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Abstract. We propose a novel subtraction-based method for visualizing 
segmental and subsegmental pulmonary embolism. For the registration of a pair 
of CT angiography, a proper geometrical transformation is found through the 
following steps: First, point-based rough registration is performed for correcting 
the gross translational mismatch. The center of inertia (COI), apex and hilar 
point of each unilateral lung are proposed as the reference point. Second, the 
initial alignment is refined by iterative surface registration. Third, thin-plate 
spline warping is used to accurately align inner region of lung parenchyma. 
Finally, enhanced vessels are visualized by subtracting registered pre-contrast 
images from post-contrast images. To facilitate visualization of parenchymal 
enhancement, color-coded mapping and image fusion is used. Our method has 
been successfully applied to four pairs of CT angiography. 

1   Introduction 

Currently, computed tomography (CT) has become increasingly important in the 
diagnosis of pulmonary embolism because of the advent of multi-detector row CT 
scanners providing high spatial and excellent contrast resolution [1-3]. In CT 
angiography (CTA) images, thrombi are generally recognized as dark regions within 
enhanced pulmonary arteries. Thus the basis of pulmonary embolism assessment on 
CT images is the direct visualization of contrast material within the pulmonary 
arteries. However, it provides only limited information on perfusion defects since 
lung parenchymal attenuation changes as a result of the injection of contrast material 
are too faint to be identified on segmental and subsegmental vessels. If lung perfusion 
can be well visualized, CT may provide more accurate information on pulmonary 
embolism. 

Several methods have been suggested for visualizing perfusion defects in CTA [4]. 
Mastuni et al. [5] proposed a fully automatic detection method based on segmentation 
of pulmonary vessels to limit the search space and analysis of several 3D features 
inside segmented vessel volume. However, several false positive occurs due to flow 
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void and soft tissue between adjacent vessels. Zhou et al. [6] developed a CAD 
system for detection of pulmonary embolism in CTA images. An adaptive 3D pixel 
clustering method was developed based on Baysian estimation and Expectation-
Maximization (EM) analysis to segment vessels. Then the vessel tree was 
reconstructed by tracking the vessel and its branches in 3D space based on their 
geometric characteristics such as the tracked vessel direction and skeleton. Pichon et 
al. [7] proposed a method to highlight potential pulmonary embolism in a 3D 
representation of the pulmonary arterial tree. At first, lung vessels are segmented 
using mathematical morphology. The density values inside the vessels are then used 
to color the outside of a SSD of the vessel tree. However, pulmonary vessels exhibit a 
wider distribution of CT values from slice to slice. Thus it is difficult to visualize 
vessel structures in 3D volume using segmentation-based approach for the pulmonary 
embolism diagnosis since vessels cannot be accurately segmented and continuously 
tracked if they are largely or totally clotted by pulmonary embolism. Herzog et al. [8-
9] proposed an image post-processing algorithm for visualization of parenchymal 
attenuation in chest CT angiography, which divided into five steps: lung contour 
segmentation, vessel cutting, adaptive filtering, color-coding and overlay with the 
original images. However, the method has a limitation in the direct visualization of 
emboli by CT angiography alone. Chung et al. [10] evaluated the value of CT 
perfusion image obtained by 2D mutual information-based registration and 
subtraction for the detection of pulmonary embolism. However, they evaluated their 
method using a porcine model under the limited conditions. The 2D registration has a 
limitation to accurately align three-dimensional anatomy. In addition, the processing 
time is about 40 seconds for single slice registration. Thus, it is difficult to be useful 
and acceptable technique for clinical applications in diagnosis of pulmonary 
embolism. 

Current approaches still need more progress in computational efficiency and 
accuracy for detecting attenuation changes of pulmonary vessels in CTA. In this 
paper, we propose a novel subtraction-based method for accurately imaging perfusion 
defects and efficiently detecting segmental and sub-segmental pulmonary embolism 
in chest CTA images. For the registration of a pair of CTA, a proper geometrical 
transformation is found through the following steps: First, point-based rough 
registration is performed for correcting the gross translational mismatch. The center 
of inertia (COI), apex and hilar point of each unilateral lung are proposed as the 
reference point. Second, the rough alignment is refined by iterative surface 
registration. For fast and robust convergence of the distance measure to the optimal 
value, a 3D distance map is generated by the narrow-band distance propagation. 
Third, thin-plate spline warping is used to accurately align inner region of lung 
parenchyma. Finally, enhanced vessels are visualized by subtracting pre-contrast 
images from registered post-contrast images. To facilitate visualization of 
parenchymal enhancement, color-coded mapping and image fusion is used.  

The organization of the paper is as follows. In Section 2, we discuss how to correct 
the gross translational mismatch. Then we propose a narrow-band distance 
propagation to generate a 3D distance map and a distance measure to find an exact 
geometrical relationship in pre- and post-contrast images of CTA. Finally, nonrigid 
registration using thin-plate spline warping is described to align deformable and 
distorted area within lung parenchyma. In Section 3, experimental results show how 
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our registration method accurately and rapidly aligns the lungs. This paper is 
concluded with brief discussion of the results in Section 4. 

2   Lung Perfusion Imaging 

Fig. 1 shows the pipeline of our method for lung perfusion imaging in pre- and post-
contrast images of chest CTA. In order to extract the precise lung region borders, 
pulmonary vessels and main airway, we apply the automatic segmentation method of 
Yim et al. [11] to our experimental datasets. Since our method is applied to the 
diagnosis of pulmonary embolism, we assume that each CT scan is almost acquired at 
the maximal inspiration and the dataset includes the thorax from the trachea to below 
the diaphragm.  

 

 

Fig. 1. The pipeline of proposed method for visualization of pulmonary embolism  

2.1   Point-Based Rough Registration 

Although pre- and post-contrast images of chest CT angiography are acquired at the 
maximal inspiration, the position of lung boundaries between pre- and post-contrast 
images can be quite different according to the patient’s unexpected respiration and 
small movement. For the efficient registration of such images, an initial gross 
correction method is usually applied. Several landmark-based registration techniques 
have been used for the initial gross correction. To achieve the initial alignment of lung 
boundaries, these landmark-based registrations require the detection of landmarks and 
point-to-point registration of corresponding landmarks. These processes much 
degrade the performance of the whole process. 

To minimize the computation time and maximize the effectiveness of initial 
registration, we propose a point-based rough registration using hilar point and 
evaluate our method with center of inertia and apex. As shown in Fig. 2(c), hilar point 
is where the outermost  upper  lobe vein crosses  the basal  artery  on its way to the left  
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                    (a) (b) (c) 

Fig. 2. The effect of point-based rough registration as an initial alignment (a) COI-based 
registration (b) apex-based registration (c) hilar point-based registration   

atrium. The initial registration of two volumes is accomplished by aligning the COI, 
apex and hilar point, respectively. 

The processing time of point-based rough registration is dramatically reduced since 
it does not require any anatomical landmark detection. In addition, our method leads 
to robust convergence to the optimal value since the search space is limited near the 
lungs. 

2.2   Iterative Refinement Using Surface Registration 

In a surface registration algorithm, the calculation of the distance from a surface 
boundary to a certain point can be done using a preprocessed distance map based on 
chamfer matching. Chamfer matching reduces the generation time of a distance map 
by an approximated distance transformation compared to a Euclidean distance 
transformation. However, the computation time of distance is still expensive by the 
two-step distance transformation of forward and backward masks. In particular, when 
the initial alignment almost corrects the gross translational mismatch, the generation 
of a 3D distance map of whole volume is unnecessary. From this observation, we 
propose the narrow-band distance propagation for the efficient generation of a 3D 
distance map. 

To generate a 3D distance map, we approximate the global distance computation 
with repeated propagation of local distances within a small neighborhood. To 
approximate Euclidean distances, we consider 26-neighbor relations for 1-distance 
propagation as shown in Eq. (1). The distance value tells how far it is apart from a 
surface boundary point. The narrow-band distance propagation is applied to surface 
boundary points only in the contrast volume. We can generate a 3D distance map very 
fast since pixels are propagated only in the direction of increasing distances to the 
maximum neighborhood. 

))(),1)((min(min)( )(26 iDPjDPiDP ineighborsj += −∈  . (1) 

The distance measure in Eq. (2) is used to determine the degree of resemblance of 
lung boundaries of mask and contrast volume. The average of absolute distance 
difference, AADD, reaches the minimum when lung boundary points of mask and 
contrast volumes are aligned correctly. Since the search space of our distance measure 
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is limited to the surrounding lung boundaries, the Powell’s method is sufficient for 
evaluating AADD instead of using a more powerful optimization algorithm. 
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where )(mask iD  and )(contrast iD  is the distance value of mask volume and the distance 

value of the 3D distance map of contrast volume, respectively. We assume that 
)(mask iD  are all set to 0. 

CN  is the total number of surface boundary points in mask 

volume.  

2.3   Non-rigid Registration Using Thin-Plate Spline Warping 

Affine transformation in iterative surface registration is insufficient for accurate 
modeling of inner lung parenchyma since the lung volumes move in a non-linear way 
influenced by a combination of body movement, heart beats, and respiration. Thus we 
use a thin-plate spline warping using 10 control points of vascular structure in each 
unilateral lung. Our method leads to a non-linear volumetric warping for aligning 
inner region of lung parenchyma and detecting pulmonary embolism accurately.  

Thin-plate splines can be defined as a linear combination of radial basis functions 
as shown in Eq. (3). A transformation between two volumes can be defined by three 
separate thin-plate splines. 

∑
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where iφ  is ith control point. The coefficient ia  characterizes the linear part of the 

transformation and the coefficient ib  characterizes the non-linear part of the 

transformation. 

2.4   Enhanced Vessel Visualization 

A traditional approach for visualizing enhanced vessels after registration is to subtract 
registered pre-contrast volume from post-contrast volume. However, it is difficult to 
easily recognize perfusion defects using a traditional subtraction technique when lung 
parenchymal changes as a result of the injection of contrast material are too small. 
After subtraction, we apply color-coded mapping to only lung parenchyma and image 
fusion with original image. 

To facilitate visualization of parenchymal enhancement, the subtraction image is 
mapped onto a spectral color scale, which is interactively controlled by modifying 
center and width of a spectral color. Then the resulting color-coded parenchymal 
images are overlaid onto the corresponding slice of contrast volume. For overlaying, 
all non-parenchymal pixels are replaced by the original pixels of the respective slice 
position and displayed in the usual CT gray-scale presentation. 
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3   Experimental Results 

All our implementation and test were performed on an Intel Pentium IV PC 
containing 3.4 GHz and 2.0 GB of main memory. Our method has been applied to 
four clinical datasets with pulmonary embolism, as described in Table 1, obtained 
from Siemens Sensation 16-channel multidetector row CT scanner. The image size of 
all experimental datasets is 512 x 512. The pre- and post-contrast images of chest CT 
angiography are acquired under the same image conditions excepting the injection of 
contrast material. 

Table 1. Image conditions of experimental datasets 

(mm) 
Subject # Image size Slice number Pixel size Slice thickness 
Pre-contrast 512 x 512 258 0.60 x 0.60 1.5 1 
Post-contrast 512 x 512 258 0.60 x 0.60 1.5 
Pre-contrast 512 x 512 175 0.61 x 0.61 1.5 2 
Post-contrast 512 x 512 175 0.61 x 0.61 1.5 
Pre-contrast 512 x 512 221 0.69 x 0.69 1.5 3 
Post-contrast 512 x 512 221 0.69 x 0.69 1.5 
Pre-contrast 512 x 512 214 0.59 x 0.59 1.5 4 
Post-contrast 512 x 512 214 0.59 x 0.59 1.5 

                                                                                                                                              

The performance of our method is evaluated with the aspects of visual inspection, 
accuracy and total processing time. Fig. 3 shows the results of color-coded mapping 
and image fusion on original image. Segmental and subsegmental emboli are detected 
predominantly in the upper lobe of right and left lungs as shown in Fig. 3. We can 
easily recognize the occlusion of the corresponding segmental and subsegmental 
arteries as color-coded mapping and fusion. 

 

    
  

                      (a) (b) (c) (d) 

Fig. 3. The results of color-coded mapping and image fusion in subject 1 

Fig. 4 shows how the error, the average of root-mean squared error of 
corresponding control points, is reduced by our rough registration. The average RMS 
error reduction of COI- and hilar point-based registration is 0.32mm and 0.27mm, 
respectively. However, 0.72mm is increased in the average RMS error using apex-
based rough registration. 



 MSCT Lung Perfusion Imaging Based on Multi-stage Registration 553 

 

 

Fig. 4. The accuracy evaluation of corresponding points after rough registration   

 
Fig. 5 shows how the error, the average of absolute distance difference (AADD), is 

reduced by our rough registration and subsequent iterative surface registration. The 
COI-, apex- and hilar point-based registration is used as rough registration shown in 
Fig. 5(a), (b) and (c), respectively. Since positional difference is almost aligned by our 
rough registration, iterative surface registration rapidly converge to the optimal 
position. In almost clinical datasets, the AADD errors are less than 0.6 voxels on 
optimal solution. 

 

   
(a) (b) (c) 

 
Fig. 5. The accuracy evaluation of corresponding lung boundaries using AADD error per 
iteration    

 
Fig. 6 shows the results of our method (Method 3) of four patients in comparison 

with COI-based rough registration (Method 1) and apex-based rough registration 
(Method 2). The average of RMS errors of Method 1 and Method 3 as shown in Fig. 6 
(a) and (c) are all 1.12mm. In contrary to them, the average of RMS error of Method 2 
as shown in Fig. 6 (b) is 1.25mm. In conclusion, the average of RMS error is 
relatively small when COI- or hilar point-based registration is used as the initial 
alignment. The total processing time is summarized in Table 2 where the execution 
time is measured for registration. For four subjects, it takes less than 10 minutes. 
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(a) (b) (c) 

Fig. 6. The accuracy evaluation of corresponding lung boundaries using AADD error per 
subject   

Table 2. The comparison of processing time for registration 
(mm) 

   

4   Conclusion 

We have developed a new subtraction-based method for visualizing perfusion defects 
in pre- and post-contrast images of CT angiography. Using the rough registration, the 
initial gross correction of the lungs can be done much fast and effective without 
detecting any anatomical landmarks. In the subsequent iterative surface registration, 
our distance measure using a 3D distance map generated by the narrow-band distance 
propagation allows rapid and robust convergence to the optimal value. Nonrigid 
registration using thin-plate spline warping can exactly aligns inner region of lung 
parenchyma. Our enhanced vessel visualization makes the recognition of attenuation 
variations within lung parenchyma easily. Four pairs of pre- and post-contrast images 
of CT angiography have been used for the performance evaluation with the aspects of 
visual inspection, accuracy and processing time. In visual inspection, we can easily 
recognize the occlusion of the corresponding segmental and subsegmental arteries. 
The registration error of our method is less than 1.12mm. All our registration process 
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is finished within 10 minutes. Accurate and fast result of our method can be 
successfully used to visualize pulmonary perfusion for the diagnosis of pulmonary 
embolism. 
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