Resource-Aware Parallel Adaptive Computation
for Clusters

James D. Teresco, Laura Effinger-Dean, and Arjun Sharma

Department of Computer Science, Williams College,
Williamstown, MA 01267 USA

terescoj@cs.williams.edu

Abstract. Smaller institutions can now maintain local cluster comput-
ing environments to support research and teaching in high-performance
scientific computation. Researchers can develop, test, and run software
on the local cluster and move later to larger clusters and supercomputers
at an appropriate time. This presents challenges in the development of
software that can be run efficiently on a range of computing environ-
ments from the (often heterogeneous) local clusters to the larger clusters
and supercomputers. Meanwhile, the clusters are also valuable teaching
resources. We describe the use of a heterogeneous cluster at Williams
College and its role in the development of software to support scien-
tific computation in such environments, including two summer research
projects completed by Williams undergraduates.

Cluster computing environments at smaller institutions have provided a new
platform for research and teaching in high-performance computing. Such local
computing resources support development of software which can be executed
on the local cluster or can be moved later to larger clusters or supercomputers
for execution of larger problems. Meanwhile, clusters provide valuable local re-
sources for teaching and the support of student projects. This paper describes a
cluster at Williams College and provides an overview of a research effort that has
been motivated and supported by this cluster, in particular two undergraduate
projects which have contributed to this effort.

1 A Cluster Environment

Our cluster (known as “Bullpen”) is located in the Department of Computer
Science at Williams College. It consists of one Sun Enterprise 220R server with
one 450MHz Sparc Ultrall processor; two Enterprise 420R servers, each with
four 450MHz Sparc Ultrall processors; and six Enterprise 220R servers, each
with two 450MHz Sparc Ultrall processors; and four Sun Ultra 10 Workstations,
each with one 300 or 333 MHz Sparc Ultrall processor.

This cluster is intentionally heterogeneous, with its nodes having different
processor speeds, numbers of processors and amount of memory per node. This

! http://bullpen.cs.williams.edu/

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 107-[IT5 2005.
(© Springer-Verlag Berlin Heidelberg 2005

http://bullpen.cs.williams.edu/

108 J.D. Teresco, L. Effinger-Dean, and A. Sharma

makes it an excellent platform for studies of scientific computation in hetero-
geneous and hierarchical environments. While most clusters are initially built
using identical nodes, incremental growth is an attractive features of clusters.
As new (likely faster) nodes are added, old nodes remain part of the cluster,
leading to heterogeneity.

In addition to the support of the research described herein, this cluster has
been used in Computer Science courses at Williams, most extensively in the
Parallel Processing course. Students have been able to write multithreaded code
using both POSIX threads [5] and OpenMPE to use the symmetric multiprocess-
ing (SMP) nodes. They have used the Message Passing Interface (MPI) to use
multiple nodes to perform parallel computation with distributed memory and
message passing. Student projects have included a parallel discrete event sim-
ulation, parallel particle simulations, a parallel photon mapper and a parallel
ray tracer. Having the local cluster available meant that the students were not
competing for processor cycles on lab workstations and did not have to develop
software remotely at a supercomputing center.

2 Parallel Adaptive Computation on Clusters

Our goal is to develop tools and techniques to allow efficient parallel adaptive
scientific computation on heterogeneous clusters such as Bullpen. We focus on
solvers for systems of partial differential equations using finite element and re-
lated methods (e.g., [4L[6,[7]) that use meshes to discretize problem domains.
The mesh is partitioned into subdomains consisting of disjoint subsets of mesh
entities (e.g., elements, surfaces, nodes) and these subdomains are assigned to
the cooperating processes of a parallel computation. Adjacent mesh entities will
exchange information during the solution process. So in addition to its attempts
to divide the work evenly among the processes (to achieve load balance), a mesh
partitioner attempts to minimize the number of pairs of adjacent entities which
are assigned to different processes (to minimize interprocess communication).
The methods are adaptive, where time and space efficiency is improved by
concentrating computational effort in parts of the domain where it is needed to
achieve a solution to a prescribed accuracy [1]. However, adaptivity will disturb
a balanced partitioning, necessitating a dynamic load balancing step. Dynamic
load balancing procedures have similar goals to mesh partitioners, but must
operate on already-distributed data and should minimize the change between the
existing decomposition and the new decomposition (to limit mesh migration).
A number of approaches to dynamic load balancing have been proposed ([8]
includes a survey). The Zoltan Parallel Data Services Toolkit [2] provides a
common interface to high-quality implementations of several such procedures.
With Zoltan, applications can quickly make use of and can easily switch among
available load balancing methods. Fig. [Il shows the interaction between parallel

2 http://www.openmp. org
3 http://www-unix.mcs.anl.gov/mpi/

http://www.openmp.org
http://www-unix.mcs.anl.gov/mpi/

Resource-Aware Parallel Adaptive Computation for Clusters 109

Application Software

|Adaptive|
Step

\
Vo
L
Load Balancing Suite
Partitioning and Dynamic Load Balancing
Implementations/Support Tools

Fig. 1. Program flow of a typical parallel adaptive computation using a load balancing

suite such as Zoltan

adaptive application software and a dynamic load balancing suite such as that
in Zoltan. After an initial partitioning, the application performs computation
steps, periodically evaluating error estimates and checking against specified error
tolerances. If the error is within tolerance, the computation continues. Otherwise,
an adaptive refinement takes place, followed by dynamic load balancing before
the computation resumes.

Our goal is to run parallel adaptive computations efficiently on heterogeneous
clusters, while making minimal changes to the application software. We have
been working with three software packages in cluster environments. LOCO [4]
and DG [7] implement parallel adaptive discontinuous Galerkin procedures. The
Parallel Hierarchical Adaptive MultiLevel software (PHAML) [6] implements
a variety of parallel adaptive solution procedures. Each of these uses Zoltan’s
dynamic load balancing procedures.

3 Resource-Aware Load Balancing

In cluster environments, load imbalance may be introduced because of heteroge-
neous or non-dedicated processors. The relative costs of computation and com-
munication may change from one environment to the next, suggesting a differ-
ent partitioning strategy. On Bullpen, we are faced with nonuniform processor
speeds, the mixture of 1-, 2-, and 4-processor nodes, and a slower network relative
to processing speed than previous target platforms. A resource-aware computa-
tion, which requires knowledge of the computing environment and tools to make
use of this knowledge, is needed to take full advantage of the computing environ-
ment. Resource-aware adjustments can be made anywhere from low-level tools
to application programs (see [I1] for examples).

Our focus is on resource-aware dynamic load balancing, guided by the Dy-
namic Resource Utilization Model (DRUM) [3| 10]@. Processor “speed” (mega-

=
4 web page: http://www.cs.williams.edu/drum/

http://www.cs.williams.edu/drum/

110 J.D. Teresco, L. Effinger-Dean, and A. Sharma

hertz or gigahertz) ratings must be combined with other factors such as cache,
memory and input/output subsystem performance, and current usage to deter-
mine how quickly a processor can perform computation. DRUM evaluates the
computing environment’s performance using data from both benchmarks which
are run a priori either manually or from within DRUM’s graphical configuration
tool (Section M) and a dynamic performance monitors. DRUM distills this infor-
mation into a single “power” value, readily used by load balancing procedures
(including all Zoltan procedures) to produce appropriately-sized partitions.
Benchmark results are stored in a model of the computing environment that
encapsulates information about hardware resources, their capabilities and their
interconnection topology in a tree structure. The root of the tree represents the
total execution environment. The children of the root node are high level divi-
sions of different networks connected to form the total execution environment.
Sub-environments are recursively divided, according to the network hierarchy,
with the tree leaves being individual single-processor (SP) nodes or symmetric
multiprocessing (SMP) nodes. Computation nodes at the leaves of the tree have
data representing their relative computing and communication power. Network
nodes, representing routers or switches, have an aggregate power calculated as a
function of the powers of their children and the network characteristics.

Application Software
Setup/Initial
parttoning | ~~{ Compute |-~ -__
T Idone | Capabilities
| N
Dynamic
‘1 [Rebalance] oK Evaluate } Jo--

Load Error

e | (Per
10K » ’/, Analysis
|Adaptive| ST ‘
| Resource
:

Monitoring

[Load Balancing Suite |
Partitioning and Dynamic Load Balancing|- - ~
Implementations/Support Tools

Fig. 2. A typical interaction between an adaptive application code and a dynamic load
balancing suite, when using a resource monitoring system (e.g., DRUM)

DRUM also provides a mechanism for dynamic monitoring and performance
analysis. Monitoring agents in DRUM are threads that run concurrently with
the user application to collect memory, network, and CPU utilization and avail-
ability statistics. Fig. 2 shows the interaction among an application code, a load
balancing suite such as Zoltan, and a resource monitoring system such as DRUM
for a typical adaptive computation. When load balancing is requested, the load
balancer queries the monitoring system’s performance analysis component to
determine appropriate parameters and partition sizes for the rebalancing step.

DRUM can also adjust for heterogenous, hierarchical, and non-dedicated
network resources by estimating a node’s communication power based on the
communication traffic at the node. Information about network interfaces may

Resource-Aware Parallel Adaptive Computation for Clusters 111

be gathered using kernel statistics, a more portable but still limited library
called net—snm;ﬁ, which implements the Simple Network Management Protocol
(SNMP), or the Network Weather Service (NWS) [I3] (Section []). Giving more
work to a node with a larger communication power can take advantage of the
fact that it is less busy with communication, so should be able to perform some
extra computation while other nodes are in their communication phase. The
communication power is combined with processing power as a weighted sum to
obtain the single value that can be used to request appropriately-sized partitions
from the load balancer.

We have used DRUM to guide resource-aware load balancing for both the
PHAML and DG application software. DRUM-guided partitioning shows signif-
icant benefits over uniformly sized partitions, approaching, in many instances,
the optimal relative change in execution times. We have also seen that DRUM
can effectively adjust to dynamic changes, such as shared use of some nodes.
This cannot be done with a static model that takes into account only node ca-
pabilities. Our focus in this paper is on the two DRUM enhancements described
in the following sections; see [3] and [I0] for performance studies using DRUM.

4 A Graphical Configuration Tool for DRUM

DRUM constructs its run-time model of the computing environment using in-
formation stored in an XML-format configuration file that describes properties
of the system (e.g., benchmark results, network topology). We have developed
a graphical configuration program in Java called DrumHead that aids in the
construction of these configuration filedd. DrumHead can be used to draw a de-
scription of a cluster, automatically run the benchmarks on the cluster nodes,
and then create the configuration file for DRUM to read in when constructing
its model. Fig. Bl shows an excerpt from an XML configuration file generated by
DrumHead for the Bullpen Cluster configuration.

The layout of the main window (Fig. H]) is simple: a panel of tools and buttons
on the left and a workspace (starting out empty) on the right. The tool pane
shows the current properties of the entire cluster, all the changeable features of
the selected node and buttons to save changes to the selected node’s parameters.
In the middle pane, the user can draw nodes, represented by rectangles (the
computing nodes) and ovals (networking nodes), connected by lines. These nodes
can be dragged, so the user can place them in a meaningful arrangement.

DrumHead allows specification of dynamic load balancing methods and pa-
rameters for network and SMP computing nodes. These parameters can be used
by DRUM to guide a hierarchical load balancing, where different load balancing
procedures are used in different parts of the computing environment. The avail-
able procedures present tradeoffs in execution time and partition quality (e.g.,

® http://www.net-snmp.org
5 The design and implementation of DrumHead was part of the research project of
Williams undergraduate Arjun Sharma during Summer 2004.

112 J.D. Teresco, L. Effinger-Dean, and A. Sharma

<machinemodel>

<node type="NETWORK" nodenum="0" name="" IP="" isMonitorable="false"
parent="-1" imgx="361.0" imgy="52.0">

<lbmethod lbm="HSFC" KEEP_CUTS="1"></lbmethod></node>

<node type="SINGLE_COMPUTING" nodenum="2" name="mendoza.cs.williams.edu"
IP="137.165.8.140" isMonitorable="true" parent="0"

benchmark="562.43" imgx="50.0" imgy="138.0"></node>

<node type="MULTIPLE_COMPUTING" nodenum="3" name="rivera.cs.williams.edu"
IP="137.165.8.130" isMonitorable="false" parent="0"

imgx="74.64 "imgy="263.0" benchmark="82.55" numprocs="4">

<lbmethod lbm="HSFC" KEEP_CUTS="1">

</lbmethod></node>

</machinemodel>

Fig. 3. An excerpt from a configuration file generated by DrumHead for Bullpen

& DrumHead 2004
Fioe Configui Abou

o, locenos (27 00 5)
Rensselaer
Williams

[0y 1, nutipien o5 williams adu (537 165 & 130
[2, menasza csmiibsms. edu (137 2655 14

[y 7; etarinn ea wiliams adu (5837 165 1170

[2 sovaco wimams edu 1 37165 81048
CUHRERT CLUSTER PROPERTES:
- B aatisiiaatr [5 nelzon.cx walliams eou (1 37.165.0.139)]
Numbes of Hedes m | [6: woneland £ williams odu (337 165 815
S C, Wi ') 7, s e wilams edu {1 171650110
Mutiple C. Nodas. L
Motwork Nodes i Y #: fam o witiams edu {137 165 8 1343

[URRENILY SELECTED NOOE: [9, #tecs wmiamss et 4137 1850135

[16; gnzsage cx wilkarns edu (137 16681
|

[11, anrirew s v o 137 168,81 30

[12 medanial ¢s wilsma ecu (137 16501

[13 nighatti ¢ s wilkams edu (137 1662 137|

Fig. 4. DrumHead editing a description of the Bullpen Cluster

surface indices, interprocess connectivity, strictness of load balance) [12] and
some may be more important than others in some circumstances. For example,
consider a run using two or more of Bullpen’s SMP nodes. A more costly graph
partitioning can be done to partition among the SMPs, to minimize communi-
cation across the slow network interface, possibly at the expense of some com-

Resource-Aware Parallel Adaptive Computation for Clusters 113

putational imbalance. Then, a fast geometric algorithm can be used to partition
independently within each node. Hierarchical balancing, which is implemented
in Zoltan, is described in detail in [9].

5 Interface to the Network Weather Service

DRUM is intended to work on a variety of architectures and operating sys-
tems. We do not want to require that DRUM users install additional software
packages, but we do want DRUM to take advantage of such packages when
available. We have developed an interface that allows DRUM to access infor-
mation from NW@, which provides information about network and CPU usage
for Unix-based systems. NWS is more intrusive than DRUM’s other network
monitoring capabilties, as it will send its own messages to measure network
status.

NWS uses a set of “sensor” servers which run separately on each node of
the parallel system, interacting with a “nameserver” and one or more “memory”
servers. The nameserver allows easy searching for servers (“hosts”), sensor re-
sources (“activities” or “skills”), and previously-collected data (“series”). For in-
stance, to search for statistics about bandwidth between machine A and machine
B, you would query the nameserver for an object with properties objectClass
“nwsSeries,” resource “bandwidthTcp,” host “A:8060,” and target “B:8060,”
where 8060 is the port used by the sensors on A and B. Network data is
gathered within “cliques” of nodes: sets of machines which trade packets to
measure bandwidth, connect time, and latency. The concept of cliques fits well
with DRUM’s tree model, as a clique may be defined as all leaves of a network
node.

DRUM relies on the user or system administrator to configure and launch
the appropriate NWS servers on each node within the parallel system. NWS ac-
tivities could be started from within DRUM, but this would be ineffective early
in a computation as NWS needs at least a few minutes to collect enough data
to provide useful information. When it needs to gather network statistics from
NWS, DRUM searches the nameserver for available “bandwidthTcp” series and
randomly selects three. These series are limited to those whose host is the current
machine and whose target shares a parent node with the host. From these three
series, DRUM calculates the communication power of the node based one of three
methods: an average of 20 measurements, the most recent single measurement,
or an NWS “forecast,” which essentially provides a normalized estimate of band-
width, undisturbed by small variations. This bandwidth calculation substitutes
for the “communication activity factor” used by the kstat- and SNMP-based
implementations for the determination of communication powers and weights in
DRUM’s overall power formulas [3].

" The implementation of the DRUM interface to NWS was part of the research project
of Williams undergraduate Laura Effinger-Dean during Summer 2004.

114 J.D. Teresco, L. Effinger-Dean, and A. Sharma

Acknowledgments

Teresco was supported in part by Sandia contract PO15162 and the Computer
Science Research Institute at Sandia National Laboratories. Sandia is a multi-
program laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under Contract DE-AC04-
94A185000. Effinger-Dean and Sharma were supported by the Williams Col-
lege Summer Science Research program. DRUM was developed with Jamal Faik
(Rensselaer). Erik Boman, Karen Devine, and Bruce Hendrickson (Sandia) and
Luis Gervasio (Rensselaer) also contributed to the design of DRUM.

References

1. K. Clark, J. E. Flaherty, and M. S. Shephard. Appl. Numer. Math., special ed. on
Adaptive Methods for Partial Differential Equations, 14, 1994.

2. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data
management services for parallel dynamic applications. Computing in Science and
Engineering, 4(2):90-97, 2002.

3. J. Faik, J. D. Teresco, K. D. Devine, J. E. Flaherty, and L. G. Gervasio. A model
for resource-aware load balancing on heterogeneous clusters. Technical Report CS-
05-01, Williams College Department of Computer Science, 2005. Submitted to
Transactions on Parallel and Distributed Systems.

4. J. E. Flaherty, R. M. Loy, M. S. Shephard, and J. D. Teresco. Software for the
parallel adaptive solution of conservation laws by discontinuous Galerkin methods.
In B. Cockburn, G. Karniadakis, and S.-W. Shu, editors, Discontinous Galerkin
Methods Theory, Computation and Applications, volume 11 of Lecture Notes in
Compuational Science and Engineering, pages 113-124, Berlin, 2000. Springer.

5. B. Lewis and D. J. Berg. Multithreaded Programming with pthreads. Sun Microsys-
tems Press, 1997.

6. W. F. Mitchell. The design of a parallel adaptive multi-level code in Fortran 90.
In International Conference on Computational Science (3), volume 2331 of Lecture
Notes in Computer Science, pages 672—680. Springer, 2002.

7. J.-F. Remacle, J. Flaherty, and M. Shephard. An adaptive discontinuous Galerkin
technique with an orthogonal basis applied to compressible flow problems. SIAM
Review, 45(1):53-72, 2003.

8. J. D. Teresco, K. D. Devine, and J. E. Flaherty. Numerical Solution of Partial Dif-
ferential Equations on Parallel Computers, chapter Partitioning and Dynamic Load
Balancing for the Numerical Solution of Partial Differential Equations. Springer-
Verlag, 2005.

9. J. D. Teresco, J. Faik, and J. E. Flaherty. Hierarchical partitioning and dynamic
load balancing for scientific computation. Technical Report CS-04-04, Williams
College Department of Computer Science, 2004. Submitted to Proc. PARA ’04.

10. J. D. Teresco, J. Faik, and J. E. Flaherty. Resource-aware scientific computation on
a heterogeneous cluster. Technical Report CS-04-10, Williams College Department
of Computer Science, 2005. To appear, Computing in Science & Engineering.

11. J. D. Teresco, J. E. Flaherty, S. B. Baden, J. Faik, S. Lacour, M. Parashar, V. E.
Taylor, and C. A. Varela. Approaches to architecture-aware parallel scientific com-
putation. Technical Report CS-04-09, Williams College Department of Computer
Science, 2005. Submitted to Proc. PP’04: Frontiers of Scientific Computing.

12.

13.

Resource-Aware Parallel Adaptive Computation for Clusters 115

J. D. Teresco and L. P. Ungar. A comparison of Zoltan dynamic load balancers for
adaptive computation. Technical Report CS-03-02, Williams College Department
of Computer Science, 2003. Presented at COMPLAS ’03.

R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A distributed
resource performance forecasting service for metacomputing. Future Generation
Comput. Syst., 15(5-6):757-768, October 1999.

	A Cluster Environment
	Parallel Adaptive Computation on Clusters
	Resource-Aware Load Balancing
	A Graphical Configuration Tool for DRUM
	Interface to the Network Weather Service

