
Architecture Description Languages 67

AN ADL CENTRIC APPROACH FOR THE
FORMAL DESIGN OF REAL-TIME
SYSTEMS

Sebastien Faucou, Anne-Marie Deplanche, Yvon Trinquet
Institut de Recherche en Communications et Cybernetique de Nantes - UMR 6597
CNRS, Ecole Centrale de Nantes, Ecole des Mines de Nantes, Universit de Nantes
France
firstname.name@irccyn.ec-nantes.fr

Abstract This paper presents the REACT project, dedicated to real-time system
design. REACT aims at combining into an architectural design process
some formal modelling and verification techniques and providing those
corresponding tools. It emphasizes on the ADL of REACT (CLARA),
and the validation of functional architectures using formal techniques.

Keywords: ADL, real-time systems, architecture design process, formal validation

1. Introduction

The increasing complexity of real-time systems (as regards not only
their functionality but also their hardware and software components and
the interactions and mappings between these components) in domains
such as in-vehicle embedded electronic, robotics, field-devices control, or
avionic leads to attach more and more importance to their architectural
design step. Architectural design is not only about specifying (or even
choosing) and assembling (logical, software, hardware, . . . ) components
together so as to create a coherent and functionally correct system. It
has also to make sure that some other extra-functional1 requirements
such as timeliness, reliability, safety, costs, etc. will eventually be met
by the system under operation. Introducing V&V activities as soon as
possible in the development process of computer-based control systems
is now a widely accepted need. This implies several important consider-

1 As in (ARTIST, 2003), we use extra-functional instead of non-functional. Indeed, the timing
constraints for instance, are part of the definition of the functionalities of a real-time system
and thus should not be qualified as "non-functional".



68 Architecture Description Languages

ations: (i) designers must have available a way (a language) to describe
(to model) the system architecture (its constitutive parts and relations)
at different levels of abstraction; (ii) verification tools for system anal-
ysis and stating on its performances from the architectural level (and
still after) have to be provided; (iii) the architectural design process
(transformation(s) from the functional architecture up to the runtime
configuration) has to be integrated to form a continuous and traceable
chain, even an automatic one. It should guarantee that the (functional
and extra-functional) properties stated at the upper levels are always
met at the lower levels.

The objectives of our present work are to combine into an architec-
tural design process some formal modelling and verification techniques.
The strong dependency between embedded software and its execution
platform requires us to focus on techniques that take into account the
operational characteristics of the system, so as to reason on its extra-
functional properties. REACT, "REal-time Application Configuration
Tool", is the name we gave to this project and to the corresponding
toolkit we are thinking of building.

Real-time systems that are aimed, are embedded ones, using some
RTOS or middleware as runtime platform. They may be distributed.
However we only consider situations where the system hardware is al-
ready defined (either a ready-to-use commercial platform or a reused
yet designed one): hardware architecture design or co-design are out of
concern.

In this paper, we present only a few constitutive parts of REACT: its
architecture description language CLARA2and the validation of func-
tional architectures. It is built as follows: in section 2, we give an
overview of the development process, from the high level design to the
binary code synthesis. In section 3, we introduce CLARA, the ADL that
we use to perform the description of embedded software systems. In sec-
tion 4, we discuss the validation of architecture descriptions with regards
to some functional and extra-functional properties.

2. Design process

The REACT project aims at offering a set of formal modelling and
verification facilities in an unified framework for the rigorous architec-
tural design of real-time systems. It does not cover the whole develop-
ment process: we consider that the specifications are given. Our main
goal is to produce an operational architecture that has been validated

2CLARA: Configuration LAnguage for Real-time Application (Durand, 1998).



Architecture Description Languages 69

against some functional and extra-functional requirements (especially
timeliness). Before to present the process, we define some vocabulary:

We call functional architecture (FA) the structure of the system in
terms of its functions, their behaviours, and the control and data flows
between them {function denotes a logical computation block that has
not to be refined at this design level).

We call runtime platform (RP) the hardware and low-level software
layer (RTOS, device drivers, middlewares, communication protocols)
that are used for the deployment of the application. All these elements
are seen as a platform, accessible through a set of runtime services.

We call operational architecture (OA) the result of the mapping of
the FA onto the RP. The functions are allocated to tasks and the tasks
are allocated to processing nodes. The control flows and data flows
are translated into appropriate invocations of RP services. At last, the
configuration of the RP (e.g. priorities of the tasks and messages) is
given.

Spec.

described in this paper

analysis,
re-designcandidate

FA'
valid FA

analysis,
re-design

out of the scope of RE-
ACTACT Nvalid RP

Figure 1. Overview of the design process of REACT.

As an entry point of REACT, we have defined an ADL, CLARA, ded-
icated to the description of the FA of reactive systems. It provides also
some support for specifying timing constraints and properties. Thus,
the design process (see fig.l) starts with the description of a candidate
FA, which needs to be validated. For this purpose, we use Petri net
(PN) theory to assess safety properties (eg. deadlock freedom). We also
propose a high level consistency analysis of the timing constraints and
properties (assessment of a necessary condition over the existence of a
valid implementation). Given the results of these analyses, the designer
can either validate the candidate and go on, or design a new one (gen-
erally not from scratch). As an output of these steps, a valid FA is
defined, together with a set of timing constraints and properties that
may be consistent. A complete illustration of this part of the process is
given in the paper.



70 Architecture Description Languages

As stated in the introduction, we consider that the RP is already
defined. To achieve the mapping of the FA onto the RP so as to produce
an OA, we have explored a first direction and are presently working
on a second one. We present both approaches hereafter (due to space
limitation, they won't be discussed any further in this paper).

With the first approach (operator + on fig. 1, see (Faucou, 2002)),
the mapping is made so as to "preserve the structure" of the FA. It
targets especially the OSEK/VDX-based RP3. The active components
are mapped onto OSEK tasks that interact, according to the connections
described in the FA, through the services of a "CLARA middleware"
(the configuration of which is extracted from the FA). The assignment
of the tasks to the computing nodes and the configuration of the RP have
to be done by the system architect. Such a mapping allows to preserve
traceability between the levels (the FA and the OA). Nevertheless, it can
potentially produce OA with a complex execution structure involving a
lot of inter-task communications, the behaviour of which being hardly
analysable. On the one hand, we have developed a simulation approach
that takes into account the effective operational behaviour of the RP
(including the middleware, OS and communication protocol). It is thus
possible to observe for instance the impact of ISR executions on the
scheduling of the tasks. It is also a good framework to play the "what-
if?" game in order to tune the OA. On the other hand, we are studying
the use of an extension of Time Petri Nets (TPN) to real-time scheduling
(SETPN from (Roux and Deplanche, 2002)). These two approaches are
supplementary.

The second approach (operator x on fig. 1) aims at defining algorithms
and tools to generate a "valid by construction" OA ("valid" in reference
to timeliness). Similar works are being presently driven in the "model
integrated computing" community (Kodase et aL, 2003). We target RP
using fixed priority task scheduling and CAN protocol (ISO, 2003). To
achieve our goal, we have identified several intermediate steps. In a
first time, end-to-end control flows (transactions) are extracted from the
FA. They give a precedence relationship between user-defined functions.
In a second time, a task set is composed by grouping the user-defined
functions (using some heuristics) of a transaction. This task set is the
input of a tool that tries to find an allocation of tasks to processing
nodes and priorities to tasks and messages, so that the resulting OA
meets all the end-to-end timing constraints (the tool combines constraint
programming and schedulability analysis (Cambazard et aL, 2004)). For

3OSEK/VDX is a set of specifications for a real-time runtime platform dedicated to in-vehicle
embedded systems. Homepage: http://www.osek-vdx.org.



Architecture Description Languages 71

more complex properties, it is possible to use (for instance) SETPN
analysis.

The logical follow-up of the works exposed above concerns code syn-
thesis: given a set of files containing the source code of user-defined
functions and the description of a valid OA, synthesise the code of the
tasks, as well as the configuration files for the RTOS and communica-
tion protocols. A tool has also to be developed to ensure the compliance
between the code of the user-defined functions and their model (used for
the design of the OA). Presently, these problems are not explored within
REACT.

In the next sections, we illustrate the process exposed here, from the
first design of the FA to its validation.

3. CLARA: the ADL

According to (Medvidovic and Taylor, 2000), an ADL is a language
that provides features for modeling a software system's conceptual ar-
chitecture. Classically, its building blocks are components, connectors
and configurations. Within the context of REACT, we have defined an
ADL, CLARA, to describe the functional architecture of reactive sys-
tems (Durand, 1998). CLARA stands for "Configuration LAnguage for
Real-time Applications".

While defining CLARA, we paid a special attention to the descrip-
tion of the control flows. Compared to other ADLs, it allows to express
complex synchronisation and activation laws. It provides also some sup-
port for the description of the behaviour of the components and for the
expression of real-time requirements (timing constraints) and properties
(time budgets).

We illustrate 4 the concepts and abstractions of CLARA through the
design of the FA of a small reactive embedded system (see shaded frames).
The parts of the text related to this design are embedded within coloured
panels. Moreover, to facilitate the global understanding, we give on fig. 2
its final functional architecture.

3.1 The components

Five component families are proposed: activity, occurrence generator,
shared resource, shared variable and system. Within each of the four
first families, the architect must define at first a set of types that will be
used (through instantiation) in the description.

4CLARA has both a textual and a graphical syntax. In this paper, we use mainly the
graphical one.



72 Architecture Description Languages

Terms of the problem: We consider a simple feedback control loop: two sensors mea-
sure the value of the controlled variable (its value is not spatially homogeneous) and an
actuator sets the manipulated variable to the computed value. Moreover, the state of the
controlled process has to be displayed to an operator (HMI).
The control loop must be triggered every 10ms, with an end-to-end deadline equal to the
period (stringent constraint). The HMI must be updated every 20ms, with a deadline
equal to the period (soft constraint: a period on two can be missed).

system control loop
(HT

Figure 2. Description of the control loop in CLARA

The activity family denotes active components. It can be either
atomic or composed (in our example, we only use atomic activities). For
short, atomic activities are the basic building blocks of the architecture
and composed activities introduce abstraction levels through hierarchy
and encapsulation.

An activity has two interfaces: control and interaction. The control
interface has only two ports: start (input port) and end (output port).
start is used to attach an activation law; end is used to signal the end
of the execution. From a behavioural point of view, they control the
transition from "not operational" to "operational" state 5. The interac-
tion interface is a user-defined set of directed exchange ports (to transfer
data or signals) and a set of access ports (to access shared resources or
variables). The graphical representation of an activity is given figure3:
cmd and order are data exchange ports, actu is a resource access port.

When it becomes operational, an (atomic) activity executes a finite
sequence (fig. 4). The actions can be user functions for which an execu-
tion time budget6 has to be given (a closed interval that will be used for

5The execution of an activity instance is not reentrant.
6If it is planned to use an heterogeneous runtime platform, budgets are couples (function,
processor).



Architecture Description Languages 73

name ACTUATE;
sequence {
read(cmd);
access(actu.get);
call(translate_command,0.5,l);
access(actu .release);
write(order);

Figure 3. Graphics of an activity Figure 4. Behaviour of an activity

verification purpose7). To ensure consistency between the model and
the implementation, the budget becomes a requirement (i.e. the "Best
Case Execution Time" and the "Worst Case Execution Time" of the
function must be within the interval). Other actions are invocations of
interaction services (eg. read(cmd) or access(actu.get)). The invocation
of the control services (on port start and end) are implicit.

All control and interaction service invocations are synchronous. They
can be blocking, depending on the behaviour of the connector attached
to the port (see below). This enforces the designer to give a complete
specification of the application control flows.

Specification of the activities: The FA contains 5 (atomic) activity (see fig. 2):

sampJel and sample2 (two instances of the same type) read the controlled variable
value on v_raw, translate it into a computation-friendly format and write the result
on v.out;

control computes the command from two values (read on v_l and v_2) and writes
the result on cmd;

actuate controls the actuator. It reads the command on cmd, translates it into an
actuator-friendly format and writes the result on order;

HMI produces (a part of) a synoptic of the controlled process and sends it to an
external display equipment. It reads the newly computed command on cmd and
writes the new view on view.

The occurrence generator (OG) family denotes data or signal sources,
which can be part of the system or its environment. Their interface
is made of a single output signal or data port (signal ports are white
triangles, data ports are black ones). The associated graphics is a circle
containing the name of the instance and an output port. An OG can
be periodic or sporadic. A periodic OG can only produce signals. Its
behaviour is defined through its period attribute (cycle time). A sporadic
OG can produce signals or data. Its behaviour is given as a sequence

7Closed intervals implicitly forbid the use of blocking calls in user functions.



74 Architecture Description Languages

of dates (resp. a sequence of couples (date, value)) that denotes the
absolute signal production dates (resp. the absolute data production
dates and the data values).

Specification of the OG: The control loop has a period of 10ms: it is measured by a
periodic OG Hi The HMI has a period of 40ms: the periods being different, we will use
another periodic OG (Hh).
Furthermore, there are two sporadic data sources in the environment (one for each sensor)
modelled by SI and S2. We don't define their behaviour and we don't need it (for much
of the analysis work to perform) because the control flows of the control loop are not
synchronised with the production dates of these OG.

The shared resources and shared variables denote "passive" entities.
Their interface is composed of a single access port (containing subports
get and release for resources and read and write for variables). The
graphics are an oval for a resource and an octagon for a variable, dec-
orated with the instance name and the access port. The access policy
is an attribute. The set of predefined values contains mutual exclusion,
write exclusive / read many, etc.

Specification of the shared resources: We use a shared resource to control the access
to the actuator (access policy: mutex; name: actu). Although it is not shared by several
activities, it is included: (i) to illustrate the concept of shared resource in CLARA, (ii)
to reference its name in the description of the behaviour of actuate, (iii) to anticipate
further extensions of the architecture (for instance adding an activity that uses the same
actuator).

The last component family is the system family, used to define the
boundaries and the interface of the control system under design. Each
architecture contains exactly one system component. In fig. 2, the system
is named system-ControLloop.

3.2 The links

In CLARA, a link8 is used to connect a set of output ports to a set
of input ports. Beyond to specify which components interact, it states
the interaction policies that are used in terms of control flow between
the "producers" and the "consumers". A link is built from a set of
basic building blocks that allow the specification of very simple as well

8In the literature, "connector" is used rather than "link" . However, as "connector" denotes
a specific CLARA object, we use "link".



Architecture Description Languages 75

as very complex policies9. These blocks are: protocols, connectors and
operators (not used in this paper).

A protocol has a producer hook and a consumer hook. Each one is as-
sociated to a service (production or consumption) and is attached to one
(and only one) connector (see below). A protocol synchronises its pro-
ducers with its consumers according to a specific policy. At the present
time, a set of pre-defined protocols is proposed: rendez-vous, transient,
blackboard, blackboard with consumption and mailbox. Graphically, it
is a small rectangle with a specific symbol inside. The example uses:
mailbox (symbol: a number that is the size of the box), blackboard
(symbol: a lightning) and transient (symbol: a peak in the middle of a
flat line).

A connector connects ports to protocol hooks. A simple connector is
just a wire (concerning both graphics and behaviour). For more complex
connexions, complex connectors have been defined:

• conjunctive connectors (a circled &) for "1 port to n hooks": pro-
duction (resp. consumption) requests are broadcasted to all pro-
tocols; a single acknowledgement is delivered to the caller when all
protocols have acknowledged.

• selective connectors (a circled vertical dash) for "n ports to 1
hook": each production (resp. consumption) request is delivered
to the protocol and the acknowledgement is sent to the original
caller (concurrent requests are serialised).

• hybrid connector, which is (graphics and behaviour) the "merging"
of a conjunctive connector and a selective connector.

3.3 The configurations

In the ADL ontology, a configuration is a bipartite graph of compo-
nents and connectors that describes (a part of) the architecture of the
system. The system of fig. 2 is a configuration. As CLARA targets real-
time reactive systems, it supports the expression of real-time constraints
at the configuration level. More configuration-level facilities might be of-
fered in the future, depending on the needs detected during the on-going
case-studies.

A real-time constraint is expressed on events that are observable at the
architecture level: production or access request and acknowledgement.
A constraint can be:

9There is a list of link patterns that are forbidden because they lead to structural deadlocks.



76 Architecture Description Languages

Specification of the links: At first, we specify the data exchange links.

• from sample_l.v^out to control ,v_l (simple link): we use a 1-mailbox protocol:
every produced value must be consumed before the delivery of the next one. We
do the same with sample_2.

• from control.cmd to actuate.cmd and HMI.cmd (complex link, conjunctive con-
nector on producer side): on the one hand, actuate must consume every command
(before the production of the next one) so we use a 1-mailbox protocol; on the
other hand, HMI reads the value "when it wants" and is allowed to loose some
occurrences so we use a blackboard protocol.

Then we specify the activation laws.

• HI output signal activates sample_l and sampled (complex link, conjunctive con-
nector on producer side): a blackboard is used and a timing constraint will require
that every occurrence is consumed; control is activated each time there are new
values on v_l and v_2 (complex link, conjunctive connector on consumer side);
actuate is activated each time there is a new value on cmd (simple link).

• Hh output signal activates HMI (simple link): a transient protocol (without mem-
ory) is used. Thus, some occurrences can be lost (HMI must be waiting for the
signal to catch it). A timing constraint will require that two consecutive occur-
rences are not lost.

At last, we specify that the system asynchronously reads the values produced by SI and
S2, using blackboard protocols.

• absolute: the first occurrence of an event must occur in [dmin,
dmax] where dmin and dm ax are dates;

• relative: the delay between two consecutive occurrences of an event
must me in [dmin,dmax] where dmin and dmax are delay;

• causal: the delay between the ith occurrence of a source event and
the ith occurrence of a target event must be in [dmin, dmax] where
dmin and dmax are delay.

The graphic is a curved line between the involved ports. At the ex-
tremities of the line, a bullet denotes a req (request) event, a dash de-
notes a ack (acknowledgement) event. The interval labels the line. For
causality constraint, an arrow indicates the direction. This notation is
sufficient for end-to-end deadlines and simple real-time constraints and
can be used by non specialists. However, it lacks the expressiveness of
TCTL, the possibility to express probabilistic QoS requirements, . . .

4. Validation of the functional architecture

An architecture provides with a comprehensive description of the sys-
tem. This description must be validated before to engage the next design



Architecture Description Languages 11

Expression of the timing constraints: There are three constraints:

the control loop execution must complete at most IQms after its last activation
(stringent constraint). This is a causality constraint between Hl.out.req and actu-
ate, order, req;

to avoid the lost of occurrences of the control loop clock, the execution of samplel
and sample2 must complete at most 10ms after the clock period: two causality
constraints between Hl.out.req and samplel.end.cnf and between Hl.out.req and
sample2.end.cnf;

the HMI activity must not lost two consecutive occurrences of Hh.out. We translate
this constraint as a deadline on its execution: once operational, it must finish
before 40ms (twice the period of Hh). A deadline is a causality constraint between
start.cnf and end.cnf.

step. For critical system, the use of formal methods in the validation
process is mandatory. These methods can be used only if (a subset of)
the ADL has a formal semantics. Moreover, it makes sense only if a
rigorous approach is followed for the continuation of the design process,
to ensure that the successive refinement steps (up to the binary code)
preserve the properties stated at the upper level. The operational se-
mantics of CLARA is given by means of (time) Petri nets (TPN). We
will first introduce (informally) this semantics and expose how a CLARA
architecture is translated into a TPN model. Then, we will show some
analysis possibilities on our example. For PN, useful definitions and
theory can be found in (Murata, 1989). For TPN, see (Berthomieu and
Diaz, 1991).

4.1 TPN model of a CLARA architecture
The translation from a CLARA description to a TPN is done in two

steps. At first, every entity (activities, shared variables, protocols, con-
nectors, etc.) is associated to a TPN pattern. If the behaviour of the
entity is predefined or defined through simple parameters (e.g. shared
resources), a predefined pattern is used. For more complex entities (ac-
tivities and aperiodic occurrence generators), a pattern is generated from
the textual behaviour description. Then, a global TPN is built by merg-
ing the elementary patterns, according to the composition rules specified
in the CLARA description. A prototype tool has been designed that per-
forms the translation (the TPN follows the input format of ROMEO10).

1 0ROMEO: http: //www. irccyn. ec-nantes. f r/d/en/equipes/TempsReel/logs/
software-2-romeo



78 Architecture Description Languages

43V^q xreq f00[a'bl

Figure 5. Control interface Figure 6. read(x); call(foo,a,b)

Fig. 5 shows the TPN pattern associated to an activity. The visible
transitions model the (implicit) interaction on the start and end ports.
The dashed box is to be replaced by a pattern corresponding to the
activity behaviour (see fig. 6): an interaction on port x gives rise to
a pair of transitions (x.req: interaction request and x.ack: interaction
acknowledgement); the invocation of the user-defined function foo gives
rise to a single timed transition foo[a,b] where [a,b] is the time budget
allocated to the function foo.

x.req x . a c k req1
 a c k' x.req

iOH M M "
.req x . a

i—OH

Figure 7. Connection of a port to a link

Fig. 7 illustrates the merging step. The x.req and x.ack transitions
are respectively merged with transition req' and ack' of the connector
attached to port x. The same mechanism is used to make the connections
between all the entities.

The TPN corresponding to our example has 91 places and 71 tran-
sitions. This is obviously "big". This is a consequence of the "naive"
translation performed by the tool. Indeed, most of the places and tran-
sitions are withdrawn by the usual static reduction rules (Murata, 1989)
applied before analysis (presently, the reduction is handmade).

4.2 Validation of the candidate design

At this design level, the validation concerns some functional prop-
erties and the consistency between the timing constraints and the al-
located time budgets. To achieve these goals, we use presently the
tools ROMEO, CADP11 and TINA12. ROMEO computes (among other
things) the marking graph of a PN. TINA computes (among other
things) its structural properties. CADP allows to perform a wide set

11 CADP: http: //www. inrialpes. fr/vasy/cadp/
12TINA: http://www.laas.fr/tina/



Architecture Description Languages 79

of analysis on labelled transition systems (ROMEO and TINA can out-
put the marking graph of a PN in CADP format).

At first, the timing informations are discarded and we consider the
classical PN theory. The goal is to state properties on the FA that will
be verified by any further correct refinement (a system the behaviour of
which is simulated by our PN for the events that are observable at the
FA level). This "weak" equivalence relation limits us to the analysis of
safety properties. As an example, we will use deadlock freedom analysis.

Then, the usual reduction rules are applied onto the PN. It does not
only reduce the size of the model but also produces a bounded PN (clock
modeling produces unbounded marking when the time is not taken into
account). Notice that this transformation preserves: liveness, safeness
and boundedness (for the places still present in the reduced model).
Concerning our example, the reduced PN has only 42 places and 25
transitions. Its marking graph has 26,124 states and 136,204 transitions.
There is no deadlock state. Some more complex properties might be
verified using CADP model-checking facilities (e.g. "for each pair of
input value, there is exactly one actuation"). They can be carried along
the design process as long as they can be expressed as safety properties.

We will now use the structural analysis of the PN, performed by TINA.
We expect our system to have two periodic end-to-end transactions:
control loop and HMI update. To validate this assumption, we look after
the T-semi-flow generating sets (a positive T-semi-flow denotes a cyclic
behaviour of the system). Five positive T-semi-flow generating sets exist.
All of them are feasible (i.e. there exists at least one run from the initial
state whose firing vector corresponds). Three of them are artefacts of the
model; The two others correspond respectively to the cyclic execution of
the control-loop transaction and the HMI transaction. If we let aside the
artefacts,the description corresponds to our expectations. The artefacts
are caused by the modelling of periodic occurrence generators: as we
do not take time into account, the "y.expire" transitions (corresponding
to the clock expiration) can be fired from any marking. If we try to
remove the artefacts by controlling the transitions, we reduce the set
of possible implementations (the behaviour of which will be simulated
by the model): we would make the strong hypothesis that some part of
the transaction is always executed within one period of the occurrence
generator. Such a reduction of the design space is obviously not desirable
at the FA level since it could potentially exclude all the valid solutions.

Let's consider the consistency between the timing constraints and the
time budgets. It is clear that -at this level- it is not possible to assess
the timing correctness: it cannot be done without taking into account
the operational characteristics (mapping of functions to tasks, of tasks



80 Architecture Description Languages

«, [2,2]
label

si
s2
ctl
ac

function name
samplel.translate

sample2. translate
control.compute
actuate.translate

Figure 8. Figure 9.

to nodes, scheduling policies and parameters, etc.). However, a first
analysis can be driven to check that there may be an implementation,
with these time budgets, that could meet the constraints (i.e. we check
a necessary condition). We have to find a "best case" for the execution
time of the sequence (of transitions) bounded by es (the "starting" event
of the constraint) and ec (the "closing" event). "Best" means that every
possible implementation will produce highest or equal execution times.

First, notice that the study of the state class graph of the TPN doesn't
give us a best case from an operational point of view. To get convinced,
consider a system with two concurrent tasks T\ and T2. T\ executes the
action a and completes. T<± executes b then c and completes. Actions a
and b need a shared resource and are mutually exclusive. The TPN of
fig. 8 is a model of this system (where one can see the execution time of
each action). If the deadline of T\ is 10 and the deadline of T<i is 7, the
analysis will show that T\ always meets its deadline whereas T2 always
misses its deadline. Nevertheless, this system is schedulable, e.g. with a
fixed priority scheduler and prio{T2) > prio(Ti).

Let's go back to our consistency checking. Because we don't know the
operational characteristics of the system, the only information that we
can take into account is the precedence relation between the executions
of the user-defined functions of a same transaction and their execution
time budgets. Thus, we must extract the graph of the precedence rela-
tion from the PN marking graph. Then, the edges corresponding to the
invocation of user-defined functions (involved in the constrained transac-
tion) are weighted with the upper bounds of the function time budgets.
If no information is known about the RP, we have to compute the value
of the longest path in the graph (to take into account an optimistic
true parallelism). In case of a mono-processor RP (we consider this
hypothesis for our example), we just have to sum up the weights (the
execution sequence is a sequential chain) and compare the result to the
upper bound of the constraint. Any implementation for which the com-
putation times actually reach the upper bounds of the execution time
budget will inevitably executes this sequence of functions with a higher
or equal execution time (in the implementation, the execution will be



Architecture Description Languages 81

delayed at least by the overhead of the RTOS services, and may be by
the network and/or the execution of some transactions of higher prior-
ity). Thus, timing consistency between constraints and budgets occurs
when the value of the path is less or equal than the upper bound of the
constraint.

For our example, the work is trivial for three of the constraints (they
involve only one atomic activity and thus no concurrency). For the
fourth one (between, Hl.out.req and actuate.order.ack), the problem is a
bit more complex. Even if it can be done "by hand", we illustrate how
to use tools to automate the work.

First, we know that the control loop transaction is cyclic and has no
transitional mode. Thus, we can limit our study to the paths in the
marking graph that correspond to the first instance of the transaction
(any further instance will exactly have the same set of runs). At first, we
hide all the labels that are not useful (i.e. not corresponding to es, ec or
any function of the transaction where es is the source event and ec the
closing event of the constrained sequence). Then, we extract the paths
that match i*.es.(~ es& ~ ec)*.ec (a path starting with a sequence of
silent actions, then es, then any action that is not es and not ec, then ec)
using CADP. We forbid the paths containing more than one occurrence
of es in order to eliminate the interference of some other instance of the
transaction. From this set of paths, we obtain the labelled transition
system (LTS) shown on fig. 9. The length of the chain is 6 ms and the
upper constraint is 10 ms. We conclude that the solution space may
contain some valid implementations.

We now have a candidate FA, together with a set of extra-functional
characteristics, that have been validated. We have shown that it will
not deadlock and that the values of the extra-functional properties seem
to be consistent.

As stated in section 2, the next step is to map the candidate FA onto
the RP, so as to obtain a candidate OA. This candidate OA has to be
validated too, especially with regards to extra-functional properties that
can be assessed only at this level. However, due to space limitation, we
will not detail this stage in this paper.

5. Conclusion
In this paper, we have described the goals of the REACT project. We

have exposed (i) the process that it adopts for the architectural design of
real-time systems; (ii) its ADL CLARA; (iii) the validation of CLARA
architectures through formal analysis techniques.



82 Architecture Description Languages

In (Faucou et al., 2004) (extended version of this paper), a comparison
is done between CLARA and some related projects (all of them being
discussed in other papers included in this volume): MetaH/AADL (
Binns and Vestal, 2001), COTRE (Farines et al., 2003) and EAST (
Debruyne et al., 2004). Although the development of REACT is cer-
tainly less ahead than these projects, we have highlighted some of its
specificities. Hence, the link mechanism of CLARA allows to easily de-
scribe complex multi-components synchronisation patterns and enforces
the designer to specify and validate the control flows at the architecture
level (obviously a good practice for real-time system design) . Moreover,
compared to MetaH/AADL or Cotre, REACT can be used at a higher
design level (FA rather than SA). This allows us to investigate the syn-
thesis of "valid by construction" operational architecture and to propose
in the future a coherent and automated toolset for the rigorous design
of real-time systems.

References
ARTIST (2003). Component-based Design and Integration Platforms. Technical Re-

port W1.A2.N1.Y1, ARTIST - Advanced Real-Time Systems - 1ST project.
Berthomieu, B. and Diaz, M. (1991). Modeling and verifications of time dependent

systems using time Petri nets. IEEE TSE, 17(3).
Binns, P. and Vestal, S. (2001). Formalizing software architectures for embedded

systems. In EMSOFT 2001, volume 2211 of LNCS. Springer.
Cambazard, H. et al. (2004). Decomposition and learning for a hard real-time task

allocating problem. In CORS/INFORMS Joint International Meeting.
Debruyne, V. et al. (2004). EAST-ADL, an Architecture Description Language, Val-

idation and Verification Aspects. In IFIP 2004 WADL.
Durand, E. (1998). Description et verification d'architectures d'application temps reel:

CLARA et les reseaux de Petri temporels. PhD thesis, Ecole Cent rale de Nantes.
Farines, J. et al. (2003). The COTRE project: rigorous software development for

real-time systems in avionics. In 27th IFAC/IFIP/IEEE WRTP'03.
Faucou, S. (2002). Description et construction d'architectures operationnelles validees

temporellement. PhD thesis, Universite de Nantes.
Faucou, S. et al. (2004). REACT: an ADL centric approach for the rigorous design of

real-time embedded systems. Technical report, IRCCyN. (to be published).
ISO (2003). ISO 11898 : Road Vehicles - Controller area network (CAN). ISO.
Kodase, S. et al. (2003). Transforming Structural Model to Runtime Model of Em-

bedded Software with Real-time Constraints. In DATE'OS Designer's Forum.
Medvidovic, N. and Taylor, R. (2000). A Classification and Comparison Framework

for Software Architecture Description Languages. IEEE TSE, 26(1).
Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proc. of the

IEEE, 77(1).
Roux, O. and Deplanche, A. (2002). A T-time Petri net extension for real-time task

scheduling modeling. European Journal of Automation (APII-JESA), 36(7).



SESSION 2: SPECIFICATION
AND DESIGN




