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Abstract. Communication Induced Checkpointing protocols usually ma-
ke the assumption that any process can be checkpointed at any time. We
propose an alternative approach which releases the constraint of always
checkpointable processes, without delaying any message reception nor al-
tering message ordering enforced by the communication layer or by the
application. This protocol has been implemented within ProActive, an
open source Java middleware for asynchronous and distributed objects
implementing the ASP (Asynchronous Sequential Processes) model.

1 Introduction

To ensure consistency of recovery lines, Communication-Induced-Checkpointing
(CIC) protocols [5, 8, 9] usually make the assumption that every process of
the system can be checkpointed at any time: a reception might lead to a forced
checkpoint. But this assumption can fail for complex or particular systems where
a process is not always in a state that can be checkpointed. In particular, in the
context of Java middlewares like ProActive [7], persistence can be obtained in
a convenient and portable way by standard Java serialization. But, as a thread
cannot be serialized, an important part of the activity1, the threads’ stacks,
cannot be checkpointed without special arrangements which are discussed below.

A first solution is to use specific tools that make checkpoints possible at any
time: threads persistence can be achieved by modifying the execution environ-
ment at the OS level [14] or at the virtual machine level [18], or by using a
native code-based persistence library [13]. Persistence capabilities can also be
added using customized compilers: they add code to capture enough informa-
tions to characterize the state of a process [2], or use compile-time reflection
to provide persistence functions [12]. But those tools usually involve a loss of
portability and/or efficiency. In the context of Java, it is rather unfortunate to
lose portability.

A more portable and convenient solution is grounded on the possibility to
identify program points at which a checkpoint is possible. In the context of
a multi-threaded programming environment like in Java, it concretely means
1 We prefer the term activity rather than process to identify the runtime entity.
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that, at those points, the state of an activity is fully characterized without any
knowledge about the state of its thread(s). For instance, the existence of such
states grounds the weak migration capability of mobile agents, as provided for
instance in Voyager or Aglets [1]: a mobile agent is able to migrate only when
it reaches such a state. We have identified such program points in the ASP
model [6], which are called stable states in the following.

As already said, in CIC checkpointing, a message reception might lead to a
forced checkpoint. In a fully asynchronous message-passing context, message re-
ceptions are unpredictable. So, message receptions can be artificially and simply
delayed without consequence, until a checkpoint can be taken (i.e., the execu-
tion reaches a stable state). But, as soon as synchronization mechanisms through
blocking message reception exists, like the wait-by-necessity mechanism in the
ProActive middleware, or in MPI with the blocking receive routine [11], this sim-
ple solution is not applicable. Indeed, postponing a message reception could lead
to a deadlock (e.g. considering that a message could be awaited by the program
in order to continue the execution and finally reach a stable state, postponing
this message to the next stable state would obviously yield to a deadlock).

Our work has thus consisted in reconsidering the initial simple solution of
postponing message receptions, given the constraints raised by Java middlewares
like ProActive and its associated computation model, the ASP calculus. Eventu-
ally, it has appeared that this new protocol applies for a wider range of contexts.

2 Context

This section describes the hypothesis for which our protocol have been designed
and circumscribes the more general context in which it can be applied.

2.1 Constrained Checkpointability

ProActive being a Java middleware, it is impossible to store the state of a thread,
thus to take a checkpoint at any time. However, some stable states where a
checkpoint is possible can be either automatically identified at the middleware
level, or explicitly defined at the application level.

Middleware Level. An activity is in a stable state when its state can be
represented without any information about its thread (particularly the stack).
The checkpointing can be thus performed using standard Java serialization; the
persistence capability is then fully-transparent to the programmer. We have
identified such states in the ASP model (see Section 2.3).

Application Level. The proposed protocol can be also used at the application
level: stable states could also be specified by the programmer as in [11] ; in
that case, the application would be responsible for restoring the state of the
activity upon recovery. Although this second approach loses transparency for
the programmer, it allows the programmer to save the minimum amount of
data necessary to recover the activity state.
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2.2 Distribution and Communication Model

ASP object calculus is based on concurrent mono-threaded activities communi-
cating using two kinds of messages: request and reply. Each activity consists of
one thread, a set of objects (which we call its applicative state), and a request
queue. There is a master object among the applicative state that is called the
active object. Note that the applicative state of an active object cannot be shared
with another active object: there is no shared memory in our model.

In ASP, when an activity calls a method on an active object, a new request
is added to the request queue of this active object. When the signature of the
called method has a return value, a future is created on the sender side: this
future represents the result of the request that is not known yet. Futures are
generalized references that can be manipulated as classical objects. However,
some operations (e.g. field access) need a real object value to be performed.
Performing such operations on future objects leads to a blocked state called
wait-by-necessity. When the receiver ends the service of a request, the associated
future can be updated: the receiver sends a reply that will replace the future.
Note that the impact of a message reception is different depending on the kind of
the message. On one hand, a request reception modifies only the request queue of
the receiver until it serves the request ; this alteration is reversible by removing
this request. On the other hand, a reply reception modifies, in a non reversible
manner, the applicative state of the receiver.

Causally ordered communications are achieved using a rendez-vous taking
place at the beginning of each communication [4]. When an activity sends a
message to another, it stops its execution until the message is in the context of
the receiver. The rendez-vous implies that communications are acknowledged and
has the advantage to always ensure point-to-point FIFO ordering of messages.

Our model then guarantees causal ordering of messages; the fault-tolerance
protocol thus has to preserve this ordering in case of recovery of the system.
More generally, as any synchronization primitive is sufficient to ensure any (par-
tial) ordering of messages at the application level, a protocol with constrained
checkpointability has to preserve during a recovery the communication order
enforced by the application.

2.3 Properties and Assumptions

The ASP Calculus: In [6], we proved using the ASP calculus the two following
main properties:

Property 1 The relative order of reception of replies during a distributed ex-
ecution has no consequence on the behavior of the program, assuming that no
deadlock is caused by wait-by-necessity.

Property 2 An execution can be characterized only by the ordered lists (one for
each activity) of request sender identifiers.
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The first property would not be necessary in a middleware that does not have
futures. A weaker version of the second one seems to be verifiable in most service-
oriented platforms: An execution can be characterized only by the ordered lists of
requests. With such a property, one would just have to store more informations
inside promised requests (Section 3.1) in order to use our protocol.

Assumptions on the System: We also make the following assumptions:

– activities are piecewise-deterministic [17] and fail-stop [16],
– failures are detected in an arbitrary but finite time [19],
– an available host always exists, in order to restart a failed activity,
– a stable storage, known by each activity, exists in order to save checkpoints.

Presence of Stable States: An activity is in a stable state when it does not
serve any request. Indeed, between two request services, the thread state is not
necessary to fully characterize the state of the activity. Consequently, the stable
state of an activity can be recorded through standard Java serialization of the
applicative state and of the request queue. Note that in practice, the presence
of stable states requires that the activities never serve a request which service
does not end. But this restriction is easy to tackle since an infinite service can
always be imitated by a infinite sequence of self-sent requests.

2.4 Notations

Figure 1 shows two activities i and j. j calls a method on i: a request Q is sent.
Eventually, this request is served on i and a reply, result of the service, is sent. A
rectangle drawn using dotted lines represents the period of service of a request.
Conversely, a period of stable state is represented by a simple line. Figure 2
shows a checkpoint Cn

i on an activity i, its sequence number (n) and the request
queue of i ([Q1, Q3, Q4]). An empty queue is denoted by [∅].

3 Principle of the Protocol

The proposed protocol is an adaptation of [5] and [8] for constrained check-
pointability. A parameter TTC, the checkpointing time counter, allows each ac-
tivity to periodically take checkpoints: if an activity has not taken any checkpoint
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during TTC seconds then a checkpoint is triggered as soon as a stable state is
reached. This time counter is reinitialized each time a checkpoint is taken. On an
activity, each checkpoint is identified by an index which monotonically increases.
In case of recovery, all activities have to restart from the same checkpoint index;
a set of checkpoint with the same index is called a recovery line. The current
checkpoint index of the sender is piggybacked on every message, and the current
index of the receiver is piggybacked on every acknowledgment message. These
piggybacking allow to identify potential orphan messages (message that have
been sent after but received before the recovery line, then duplicated in case
of recovery) or in-transit messages (messages that have been sent before but
received after the recovery line, then lost in case of recovery).

In classical CIC protocols, such messages should trigger a forced checkpoint
on the sender or on the receiver so as to ensure consistency of the currently built
recovery line. In our context, it is not possible to take those forced checkpoints;
the consequence of this constrained checkpointability is that recovery lines are
inconsistent. Indeed, there might be orphan and in-transit messages. Compared
to classical CIC protocols, our protocol must then handle those messages a-
posteriori, as soon as a checkpoint is possible, to avoid lost or duplicated messages
in case of recovery: we then introduce an additional message-logging mechanism.

Since the sending of logged messages after a recovery is obviously triggered
by the protocol, the message-logging mechanism could lead to a loss of causal
dependencies between messages, and then break the message ordering. Thus,
as long as there might exists a message that can be logged during the first
execution, the protocol has to record enough informations to be able to ensure
execution equivalence in case of recovery. For that, we introduce the request
reception history, a list of promised requests.

3.1 Promised Requests

A promised request is a local substitute for a request that is not yet received in
the re-execution; it only contains the identity of the activity from which a request
is awaited. A promised request awaited from i in the request queue of j is denoted
by Qpmd

i,j . The service of a promised request is subject to synchronization through
a wait-by-necessity mechanism: if an activity tries to serve a promised request,
it is blocked until the awaited request is received and updates the promised one.

To summarize, a promised request is a place holder for a request that will be
received after a recovery and has already been received in the first execution.

3.2 Orphan Messages

The reception of an orphan request should trigger a checkpoint before the de-
livery of this message. As this is not possible, we replace in the next possible
checkpoint the request by a promised one inside the request queue. When re-
sent during recovery, this request will thus automatically be inserted at the right
place in the request queue, like Q in case of recovery from n + 1 in Figure 3: the
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use of a promised request allows to preserve the relative order of requests during
the two executions, thus ensures execution equivalence.

Concerning replies, their reception order is not significant thanks to Property
1 but, as stated in Section 2.2, we cannot cancel their effect on the applicative
state. However, activities being piecewise-deterministic, ensuring the equivalence
of executions is sufficient for guaranteeing that the reply sent during the re-
execution is the same as during the first execution, and thus can be ignored.

3.3 In-transit Messages

In-transit messages (requests and replies) can be logged in the next possible
checkpoint and re-sent during the re-execution. We introduce the re-send queue,
denoted by ⇑{Qn, Qm....}, a queue of messages that have to be re-sent during a
recovery. Figure 4 shows the logging (noted ⇑ {Q}) of the in-transit request Q
in the checkpoint n.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

i

j

Q
Q

Cn+1
[∅]

Cn
[∅] Cn+1

[Qpmd
i,j ]

Fig. 3. The request Q is replaced by a
promised request in Cn+1

j

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

i

j

Q Q

Cn-1 ⇑{∅}
[∅] Cn ⇑{Q}

[∅]

Cn ⇑{∅}
[∅]
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3.4 Request Reception History

To preserve message ordering, the protocol must ensure equivalence between the
first execution and the re-execution in case of recovery. By doing this, it also
ensures that orphan replies are identical in the first execution and in the re-
execution (Section 3.2). This equivalence must last until the completion of the
currently built recovery line. Indeed, after this completion, there cannot be any
in-transit nor orphan messages: there cannot be anymore causal relation loss
between messages nor duplicated reply.

So as to ensure execution equivalence, we introduce the request reception his-
tory. Thanks to the Property 2, this history just needs to record the ordered list
of the identity of activities that have sent requests; this information is sufficient
to ensure execution equivalence. Consequently, a request reception history for an
activity i and for its nth checkpoint is a list of promised requests standing for the
requests received between this local checkpoint n and the history closure. The
only constraint on this closure point is that it must occur after the completion
of the recovery line n.

The history closure can thus be triggered by a message sent by the stable
storage as soon as all the checkpoints with the same index have been received.
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The consistency of the history closure line is crucial for preventing infinite wait
on a promised request. It is ensured by avoiding orphan message as in [5]: the
reception of a message from an activity that has already closed its history triggers
on the receiver the closure before the delivery of this message.

Finally, when an activity recovers from a checkpoint n, it just has to append
to its request queue the history of the checkpoint n: execution equivalence is
then ensured as long as an inconsistency could appear.

4 Experiments

A prototype has been implemented within the ProActive Java library. These
experiments are a first experimental validation of our protocol, but [3] and [10]
provide also a formal presentation of the protocol and the main steps of the
correctness proof. [10] proves that our protocol ensures that any re-execution
from any recovery line eventually reaches a consistent global state that occurs
in the first execution.

4.1 Test Applications

We choose to evaluate the overhead induced by our protocol within two repre-
sentative applications:

– “Sieve of Eratosthenes” computes the nth prime number in a master-slaves
configuration. The communication pattern is 1-to-n for the master node.

– “Jacobi” performs an iterative computation on a square matrix of floats. On
each iteration, the value of each point is computed as a function of its value
in the last iteration and the values of its neighbors. A square sub-matrix
is allocated to each activity. The communication pattern is 1-to-m for all
nodes; each activity communicates with its direct neighbors. Each activity
is equivalent to the others.

Note that the benchmarks are performed with the same source code for standard
and fault-tolerant executions, since there is no need to alter nor recompile the
source of an application to make it fault-tolerant. The tests have been performed
on a cluster of bi-Xeon @ 2Ghz 1 Gb RDRAM - 512 Kb L2 cache, Linux 2.4.17,
interconnected with a 1 Gb/s Ethernet, on the Sun Java Virtual Machine 1.4.2.

4.2 Performance Overhead

Table 1 shows the overhead (ExecTimetolerant−ExecTimenon−tolerant

ExecTimenon−tolerant
) induced by

the protocol for respectively the Eratosthenes and the Jacobi application run-
ning with 8 slaves (one slave per CPU) for Eratosthenes, and with 9 sub-matrix
(one sub-matrix per CPU) for Jacobi. The checkpointing time counter is initial-
ized with TTC = 100 sec for each activity. For each data size (the computed
prime number or the matrix size) and for one activity, average checkpoint size
(checkpoint of the slave for Eratosthenes), number of checkpoints performed,
cumulated checkpointing time (the maximum among all activities) and average
received message rate are given.
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Table 1. Overhead for Jacobi (9 CPUs) and Eratosthenes (8 CPUs), TTC = 100sec

Erathostenes (# Prime Number) Jacobi (Matrix Size)

Data Size 1000 2000 3500 5000 10000 500 1000 2000 3000

Exec. Time (s) 201 420 785 1152 2477 153 253 563 1315

Msg Rate (msg/s) (Slave) 42 42 42 42 42 78 47 22 9

Msg Rate (msg/s) (Master) 316 331 332 337 338 n/a n/a n/a n/a

Ckpt Size (Mb) 0.39 0.82 1.4 1.95 4.01 0.68 1.07 7.16 15.07

# Ckpts 3 5 9 13 27 2 3 6 14

Ckpting Time (s) 0.6 1.1 3.5 7.1 33.5 0.9 1.3 3.7 3.9

Overhead (%) 4.95 6.56 6.38 7.77 7.50 2.87 2.94 4.07 4.41

The measured overhead is low: it varies from about 3% to 8% in the worst
case. This overhead can be decomposed in two parts: overhead due to message
treatment, and time spent for checkpointing (mainly serialization and communi-
cation with the stable storage). The higher overhead observed for Eratosthenes
application is due to the higher received message rate of the master. Both over-
heads increase with data size because of checkpoint size. The smoother increasing
of Jacobi overhead is explained by the fact that the growing of checkpoint size is
counterbalanced by the decreasing of the received message rate for each activity,
while the rate of the master for Eratosthenes does not lower with data size.

We also notice that the number of checkpoints performed by an activity
linearly increases with the fault-tolerant execution time, and that each activity
performs the same number of checkpoints. This stability (observed for all the
applications we have experimented) is an interesting property of our protocol
since a large an unpredictable number of additional checkpoints forced by the
protocol is known to be the Achilles’ heel of CIC protocols [15].

4.3 Scalability

Figure 5 presents the overhead induced by the protocol for Eratosthenes and
Jacobi applications regarding the number of CPUs. Eratosthenes computes the
2000th prime number and Jacobi iterates on a 2000*2000 matrix. We observe
that the overhead remains roughly constant up to 25 CPUs for both applications:
this result demonstrates that the proposed protocol scales well.

4.4 Faulty Execution

Figure 6 shows the recovery time, i.e. the time spent for recovering every activ-
ities after a fault, for Eratosthenes and Jacobi regarding the number of CPUs.

The recovery time remains low, up to 25 CPUs (38 sec for Eratosthenes
and 18 sec for Jacobi) and smoothly increases with the number of CPUs from 9
CPUs. The higher recovery time for Eratosthenes is linked to the higher message
rate for both master and slaves. Indeed, a higher message rate leads to a longer
history, then the synchronization due to promised requests lasts longer.
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5 Conclusion

In this paper, we have presented a new hybrid CIC-message logging protocol for
Java middlewares that does not assume permanent checkpointability. It allows
recovery from lines made of restrictively placed checkpoints, without delaying
any message reception nor breaking message ordering. The proposed protocol:

– deals with in-transit messages thanks to message logging,
– deals with orphan messages thanks to promised requests and history,
– performs low number of checkpoints,
– is fully transparent since there is no need to alter nor recompile code appli-

cation to make it fault-tolerant.

It has been implemented in a 100% Java compatible way within the middleware
ProActive; as a consequence, the usage of dedicated tools for persistence can be
avoided, and portability is total.

Even if the presented protocol has been designed and implemented in the
context of ProActive, its main idea is the ability to recover from inconsistent re-
covery line without breaking any message ordering. As such, this work is applica-
ble to other middlewares, even those using applicative-level persistence. Overall,
the location of checkpoints is no more a strong constraint.

The context of this article is somehow similar to [11]; but, contrarily to
Bronevetsky et al., our protocol focuses on ensuring the message ordering at
recovery. Indeed, a given ordering is always ensured by ProActive but may also
be enforced by some applications, even over MPI. The [11] approach may lead
those applications into a state that should not exist, since only the receptions
of orphan or in-transit messages are logged. Introducing a message reception
history in [11] would allow one to also cope with this category of applications.

The practical target of our research is also large-scale distributed program-
ming such as grids. In this context, CIC protocols are maybe not the best choice.
Indeed, these protocols are more efficient for small systems with low failure rate.
On the contrary, grids are large systems with a high failure rate, and a grid ap-
plication is often partitioned into loosely coupled components, each component
being based upon more strongly cooperating processes. In this case, we think



A Hybrid Message Logging-CIC Protocol for Constrained Checkpointability 653

of an adaptive approach that autonomously chooses the best combined usage of
message logging and hybrid CIC-message logging. The protocol proposed here
can thus be considered as a step towards such a single parameterized protocol.
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