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Abstract. Robustly tracking people in visual scenes is an important
task for surveillance, human-computer interfaces and visually mediated
interaction. Existing attempts at tracking a person’s head and hands deal
with ambiguity, uncertainty and noise by intrinsically assuming a con-
sistently continuous visual stream and/or exploiting depth information.
We present a method for tracking the head and hands of a human subject
from a single view with no constraints on the continuity of motion. Hence
the tracker is appropriate for real-time applications in which the availa-
bility of visual data is constrained, and motion is discontinuous. Rather
than relying on spatio-temporal continuity and complex 3D models of
the human body, a Bayesian Belief Network deduces the body part po-
sitions by fusing colour, motion and coarse intensity measurements with
contextual semantics.

1 Introduction

Tracking human body parts and motion is a challenging but essential task for 
modelling, recognition and interpretation of human behaviour. In particular, 
tracking of at least the head and hands is required for gesture recognition in 
human-computer interface applications such as sign-language recognition. Exi-
sting methods for markerless tracking can be categorised according to the measu-
rements and models used [9]. In terms of measurements, tracking usually relies 
on intensity information such as edges [10,2,17,5], skin colour and/or motion 
segmentation [24,14,11,16], or a combination of these with other cues including 
depth [13,25,19,1]. The choice of model depends on the application of the tracker. 
If the tracker output is to be used for some recognition process then a 2D model 
of the body will suffice [16,11]. On the other hand, a 3D model of the body may 
be required for generative purposes, to drive an avatar for example, in which case 
skeletal constraints can be exploited [25,19,5], or deformable 3D models can be 
matched to 2D images [10,17].

Colour-based tracking of body parts is a relatively robust and inexpensive ap-
proach. Nevertheless the loss of information involved induces problems of noise, 
uncertainty, and ambiguity due to occlusion and distracting “skin-coloured” 
background objects. The two most difficult problems to deal with when tracking
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the head and hands are occlusion and correct hand association. Occlusion occurs
when a hand passes in front of the face or intersects with the other hand. Hand
association requires that the hands found in the current frame be matched cor-
rectly to the left and right hands. Most existing attempts at tracking cope with
these problems using temporal prediction and/or depth information. Temporal
prediction intrinsically assumes temporal order and continuity in measured data,
therefore a consistent, sufficiently high frame rate is required. The use of depth
information requires more than one camera and solution of the correspondence
problem which is computationally non-trivial.

We argue that robust, real-time human tracking systems must be designed
to work with a source of discontinuous visual information. Any vision system
operates under constraints that attenuate the bandwidth of visual input. In some
cases the data may simply be unavailable, in other cases computation time is
limited due to finite resources. A further and more significant computational
constraint is associated with complexity and stability of behavioural models.
Exhaustive modelling of the world would be prohibitively complex; rather it is
more realistic to establish economical models or beliefs about the environment
which are iteratively updated by visual observations. Since the models are not
exhaustive, not all visual information requires processing. In fact, it may be un-
desirable to absorb all available visual information into belief structures because
instability, or “catastrophic unlearning”, may result. Therefore a robust vision
system should be based on selective attention to filter out irrelevant informa-
tion and use only salient visual stimuli to update its beliefs [23]. While selective
attention is traditionally considered in the spatial domain, in this work we cast
the notion into the temporal domain in order to relax the underlying constraint
of temporal order and continuity required in tracking visual events over time.

We achieve the goal of tracking discontinuous human body motion by repla-
cing the problem of spatio-temporal prediction with reasoning about body-part
associations based on contextual knowledge. Our approach uses Bayesian Belief
Networks (BBNs) to fuse high-level contextual knowledge with sensor-level ob-
servations. Belief networks are an effective vehicle for combining user-supplied
semantics with conflicting and noisy observations to deduce an overall consistent
interpretation of the scene. BBNs have been used previously as a framework
for tracking multiple vehicles under occlusion using contextual information [4].
In [18], a naive BBN was used to characterise and classify objects in a visual
scene. For tracking body parts under discontinuous motion the BBN framework
is ideal because unlike other tracking methods such as Kalman filtering or CON-
DENSATION [12] that explicitly model the dynamics through change, Belief
Networks model absolute relationships between variables and can make deduc-
tive leaps given limited but significant evidence. Nevertheless, the accumulated
beliefs still implicitly reflect all currently observed evidence over time. We de-
monstrate that through iterative revision of hypotheses about associations of
hands with skin-coloured image regions, such an atemporal belief-based tracker is
able to recover from almost any form of track loss. In Section 2 we describe the
context, assumptions and measurements used by the body tracker. In Section
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3 we present the framework for combining these observations with contextual
knowledge using BBNs. An experimental comparison of our tracker with a dy-
namic tracker and a non-contextual tracker is presented in Section 4, and the
conclusion is given in Section 5.

2 Tracking Discontinuous Motion from 2D Observations

The merits of any given behavioural modelling method are established according
to the purpose for which it is used, therefore it is appropriate at this point to
introduce the context for our tracking approach and the assumptions made.
We are interested in modelling individual and group behaviours for visually
mediated interaction using only a single 2D view, therefore depth information is
unavailable. Behaviour models are used to interpret activities in the scene and
change the view to focus on regions of interest. Therefore we have the luxury
of not requiring full 3D tracking of the human body parts, which would rely
on expensive matching to unreliable intensity observations. On the other hand,
the system is required to simultaneously track several people which generally
results in a variable and relatively low frame rate. From our experience with
these conditions, a person’s hand, for example, can often move from rest to a
distance half the length of their body between one frame and the next! Also, in
images of manageable resolution containing several people (all images used in
this work are 320 × 240 pixels), the hands may occupy regions as small as ten
pixels or less wide, making appearance-based methods unreliable.

To illustrate the nature of the discontinuous body motions under these condi-
tions, Figure 1 shows the head and hands positions and accelerations (as vectors)
for two video sequences, along with sample frames. The video frames were sam-
ples at 18 frames per second (fps). Even so, there are many significant temporal
changes in both the magnitude and orientation of the acceleration of the hands.
It may be unrealistic to attempt to model the dynamics of the body under these
circumstances. We propose that under the following assumptions, the ambigui-
ties and uncertainties associated with tracking a person’s discontinuous head
and hand movement can be overcome using only information from a single 2D
view without modelling the full dynamics of the human body:

1. the subject is oriented roughly towards the camera for most of the time.
2. the subject is wearing long sleeves.
3. reasonably good colour segmentation of the head and hands is possible, and
4. the head and hands are the largest moving skin colour clusters in the image.

The robust visual cues used for tracking are now described, followed by a de-
scription of the head-tracking and bootstrapping methods.

2.1 Computing Visual Cues

Real-time vision systems have two chief practical requirements: computational
efficiency and robustness. Computational constraints exclude the use of expen-
sive optimisation methods, while robustness requires tolerance of assumption
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Fig. 1. Two examples of behaviour sequences and their tracked head and hand positions
and accelerations. At each time frame, the 2D acceleration is shown as an arrow with
arrowhead size proportional to the acceleration magnitude. From left to right, the plots
correspond to the head, left hand and right hand.

violation. To meet these requirements we adopt a philosophy of perceptual fu-
sion: independent, relatively inexpensive visual cues are combined to benefit from
their mutual strengths and achieve some invariance to their assumptions [7]. The
cues that are used to drive our body tracker are skin colour, image motion and
coarse intensity information, namely hand orientation. Pixel-wise skin colour
probability has been previously shown to be a robust and inexpensive visual cue
for identification and tracking of people under varying lighting conditions [22].
Skin colour probabilities can be computed for an image and thresholded to obtain
a binary skin image, an example is shown in Figure 2(b). Here image motion
is naively computed as the thresholded difference between pixel intensities in
successive frames; an example is shown in Figure 2(c).

Skin colour and motion are natural cues for focusing attention and processing
resources on salient regions in the image. Note that although distracting noise
and background clusters appear in the skin image, these can be eliminated at
a low level by “AND”ing directly with motion information. However, fusion of
these cues at this low level of processing is premature due to loss of information.
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(a) (b) (c)

Fig. 2. Example of visual cues measured from video stream. (a) original image; (b)
binary skin colour image; and (c) binary motion image.

The problem of associating the correct hands over time can usually be solved
using spatial constraints. However, situations arise under occlusion in which
choosing the nearest skin-coloured cluster to the previous hand position results
in incorrect hand assignment. Therefore the problem cannot be solved purely
using colour and motion information. In the absence of depth information or 3D
skeletal constraints, we use intensity information to assist in resolving incorrect
assignment. The intensity image of each hand is used to obtain a very coarse
measurement of hand orientation which is robust even in low resolution imagery.
The restricted kinematics of the human body are loosely modelled to exploit the
fact that only certain hand orientations are likely at any position in the image
relative to the head.

The accumulation of a statistical hand orientation model is illustrated in
Figure 3. Assuming that the subject is facing the camera, the image is divided
coarsely into a grid of histogram bins. We then artificially synthesise a histo-
gram of likely hand orientations for each 2D position of the hand in the image
projection relative to the head position. To do this, a 3D model of the human
body is used to exhaustively sample the range of possible arm joint angles in
upright posture. Assuming that the hand extends parallel to the forearm, the 2D
projection is made to obtain the appearance of hand orientation and position
in the image plane, and the corresponding histogram bin is updated. During
tracking, the quantised hand orientation is obtained according to the maximum
response from a bank of oriented Gabor filters, and the tracked hand position
relative to the tracked head position is used to index the histogram and obtain
the likelihood of the hand orientation given the position.

2.2 Head Tracking Using Mean Shift

The first two constraints to be exploited are that the head is generally larger
than the hands in the image, and that head movement is significantly more stable
and moderate than hand motion. We track the head directly using an iterated
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Fig. 3. Schematic diagram of the hand orientation histogram process.

mean shift algorithm [3]. This method converges on the local mode of the skin
probability distribution. Despite its simplicity, the algorithm is very robust to
occlusion by hands. The head is modelled as a rectangular region containing skin
pixels. A search region is defined such that it is centred on the head box but is
slightly larger. Given an initial/previous position (cx(t), cy(t)), the algorithm is
to iteratively calculate the spatial mean of skin pixels in the rectangular search
region and shift the box to be centred on that estimated mean until it converges,
as expounded in Figure 4.

loop:
– cx(t − 1) = cx(t), cy(t − 1) = cy(t)
– cx(t) = 1

nskin

∑
p∈S

px

cy(t) = 1
nskin

∑
p∈S

py

where p = (px, py) is a pixel, S is the set of skin pixels in
the search region and nskin = |S|.

– Set search region centre to (cx(t), cy(t)).
until cx(t) = cx(t − 1) and cy(t) = cy(t − 1).

Fig. 4. The mean shift algorithm for tracking the head box.

After convergence, the size of the head box is set according to the following
heuristic:

w =
√

nskin (1)



156 J. Sherrah and S. Gong

h = 1.2w (2)

Note that the search region must be slightly larger than the head rectangle to
avoid continual shrinking of the box, and to allow significant movement of the
head without loss of track.

2.3 Local Skin Colour Clusters

Under the assumption that the head and hands form the largest moving connec-
ted skin coloured regions in the image, tracking the hands reduces to matching
the previous hand estimate to the skin clusters in the current frame. This as-
sociation can be performed either at the pixel level or at a “cluster” level. At
the pixel level, hands are tracked using local search via updating of spatial hand
box means and variances (size). At the cluster level, a connected components
algorithm is used to find all spatially connected sets of coloured pixels, which
are subsequently treated as discrete entities. We have chosen to use the cluster
representation for three reasons:

– The pixel-level approach requires estimation of spatial means and variances
of pixels which are quite sensitive to outliers. Even if medians are used
instead of means, the hand box sizes are very sensitive to noise.

– The local tracking approach requires heuristic search parameters, and is
generally invalid for discontinuous motion since the hands may move a sig-
nificant distance from one frame to the next.

– Reasoning about hand associations is easier using the higher-level cluster
representation.

We used a connected components algorithm that has computational complexity
linear in the number of skin pixels to obtain a list of skin clusters in the current
frame. The components are drawn only from those portions of the region outside
of an exclusion region defined by the head tracker box. The exclusion region is
slightly larger than the head box due to protruding necklines or ears that can be
mistaken for potential hand clusters. Clusters containing only a few pixels are
assumed to be noise and removed. Finally the clusters are sorted in descending
order of their skin pixel count for subsequent use.

2.4 Initialisation

Tracking is initialised by using skin colour to focus on areas of interest, then
performing a multi-scale, multi-position identity-independent face search within
these regions using a Support Vector Machine (SVM) [20]. An example is shown
in Figure 5. The SVM has been trained only on frontal and near-frontal faces,
so it is assumed that the subject is initially facing approximately towards the
camera. The mean shift head tracker is then initialised on the detected face
region. Since the hands tracker only uses temporal association as a secondary cue,
full tracking of the body can begin immediately after this partial initialisation.
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SVM-detected
face

skin
clusters

Fig. 5. Example of the tracker initialisation using an SVM.

3 Reasoning about Body-Parts Association Using
Bayesian Inference

Given only the visual cues described in the previous section, the problem is now
to determine the association of skin colour clusters to the left and right hands.
One can consider this situation to be equivalent to watching a mime artist wea-
ring a white face mask and white gloves in black clothing and a black background
(see Figure 2(b)). Further, only discontinuous information is available as though
a strobe light were operating, creating a “jerky” effect (see Figure 6(a)). Un-
der these conditions explicit modelling of body dynamics inevitably makes too
strong an assumption about image data. Rather, the tracking can be performed
better and more robustly through a process of deduction. This requires full ex-
ploitation of both visual cues and high-level contextual knowledge. For instance,
we know that at any given time a hand is either (1) associated with a skin colour
cluster, or (2) it occludes the face (and is therefore “invisible” using only skin
colour) as in Figures 6(b) and 6(c), or (3) it has disappeared from the image as
in Figure 6(d). When considering both hands, the possibility arises that both
hands are associated with the same skin colour cluster, as when one clasps the
hands together for example, shown in Figure 6(e).

Clearly a mechanism is required for reasoning about the situation. In the
next section, Bayesian Belief Networks (BBNs) are introduced as a mechanism
for performing inference, after which we describe how BBNs have been applied
to our tracking problem.

3.1 Bayesian Belief Networks

The obvious method of incorporating semantics into our tracking problem would
be through a fixed set of rules. However there are two unpleasantries associated
with this approach: brittleness and global lack of consistency. Hard rule-bases
are notoriously sensitive to noise because once a decision has been made based
on some fixed threshold, subsequent decision-making is isolated from the con-
tending unchosen possibilities. Sensitivity to noise is undesirable in our situation
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since we are dealing with very noisy and uncertain image data. The rule-based
approach can also suffer from global consistency problems because commitment
to a single decision precludes feedback of higher-level knowledge to refine lower-
level uncertain observations or beliefs.

An alternative approach to reasoning is based on soft, probabilistic decisi-
ons. Under such a framework all hypotheses are considered to some degree but
with an associated probability. Bayesian Belief Networks provide a rigorous fra-
mework for combining semantic and sensor-level reasoning under conditions of
uncertainty [21,8]. Given a set of variables W representing the scenario1, the
assumption is that all our knowledge of the current state of affairs is encoded
in the joint distribution of the variables conditioned on the existing evidence,
P (w|e). Explicit modelling of this distribution is unintuitive and often infea-
sible. Instead, conditional independencies between variables can be exploited
to sparsely specify the joint distribution in terms of more tangible conditional
distributions between variables.

A BBN is a directed acyclic graph that explicitly defines the statistical (or
“causal”) dependencies between all variables2. These dependencies are known a

1 Regarding notation, upper-case is used to denote a random variable, lower-case to
denote its instantiation, and boldface is used to represent sets of variables.

2 Therefore the statistical independencies are implicitly defined as well.

(a) (b)

(c) (d) (e)

Fig. 6. Examples of the difficulties associated with tracking the body. (a) motion is
discontinuous between frames; (b) one hand occludes the face; (c) both hands occlude
the face; (d) a hand is invisible in the image; and (e) the hands occlude each other.
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priori and used to create the network architecture. Nodes in the network repre-
sent random variables, while directed links point from conditioning to dependent
variables. For a link between two variables, X → Y , the distribution P (y|x) in
the absence of evidence must be specified beforehand from contextual knowledge.
As evidence is presented to the network over time through variable instantiation,
a set of beliefs are established which reflect both prior and observed information:

BEL(x) = P (x|e) (3)

where BEL(x) is the belief in the value of variable X given the evidence e.
Updating of beliefs occurs through a distributed message-passing process that is
made possible via exploitation of local dependencies and global independencies.
Hence dissemination of evidence to update currently-held beliefs can be perfor-
med in a tractable manner to arrive at a globally consistent evaluation of the
situation.

A BBN can subsequently be used for prediction and queries regarding values
of single variables given current evidence. However, if the most probable joint
configuration of several variables given the evidence is required, then a process
of belief revision3 (as opposed to belief updating) must be applied to obtain the
most probable explanation of the evidence at hand, w∗, defined by the following
criterion:

P (w∗|e) =
max
w P (w|e) (4)

where w is any instantiation of the variables W consistent with the evidence
e, termed an explanation or extension of e, and w∗ is the most probable expla-
nation/extension. This corresponds to the locally-computed function expressing
the local belief in the extension:

BEL∗(x) =
max
w′

X P (x,w′
X |e) (5)

where W′
X = W − X.

3.2 Tracking by Inference

The BBN for tracking hands is shown in Figure 7. Abbreviations are: LH = left
hand, RH = right hand, LS = left shoulder, RS = right shoulder, B1 = skin
cluster 1, B2 = skin cluster 2. There are 19 variables, W = {X1, X2, . . . , X19}.
The first point to note is that some of the variables are conceptual, namely X1,
X2, X5 and X9, while the remaining variables correspond to image-measurable
quantities, e = {X3, X4, X6, X7, X8, X10, . . . , X19}. All quantities in the network
are or have been transformed to discrete variables. The conditional probability
distributions attributed to each variable in the network are specified beforehand
using either domain knowledge or statistical sampling. At each time step, all of
the measurement variables are instantiated from observations. B1 and B2 refer
3 The difference between belief updating and belief revision comes about because in

general, the values for variables X and Y that maximise their joint distribution are
not the values that maximise their individual marginal distributions.
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to the two largest skin clusters in the image (apart from the head), obtained
as per Section 2.3. Absence of clusters is handled by setting the variables X5
and X9 to have zero probability of being a hand. The localised belief revision
method is then employed until the network stabilises and the most probable
joint explanation of the observations is obtained:

P (w∗|{x3, x4, x6, x7, x8, x10, . . . , x19}) =
max
w P (w|{x3, x4, x6, x7, x8, x10, . . . , x19})

(6)
This yields the most likely joint values of X1 and X2, which can be used to set
the left and hand box position.

Note that the network structure is not singly connected, due to the loops
formed through X1 and X2. Consequently the simple belief revision algorithm
of Pearl [21] cannot be used due to non-convergence. Instead, we apply the
more general inference algorithm of Lauritzen and Spiegelhalter [15,6,8]. This
inference method transforms the network to a join tree, each node of which
contains a sub-set of variables called a clique. The transformation to the join
tree needs to be performed only once off-line. Inference then proceeds on the
join tree via a message-passing mechanism similar to the method proposed by
Pearl. The complexity of the propagation algorithm is proportional to the span
of the join tree and the largest state space size amongst the cliques. The variables
and their dependencies are now explained as follows.

n skin B1 n motion B1 aspect B1 size B1 size B2 aspect B2 n motion B2 n skin B2

d(RH,B)d(RH,B)B2 is hand
orientation

handn skin facen motion faceB1 is handd(LH,B) d(LS,B)

LH position RH position

X X X X X X

12X X13 X X15 X X

10X X

X19X

XX

X4 53

14

1

6 87

2

16 1817

119

Fig. 7. A Bayesian Belief Network representing dependencies amongst variables in the
human body-parts tracking scenario.

X1 and X2: the primary hypotheses regarding the left and right hand positions
respectively. These variables are discrete with values {CLUSTER1, CLU-
STER2, HEAD} which represent skin cluster 1, skin cluster 2 and occlusion
of the head respectively. Note that disappearance of the hands is not model-
led here for simplicity.

X3; X10: the distance in pixels of the previous left/right-hand box position from
the currently hypothesised cluster. The dependency imposes a weak spatio-
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temporal constraint that hands are more likely to have moved a small di-
stance than a large distance from one frame to the next.

X4; X11: the distance in pixels of the hypothesised cluster from the left/right
shoulder. The shoulder position is estimated from the tracked head box. This
dependency specifies that the hypothesised cluster should lie within a certain
distance of the shoulder as defined by the length of the arm.

X5, X12, X13, X14, X15; X9, X16, X17, X18, X19: these variables determine
whether each cluster is a hand. X5 and X9 are boolean variables specify-
ing whether or not their respective clusters are hands or noise. The variables
have an obvious dependency on X1 and X2: if either hand is a cluster, then
that cluster must be a hand. The descendants of X5 and X9 provide evidence
that the clusters are hands. X12 and X19 are the number of skin pixels in
each cluster, which have some distribution depending on whether or not the
cluster is a hand. X13 and X18 are the number of motion pixels in each
cluster, expected to be high if the cluster is a hand. Note that these values
can still be non-zero for non-hands due to shadows, highlights and noise on
skin-coloured background objects. X14 and X17 are the aspect ratios of the
clusters which will have a certain distribution if the cluster is a hand, but
no constraints if the cluster is not a hand. X15 and X16 are the spatial areas
of the enclosing rectangles of the clusters. For hands, these values have a
distribution in terms relative to the size of the head box, but for non-hands
there are no expectations.

X6 and X7: the number of moving pixels and number of skin-coloured pixels
in the head exclusion box respectively. If either of the hands is hypothesised
to occlude the head, we expect more skin pixels and some motion.

X8: orientation of the respective hand, which depends to some extent on its
spatial position in the screen relative to the head box. This orientation is
calculated for each hypothesised hand position, and the histogram described
in Section 2.1 is used to assign a conditional probability.

Under this framework, all of the visual cues can be considered simultaneously
and consistently to arrive at a most probable explanation for the positions of
both hands. BBNs lend the benefit of being able to “explain away” evidence,
which can be of use in our network. For example, if the belief that the right
hand occludes the face increases, this decreases the belief that the left hand also
occludes the face because it explains any motion of growth in the number of skin
pixels in the head region. This comes about through the indirect coupling of the
hypotheses X1 and X2 and the fixed amount of probability attributable to any
single piece of evidence. Hence probabilities are consistent and evidence is not
“double counted” [21].

4 Experimental Evaluation

An experimental evaluation of the atemporal belief-based tracker is now presen-
ted. First, examples of the tracker’s behaviour are given, then a comparison is
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performed between the BBN tracker and two other tracking methods. Note that
to make our point about the difficulty of discontinuous motion more poignant,
we captured all video data at a relatively high frame rate of 18 fps and used
off-line processing.

4.1 Tracker Performance Examples

Selected frames from four different video sequences consisting of 141 to 367 fra-
mes per sequence are shown in Figure 8. Each sub-figure shows frames from one
sequence temporally ordered from left to right, top to bottom. It is important to
note that the frames are not consecutive. In each image a box frames the head
and each of the two hands. The hand boxes are labelled left and right, showing
the correct assignments. In the first example, Figure 8(a), the hands are accu-
rately tracked before, during and after mutual occlusion. In Figure 8(b), typical
coughing and nose-scratching movements bring about occlusion of the head by
a single hand. In this sequence the two frames marked with “A” are adjacent
frames, exhibiting the significant motion discontinuity that can be encountered.
Although the frame rate was high, this discontinuity came about due to disk
swapping during video capture. Nevertheless the tracker was able to correctly
follow the hands. In Figure 8(c) the subject undergoes significant whole body
motion to ensure that the tracker works while the head is constantly moving.
With the hands alternately occluding each other and the face in a tumbling ac-
tion, the tracker is still able to follow the body parts. In the third-to-last frame
both hands simultaneously occlude the face. The example of Figure 8(d) has the
subject partially leaving the screen twice to fetch and then offer a book. Note
that in the frames marked “M” one hand is not visible in the image. Since this
case is not explicitly modelled by the tracker, occlusion with the head or the
other hand is deduced. After these periods of disappearance, the hand is once
again accurately tracked.

4.2 Comparison with Dynamic and Non-contextual Trackers

We compared the atemporal belief-based tracker experimentally with two other
tracking methods:

dynamic: assuming temporal continuity exists between frames over time and
linear dynamics, this method uses Kalman filters for each body part to match
boxes at the pixel level between frames.

non-contextual: similar to the belief-based method, this method assumes tem-
poral continuity but does not attempt to model the dynamics of the body
parts. The method matches skin clusters based only on spatial association
without the use of high-level knowledge.

It is difficult to compare the tracking methods fairly in this context. Compa-
rison of the average deviation from the true hand and head positions would be
misleading because of the all-or-nothing nature of matching to discrete clusters.
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(a)

(b)

(c)

(d)

Fig. 8. Examples of discontinuous motion tracking.
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Another possible criterion is the number of frames until loss-of-track, but this is
somewhat unfair since a tracker may lose lock at the start of the sequence and
then regain it for the rest of the sequence. The criterion we chose for comparison
is the total number of frames on which at least one body part was incorrectly
tracked, or the hands were mismatched. The comparison was performed on 14
sequences containing two different people totalling 3300 frames.

Table 1 shows the number of frames incorrectly tracked by each method, in
absolute terms and as a percentage of the total number of frames. The belief-
based tracker performs significantly better than the other two methods, even
though the data was captured at a high frame rate. Therefore the benefits of
using contextual knowledge to track discontinuous motion by inference rather
than temporal continuity are significant. One would expect even better impro-
vements if low frame-rate data were used. The most common failure modes for
the belief-based and non-contextual trackers were incorrect assignment of the
left and right hands to clusters, and locking on to background noise when one
hand was occluded. The dynamic tracker often failed due to inaccurate tem-
poral prediction of the hand position. Two examples of this failure are shown
in consecutive frames in Figure 9. Although one could use more sophisticated
dynamic models, it is very unlikely they will ever be able to feasibly capture
the full gamut of human behaviour, let alone accurately predict under heavily
discontinuous motion. For example, the body-parts tracker in [25] switches in
appropriate high-level models of behaviour for improved tracking, but the com-
putational cost increases with the number of possible behaviours modelled. In
terms of processing speed, all trackers had approximately the same performance.
The average frame rate was about 4 fps on a PII 330 using 320x240 images.

method incorrect frames
number %

belief-based 439 13
dynamic 728 22
non-contextual 995 30

Table 1. Comparative results of the three tracking methods.

5 Conclusion

Observations of body motion in real-time systems can often be jerky and di-
scontinuous. Contextual knowledge can be used to overcome ambiguities and
uncertainties in measurement. We have presented a method for tracking discon-
tinuous motion of multiple occluding body parts of an individual from a single
2D view. Rather than modelling spatio-temporal dynamics, tracking is perfor-
med by reasoning about the observations using a Bayesian Belief Network. The
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(a)

(b)

Fig. 9. Two examples of the failure of the dynamic Kalman filter tracker.

BBN framework performs bottom-up and top-down message passing to fuse both
conceptual and sensor-level quantities in a consistent manner. Hence the visual
cues of skin colour, image motion and local intensity orientation are fused with
contextual knowledge of the human body. The inference-based tracker was tested
and compared with dynamic and non-contextual approaches. The results indi-
cate that fusion of all available information at all levels significantly improves
the robustness and consistency of tracking.

We wish to extend this work in two ways. First, the tracker can be made
adaptive so that no parameters need to be changed when different people are
tracked. Second, the current tracker assumes that there is only one person in the
field of view, but we wish to use the tracker in scenes containing several people.
We will investigate how trackers can be instantiated as people enter the scene,
and how the tracker networks can be causally coupled so that skin clusters can
be explained away by one network and not considered by the other networks.
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