = —1 and n = —2 respectively. iii) The ideal
model with ¢ = %. iv) The hyperbolic cross with ¢ = %. v) The first frame of an

image sequence vi) The identified crosses, vii) and viii) The x and y coordinates versus
time for Point #1.
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including the ”cross”, see Figure 1 v). The cross tracking has to be robust i.e.
the markers should not be lost from frame to frame even under severe light
conditions, e.g. imperfect flash synchronizations.

The markers will be detected by applying Lemma 2 with z(2+1) and n = 2.
This generates not only patterns similar to crosses but also the ideal cross model
when the definition s(t) = x(t) where x(¢) is the step function (which is 1 for
positive ¢, and 0 otherwise), is utilized, Figure 1 iii). As Lemma 2 suggests,
the choice of s itself, see Figure 1 iv) for another choice, has no-influence on
the estimated . We use the rotation invariant measure (see Theorem 4) C,. =
(Amaz — Amin)/(Amaz + Amin) = |T20|/I11 < 1 which compares the minimum
error with the maximum error when finding the position of a marker. It attains
its maximum iff A,;, = 0. The points having large certainties are candidate
positions of markers. We state the algorithm that we used to track the markers
as follows.

Algorithm: All steps are carried out in a region of interest, the search win-
dow. 1. Compute the complex image h = (f, +if,)? by separable 1-D convolu-
tions, ptto1} x f and pizel-wise complex squaring, 2. Compute the the complex
image Isg, (12), by convolving the complex image h with the complex filter of
,u{"’”f"“’g}, using separable convolutions, 3. Compute the real image I;; by con-
volving the magnitude of the complex image of Step 1, with the magnitude of
the filter in Step 2 via separable convolutions, (13), 4. Compute the certainty
image, Cy, by pizel-wise division of the images, Iso and I, obtained previously,
5. Compute the mazimum of C, in the search window to obtain the position of
the marker.

Evidently n = 2 is utilized in Step 2. All steps are applied to all search win-
dows and the maximum C, in a search window was identified. Initially (in frame
1), the search windows, containing one marker each, are found automatically.
The size of the filters were 9x9 in Step 1, and a 30x30 in Step 2 and 3.

Tracking results and comparisons The algorithm has been tested by a number
of crash-test experts. The robustness, few manual interventions, and fast execu-
tions are important issues. The cross-marker should not be lost from frame to
frame, i.e. the found positions must be accurate. Figure 1 vi) shows a typical
frame of the marker tracking process, superimposed to the original frame in iii).
Also the z and y coordinates of one marker (#1) in pixels versus time (frame
no.), are shown in Figure 1. The graphs appear continuous which indicates that
the "head” has not been lost and that the accuracy in the position is reliably
quantified.

100 cross markers coming from several crash tests were utilized to test the
performance. The symmetry tracker could track all but 5 markers. The used
sequences included very long image sequences (in the order of thousands of
frames). The algorithm lost the track of a marker when the contrast level of a
cross was extremely poor e.g. a strong specular reflection.

An alternative method that was tested was correlation using an image of a
typical cross marker as a template. The position accuracy was inferior to that of
the symmetry tracker when the rotation was considerable between two frames.
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This is explainable because the correlation is minimum (0, instead of maximum)
when a cross rotates 7/2. On the other side using an iterative approach to cor-
relation, e.g. [16], was not permissible because of hardware and time restrictions
requiring i) the number of the iterations be known ii) numerous manual defi-
nitions of the search windows of the crosses in the initial frame since there are
typically many markers that translate and rotate independently in the images.
The method has lost the marker during tracking in 46 cases of 100.

4.2 Fingerprint alignment

In biometrics, the alignment of two fingerprints without extraction of minutiae,
typically an end of a line, has recently gained increased interest. Besides improved
accuracy, this eliminates the costly combinatorial match of minutiae. We suggest
to identify two standard landmarks: Core and Delta, see Figure 2 i). These are
modeled and detected by a scheme based on Lemma 2. It is similar to the are
presented previously. Two analytic functions z%, i.e.n = -1, and z%, ieen=1
were used to model ”Core” and ”Delta”, see Figure 1.

Algorithm: 1. Obtain the square of the derivatives via a convolution with
a b5 x 5 separable filter and complex squaring: hy, = (p,{cl’ol} * fr)2. Then build a
Gaussian octave pyramid of hy, image (level 0 corresponds to the original size) up
to level 3. The pyramid is built to improve the signal to noise ratio. 2. Convolve
the highest level of the pyramid with the filters p*{*15} for Core detection, and
pibt3Y for Delta detection, (both 9 x 9) to obtain Iy for each landmark type.
3. At the top of the pyramid and for each landmark, compute the real image I1;
by convolving the magnitude of the at Step 1, with the magnitude of the filter at
Step 2 via (13), 4. At the top of the pyramid and for each landmark, compute the
certainty image, C,, by pizel-wise division of the images, I>y and I11, obtained
in the previous two steps, 5. At the top of the pyramid and for each landmark
type, compute the mazimum of C,. to obtain rough positions of the landmarks.
Postprocessing Once the landmark positions and orientations were estimated at
the top of the pyramid, the position parameters were fine-tuned by projection to
a lower level. In that level, by carrying out computations analogous to those in
steps 2-5 of the Algorithm, but applied in a 13 x 13 window centered around the
position to be fine-tuned, the maximum C.s were found to update the positions
of the two landmarks. The process was repeated until level 0, where the final
positions of the landmarks was found, was reached. The same procedure was
applied to the second fingerprint image to be aligned. The translation between
the two images is evidently obtained by the difference of the positions of the cor-
responding landmarks. The rotation parameter was obtained via the arguments
of the complex scalars, Iy, at the positions. This was done by subtracting the
thus obtained two arguments of I5. If both of the landmarks were detected with
certainties above 0.5, only the translation and the orientation of the landmark
having the maximum certainty, was retained.
Alignment results and comparisons
We report results on the FVC2000 fingerprints database, [17]. The FVC2000
contains a total of 800 fingerprints, many having a poor quality since they are
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Fig.2. The ”+” and the "W represent the Delta and Core (parabola like) points
that have the largest certainties. i) The certainties are 0.84 (Core) and 0.64 (Delta),
ii) the certainties are 0.73 (Core) and 0.22 (Delta). The certainty at the Delta point
marked with ”O” is 0.10. iii) The registration errors in pixels. The solid and dashed
graphs correspond to the symmetry tracker and to the model based motion tracker,
respectively.

captured using a low cost capacitive sensor from 100 persons, e.g. see Figure 2
for two fingerprints of the same finger. The Delta in Figure 2 ii), is an example
of a difficult singularity point to identify even for human observers. It also shows
the positions of the maximum certainties corresponding to Core and Delta as
obtained by our approach. The system failed to assign the highest certainty to
the correct position in Figure 2 ii), and suggested another (false) point. However,
despite being maximum, the certainty for the (false) point being a true Delta
point was low, 0.22. The false as well as the true point are below the used
threshold of 0.5 so that this point was rejected alltogether by the system and
only the point marked with ”l”, has been retained to estimate the position and
orientation parameters of the fingerprint.

The fingerprints of FVC2000 for a person have been translated and rotated
with the computed parameters by our method towards one of his fingerprints.
For each finger in the test image a minutia point other than the automatically
found landmark (Core, Delta) was manually identified in the reference as well
as in the test images to quantify the registration errors. In Figure 2 iii), these
errors at manually found minutiae positions (our method in solid, and another
method see below, in dashed,) are plotted. The horizontal axis is the index of
the images.

We have also tested another method which employs (affine) model motion
estimation and robust statistics to find the alignment parameters between two
image, similar to [16] but with the M-estimator as regressor. Other tested regres-
sors (LS, LMS, and LTS) were worse and are omitted here. The dashed graph
of Figure 2 iii) corresponds to the errors of the model-based motion tracker. It
shows that in nearly all images the alignment errors were significantly lower with
the symmetry tracker.
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Conclusion

We have suggested the complex symmetry derivative operator. In 4 theorems and
2 lemmas we have revealed its properties and shown that these are of practical
importance to 2-D pattern recognition applications. In particular, we have pre-
sented experimental results when i) tracking crosses in long image sequences ii)
aligning fingerprint images, using these results. These encourage the utilization
of the symmetry derivatives in other contexts, e.g. texture feature extraction,
image compression.
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