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Abstract.  In this paper we present a statistical model-based approach to the color image 
segmentation. A novel deterministic annealing EM and mean field theory are used to estimate 
the posterior probability of each pixel and the parameters of the Gaussian mixture model which 
represents the multi-colored objects statistically. Image segmentation is carried out by 
clustering each pixel into the most probable component Gaussian. The experimental results 
show that the mean field annealing EM provides a global optimal solution for the ML 
parameter estimation and the real images are segmented efficiently using the estimates 
computed by the maximum entropy principle and men field theory. 
 

1  Introduction 
The ultimate goal of image  segmentation is to  partition a given image into 
homogeneous regions or segments or pattern classes. This is accomplished by 

assigning each pixel to the one of K  classes. In recent years, a varied segmentation 
algorithm has been proposed.  First, Geman and Geman[1], and Besag[2] have 
studied the application of the Markov random field(MRF) model and Bayesian 
methods to segment the intrinsic character of image. Saeed et al.[3], and McLachlan 
et al.[4] have proposed the Gaussian mixture model for each pixel intensity in an 
image field and used the expectation-maximization(EM) algorithm to estimate the 
parameters of the given model. Hofmann et al.[5][6] have formulated the texture 
segmentation as a data clustering problem based on spare proximity data. They have 
derived the clustering algorithm using deterministic annealing based on mean field 
approximation and used this algorithm in the segmentation of texture image. 

In many researches, the Gaussian mixture model(GMM) is commonly used to 
represent the probability distribution of the feature vector observed in each pixel. The 
EM algorithm is naturally used for the estimation of the parameter in the Gaussian 
mixture model. However, the estimates of parameters obtained by the EM algorithm 
are strongly dependent upon their initial values, and the Baum function in the 
Expectation Step is difficult, if not impossible, to compute since we have to take the 
summation over all possible configurations of the hidden variables. To overcome this 
problem, we are going to use the concepts of the deterministic annealing EM 
algorithm and the mean field theory. 

In this paper, we adopt the Gaussian mixture model to represent the probability 
distribution of the observed feature vector and perform the image segmentation using 
this model. To solve the initialization problem of the conventional EM algorithm, we 
are going to consider the concept of deterministic annealing EM algorithm. We also 
develop the mean field annealing EM(MFA-EM) algorithm for the estimation of the 
parameters in a mixture model. 
 

2  Deterministic Annealing EM Algorithm 
We let denote  the  incomplete  data consisting  of the  observed  feature vector, 

and z  denote the value of unobserved random vector. Also, we let )�;z|y(P  

denote the conditional density function of the random vector Y  given z , and 

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 934−941, 2003.
 Springer-Verlag Berlin Heidelberg 2003



)�;z(P  denote the probability function of Z , where �  is a vector of parameters. 

Then the complete data vector is defined by )z,y(x = , and the log likelihood 

function that could be formed on the basis of the complete data x  if it were fully 
observed is given by  

)�;z(log)�;z|y(log)x|( PPLogLC +=Θ � � � ��� 

where Θ  is the vector containing the elements of �  and � . The problem of 

maximum likelihood estimation of Θ  given the observed vector y  can be solved 

by applying the EM algorithm. The EM algorithm starts with some initial guess at the 

maximum likelihood parameter, )0(Θ , and then proceeds to iteratively generate 

successive estimates, )1(Θ , )2(Θ , ... by repeatedly applying the following two steps,  

 

E-Step : Compute a posterior density function )�,y|z( )1()(

z

−= tt pP , and compute  

the following expectation: )|( )1( −ΘΘ tQ = ))x|((log)(
z

ΘcP
LE t  

 M-Step : Find the value, )(tΘ  of the parameter vector, 

 Θ  that maximizes )|( )1( −ΘΘ tQ  

 
However the EM algorithm has two kind of disadvantages. The first is hard to 

avoid unfavorable local maximum of the log-likelihood according to starting value of 
the parameter and the second is overfitting, i.e. to maximize the performance on 
unseen future data. Thus we have to think about the method which is able to improve 
the EM algorithm. It is known as deterministic annealing EM algorithm[6]. This is to 
use the principle of maximum entropy to estimate the parameter. We consider the 

complete data log likelihood )x|(ΘcLogL  as a function of the hidden variable z  

for fixed parameter vector Θ , and define a cost function on the hidden variable 

space ZΩ  as follows: 

� )x|(log),y;z( Θ−=Θ cLH � � � � ��� 

Then we need to minimize )),y;z(( ΘHE  with respect to probability distribution 

)�;z(P �over the distribution space subjected to a constraint on the entropy. It yields 

a quantity, which is known as the generalized free energy in statistical physics. 
Introducing a Lagrange parameter β , we arrive at the following object function: 

)(log)),y;z((),( zz zz
PEHEP PP ⋅+Θ=Θ βϑ � � � ���� 

The solution of the minimization problem associated with the generalized free energy 

in ),( ΘzPϑ �with respect to probability distribution )�;z(P  with fixed parameter 

Θ  is the following Gibbs distribution: 

���

������

��� ))z(exp(
))'z(exp(

1
)�z(

z�z' 

H
H

;P β
β

−⋅
−

=
∑ ∈

�

��

� �

��

� �

��

� �

��

�����

Hence we can obtain a new posterior distribution, )�;z(P  parameterized by β . For 

10 << β , an increase of β  means a change in the form of posterior distribution 

from uniform to the original distribution. Next, we should find the minimum of 

),( z ΘPϑ  with respect to Θ  with fixed posterior )�;z(P . It means finding the 

)(tΘ  that minimizes ),( z ΘPϑ . The generalized free energy, ),( z ΘPϑ  can be 
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written by the following form: 

)(log)(),( zzz PEQP P⋅+Θ=Θ βϑ β �� � � ���� 

Since the second term on the right hand side of the generalized free energy is 
independent of Θ , so we should find the value of Θ  minimizing the first term 

��� )),y;z(()(
z

Θ=Θ HEQ pβ �� � � � ���� 

But since an estimate of the parameter value at the early stage of EM-algorithm is 
not guaranteed to be near the true one, the influence of posterior distribution at the E-
step should be weakened at starting point of iteration. Ideally, as the iteration 
proceeds, the effect should be strengthened.  To achieve this purpose, we can add a 

new β −loop, which is called annealing loop, to the original EM-algorithm and 

replace the original posterior with the new posterior distribution, �);z(P �

parameterized by β . Thus we can obtain the deterministic annealing EM-algorithm: 

 

INITIALIZE the parameter 
)0(Θ  and the prior distribution, 

)0(

zP ; 

temperature 0T/1T ←= β  ;�

WHILE 
FINALTT > ;  ⋅⋅⋅= ,0t ; 

  REPEAT 
     E-Step : Compute a posterior density function 

            )�,y|z( )1()(

z

−= tt pP , and compute the following expectation:  

     )|( )1( −ΘΘ tQ
β

= ))x|(log()(

z

Θ− cP
LE t  

     M-Step : Find the value, 
)(tΘ  of the parameter vector, ΘΘΘΘ that minimize 

        )|( )1( −ΘΘ tQβ  

     1+= tt ; 
  UNTIL convergence ; 

  TT ⋅←η ; 
)()0( tΘ←Θ  

 

3 Segmentation of Images Using MFA-EM Algorithm  
Suppose that a color image consists of a set of disjoint pixel labeled 1 to N , and 

that each pixel is assumed to belong to one of K  distinct regions. We let iY  

denote the finite dimensional feature vector observed from i th pixel( Ni ,,1 ⋅⋅⋅= ). 

Also we let K  groups KGG ,,1 ⋅⋅⋅  represent the K  possible regions. Further, we 

let nZ,,Z1 ⋅⋅⋅  denote the unobservable group indicator vectors, where the k th 

element ikZ  of iZ  is taken to be one or zero according as the i th pixel does or 

does not belong to the k th group. We usually adopt a finite mixture model to 

represent the marginal distribution of the feature vector iY  observed from the i th 

pixel( Ni ,,1 ⋅⋅⋅= ). We let )�;y( kikP  denote the conditional probability density 

function of iY  given that the i th pixel comes from the k th group kG  

( Ni ,,1 ⋅⋅⋅= , Kk ,,1 ⋅⋅⋅= ). Then unconditionally with respect to the group of origin, 

Yi has the finite mixture form 

∑
=

=Θ
K

k
kikiki PP

1

)�;y(�);y( ,  ),,1( Ni ⋅⋅⋅=    (7) 

where ik�  is the prior probability that the i th pixel belongs to the k th group. 
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Given the data and with knowledge of parameter vector Θ , the maximum a posterior 

estimate, iẑ of the class indicator vector iZ at pixel i  is defined as : 

),y|1Z(maxargẑ
1

Θ==
≤≤ iik

Nk
i P � � � � ���� 

We can proceed to segment an image by assigning class memberships to each pixel 
individually using the above MAP estimate of the pixel class. In general, each pixel in 
homogeneous regions of most natural images is correlated with one another. Markov 
random fields(MRF) have been commonly used to model this correlation. MRF 
models are not computationally tractable, thus we propose a simplified new model 
which incorporates neighboring pixel correlation to yield improved segmentation. We 

let iN  be some specified neighborhood of the i th pixel, containing s  pixels. We 

will assume that two kinds of the prior probability density of Z  are given as 

c
N

i

K

k Ns
skik

i

P
1 1

z�)�;z(
= = ∈

∏ ∑=      (9) 

where ik�  is the prior probability that the i th pixel belong to the k th group��

On the other hand, concerning the joint probability density function of Y  given 

z , a common assumption in image analysis is to take the feature vector iY  to be 

independently distributed given their group membership. 

∏∏
= =

=
N

i

K

k
kik

ikPP
1 1

Z
)�;y()�;z|y(      (10) 

 In common, )�;y( kikP  is taken to be the multivariate normal density 

)�,µ;y( kkiφ  with mean 
kµ  and covariance matrix k� , so that k�  contains the 

elements of 
kµ  and the distinct element of k� . Hence the two kinds of log 

likelihood function of the complete data are given by  

∑∑∑
∈= =

⋅+=Θ
iNs

iksk
i

K

k
kiikC ZZLogL )�log)�;y(log()x|(

N

1 1

1 φ          (11) 

Here, we define a cost function for the segmentation as follows: 

)x|();( Θ−=Θ Cm
cs
m LogLzH , 2,1=m     (12) 

If we apply the maximum entropy principle discussed in Section 2 for these cost 
functions, we can obtain the posterior distribution of assignments random vector Z  
of each pixel for the cost functions. These are given as the Gibbs distribution 

2,1)),z(exp(
))z(exp(

1
));z((

ZZ

=−⋅
′−

=Θ
∑ Ω∈′

mH
H

HP cs
mcs

m

cs
m β

β
 (13) 

But, since the assignment variables ikZ  in each cost functions of the segmentation 

are statistically dependent with all neighboring pixel variables, the Gibbs distribution 
cannot be exactly rewritten in factorized form. So, we need the cost contribution that 
is able to reduce the influence of correlation on individual data assignments. The 
mean field approximation is a well-known method to approximate the potential 
energy of an interacting many particles with the average interaction of interacting 
particles, which is called a mean field[7]. We define an approximating family of 

distributions with potentials, ikε  which represents the partial cost for independently 

assigning the pixel to each group. The approximate cost function is defined as 
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∑∑
= =

−=Θ
N

i

K

k

m
ikikm ZH

1 1

0
);z( ε ,     2,1=m     (14) 

To use the mean field approach as an approximation of the segmentation problem, 
we split the original cost function and write 

  p
mm

cs
m VHH += 0 ,    2,1=m      (15) 

where pV  
represents a perturbation term due to neglected interactions. The free 

energy of the cost functions can be rewritten as  

0)exp(log)/1()()( 0

H
p

mm
cs
m VHFHF >−<⋅−= ββ     (16) 

Here, the average bracket < > denote the average with respect to ))z(( 0

mHP . By 

the Jensen’s inequality, we can obtain the following result, 

  )exp()exp( 00
mm H

p
mH

p
m VV ><−≥>−< ββ     (17) 

It yields the well-known upper bound 

    0)()( 0

mHkm
cs
m VHFHF ><−≤      (18) 

Hence, the optimal mean fields come from a variation approach to minimizing the 
upper bound under free energy. It yields the optimal potential for assigning the i th 

pixel to group k . 

  0|))(( *

00 =>−<+
∂

∂
= ik

m
ik

m
cs
mmm

ik

HHHF εεε
    (19) 

The calculation of the partial derivatives gives us the two optimal potentials  

  )�̂;y(�̂log1*

kikikik φε =       (20) 

Thus, the resulted optimal assignment on the E-step of the t th iteration using these 

potentials is given by  

  

∑ =

−

−

−
=Θ=

K

h

m
ih

m
ikt

iiki
tm

k E

1

*

*
)1()(

)exp(

)exp(
},y|Z{)y(

βε
βετ ,   2,1=m  (21) 

and if we replace the assignment variable, ikZ  by its optimal assignment )y()(

i
tm

kτ , 

we can obtain the Q  function. 

  }�log)y()�;y(log)y({)|( )(1

1 1

)(1)1(1

ik
Ns

i
t

k

N

i

K

k
kii

t
k

t

i

Q ∑∑∑
∈= =

− ⋅+−=ΘΘ τφτβ  (22) 

On the M-step on the t th iteration, we should choose the value of Θ  that 

maximizes )|( )1( −ΘΘ tQβ . If we solve the likelihood equation using LaGrange’s 

multiplier method, we can obtain the current fit for the mixing proportions in the two 
kinds of models, 

∑∑

∑

= ∈

∈=
K

k Ns
s

t
k

Ns
s

t
k

ik

i

i

1

)(1

)(1

1

)y(

)y(

�̂

τ

τ
�� � � � �����

We can also obtain the current estimators of the means, and covariance matrices. 
These are given explicitly by 
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4  Experimental Results 
To assess the performance of the proposed segmentation algorithm, we have 

conducted the simulated experiments using real images. Fig. 1(a) is an original image 
that has 100 x 100 pixels and 24bit RGB color levels and consists of multi-colored 
objects and background. The conversion of the RGB color image to HSI model is 
carried out and the hue and saturation components are only used as features. Fig. 1(b) 
shows the color distributions of the block image in HS-space. Here we can see the 
data consist of four overlapped clusters which represent objects with three color 
components and one colored background, respectively. 
 

      
(a)     (b) 

Fig. 1 Real image used in the experiment: 
(a) original block image, (b) colour distributions in HS-space. 

Fig. 2 shows three different initial positions and the convergence results of 
applying the conventional EM and MFA-EM algorithms to the data in Fig. 1(b) to 
examine their initialization effects on the parameter estimation. The initial and final 
component Gaussians are represented by circles and ellipses, respectively, drawn as 

points with the unit distance from the mean as 1)()( 1 =−− − µx�µx T
. In Fig. 2(a), 

the initial positions were chosen close to the centers while they were chosen as 
randomly selected data points in Fig 2(b) and (c). 
 

Initial position     EM         MFA-EM 

(a)  

(b)  
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(c)  
Fig. 2 Results of applying EM and MFA-EM algorithms with three sets of initial 

conditions. 
 

We can observe that the four component Gaussians estimated by using the 
conventional EM algorithm converge to each different pattern while those of the 
MFA-EM algorithm converge to the same pattern regardless of the initial positions. 
Therefore the MFA-EM algorithm can partition the data points into four clusters more 
effectively than the conventional EM algorithm. The segmentation results for the 
block image are shown in Fig. 3(a) and the superpositioned results on the original 
image are shown in Fig. 3(b) for the boundary examination. The boundaries of the 
objects are preserved by the MFA-EM algorithm whereas they are degraded by the 
conventional EM algorithm. Especially the background is regarded as the same region 
in the segmented result of the MFA-EM algorithm while that of the conventional EM 
contains lots of small regions. 

 
EM   MFA-EM 

(a)      

(b)      
Fig. 3 Segmentation results of block image : (a) segmentation results, (b) 

segmentation results superpositioned on the original image 
 

Orignal Image         EM           MFA-EM 

(a)    
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(b)    
Fig. 4 Segmentation results by the EM and MFA-EM algorithms: 

(a) checker board image, (b) bird image 
 
The results of the second experiments for the real images with simple color 
distributions are shown in Fig. 4. The MFA-EM has been shown to provide a 
subjectively superior segmentation in that the homogeneous objects are partitioned 
into the same region accurately and the fine structure is preserved. 
 

5  Conclusions 
We have proposed a mean field annealing EM algorithm for the image 

segmentation. The proposed algorithm was derived using the principle of maximum 
entropy to overcome the local maximal problem associated with the conventional EM 
algorithm. For the image segmentation, first, image color distributions were modeled 
using Gaussian mixture models in hue-saturation space. Then the maximum 
likelihood estimates of the GMM were obtained by employing the MFA-EM 
algorithm. Finally, assigning each sample to the regions with the most probable 
component Gaussian segmented the image. 

We conclude from the experiments for the real images that MFA-EM algorithm is 
robust to initial conditions and a global optimal solution for the ML parameter 
estimation. It provided a superior segmentation in that each object in homogeneous 
region was partitioned into the same region accurately. Further work will investigate 
the effect of the initial temperature value of T and its decreasing rate on the 
performance of the deterministic annealing algorithm. 
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