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Abstract. A new method for elastic mono-modal image registration for
adaptive fractionated radiotherapy is presented. Elastic registration is a
prerequisite for many medical applications in diagnosis, therapy plan-
ning, and therapy. Especially for adaptive radiotherapy efficient and
accurate registration is required. Therefore, we developed a fast block
matching algorithm for robust image registration. Anatomical landmarks
are automatically selected at tissue borders and relocated in the fre-
quency domain. A smooth interpolation is calculated by modified thin-
plate splines with local impact. The concept of the algorithm allows dif-
ferent handling of different image structures. Thus, more features were
included, like handling of discontinuities (e. g. air cavities in the intesti-
nal track or rectum, observable in only one image), which can not be
registered in a conventional way. The planning CT as well as delineated
structures of target volume and organs at risks are transformed accord-
ing to deviations observed in daily acquired verification CTs prior each
dose fraction. This way, the time consuming repeated delineation, a pre-
requisite for adaptive radiotherapy, is avoided. The total calculation time
is below 5minutes and the accurateness is higher than voxel precision,
which allows to use this tool in the clinical workflow. We present results
of prostate, head-and-neck, and paraspinal tumors with verification by
manually selected landmarks. We think this registration technique is not
only suitable for adaptive radiotherapy, but also for other applications
which require fast registration and possibilities to process special struc-
tures (e. g. discontinuities) in a different way.

1 Introduction

Recent developments in radiotherapy allow a high precision in shape of dose dis-
tributions in three dimensional target volumes (e. g. tumor), while high gradients
reduce the applicated dose in other regions (e. g. organs at risk: OAR). Currently
correct positioning of the patient is assured by fixation techniques (head masks,
vacuum pillow, . . . ). With recently available in-room 3D imaging techniques, e. g.
ConeBeam CT (kilovoltage-Source attached at Linac-gantry) or CT scanner on
rails (e.g. Siemens Primatom) global setup errors can be determined by rigid
registration between planning and verification CT images, which are acquired
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directly before therapy [1]. Rigid registration can not compensate complexer
deviations, e. g. organ movements, different fillings of hollow organs (bladder,
rectum, lung, . . . ), tissue dependent reaction to the irradiation, or other mo-
tion artifacts, e. g. caused by respiration during therapy. So far, security margins
around the tumor and OARs are used to consider these uncertainties. At the
same time, however, healthy tissue next to the tumor is also irradiated with
a therapeutical dose level and possibly damaged. A novel strategy of dynamic
adaptation of an initial plan to daily changes in size, shape, and position of the
target volume and critical structures allows a reduction of security margins and
thus a reduction of normal tissue complication probability while preserving or
increasing tumor control probability [2]. This adaptation has to be done within
less than 15minutes, in order to keep up with physiological changes (e. g. different
filling of the bladder) and clinical workflow. So far no automatic segmentation
tool can produce a complete delineation within this time. Therefore, we propose
a different strategy by elastic registration of spatial deviations between planning
and verification CT image. We apply the measured distortions to the already
segmented patient model to produce adapted delineations.

Several registration techniques were developed in the past decades [3], like op-
tical flow [4], demon algorithm [5], viscose fluid [6,7], free form deformations [8],
or block matching [9]. Most of them are rather expensive in terms of computation
time. For adaptation of therapy plans, especially calculation time is an impor-
tant constraint. We use a block matching algorithm similar to that one proposed
by Rösch et al [9] with some modifications, which make the algorithm fast and
allow the integration of additional features, like handling of discontinuities in
the deformation field, e. g. due to moving air cavities in rectum.

2 Method

Our elastic registration algorithm is divided into three main steps:

1. Automatic identification of a few landmarks at positions pi = (pi,x, pi,y, pi,z),
(i = 1...N) in first image.

2. Calculation of appropriate translation vectors ti to corresponding positions
in the other image by optimizing a similarity measure in a surrounding sub-
region Ωpi

, called templates of pi.
3. Interpolation for any position q, which can be polygon vertices of delineated

structures or all other image positions, to transform them.

These general registration steps will now be discussed in detail:

2.1 First Step, Selection of Promising Positions

Promising positions pi are spots in an image A, which can presumably be recog-
nized in the corresponding image B. Positions at tissue borders turned out to
be especially suitable. In CT images, tissue classes (e. g. fat, muscle, bones) can
be identified quickly by fixed thresholds. Border positions of these classes are
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Fig. 1. (left): transversal slice of a prostate case. (right): raw tissue separation by fixed
thresholds with selected template candidates.

identified by voxels with less than 6 neighbors of same class. Promising template
positions pi are evenly distributed at the borders with consideration of minimal
distance between each other to avoid agglutinations (see Fig. 1).

2.2 Second Step, Relocation

Each promising position pi of image A, representing a characteristic structure,
must be relocated into image B to identify the deviation ti between the images
at these positions.

By defining template areas Ωi around each position pi, these sub-images can
be re-identified in the corresponding image by local rigid registration Ri, to
get a corresponding position qi = piRi. Several similarity measurements were
proposed in literature to identify best correspondences [10]. We use the max-
imization of cross correlation coefficients ΘC , calculated in the frequency do-
main, which computes transformation parameter within a bounded local region.
A subsequent normalized ΘC is used as an absolute measure of conformity, which
allows the identification of doubtful correspondences. Cross correlation ΘC be-
tween a small domain ΩA(p) at position p of image A and a rigidly displaced
domain ΩB(pR) of image B is defined by

ΘC(ΩA(p), ΩB(pR)) =
∑

x∈Ω(A,B)

(
ΩA(p)(x) − Ω̄A(p)

) (
ΩB(pR)(x) − Ω̄B(pR)

)
(1)

and the normalized correlation ΘC is defined by

ΘNC(ΩA(p), ΩB(pR)) =
ΘC(ΩA(p), ΩB(pR))√

ΘC(ΩA(p), ΩA(p))ΘC(ΩB(pR), ΩB(pR))
(2)

Eq.(1) can be calculated efficiently in the frequency domain by fast Fourier
transformation (FFT) of the areas ΩA(p) and ΩB(pR):

ΘC(ΩA, ΩB) = FFT−1(FFT(ΩA)(FFT(ΩB)∗)) (3)

with X∗ conjugate complex of X . The displacement of a feature is identified
at the maximum of ΘC (see Fig. 2). In our application it is sufficient to con-
sider translations only, since a rotation of larger structures can be described by
different displacements of their surface points.
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(a) (b) (c)

Fig. 2. (a) a feature in image A at position pi (here located at border of a vertebral
body), (b) searching area at same position in corresponding image B and (c) surround-
ing correlation values (calculated in frequency domain). The bright spot indicates best
translation. Size of feature: 11 × 11 × 7 voxel (padded with zero values), size of search
region: 27 × 27 × 17. Maximal detectable displacements are tx,y,z = ±(8, 8, 5).

2.3 Third Step, Interpolation

In this step, elastic transformation of delineated planning structures (VOIs) are
calculated. We define VOIs by closed polygons, located in transversal CT slices.
Thus, vectors for all polygon vertices must be calculated to transform them to the
verification image. If the whole planning CT should be transformed, too (e. g. to
verify the registration), translation vectors for all voxels must be interpolated as
well. Regularly arranged translation vectors can be interpolated quickly, e. g. by
B-splines or trilinear interpolation. But since templates are arbitrarily arranged,
we use modified thin-plate splines (TPS) [11] to interpolate a translation vector
field T (A, B). Each translation t = (tx, ty, tz) ∈ IR3, located at any position
q = (qx, qy, qz) ∈ IR3, is defined by:

t(q) = a0 + axqx + ayqy + azqz +
n∑

i=1

wi,xyz · u (q − pi) (4)

with the radial base function u(t) = |t| =
√

t2x + t2y + t2z, which corresponds to
the minimization of the bending energy of a thin metal plate in 3D case. The
TPS interpolation is global in nature and one can not avoid the global effect of
each template. Among others, this means that the transformation at a position
q is affected by each anchor point pi. This is clear, because the number of coeffi-
cients, calculated by matrix inversion and multiplications with anchor positions,
are equal to the number of anchors. Since calculation time for inverting the ma-
trices to calculate the affine and elastic coefficients (a0,x,y,z and wi) increase
quadratically with the number of templates, we use a series of locally defined
TPS to speed up the calculation and to reduce the influence of far-off image
positions. As a result, one translation vector does not affect all image positions,
but only its nearby image fraction. These image fractions are determined in a
recursive process: we start with the whole image as the first current fraction.
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Fig. 3. Block TPS. The initial image is divided in a recursive process, as long as a
fraction contains more than 10% of the translation vectors (black dots). An overlap of
10% of the fractions guarantees a smooth transition.

If the current fraction contains more than a predefined number of template po-
sitions pi, this fraction is divided into two halves (first along x-, second along
y- and last along z-direction) and that strategy is recursively applied to both
fractions.

Each fraction is handled by an individual TPS interpolation. To guarantee a
smooth transition between all fractions, an overlap of 10% is defined (Fig. 3).
Inside the overlapping regions vectors are calculated separately by all related
fractions. The linear interpolation of all involved fractions is used as final value.
The number of calculated translation vectors is slightly increased due to overlap-
ping regions. But overall calculation time is reduced markedly, since the number
of TPS coefficients for each calculation is reduced.

2.4 Discontinuities

Discontinuities are a result of features, observable in only one image, e. g. gas
filled cavities inside the rectum or colon. No adequate maximization of ΘC can
be found in these regions. However, especially for usage in adaptive radiotherapy
for prostate cancer, air cavities deform strongly proximate image structures like
prostate and bladder. The method presented so far has its limitations under
these conditions, but a separate processing at these regions allows to overcome
this drawback:

After Gaussian filtering, air cavities are easily detected by an appropriate
threshold. Corresponding pairs of landmarks at border and center of cavities
allow a constriction by TPS interpolation. Border positions pi are detected in
the same manner as described in Chap. 2.1. To determine in 3D corresponding
positions qi at the exact center, a 3D distance map D is calculated, which
indicates for each voxel inside of the cavity the distance to the rectum wall.
Therefore, the maximal value of the distance map along the path perpendicular
to the wall indicates corresponding center positions:

qi = pi + r0∇A(pi), with r0 = argmax
r

D(pi + r∇A(pi)) (5)

∇A(pi) is the gradient at border position pi in the image A. To assure that
the constriction will have only local influence, the TPS-interpolated vectors are
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(a) (b) (c) (d)

Fig. 4. All images show the same frontal slice of an air cavity in the rectum. White
contour: original delineated rectum, gray contour: automatically segmented air cav-
ity. (a) distance map to indicate distances from border to center of the air cavity,
(b) distances outside of air cavity. (c) TPS interpolation, locally limited to a near
neighborhood by weighting resulting vectors with distance map (b). (d) constricted air
cavity and transformed delineations.

multiplied by a weighting factor, which is reciprocal to its distance to the air
cavity. In addition, to avoid misleading distortions of bony structures in the
direct neighborhood of air cavities, additional fixation points are inserted to
forbid the deformation of these structures.

3 Results

3.1 Quantitative Measurements

Quantitative verification of elastic registration results is as complex as its cal-
culation. Since every image position is calculated individually, for every point
of the image an individual error is present. If it would be possible to measure
the deviation between calculated vectors and real movements exactly one would
certainly consider this deviation. For patient data no objective gold standard
exists, even if fiducials like gold seeds would have been implanted they would
show the real motion only at a limited number of positions. However, usual-
ly it is possible to identify a series of anatomical landmarks in both data sets
quite well to describe deviations by distances between corresponding positions.
We manually defined those landmarks in a series of 5 test cases. These cases

Table 1. Maximal absolute deviations (tx, ty, tz) between both original images and
maximal absolute error in automatic calculated deviations (dx, dy, dz) (in mm)

# Tumor LMm LMa − LMm ni

1
2
3
4
5

Prostate
Parasp.
Parasp.
H & N
H & N

max|tx| max|ty| max|tz|
4.4 5.4 8.5
3.4 5.4 9.0
14.2 5.4 8.3
6.1 9.3 6.4
4.4 19.2 6.3

max|dx| max|dy| max|dz|
1.9 2.2 3.1
2.0 2.0 2.9
3.2 2.0 2.9
2.1 2.1 3.2
2.0 2.9 3.0

67
59
63
78
79
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Fig. 5. These bar charts show the mean errors in x, y and z-direction for five selected
patients and maximal errors (whisker caps). The errors show differences between man-
ually selected landmarks and those vectors of the automatically calculated translation
vector field at same positions.

were carefully selected to assure that sufficient large displacements are present.
Manually selected landmarks allow a semi-quantitative quality control of our
strategy. This procedure was applied to one prostate, two paraspinal and two
head-and-neck cases to show robustness of the algorithm. The results of five sets
with n1 . . . n5 pairs of landmarks are represented in Table 1. First column (LMm)
describes deviations between both original images by maximal distances. We ob-
served deviations of about 1 cm, in maximum 14.2mm and 19.2mm (patient 3
and 5). Maximal absolute differences (dx, dy , dz) between automatically calcu-
lated deviations LMa and manually selected landmarks LMm are represented in
second column, which describe maximal error of each registration result. Highest
errors in x- and y-direction (3.2mm and 2.9mm) were observed in registration
of patient 3 and 5, having shown the strongest deviations at all. Deviations in
z-direction were about 3.0mm. Results of automatic registration is acceptable,
since mean error is below voxel size (2 × 2 × 3 mm3). However, some outliers
were observed (up to 3.2mm), visualized by its maximum values with whisker
caps in the bar charts of Figure 5. Most of these outliers are a result of land-
marks, located at positions with low clinical importance, e. g. at patient’s surface.
The presented approach calculates an elastic transformation between different
CT datasets. The algorithm was designed to reuse pre-segmented structures by
adapting them to each therapy situation. Overall, the main objective was a low
calculation time, since the algorithm should be used in a small time frame (be-
low 10mins). This approach allows to handle image structures, which can not
be processed by conventional registration, in a different manner. We included
a procedure to constrict air cavities, which represent discontinuities between
two images and can not be handled in the conventional way. With the current
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implementation, a registration of a normal CT (256 × 256 × 50) is done in less
than 5 minutes with accurateness below voxel precision in clinical relevant struc-
tures (measured by comparison with manually selected landmarks). This allows
us to use our tool for selected cases in clinical routine. Even breathing motion
can be detected in 4D CT-images to individualize initial security margins. How-
ever, the most time consuming part is still the search for correspondences (half
of the calculation time). In the next step, we want to implement this part in
parallelized algorithms, which should speed up the total calculation time.

References

1. Thieke, C., Malsch, U., Bendl, R., Thilmann, C.: Kilovoltage CT using a linac-CT
scanner combination (accepted). Br. J. Radiol. (2006)

2. Yan, D., Vicini, F., Wong, J., Martinez, A.: Adaptive radiation therapy. Phys.
Med. Biol. 42 (1997) 123–132
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