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Abstract. LTSA (local tangent space alignment) is a recently proposed method 
for manifold learning, which can efficiently learn nonlinear embedding 
low-dimensional coordinates of high-dimensional data, and can also reconstruct 
high dimensional coordinates from embedding coordinates. But it ignores the 
label information conveyed by data samples, and can not be used for 
classification directly. In this paper, a transductive manifold classification 
method, called QLAT (LDA/QR and LTSA based Transductive classifier) is 
presented, which is based on LTSA and TCM-KNN (transduction confidence 
machine-k nearest neighbor). In the algorithm, local low-dimensional 
coordinates is constructed using 2-stage LDA/QR method, which not only utilize 
the label information of sample data, but also conquer the singularity problem of 
traditional LDA, then the global low-dimensional embedding manifold is 
obtained by local affine transforms, finally TCM-KNN method is used for 
classification on the low-dimensional manifold. Experiments on labeled and 
unlabeled mixed data set illustrate the effectiveness of the method. 

Keywords: manifold learning; local tangent space alignment; transductive 
inference; LDA/QR. 

1   Introduction 

Dimension reduction has long been an important problem in the fields of pattern 
classification, data mining and machine learning. With the development of information 
technology, especially the development of internet, more and more high-dimensional 
data, such as gene data, images and video emerges, the requirement of dimension 
reduction becomes more urgent. 

Many high-dimensional data in real-world applications can be modeled as sets of 
points or vectors lying close to a low-dimensional nonlinear manifold. Discovering the 
structure of the manifold from such a sample of data points is a very challenging 
problem. Many dimension reduction algorithms have been proposed, and can be 
classified to two classes roughly: linear methods and nonlinear methods. PCA 
(principal component analysis) and LDA (linear discriminant analysis) are the most 
popular linear dimension reduction methods. While they have the advantages of easy 
understandable, simple to implement and can catch the linear structure of data, they can 
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not discover the nonlinear structure of data. In reality, many higher dimension data is 
embedded in a low nonlinear manifold, and there have some cues to show the 
low-dimensional embedding is consistent with human perception[1]. To address the 
shortcomings of the linear methods, kernel PCA method and kernel LDA method have 
been proposed by many researchers. Recently, there has been considerable interest in 
developing efficient algorithms, the so called manifold learning methods, to construct 
nonlinear low-dimensional manifolds from sample data points in high-dimensional 
spaces, and these methods have been regarded as effective approaches for nonlinear 
dimension reduction. In Isomap algorithm [2], pairwise geodesic distances of the data 
points instead of the Euclid distance are used with MDS (multidimensional scaling). 
The LLE (locally linear embedding) method [3] constructs a local geometric structure 
that is invariant to translations and orthogonal transformations in a neighborhood of 
each data point, and seeks to project the data points into a low-dimensional space that 
best preserves those local geometries. (A related method using Hessian matrices is 
presented in [4]). LTSA (local tangent space alignment) [5] methods constructs a local 
tangent space for each data point, and obtains the global low-dimensional embedding 
through affine transformation of the local tangent spaces. 

While the LTSA algorithm can learn the low-dimensional nonlinear embedding 
coordinates of the higher-dimensional data, and can reconstruct the higher-dimensional 
coordinates from the low-dimensional coordinates. But as pointed out in [6], the best 
representative features are not always the best discriminant features for general 
classification task. In LTSA, class label information of data is ignored and so it can not 
be applied for classification directly. In the paper, we try to use the class label 
information and extend the LTSA algorithm from dimension reduction to classification 
problem. Traditional classification algorithms try to make the trained classifier optimal 
for all possible future data samples, but in practical, it is not needed and the classifier is 
usually only required to be optimal for specific unseen data sets. Transductive 
inference[7,8] learns the classification for unseen data directly from known data, and is 
more economic than traditional algorithms. Integrating LTSA and the idea of 
transductive inference, we proposed a TCM-KNN (transduction confidence machine-k 
nearest neighbor) [7,8 ] based manifold classification algorithm, called QLAT 
(LDA/QR and LTSA based Transductive classifier). The algorithm uses improved 
2-stage LDA/QR algorithm [9] to construct local low-dimensional coordinate, then use 
LTSA method to retrieve the global embedding map for dimension reduction, finally, 
uses TCM-KNN on the low-dimensional embedding space for classification. 

The rest of the paper is organized as follows: in Section 2, preliminary backgrounds 
are introduced, including LDA/QR, LTSA and TCM-KNN. In section 3, we describe in 
detail our proposed QLAT algorithm. Experiments result on synthetic and real data sets 
are presented in section 4. In section 5, we conclude and predict future work. 

2   Preliminaries 

QLAT algorithm is based on LTSA and TCM-KNN, which use the idea of LTSA to 
construct global embedding coordinates through affine transformation of the local 
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space. TCM-KNN is the transductive version of KNN algorithm, LTSA and 
TCM-KNN are introduced in 2.2 and 2.3 sections respectively. In the first stage of the 
original LTSA, PCA is used to construct the local coordinate, LDA is required to utilize 
the class label information. An intrinsic limitation of classical LDA is the so-called 
singularity problem, to deal with the singularity problem and improve the performance 
of the algorithm, we use 2-stage LDA/QR algorithm instead of classical LDA to 
construct the local embedding space. In section 2.1, LDA/QR algorithm is introduced 
briefly. 

2.1   LDA/QR Algorithm 

LDA/QR is a 2-stage dimension reduction algorithm proposed by Ye etc [9]. In the first 
stage of the algorithm, the separation of different classes is maximized via QR 
decomposition on the small matrix composed of class centers. This stage can be used 
independently as a dimension reduction, and the distinct property of this stage is the 
low time/space complexity. The second stage of LDA/QR refines the first stage by 
addressing the issue of within-class distance, and can be solved using the similar 
method for classical LDA, that is, by applying eigen-decomposition method. 

2.2   LTSA Algorithm 

LTSA is a nonlinear dimension reduction algorithm operated on tangent space. Data are 
assumed to lie on noised nonlinear low-dimensional manifold in the algorithm. Local 
tangent spaces are constructed for every data point with their k nearest neighborhoods. 
The final global coordinates are obtained through transfer, scaling, rotation and 
alignment of the local tangent spaces. During the alignment process, the local 
coordinates of a data point in the neighborhood with respect to the tangent space are to 
be preserved by all means. Min etc in [10] have proved that the local tangent space can 
be constructed with the eigen-vectors of the local covariance matrix, so the local 
tangent space projection problem can be converted into local PCA problem. Finally, the 
problem of obtaining global embedding coordinates can be converted into eigen-value 
problem of matrix. 

2.3   TCM-KNN 

TCM-KNN is a transductive algorithm. Transductive inference is a type of local 
inference that moves from particular to particular. In contrast to inductive inference 
where one uses given empirical data to find the approximation of a functional 
dependency and then uses the obtained approximation to evaluate the values of a 
function at the points of interest, one estimates the values of a function only at the 
points of interest in one step. The transductive inference approach uses the whole 
training set to infer a rule for each new exemplar. Transductive inference has a strong 
connection with Kolmogorov complexity, and is related with the notion of randomness 
deficiency, which is a measure of randomness. TCM-KNN is a transductive version of 
KNN method. 
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3   LDA/QR and LTSA Based Transductive Classifier (QLAT) 

QLAT is based on LTSA and TCM-KNN. Firstly, local tangent space is constructed for 
each sample data using its nearest neighborhoods, discriminant analysis is performed 
on local tangent space, and low-dimensional local coordinates are obtained for nearest 
neighborhoods. Then, global low-dimensional coordinates are achieved through affine 
transforming of local spaces. Finally, TCM-KNN algorithm is performed on the 
low-dimensional manifold space. The procedure of construct low-dimensional 
manifold is similar with the LTSA, but the mathematic induce process have some 
differences for class label information is ignored in LTSA. In the following, we give the 
detail induce process. 

Notation. We use I to denote the identity matrix, e to denote the column vector with all 

the element 1, ||*||2 denotes the 2-norm of a vector or matrix, ||*||F denotes the Frobenius 

norm, AT denotes the transpose of A, and A+ denotes the Moore-Penrose generalized 

inversion. 

Sample data set X, containing L labeled data and U unlabeled data, are assumed to 

evenly sampled from a noised low-dimensional manifold. That is, L UX X X= ∪ , 

where 1 1{( , ),...,( , )}L L LX x y x y= , 1{ ,..., }U L L UX x x+ += , 1 | |{ ,..., }i Cy C c c∈ = , C is the class 

label set, let N=L+U, then ( )i i ix f τ ε= + , d
i Rτ ∈ , D

ix R∈  , i=1,…,N, and D d≥ . 

The classification problem is : given the labeled data set XL and unlabeled data set XU, 

label the sample data xj in XU with yj,  jy C∈ , 1,...,j L N= + . 

To obtain the local coordinate of a data point p, LTSA uses the k nearest 

neighborhoods of p, and the local coordinates can be obtained with local PCA. As 

mentioned above, this local coordinate is not optimal for the problem of classification. 

Discriminant analysis is needed to utilize the class label information of data points, 

furthermore, data samples of each class are required to perform discriminant analysis 

on the local tangent space. However, in practice, labeled data is usually small and most 

data are unlabeled, so the direct applying of LDA is not appropriate. So, we use the 

method of PCA+LDA to obtain the local coordinates using nearest neighborhoods, and 

obtain the global embedding coordinate through affine transformations of the local 

coordinates. For a data point p, k nearest neighborhoods are used in LTSA, but the k 

nearest neighborhood can not guarantee the needed sample number of each class, that 

is, LDA may not be applicable, CK-NN construction method is proposed in paper [11] 
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to deal this problem for Isomap algorithm, and we apply a simple extension of KNN 

local space construction here. For each point p, find kl the nearest neighborhoods i
jp  

for each class Ci, i=1,…|C|, j=1,…,kl, and i
j Lp X∈ , then, LDA is performed with these 

data points, while PCA is performed with the k’l unlabeled nearest neighborhoods pj 

(j=1,…,k’l) of p, j Up X∈ , usually k’l=kl. The calculation of optimal d dimensional 

approximation of data point p in the affine space is equal to the optimizing problem: 

         
'

2 ' 2
2

, , , ,1

| | | |
|| ( ) || || ( ) ||

| | | |min min
l T p T pk

p TW W
j j FT p T p
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θ λ λ

Θ=
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where Q is a D×d dimensional orthogonal matrix, 1 '[ ,..., ]kθ θΘ = , 'pX  is the k’l 

unlabeled nearest neighborhoods of p, p
WS  is the within-class scatter matrix of p and 

p
BS  is the between-class scatter matrix. The definitions of p

WS  and p
BS  are: 
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= − −∑ , where 

Np is the labeled data number near to p, Np=|C|×kl, 
p

iN  is the sample number near to p 

and belonging to class Ci, 
p
im  is the mean of p

iX , mp is the overall mean of labeled 

data near to p. 

The direct solving of above optimizing problem is difficult, and the problem can not 

be solved when SB is singular, so we change the target function. There are many 

improvement of classical LDA, for example Pseudoinverse LDA, PCA+LDA, 

LDA/GSVD, LDA/QR. Among them, LDA/QR is a recently proposed 2-stage LDA 

algorithm by Ye etc, between-class distance is maximized during the first stage, and the 

optimization problem is ( )arg max
T

d

T
B

G G I

G trace G S G
=

= , which can be solved using QR 

decomposition. Within-class distance is minimized during the second stage, and the 
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target optimization problem is 1trace(( ) ( ))argmin
T T

B W
W

W W S W W S W−= , where BS  and WS  

are the reduced between-class and within-class scatter matrices respectively, and can be 

solved using eigen-decomposition of 1
b wS S− . During the first stage of the original 

LDA/QR algorithm, only information of labeled data is utilized, that is, SB is only 

related with labeled samples and information of large unlabeled sample is not utilized. 

We utilize the information of unlabeled data with LDA/QR algorithm, that is, change 

the optimization problem into  

     ( )arg max
T

d

T T
B T

G G I

G trace G S G G S Gλ
=

= +           (2) 

Where ST is the total scatter matrix of unlabeled data set near to p, 

'

( )( )
p p
j

p p p p T
T j j

x X

S x m x m
∈

= − −∑ , λ is a parameter used to adjust the weight of labeled 

samples and unlabeled samples in the construction of local coordinates, which in fact, 

is also the adjust of weight between LDA and PCA. The second stage of LDA/QR is the 

same. When the LDA/QR finished, the low-dimensional representation of xi is 

( ) ( )T T T T
i i i iz G x G x x x G x G x x= = − + = + − , where G is a D×d matrix. Comparing it with 

LTSA, the local coordinates in the low-dimensional space of i
jx  near to xi is 

( ) ( )i T i i
j jG x xθ = − , so i i i

j i j jx x Gθ ζ= + + , where ( )( )i T i i
j jI GG x xζ = − −  is the 

reconstruction error, and ( )i
jθ  is the local coordinates of i

jx  in the low-dimensional 

space near xi. 

Now consider constructing the global coordinates iτ , i=1,…,N, in the 

low-dimensional embedding space based on the local coordinates ( )i
jθ  which 

represents the local geometry. Assuming the global coordinates can be obtained with 

affine transform of the local coordinates. Let ijτ  is the global embedding coordinate of 

xij, then ( ) ( )i i
ij i i j jLτ τ θ ε= + + , j=1,…,Ni, i=1,…,N, Ni is the number of nearest 
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neighborhoods used during constructing the local coordinates of xi, Ni is not related 

with data point xi, and Ni=|C|*kl+k’l=(|C|+1)*kl if k’l=kl, denote M=Ni, iτ  is the mean 

of ijτ , j=1,…,M, iL d dR ×∈  is a local affine transformation matrix that needs to be 

determined, ( )i d
j Rε ∈  is the local reconstruction error. Denoting 1[ ,..., ] d M

i i iMT Rτ τ ×= ∈ , 

( ) ( )
1[ ,..., ]i i d M

i ME Rε ε ×= ∈  and ( ) ( )
1[ ,..., ]i i d M

i M Rθ θ ×Θ = ∈ , we have 
1 T

i i i i iT Tee L E
M

= + Θ + , and 

the local reconstruction error matrix Ei has the form: 

     
1

( )T d M
i i M i iE T I ee L R

M
×= − − Θ ∈            (3) 

To preserve as much as possible the local geometry in the global low-dimensional 

space, we seek to find ijτ  and Li to minimize the reconstruction errors ( )i
jε , i.e., 

    
2

2

2
2

1
( ) minT

i i i i
i i

E T I ee L
M

− − Θ =∑ ∑           (4) 

Obviously, the optimal alignment matrix Li that minimizes the local reconstruction 

error || ||i FE  for a fixed Ti, is given by 
1

( )T
i i iL T I ee

M
+= − Θ , and therefore, 

1
( )( )T

i i i iE T I ee I
M

+= − −Θ Θ .  

Let 1[ ,..., ] d N
N Rτ τ ×Τ = ∈  and N N

iS R ×∈  be the 0-1 selection matrix such that TSi=Ti, 

where iτ  is the global low-dimensional embedding coordinates of xi, i=1,…,N. We 

then need to find T to minimize the overall reconstruction error 
2 2

1

N

i Fi F
E TSW

=
=∑ , 

where 
2

1[ , , ] N N
NS S S R ×= ∈ , and 

2 2

1( , , ) N N
NW diagW W R ×= ∈  with  

     
1

( )( )T N N
i N N i i

N
W I ee I R+ ×= − − Θ Θ ∈           (5) 

To uniquely determine T, we will impose the constraints TTT=Id. It turns out that the 

vector e of all ones is an eigen-vector of  

       T TB SWW S              (6) 
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corresponding to the zero eigen-value. Therefore the optimal T is given by the d 

eigenvectors of B corresponding to the 2nd to d+1st smallest eigen-values, i.e., 

1 2 1[ ,..., ] [ ,..., ]T T T
N du uτ τ +Τ = = , where iτ  is a d-dimensional column vector and uj is the 

corresponding eigenvector of the jth smallest eigen-value of matrix B. There, the 

low-dimensional embedding coordinate of xi is iτ , i=1,…,N. 

After obtaining the global embedding coordinates, classification can be applied on 

the low-dimensional manifold space. We adopt the TCM-KNN[7,8] for the 

classification task. As mentioned before, TCM-KNN is a transductive inference 

method, and it seeks to find, from all possible labelings L(W) on the working set W, the 

one that yields the largest randomness deficiency, i.e., the most probable labeling. 

Randomness deficiency is, however, not computable. One has to approximate it 

instead, using a slightly modified Martin-Lof test for randomness and the values taken 

by such randomness tests are called p-values. Given a sequence of distances from 

exemplar i to other exemplars, the strangeness of i with putative label y is defined as: 

     1

1 1

( ) ( )( )
k k

y y
y ij ij

j j

i d dα − −

= =

= ∑ ∑             (7) 

The strangeness measure ( )y iα  is the ratio of the sum of the k nearest distance d 

from the same class (y) divided by the sum of the k nearest distances from all the other 

classes (-y). The strangeness of an exemplar increases when the distance from the 

exemplars of the same class becomes larger and when the distance from the other 

classes becomes smaller. The smaller the strangeness, the larger its randomness 

deficiency is. The p-value for a working exemplar j (with putative label y) can be 

computed as: 

     1( ) ( ) ( )
( )

( 1) ( )

y
l new

y y
new

f f f
p j

l f

α α α
α

+ + +
=

+
          (8) 

where l is the cardinality of the training set T, y
newα  is the strangeness measure of 

classifying a new sample into putative class y, f is monotonic nondecreasing function 

with f(0)=0, which can be defined as f(α)=α. TCM-KNN classify a sample j into 

 class y, if  

      ( ) ( ( ))arg maxy y
y

p j p j=             (9) 
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With the above explanation, the procedure of QLAT can be presented as follows: 

Table 1. QLAT Algorithm 

Input: Data set X (including labeled data set XL and unlabeled data set XU), target 
embedding low-dimension d, number of nearest neighborhoods kl and k’l (usually 
equals to kl) of LDA/QR, weight parameter λ, and k in TCM-KNN. 

Output: class label y’i of data in XU, low embedding coordinates T of samples 
in X. 

1. dimension reduction with QR decomposition for each data point i in 
high-dimensional data space, maximizing the local between-class distances; 

2. processing with the second stage of LDA/QR for each data point, minimizing 
the within-class distance; 

3. affine transforming the local coordinates, the global embedding coordinate iτ  

of data point i is given by the eigenvectors corresponding to 2~d+1 minimal 
eigenvalues of matrix B; 

4. with the global low embedding coordinates, calculating the ( )y ip x  of samples 

in XU with TCM-KNN algorithm, and classifying it with the class label 
arg max ( )i y i

y
y p x= . 

During the first stage of LDA/QR, QLAT utilize the information of labeled data set 

and unlabeled data set simultaneously, not only maximizing the betweem-class 

distances, but also utilizing the geometry information of data distribution. Compared 

with original LDA/QR algorithm, it utilizes the geometry information of sample data 

more effectively, and compared with original LTSA algorithm, it utilizes the class label 

information of sample data more effectively. 

4   Experimental Setup and Results 

In order to evaluate QLAT method, we have conducted several experiments on 
synthetic data sets and real datasets. Experiment results on Swiss-roll 3D data set, 2D 
synthetic data set, MNIST data set, ORL data set and Yale B data set are presented in 
this section. 

4.1   Synthetic Data 

Swiss-roll data set [3] was sampled evenly from noiseless 3D Swiss-roll surface, the 
data set does not have class label information, we use the data set to test the 
low-dimensional embedding capability of QLAT. The generating function is as 
follows: 



102 J. Yin et al. 

(3* / 2)*(1 2* (1, ))t pi rand N= + ; 
21* (1, )s rand N= ; 

[ .*cos( ); ; .*sin( )]X t t s t t= ; 

LDA/QR+LTSA is used, TCM-KNN is not used, and only the first stage of 
LDA/QR is used, i.e., LDA is not used. Experiment results with different kl values are 
shown in Fig.1, N=4000, d=2 in the experiments. Similar results of LTSA with 
N=2000, d=2 and different k values are presented in paper [5]. From the result, it can be 
seen that QLAT algorithm can effectively discover the low-dimensional embedding 
structure of high-dimensional data. 

 
  

   

Fig. 1. 3D swiss roll data. Generating coordinates and computed coordinates by QLAT with 
different kl values, kl=8,10,12,15,20,25,30 respectively. 

The 2D synthetic data set [9] contains 200 data points from two classes (each has 

100 points) in the 2D space. Data in the first class is generated from a Gaussian whose 

mean is [0,0], and data in the second class is generated from a mixture of two 

Gaussians: The first one has 30 points with the mean 2 2,
2 2

[2,2] [ ]μ−− , and the 

second one has 70 points with the mean 2 2,
2 2

[2,2] [ ]μ−+  (for some μ). All these 

Gaussians have covariance 0.5I2. The low-dimensional embedding results with 

different μ are presented in Fig.2, TCM-KNN is not used, and kl=k’l=5. It can be seen 

that QLAT can reduce the dimension of the data, meanwhile, keeping the separability 

of data of different classes.  
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(a) (b) (c) 

Fig. 2. Visualization of 2D synthetic data with different μ and their projections via QLAT, μ=0, 
2, 5 corresponding to (a),(b) and (c) 

4.2   MNIST Data Set, ORL Data Set and Yale B Data Set 

The MNIST database of handwritten digits has a training set of 60,00 examples, and a 
test set of 10,000 examples. The sample numbers of each class in training set varies 
from 5842 to 6742, and the sample number of each class in test set is 1,000. It is a 
subset of a large set available from NIST. The digits have been size-normalized and 
centered in a fixed-size image. The ORL face data set contains 400 face images of 40 
individuals. The image size is 92×112. The face images are perfectly centralized. The 
major challenge on this data set is the variation of the face post. There is no lighting 
variation with minimal facial expression variations and no occlusion. We use the whole 
image as an instance, that is, the dimension of an instance is 92×112=10,304. The Yale 
B data set contains 5760 single light source images of 10 subjects each seen under 576 
viewing conditions (9 poses × 64 illumination conditions). The difference of viewing 
conditions dramatically increases the within-class variations of the data set. In this 
study, we use a subset of Yale B data set, which contains 1,280 face images, that is, 
each person with 4 poses and 32 illumination conditions. Its image size is 640 × 480. 
We crop the image from the row 80 to 480 and the column 150 to 450, and then 
subsample the cropped images with sample step 4×4. The dimension of each instance is 
101×76=7,676. 

In these experiments, we explore the performance of QLAT and compare it with other 
methods, including PCA-KNN, PCA+LDA-KNN, TCM-KNN, LDA/QR-TCM. Some 
parameters in the experiments are set as follows: the component number in PCA and the 
PCA stage in PCA+LDA are set as p=100, the output dimension for LDA is k-1, where k 
is the number of class labels here. Furthermore, in QLAT method, the kl and λ need to be 
decided, the performance of QLAT with different kl and λ on MNIST are presented in 
Tab.2, k is set to be 1 during the TCM-KNN step. To explore the utilizing of unlabeled 
samples in QLAT, label information of half labeled training samples are discarded, i.e., 
half of the training samples have class labels and the other half do not have. It can be seen 
that the classification performance is best when kl is between 8 and 12, and λ is about 1.0. 
If the kl is too small, the estimation error of between-class scatter matrix will become 
large when analyzing the local structure. While if the kl is too big, the influence of remote 
data points is improperly enlarged, which can not represent the locality of the analysis, 
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besides, which increases the amount of computation. As to λ, which balance PCA and 
LDA during the local analysis. If λ is taken too small, QLAT is similar to LDA/QR and 
can not utilize the information of unlabeled samples. While if λ is taken too large, which 
can not take advantage of labeled samples. Of course, the most optimal values of kl and λ 
are related with the specific data set to be classified. In the next experiment, we take kl=10 
and λ=1.0. 

Table 2. Classification error of QLAT on MNIST with different kl and λ (K=1) 

 0 0.2 0.6 1.0 3.0 5.0 10.0 

5 3.28 3.24 2.89 2.74 3.15 3.84 4.78 
8 3.18 3.41 2.38 2.24 2.93 4.12 4.32 
10 3.82 3.17 2.53 2.32 3.18 5.02 4.22 
12 3.46 3.25 3.51 2.23 2.84 5.41 6.74 
20 9.25 7.54 4.83 2.34 3.52 8.64 10.32 
30 10.36 8.44 5.81 4.32 6.23 10.21 12.4 

Figure 3 shows the classification error results of different methods on MNIST, ORL 
and Yale B data sets. For the MNIST and Yale B data sets, class label information of 1/3 
training sample is discarded, while for the ORL data set, all the class label information of 
training data set is used. The most interesting result lies in the classification accuracy 
results on Yale B data set. We observe that PCA+LDA-KNN, PCA+LDA-TCM, 
LDA/QR-TCM and QLAT distinctly outperform the PCA-KNN method. Recall that the 
images in the Yale B data set contains large variations of poses and illumination 
conditions, whose direct consequence is the large within-class variation of each 
individual. The effort of minimizing the within-class variation achieves distinct success 
in this situation. While PCA does not have the effort in minimizing the within-class 
variation, which predicts its poor performance in this situation. 

Besides the major observation mentioned above, it can also be seen that TCM-KNN 
outperforms traditional KNN. In all the methods above, QLAT can achieve the best 
 

   
(a) (b) (c) 

Fig. 3. Performance comparison of different methods on 3 data sets, (a) for MNIST, (b) for ORL 
and (c) for Yale B 

λ 
k 
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performances on all the three data sets, especially on the Yale B data set. As to the ORL 
data set, the performance improvement of QLAT compared to LDA/QR-TCM is not 
significant. On ORL data set, the performances of most methods can achieve above 
90%. This is mainly due to the relatively small within-class variations in these data. 
Recall that ORL face images contains small pose variations and have no obstruction. 
Finally, it can be seen that KNN with k=1 usually performs the best by all algorithms on 
all three image data sets. 

5   Conclusions and Future Work 

We have described QLAT, a classification algorithm based on LTSA and TCM-KNN, 
which extends the usage field of LTSA algorithm from dimension reduction to 
classification problem. Compared with LTSA, it not only utilize the geometry 
information of unlabeled data set, also utilize the class label information of labeled 
data, and utilizes 2-stage LDA/QR instead of traditional LDA during constructing the 
local embedding coordinates. Compared with traditional KNN, QLAT uses TCM-KNN 
algorithm for classification on low-dimensional manifold and can effectively utilize the 
distribution information of testing samples. Experiment results show that QLAT is an 
effective manifold classification method. 

In future, we plan to investigate improvement in QLAT algorithm. Such as the 
parameter values of kl and λ during constructing local embedding coordinates need to 
be decided in QLAT, how to obtain the optimal values for a specific data set need 
further investigation. Furthermore, the integration of LTSA and other transductive 
inference algorithms also needs investigation. 
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