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Abstract. The aim of this paper is to present an efficient distance between n-
dimensional histograms. Some image classification or image retrieval 
techniques use the distance between histograms as a first step of the 
classification process. For this reason, some algorithms that find the distance 
between histograms have been proposed in the literature. Nevertheless, most of 
this research has been applied on one-dimensional histograms due to the 
computation of a distance between multi-dimensional histograms is very 
expensive. In this paper, we present an efficient method to compare multi-
dimensional histograms in O(2z), where z represents the number of bins. 
Results show a huge reduction of the time consuming with no recognition-ratio 
reduction. 

1   Introduction 

Finding the distance or similarity between histograms is an important issue in image 
classification or image retrieval since a histogram represents the frequency of the 
values of the pixels among the images. For this reason, a number of measures of 
similarity between histograms have been proposed and used in computer vision and 
pattern recognition. Moreover, if the position of the pixels is unimportant while 
considering the distance measure, we can compute the distance between images in an 
efficient way by computing the distance between their histograms. 

Most of the distance measures presented in the literature (there is an interesting 
compilation in [1]) consider the overlap or intersection between two histograms as a 
function of the distance value but they do not take into account the similarity on the 
non-overlapping parts of the two histograms. For this reason, Rubner presented in [2] 
a new definition of the distance measure between n-dimensional histograms that 
overcomes this non-overlapping parts problem. It was called Earth Mover’s Distance 
and it is defined as the minimum amount of work that must be performed to transform 
one histogram into the other one by moving distribution mass. 

Often, for specific set measurements, only a small fraction of the bins in a 
histogram contain significant information, that is, most of the bins are empty. This is 
more frequent when the dimensions of the histograms increase. In that cases, the 
methods that use histograms as fixed-sized structures obtain poor efficiency. In the 
algorithm depicted by Rubner [2] to find the Earth Mover’s Distance the empty-bins 
where not explicitly considered. They used the simplex algorithm [3] to compute  
the distance measure and the method presented in [4] to search a good initialisation. 
The computational cost of the simplex iteration is O(z’2), where z’ is the number of 
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non-empty bins. The main drawback of this method is that the number of iterations is 
not bounded. Moreover, the initialisation cost is O(2z’). 

To reduce the computational cost, Cha presented in [1] three algorithms to obtain 
the Earth Mover’s Distance between one-dimensional histograms when the type of 
measurements where nominal, ordinal and modulo in O(z), O(z) and O(z2) 
respectively, being z the number of levels or bins. 

Finally, Serratosa reduced more the computational cost in [5]. They presented three 
new algorithms to compute the Earth Mover’s Distance between one-dimensional 
histograms when the type of measurements where nominal, ordinal and modulo. The 
computational cost were reduced to O(z’), O(z’) and O(z’2) respectively, being z’ the 
number of non-empty bins. 

It was presented in [6] an algorithm to compute the distance between histograms 
that the input was a built histogram (obtained from the target image) and another 
image. Then, it was not necessary to build the histogram of the image of the database 
to compute the distance between histograms. 

Really few have been done to compare n-dimensional histograms except in [2]. 
The main drawback of the method presented in [2] is the computational cost. In this 
paper, we present an efficient algorithm to compute the distance between n-
dimensional histograms with a computational cost of O(2z). Our algorithm does not 
depend on the type of measurements (nominal, ordinal or modulo). In the next 
section, we define the histograms and types of values. In section 3, we give the 
definitions of distances between histograms and between sets and in section 4 we 
show the algorithm to compute the distance between histograms. In sections 5 and 6 
we show the experimental validation of our algorithm and the conclusions. 

2   Sets and Histograms 

In this section, we formally give a definition of histograms. Moreover, we show a 
property obtained from the definition of the histograms that will be useful in the 
definitions of the distances given in the next section. Finally, we define the distance 
between pixel values. 

2.1   Histogram Definition 

Let x be a measurement which can have one of z values contained in the set 
X={x1,...xz}. Each value can be represented in a T-dimensional vector as xi=(xi

1, 
xi

2,…,xi
T). Consider a set of n elements whose measurements of the value of x are 

A={a1,...an} where at∈X being at=(at
1, at

2,…,at
T). 

The histogram of the set A along measurement x is H(x,A) which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As 
we are interested only in comparing the histograms and sets of the same measurement 
x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤z, 
denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,Hz(A)] 
where  
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=
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A
iti CAH
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and the individual costs are defined as 
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The elements Hi(A) are usually called bins of the histogram. Note that z is the 
number of bins of the histogram. In a T-dimensional histogram with m values per each 
dimension, the number of bins is z=mT. 

2.2   Property of the Individual Costs 

Given a value at, the addition of all the individual costs is 1. 
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,                                           (3)  

Proof 
Given the t-element of the set A, this element has only one value at. Therefore, there is 

only one value of i such that 1, =A
tiC  (when it xa = ) and for all the other values of i, 

0, =A
tiC  (that is, it xa ≠ ). Then, the addition of all the values is one. 

2.3   Type of Measurements and Distance Between Them 

The distance between histograms presented in this paper is used as a fast method for 
comparing images and image retrieval. The most used colour representations are base 
on the R,G,B or H,S,I descriptors. The hue parameter (H) is a modulo-type 
measurement (measurement values are ordered but form a ring due to the arithmetic 
modulo operation) and the other parameters are ordinal-type measurements. 

Corresponding to these types of measurements mentioned before, we define a 
measure of difference between two measurement levels a=(a1, a2,…,aT) ∈ X and 
b=(b1, b2,…,bT) ∈ X as follows: 
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This measure satisfy the following necessary properties of a metric. Since they are 
straightforward facts, we omit the proofs. The proof of the triangle inequality for the 
modulo distance is depicted in [1] for the one-dimensional case (T=1). 

3   Distance Definitions 

In this section we present the distance between sets D(A,B) and the distance between 
their histograms D(H(A),H(B)). We proof that both satisfy the necessary properties of 
a metric and that the distance values are the same, D(A,B) = D(H(A),H(B)). To do so, 
we find a relation between the assignments between elements of the sets A and B 
while computing D(A,B) and the assignments between bins while computing 
D(H(A),H(B)). 
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This is an important result since the computational cost of D(A,B) is exponential 
respect the number of the set elements, n,  but the computational cost of 
D(H(A),H(B)) is only quadratic respect the number of bins of the histogram z. 
Moreover, in most of the applications, z is much smaller than n. Another advantage is 
that the time consuming of the comparison is constant and does not depend on each 
set. 

3.1   Distance Between Sets 

Given two sets of n elements, A and B, the distance measure is considered as the 
problem of finding the minimum difference of pair assignments between both sets. 
That is, to determine the best one-to-one assignment f (bijective function) between the 
sets such that the sum of all the differences between two individual elements in a pair 
ai∈A and bf(i)∈B is minimised. 
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We are interested only in the D(A,B) value rather than the assignment f. 
Nevertheless, we call fopt as the assignment such that the distance is obtained, so we 
can redefine the distance as follows, 
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3.2   Distance Between Histograms 

The distance between histograms that we present here is a generalisation of the Earth 
Mover’s Distance presented in [2]. Intuitively, given two T-dimensional histograms, 
one can be seen as a mass of earth properly spread in space, the other as a collection 
of holes in that same space. Then, the distance measure is the least amount of work 
needed to fill the holes with earth. Here, a unit of work corresponds to transporting a 
unit of earth by a unit of ground distance.  

More formally, given two histograms H(A) and H(B), where measurements can 
have one of z values contained in the set X={x1,...xz}, the distance between the 
histograms D(H(A),H(B)) is defined as follows, 
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            (7)  

The flow between the bins of both histograms is represented by gf(i,j), that is, the 
mass of earth that is moved as one unit from the bin i to the bin j. The product 
d(xi,xj)gf(i,j) represents the work needed to transport this mass of earth. Similarly to 
equation (5), we can redefine the distance using the optimal assignment fopt, 

                             ( ) ( )( ) ( ) ( )jigxxdBHAHD
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3.2.1   New Definition of the Flow Between Bins 
In the definition of the distance between histograms presented in [2], the flow 
between histograms was shown to be a bi-dimensional matrix. The rows of the matrix 
represented the bins of one of the histograms and the columns represented the bins of 
the other histogram. Thus, each value of a matrix element was the flow between both 
bins. In that paper, there was no relation between the distance between the sets, 
D(A,B), and the distance between the histograms of these sets, D(H(A),H(B)). For this 
reason, in the definition of the flow between bins, some constraints were needed to be 
imposed to match the distance definition to the transportation problem. 

In our paper, we determine the flow between bins gf(i,j), as a function of the one-
to-one assignment f between the sets A and B used to compute the distance D(A,B) as 
follows, 

                           ( ) ( ) zjiCCjig
n

t

B
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1
,,                        (9)  

were the costs C are given in (2). 
With this new definition, we obtain two advantages; First, there is a relation 

between distances D(A,B) and D(H(A),H(B)) through their definition. Second, the 
constraints arbitrarily imposed to the flow between bins in [2], were converted in 
deducted properties that make possible to naturally match the distance between 
histograms to the transportation problem. 

3.2.2   Properties of the Flow gf(i,j) 
The flow between the bin i of the set A and the bin j of the set B through the 
assignment f fulfils the following three properties, 
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Proofs 
Property (a) is a straightforward fact due to equations (2)   and (9). 

Property (b) Using equation (9), we obtain that 
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Property (c) Using equation (9), we obtain that ( ) ( )∑∑∑
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exchanging the sumatories and the order of the costs, we obtain that  
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3.3   Properties of the Distances 

We present in this section the metric properties of the distances between sets and 
histograms. Moreover, we show that the distance value of these distances is the same. 
To that aim, we first describe a lemma. We assume that there are two measurement 
sets A and B that have n elements contained in the set X={x1,...xz}. 

Lemma 
The distance between two elements of the sets A and B given an assignment f, can be 
obtained as the distance between bins as follows, 
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Proof 

By definition of the individual cost in equation (2), the only case that 1, =A
tiC  and 

( ) 1, =B
tfjC  is when it xa =  and ( ) jtf xb =  and so  ( )( ) ( )jitft xxdbad ,, = .  

Properties 
Property a) The distance measure D(A,B) between sets A and B satisfy the metric 
properties. 

Property b) The distance value of distances between sets and histograms of these 
sets is the same, D(A,B) = D(H(A),H(B)). 

Property c) The distance measure D(H(A),H(B)) between histograms H(A) and 
H(B) satisfy the metric properties. 

Proofs 
Property (a): The proof of this property was depicted in [5]. Although in that paper, 
the histograms were defined one-dimensional, the proof was based on the distance 
between elements d(a,b) independently on the dimension of the elements a and b. 

Property (b): If we apply equation (10) to substitute the distance between elements 
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Finally, if we substitute the equation of the flow (9) we obtain the final expression, 

( ) ( ) ( ) ( )( )BHAHDjigxxd
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. 

Property (c): The proof is simple since we have proved that the distance value is 
the same (property b) and that the distance measure between sets satisfy the metric 
property (property a).  

4   Algorithm 

In this section, we depict an efficient algorithm used to compute the distance between 
histograms based on a solution to the well-known transportation problem [3]. Suppose 
that several suppliers, each with a given amount of goods, are required to supply 
several consumers, each with a given limited capacity. For each pair of suppliers and 
consumers, the cost of transporting a single unit of goods is given. The transportation 
problem is then to find a least-expensive flow of goods from the suppliers to the 
consumers that satisfies the consumer’s demand. Our distance between histograms 
can be naturally cast as a transportation problem by defining one histogram as the 
supplier and the other one as the consumer. The cost of transporting a single unit of 
goods is set to the distance between the bin of one histogram and the bin of the other 
one, d(xi,xj). Intuitively, the solution of the transportation problem, gf(i,j), is then the 
minimum amount of “work” required to transform one histogram to the other one 
subjected to the constraints defined by the properties of the flow gf(i,j) (section 4.2.2). 

The computational cost of the transportation problem is exponential, respect the 
number of suppliers and consumers, that is, the number of bins of the histograms, z. 
Fortunately, efficient algorithms are available. One of the most common solutions is 
the simplex algorithm (), which is an iterative method that the cost of one simplex 
iteration is O(z2). The main drawback is that the number of iterations is not bounded 
and that this method needs a good initial solution. The Russell method [4] is the most 
common method used to find the first solution with a computational cost of O(2z-1). 

In this paper, we present an efficient and not iterative algorithm (figure 1) with a 
computational cost of O(2z-1). 

Given a pair of bins from both histograms, i and j, our algorithm finds the amount 
of goods that can be transported, gf(i,j), and computes the cost of this transportation, 
gf(i,j)*d(xi,xj). The algorithm finishes when all the goods have been transported, that 
is, all the elements of the sets, n, have been considered. In each iteration, a pair of 
bins is selected by the function next, in a given order and considering that the bins are 
not empty. The order of the bins is set by the following energy function, 

         ( ) ( ) ( )jDeviationPathiDeviationPathjiE ij __, +=             (11)  

The Path_Deviationj(i) is the difference between the maximum cost from the bin i 
to any bin of the histogram and the real cost from this bin to the bin j, 

         ( ) ( ) ( )jiij xxdxdistiDeviationPath ,max__ −=             (12)  

It represents the worst case that the good can be sent (supplier) or received 
(consumer) respect the best case. 
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Algorithm Histogram-Distance (H(A),H(B)) 
i,j = first() 
while n > 0 // n: the number of elements of both sets 
 gf(i,j) = min (Hi(A) , Hj(B)) 
 Hi(A) = Hi(A) - gf(i,j) 
 Hj(B) = Hj(B) - gf(i,j) 
 n = n - gf(i,j) 
 D = D + gf(i,j) * d(xi,xj) 
 i,j = next (i , j , H(A), H(B)) 
Return D  //distance between histograms 

Fig. 1. Algorithm that computes the distance between n-dimensional histograms 

Theorem. The worst computational cost of the algorithm is O(2z-1). 

Proof. The pair of bins i,j generated by the function next forms a z X z matrix. In each 
iteration, one column or file (or both) of the matrix (depending if Hi(A) = 0 or Hj(B) = 
0 is erased from the matrix (can not be used any more). Then, the worst case is the 
one that alternatively, one column is erased and after that one file is erased. Thus, the 
number of iterations is the number of columns plus the number of files less one. 

5   Experimental Validation 

We have used the coil image database [7] to validate our new algorithm and to show 
the usefulness of the histograms as the only information of the images. Only 20 
objects were selected (figure 2). The test set was composed by 100 images (5 images  
 

 

Fig. 2. Images taken at angle 5 of the 20 objects 
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of these 20 objects taken at the angles 5, 15, 25, 35 and 45). And the reference set was 
composed by other 100 images (5 images of the same objects taken at angles 0, 10, 
20, 30, 40 and 50). 

Table 1 (left) shows the number of correctly classified images (1-nearest 
neighbour) and (right) the average number of iterations of the inner loop of the 
algorithm in figure 1. The run time is proportional to the number of iterations. The 
first column is the number of bins (and bits) per each dimension. The number of 
colours is binsnD. In the other columns, we show the results for 3 different 3D-
histograms, 2 different 2D-histograms and 2 more 1D-histograms. The number of 
iterations underlined and in bold (right table) are the ones that all the images have 
been properly classified (99 or 100% in left table). If the recognition ratio is expected 
to be 99 or 100%, the best combination is HSV(2bits), CIELAB(3bits), HL(3bits) and 
HS(3bits). 

Table 1. (left) Number of objects properly classified and (right) average number of iterations 

Dimension 3D 2D 1D
Bins(bits) HSVRGB CIELAB HS HL HUEGREY

4 (2) 99 98 95 98 97 77 64
8 (3) 100 97 99 99 100 94 94

16 (4) 100 100 100 99 100 95 96
64 (6) -- -- -- 99 100 97 100

256 (8) -- -- -- -- -- 97 100

Dimension 3D 2D 1D 
Bins(bits) HSVRGBCIELAB HS HL HUE GREY

4 (2) 53 32 19 20 20 6 6
8 (3) 250 120 55 70 70 14 13

16 (4) 896 425 180 219 192 29 26
64 (6) -- -- -- 14311100 95 100

256 (8) -- -- -- -- -- 229 383
 

Table 2 shows the worst number of iterations obtained from the theoretical cost. 
We realise that there is a huge difference between the real number of iterations (table 1 
right) and the worst cases (table 2). 

Table 2. Worst number of iterations obtained from the theoretical cost 

  3D  2D 1D  
Bins (bits) X dimension HSV RGB CIELAB HS HL HUE GREY 
4 (2) 2*43-1 = 127  2*42-1 = 31 2*41-1 = 7 
8 (3) 2*83-1 = 1,023  2*82-1 = 127 2*81-1 = 15 
16 (4) 2*163-1 = 8,191  2*162-1 = 511 2*161-1 = 31 
64 (6) 2*643-1 = 524,287  2*642-1 = 8,191 2*641-1 = 127 
256 (8) 2*2563-1 = 33,554,431 2*2562-1 = 131,0712*2561-1 = 511 

6   Conclusions and Future Work 

We have presented a new distance between multi-dimensional histograms and an 
efficient algorithm to compute this distance. Our method is useful for comparing  
black&white or colour images and using H,S,I or R,G,B colour descriptors. The 
theoretical computational cost is O(2z), being z the number of levels of the pixels. The 
experimental validation demonstrates that it is worth increasing the number of 
dimensions and reducing the number of bins per each dimension, i.e. HSV (2bits). 
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Moreover, the real number of iterations (or run time) is really lower than the 
theoretical one. 
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