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Abstract. An effective algorithm for automatic removal impulse noise from 
highly corrupted monochromatic images is proposed. The method consists of 
two steps. Outliers are first detected using local spatial relationships between 
image pixels. Then the detected noise pixels are replaced with the output of a 
rank-order filter over a local spatially connected area excluding the outliers, 
while noise-free pixels are left unaltered. Simulation results in test images show 
a superior performance of the proposed filtering algorithm comparing with 
conventional filters. The comparisons are made using mean square error, mean 
absolute error, and subjective human visual error criterion. 

1   Introduction 

Digital images are often corrupted by impulse noise due to a noise sensor or channel 
transmission errors. The major objective of impulse noise removal is to suppress the 
noise while preserving the image details. Various algorithms have been proposed for 
impulse noise removal [1-5]. Basically the most of these algorithms are based on the 
calculation of rank-order statistics [6]. If filters are implemented uniformly across an 
image then they tend to modify pixels that are undisturbed by noise. Moreover, they 
are prone to edge jitter when the percentage of impulse noise is large. Consequently, 
suppression of impulses is often at expense of blurred and distorted features. Effective 
techniques usually consist of two steps. First a filter detects corrupted pixels and then 
a noise cancellation scheme is applied only to detected noisy pixels. Recently 
nonlinear filters for monochrome images with a signal-dependent shape of the moving 
window have been proposed [7]. In this paper, we extend this approach to automatic 
suppressing the impulse noise in highly corrupted images. First outliers are detected 
using local spatial relationships between image pixels. Then the detected noise pixels 
are replaced with the output of an appropriate rank-order filter computed over a local 
spatially connected area excluding the outliers from the area. In the case of 
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independent impulse noise, the proposed detector greatly reduces the miss probability 
of impulse noise. The performance of the proposed filter is compared with that of 
conventional algorithms. 

The presentation is organized as follows. In Section 2, we present a new efficient 
algorithm for automatic detection of noise impulses. A modified filtering algorithm 
using the proposed detector is also described. In Section 3, with the help of computer 
simulation we test the performance of the conventional and proposed filters. Section 4 
summarizes our conclusions. 

2   Automatic Detection and Removal Impulse Noise 

In impulse noise models, corrupted pixels are often replaced with values near to the 
maximum and minimum of the dynamic range of a signal. In our experiments, we 
consider a similar model in which a noisy pixel can take a random value either from 
sub-ranges of the maximum or the minimum values with a given probability. The 
distribution of impulse noise in the sub-ranges can be arbitrary. To detect impulse 
noise in an image, we use the concept of a spatially connected neighborhood (SCN). 
An underlying assumption is as follows: image pixels geometrically close to each 
other belong to the same structure or detail. The spatially connected neighborhood is 
defined as a subset of pixels {vn,m} of a moving window, which are spatially 
connected with the central pixel of the window, and whose values deviate from the 
value of the central pixel vk,l at most predetermined quantities -εv and +εv [7]: 

 ( ) { }( )k ,l n ,m k ,l v n,m k ,l vSCN v CON v : v v vε ε= − ≤ ≤ + , (1) 

where CON(X) denotes four- or eight-connected region including the central pixel of 
the moving window. The size and shape of a spatially connected neighborhood are 
dependent on characteristics of image data and on parameters, which define measures 
of homogeneity of pixel sets. So the spatially connected neighborhood is a spatially 
connected region constructed for each pixel, and it consists of all the spatially 
connected pixels, which satisfy a property of similarity with the central pixel.  

We assume that the size of the SCN of a noise cluster is relatively small comparing 
to that of details of image to be processed. Therefore impulsive noise can be detected 
by checking the size of the cluster; that is, if S ≤ M then the impulse is detected. Here 
S=SIZE(SCN) is the number of pixels included in the SCN constructed around the 
central pixel of the moving window with the parameter εv for adjacent pixels, M is a 
given threshold value for detection of noise clusters. Actually the detection depends 
on two integer parameters; that is, εv and M. Extensive computer simulations have 
shown that the best value of M, which yields minimum detection errors of noise 
clusters for various noise distributions, can be expressed as a function of a given noise 
distribution and a chosen value of εv. Let us consider model of impulsive noise. A test 
gray scale image has Q=256 quantization levels and N pixels. The probability of 
independent corruption of image pixels by impulse noise at the level q is equal to P(q) 
(0≤q≤Q-1). The probability of noise impulse occurring can be calculated as 
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and the expected number of impulses in the image is given by 

 impN pN= .  (3) 

For the considering detector, if the absolute difference between the noise impulse and 
pixels of neighborhood is less or equal to a chosen value of εv then the impulse is 
invisible for the detector. Therefore the total number of detectable impulses is less 
than Nimp in Eq. (3). In this case the expected number of outliers is given by 
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where ( )P q%  is the probability of detection of an impulse at the level q. If the 

distribution of the image signal is spatially homogeneous then the probability of noise 
impulse detection can be approximately estimated with the help of the histogram of 
uncorrupted test image, 
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where {hq} is the histogram of uncorrupted image, [.] denotes the following function: 
1, if the statement in brackets is true and 0, otherwise. 

Since the histogram of the uncorrupted image is usually inaccessible then the 
estimation of this histogram can be written as  
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where { }qh%  is the available histogram of the observed noisy image. 

The proposed detector of impulse noise takes into account the size of the SCN. 
Now we know how many impulses can be detected by the detector. Obviously, such 
detector omits impulses with the size greater than M. The probability Pr(M) of 
occurrence of four-connected noise clusters of the size M can be computed using the 
formulas given in the papers [8, 9]. In this way the expected number and the 
probability of occurrence of all clusters of the size greater than M can be obtained. 
We can state that if the expected number of clusters of the size greater than M (for a 
given image and a noise distribution) is less than unity then the value of the threshold 
M is optimal. Formally the statement can be written as 
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where imp SN >  is the expected number of clusters of the size greater than S pixels. 

The probability of occurrence of a four-connected noise cluster of the size M in a 
moving window can be computed using the addition formula of probabilities. The 
noise cluster occurs simultaneously with one of the mutually exclusive events H1,…, 
HN. Here Hk is the event denoting that there is a noise cluster of the size exactly M 
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noise impulses surrounded by uncorrupted image pixels. The probability of 
occurrence of a noise cluster of the size M at a given image pixel is given as [8, 9]  

  ( )
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N

k
k

Pr( M ) Pr H
=

=∑ ,      (8) 

where the probability of the event Hk is ( )1 kE ( M )M
kPr( H ) P P= − , Ek(M) is the 

number of surrounded uncorrupted image pixels. Taking into account that some of the 
probabilities Pr(Hk) are equal, the Eq.(8) is computationally simplified to 
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where K(M) is the number of groups, each of them contains Ck(M) events Hk with the 
equal probabilities Pr(Hk), k=1,...K(M). Ck(M), Ek(M) are coefficients determined 
from the geometry (binary region of support) of the cluster of noise. For example, the 
number of groups with M=2 is K(2)=1, and the number of surrounding four-
connected uncorrupted pixels is E1(M)=6. The number of the events is C1(M)=4 (four 
possible variants of the noise cluster on the grid including the given pixel). These 
coefficients are provided in Table 1. 

Table 1. Coefficients for calculating the probability of impulsive clusters 

Size of 
cluster M 

K(M) k Ck(M) Ek(M) 

1 1 1 1 4 
2 1 1 4 6 
3 2 1 

2 
12 
6 

7 
8 

4 3 1 
2 
3 

36 
32 
8 

8 
9 

10 
5 5 1 

2 
3 
4 
5 

5 
100 
140 
60 
10 

8 
9 

10 
11 
12 

With the help of Table 1 and Eq. (9), the probability of occurrence of a four-
connected impulse noise cluster of the size M can be easily calculated. Table 2 
presents the probability of occurrence of impulse cluster of size M versus the 
probability of impulse noise on a rectangular grid. We see that when the probability of 
impulse noise is high, the occurrence of impulse cluster is very likely.  
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Table 2. The probability of occurrence of impulse clusters of the size M versus the probability 
p of impulse noise 

Finally the proposed algorithm of impulse noise detection consists of the following 
steps.  

• Choose two initial values for εv∈[1,(Q-1)], say εv max and εv min, and then 
calculate εv=(εv max+εv min)/2. 

• Compute impN%  and M using Eqs. (4)-(7), noise distribution and threshold εv. 

• Form the SCN with εv and calculate the number of detected impulses, say D. 

• Compare D with impN% , and if (D= impN%  or εv =εv max or εv=εv min) then the 

optimal pair of εv and M is found, else go to the next step. 

• If D> impN%  then set εv min=εv, else set εv max=εv. Calculate εv=(εv max+εv min)/2 and 

go to the second step. 

Computer experiments with test images corrupted by various kinds of impulse noise 
have showed that the integer function D(εv) is monotonically decreasing. Thus the 
solution of the proposed iterative algorithm with respect to εv is unique. Since εv max, 
εvmin, and εv are integer then the number of iterations for Q=256 is limited by 7. 

When the map of detected impulses with the calculated parameters is obtained, the 
noisy pixels are replaced with the output of any appropriate filter. In our case the 
median value of at least 3 uncorrupted neighboring pixels is used. 

3   Computer Experiments 

Signal processing of an image degraded due to impulse noise is of interest in a variety 
of tasks. Computer experiments are carried out to illustrate and compare the 
performance of conventional and proposed algorithms. In this paper, we will base our 
comparisons on the mean square error (MSE), the mean absolute error (MAE), and a 
subjective visual criterion. The empirical normalized mean square error is given by  
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Probability of impulse noise  M 
p=0.01 p=0.1 p=0.2 

0 0.99 0.9 0.8 
1 5.6x10-3 6.5x10-2 8.2x10-2 

2 3.7x10-4 2.1x10-2 4.2x10-2 

3 1.7x10-5 8.3x10-3 2.8x10-2 

4 7x10-7 3x10-3 1.8x10-2 

5 2.8x10-8 1.1x10-3 1.1x10-2 
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where {vn,m} and { }n,mv̂  are the original image and its estimate (filtered image), 

respectively. In our simulations, Nx=256, My=256 (256x256 image resolution), and 
each pixel has 256 levels of quantization. The empirical normalized mean absolute 
error is defined as 
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The use of these error measures allows us to compare the performance of each filter. 
Fig. 1 shows a test image. The test image degraded due to impulsive noise is shown in 
Fig. 2.  

  

Fig. 1. Original image Fig. 2. Noisy image 

The probability of independent noise impulse occurrence is 0.2. In computer 
simulation, the values of impulses were set to 0-15 or 240-255 with equal probability. 
Table 3 shows the errors under the MSE and MAE criteria for the median filter 
(MED) of 3x3 pixels, fuzzy technique (FF) [5], and the proposed filter. 

Table 3. Impulse noise suppression with different filters 

Measured Errors 
Type of Filters MSE MAE 
Noisy image 0.17 0.162 

MED 3x3 0.065 0.012 
FF algorithm 0.023 0.009 

Proposed algorithm 0.019 0.005 

The parameters M and εv are automatically calculated with the proposed algorithm 
described in Section 2. We see that in this case the proposed filter has the best 
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performance with respect to the MSE and MAE. Now we carry out visual comparison 
of the filtering results with the median and the proposed filters. Figures 3 and 4 show 
the filtered images obtained from the noisy image with the median filter and the 
proposed filter, respectively. The proposed filter using the spatial pixel connectivity 
has a strong ability in impulse noise suppression and a very good preservation of fine 
structures and details. The visual comparison shows that the filtered image with the 
median filter is much smoother than the output image after filtering with proposed 
method. 

  

Fig. 3. Filtered image by MED filter Fig. 4. Filtered image by the proposed method 

4   Conclusion 

In this paper, we have presented a new algorithm for automatic detection and 
suppression of impulse noise in highly corrupted images. The filter utilizes an explicit 
use of spatial relations between image elements. When the input image is degraded 
due impulse noise, extensive testing has shown that the proposed spatially adaptive 
filter outperforms conventional filters in terms of the mean square error, the mean 
absolute error, and the subjective visual criterion. 
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