
Architecture Description Languages 51

PATTERN-BASED ANALYSIS OF AN
EMBEDDED REAL-TIME SYSTEM
ARCHITECTURE

Peter H. Feiler, David P. Gluch, John J. Hudak, Bruce A. Lewis
Software Engineering Institute (SEI), Embry-Riddle University, US Army AMRDEC

Abstract: The emerging Society of Automotive Engineers (SAE) Architecture Analysis
& Design Language (AADL) standard is an architecture modeling language
for real-time, fault-tolerant, scalable, embedded, multiprocessor systems. It
enables the development and predictable integration of highly evolvable
systems as well as analysis of existing systems. This paper discusses the role
and benefits of using the AADL in the process of analyzing an existing
avionics system. We use the AADL to describe architecture patterns in the
system being analyzed and to identify potentially systemic issues in the
system. We discuss some of the findings related to timing, scheduling, and
fault tolerance and the benefits of the use of the AADL. Additionally we
highlight the benefits of working with architecture abstractions that are
reflected in the AADL notation, in particular the separation of architecture
design decisions from implementation decisions. Such a light-weight
architecture analysis is typically followed by a full-scale AADL model of the
system with required and actual timing, performance, and reliability figures,
and its analysis to determine whether the requirements are met.

Key words: software architecture, real-time, embedded, model-based system engineering,
standard

1. INTRODUCTION

The SAE Architecture Analysis & Design Language (AADL) (AS2C,
2004) has been developed for embedded real-time systems that have
challenging resource (size, weight, power) constraints, requirements for real-
time response, fault tolerance, and specialized input/output hardware, and

52 Architecture Description Languages

that must be certified to high levels of assurance. Intended fields of
application are avionics systems, flight management systems, space
applications, automotive applications such as engine and power train control
systems, robotics applications, industrial process control equipment, and
medical devices. The AADL was developed under the auspices of the
International Society for Automotive Engineers (SAE) in their Avionics
Systems Division (ASD) and has passed ballot (AADL, 2004). For more
information on the AADL the reader is referred to www.aadl.info.

The AADL can be used as an embedded system engineering tool in two
ways: analysis of architecture patterns identified in real systems to discover
potentially systemic issues, and analysis of a full-scale system model with
quantified system properties and generation of a model-specific runtime
system (Feiler et.al., 2003). The SEI has applied the AADL to analyze an
existing avionics system design as AADL patterns. The results of this work
are summarized in this paper and described in more detail in (Feiler et.al.,
2004). The cost-effectiveness of using MetaH, the precursor to AADL, for
precise modeling, early analysis, and auto-generation of a system
implementation is discussed in (Feiler et.al., 2000).

An avionics system typically consists of a collection of hardware and
software that controls the flight, navigation, radio communication, and in the
case of military aircraft, the targeting and weapons systems. Early
generations of digital avionics systems consisted of embedded controllers
executing on specialized hardware. As general purpose processors became
faster, controllers were implemented with application software executing
with a static timeline and shared variable architecture. Use of shared
variables minimized the memory footprint and resulted in efficient
communication between components within a controller. This approach led
to an efficient implementation with deterministic execution behavior, but
resulted in a software runtime architecture that was carefully crafted and
difficult to change.

In this paper we focus on the use of the AADL as an effective tool for
initial analysis of embedded systems for potential problem spots. We have
analyzed the architecture of an avionics system that is being modernized.
The analysis has focused on different aspects of the embedded system
architecture and identify potentially unanticipated side effects: the migration
from a statically scheduled system to a preemptively scheduled system to
improve resource utilization and create a flexible architecture, the impact of
this change in task scheduling on task communication via shared variables,
scheduling of system partitions as virtual processors, management of end-to-
end latency, and modeling of redundancy in a fault tolerant architecture. We
will examine each of these issues in the next sections.

Architecture Description Languages 53

2. PREEMPTIVE SCHEDULING AND PORT
COMMUNICATION

In the following discussion, we will focus on a flight manager subsystem
executing within one of the system partitions. This subsystem consists of
several components that process signal data in a certain order, with some
components operating at 20Hz while other components operate at lower
rates.

The system is being migrated from a cyclic executive to the use of
preemptive fixed priority scheduling to achieve better resource utilization
and a more flexible system design. Preemptive fixed-priority scheduling is
offered as a solution to improving resource utilization of processors and to
increase the flexibility of evolving embedded systems while ensuring that
deadlines are met. In particular, if used with Rate-Monotonic Analysis
(RMA) (Klein et.al., 1993) a system design can be analyzed at design time to
determine whether all deadlines will be met despite the fact that tasks can
preempt each other.

Inter-partition communication port communication between threads is
performed via message ports, while communication within threads is based
on shared variables. The shared variable approach was retained to
accommodate legacy components and to achieve highly efficient
communication.

Aircraft |
Performance i
Calculation f

Figure 1. Preemptive Scheduling With Priority Assignment

54 Architecture Description Languages

A naive way of introducing preemptive scheduling into this example is to
turn each task into a separate thread. To ensure the desired flow of data
between components, priorities are assigned to the threads according to the
desired execution order. We have modeled this design using AADL (shown
in Figure 1). The intended task execution order is from the top to the bottom.
The task priority is indicated with Pr i, where a smaller i represents a higher
priority.

Since AADL supports scheduling schemes based on RMA, it is natural to
examine the resulting model from an RMA perspective. Thus, it is apparent
that the manual priority assignment result in potential priority inversion, i.e.,
a lower rate thread has a higher priority than a higher rate thread. For
example, the lower-rate Integrated Navigation task is given a higher priority
than the higher-rate Guidance Processing task. This potential priority
inversion does not occur if all threads can complete their execution in a
minor frame, i.e., they have a pre-period deadline corresponding to the
highest rate thread. A consequence of this assumption is that no thread is
preempted and thread execution is the same as that of a static timeline. In
other words, assigning priorities to enforce an execution order incurs the
runtime overhead of preemptive scheduling without obtaining the benefits of
improved resource utilization and flexibility.

In summary, development of AADL models with an RMA-based fixed
priority scheme provides properties for specifying the period, deadline, and
worst-case execution time, but not for assigning priority. Thus, priority
inversion cannot be introduced. If AADL is used to model existing
implementations that do not use the RMA approach, then the red flag of
priority inversion in the RMA framework can be provided as a consistency
check in AADL models with explicit priority assignment.

The AADL promotes port-based communication between all application
threads, both within and across partitions. Furthermore, it distinguishes
between queued message communication and unqueued state
communication. Finally, the AADL distinguishes between immediate (mid-
frame) and delayed (phase-delayed) communication of state data between
periodic threads in a deterministic manner. Such communication semantics
can also be found in real-time OS standards such as OSEK (OSEK, 2003).
In this section, we model communication within the flight manager partition
through ports and discuss the issue of efficient communication
implementations.

The AADL-based model of the flight manager is shown in Figure 2. All
data communication is modeled by ports (black triangles) and connections;
there is no need for shared data and coordinating concurrent access through
locks. No task priorities have been specified by the modeler. They are

Architecture Description Languages 55

determined according to the scheduling protocol; in the case of rate
monotonic scheduling, according to the thread periods.

Navigation • *****
Sensor ^ * * u

From
Partition*

n
f Naivigatfon I

JON*'
Guidance
Processing '

»||
5H

• Flight Plan
iL Processing

To
PartMon*

Figure 2. Port & Connection Based AADL Model of the Flight Manager

The model indicates which connections are immediate (solid line) and
which are delayed (solid line with crossing double line). Cyclic sequences of
immediate connections are not permitted since they cannot be achieved.
Such cycles can be detected by an analysis tool. If the application developer
documented an acceptable phase delay for a task (in a port property) the
degree of actual phase delay can be calculated and compared against the
acceptable value.

Note that the periodic I/O task of Figure 1 is not represented explicitly in
Figure 2. The periodic I/O task achieves two objectives: it groups several
data items together and sends them as a composite data item, i.e., the values
of several output ports are sent together; it always sends the data phase
delayed at the start of the next period. In the AADL, these two concerns are
modeled separately. Time-consistent data transfer of multiple out data ports
is modeled by an aggregate data port (shown as hollow triangle), and as
phase delay as a delayed connection. The application developer now has the
choice of transferring the data immediately or delayed, by choosing the
appropriate connection symbol.

The following observations can be made about the use of AADL. The
AADL separates runtime architecture design decisions from implementation
decisions, and application component development from architecture design.
At the same time, it precisely specifies temporal properties of both task
execution and communication in such a way that application developers
(control engineers) can develop their components against documented
assumptions regarding sampling rates, phase delay of data, and processing
rates. The semantics of AADL periodic thread execution and data port
connections assure deterministic and consistent data communication. At the

56 Architecture Description Languages

same time, implementation of task dispatching and communication can be
delegated to tools. Such tools can generate task dispatch and communication
code that correctly implements the intended temporal semantics. In addition,
they can produce highly efficient implementations by taking advantage of
information and analysis results from the AADL model.

Separation of architecture design from implementation concerns allows a
software system engineer to investigate alternatives that improve the
performance characteristics of an embedded system in cooperation with
control engineers. One example is control engineers analyzing the sensitivity
of their controllers to variations in phase delay, while software system
engineers identify improvements in resource utilization. Another example is
sensitivity analysis by control engineers to changes in sampling and
execution rates, while system engineers investigate the impact of rate
changes on schedulability and resource utilization.

3. HIDDEN TIMING SIDE EFFECTS OF
PARTITION SCHEDULING

Partitions provide time and space partitioning between software
components. In doing so they ensure that malfunctioning components in one
partition cannot affect the execution of components in other components.
This concept is at the heart of the ARINC653 standard for avionics systems
(ARINC653, 1997). Partitions are placed in a particular order on the static
partition scheduling timeline of a processor. Partitions may have to be
rearranged on the timeline or reassigned to other processors to accommodate
new tasks and partitions and to balance the load across processors. Such
rearrangements of partitions are a delicate undertaking and may have hidden
side effects. This section focuses on the effects of such rearrangements on
inter-partition communications within and across processors.

\ Partition A

^ Thread T1 |*

> Thread t4 \

Partition A

Thread t2 ^

Thread i3

Partition A Partition B ' Partition A Time line

Figure 3. Partition Schedule & Communication

Let us first examine the issue for inter-partition communication within a
processor. We have a static timeline with partition A executing before

Architecture Description Languages 57

partition B for the same time frame, followed by the execution of partition A
in the next time frame, as shown in Figure 3. Partition A has two threads ti
and U that can be executed in either order. Partition B similarly has two
tasks t2 and t3. If a thread ti in partition A sends data to a thread t2 in
partition B, the data is transferred mid-frame, i.e., within the same time
frame. If thread t3 sends data to thread U, the data arrives at U at the next
time frame, i.e., phase delayed (shown as an explicitly marked delayed
connection). In other words, the partition order affects the timing of
communication.

Modeling inter-partition communication in the AADL helps uncover a
potentially undesirable side effect of rearranging the partition schedule.
From an application perspective, flow between components is modeled as
mid-frame (immediate) or phase-delayed (delayed) connections. These
timing characteristics place a constraint on the possible partition orderings
on the static partition execution timeline. Thus, a system engineer
rearranging the partition timeline is made aware of such conflicts within the
AADL description.

In the case of an immediate connection, the recipient partition must be
placed after the sending partition. Note that there cannot be immediate
connections from any thread in partition B to any thread in partition A if
there is an immediate connection from a thread in partition A to a thread in
partition B (i.e., if partition A's execution must precede partition B's
execution). This can be easily detected through analysis of the AADL model.
Note that if a design is over-constrained, no partition order can satisfy the
specified communication delay characteristics.

Both the application engineer and the system engineer can contribute to
relaxing the constraints on partition ordering. The application engineer can
design the system to only use delayed inter-partition communication. This is
effectively the case in the system design of Figure 1 by the periodic I/O task
performing all inter-partition communication at the beginning of partition
execution. An application developer can also specify that a component is
insensitive to (a certain variation in) phase delay, i.e., that the connection
could be either immediate or delayed, if the receiving component can handle
variation in phase delay. The system engineer can provide an
implementation of delayed inter-partition communication by transferring
data just before a partition dispatch as part of the runtime system
functionality, thus, relieving the application developer from repeatedly
implementing the periodic I/O task. By doing so, the application architecture
is insulated from partition ordering changes.

If we have a partitioned system that is distributed across multiple
processors, the alignment of the static partition timelines on those processors

58 Architecture Description Languages

determines whether communication is immediate or phase delayed. An
AADL model of the application system will specify the desired
communication timing characteristics, thereby placing constraints on the
ordering of tasks on partitions across all processors. Techniques for relaxing
the constraints on a partition rely on the assumption that the system is
synchronous, i.e., that the processors operate on a single global clock.

Processors in such a system may be connected via an aperiodic bus with
data transferred immediately (with a well defined maximum communication
time), or via a periodic bus with data transferred at a rate determined by the
bus itself. A periodic bus samples the data stream to be transferred and
introduces a phase delay determined by the bus rate. This means that all
connections that are bound to the bus must be delayed connections. In other
words, only partitions with delayed data port connections can be placed on
different processors that are connected physically by a periodic bus. This can
be checked by analyzing the AADL model.

In a time-triggered architecture (TTA) (TTA, 2003) the bus is periodic
and drives the scheduling of tasks on different processors. Thus, it acts as a
global clock that manages any clock drift of individual processors. In that
case, one can attempt to align the schedule of partitions across processors
under AADL's immediate connection constraints. Again, the AADL model
permits quick identification of over constraints due to immediate
connections, e.g., identification of immediate connections between two
independent pairs of threads in two different partitions.

If a distributed system is asynchronous, i.e., if each processor operates on
a local clock, clock drift can occur. Two partitions with an immediate
connection on different processors may have overlapping execution times
and the ordering may change over time. In other words, their execution times
relative to each other may vary over time, resulting in a varying sampling
phase delay for the recipient. A periodic I/O task solution, as shown in
Figure 1, does not eliminate the non-determinism in phase delay due to clock
drift. However, it does address the issue of time-consistent transfer of
aggregate data, i.e., the transfer of data as a single unit that is consistent with
respect to the execution of multiple sending threads in a given partition. As
mentioned earlier, the AADL provides an aggregate data port for this
purpose.

In summary, the ordering of partitions in a partition schedule potentially
can affect the timing characteristics of connections. AADL models with
immediate and delayed connections explicitly document the desired timing
characteristics of data transfer. They act as constraints on the placement of
partitions on their static timeline. This allows us to determine whether a
feasible partition ordering exists. The constraints can be relaxed by the
AADL runtime system supporting delayed connections, independent of

Architecture Description Languages 59

partition scheduling order, and by the application developer investigating the
impact of a change of immediate connection requirements to delayed
connection requirements or the sensitivity of application components to
variation in phase delay. The aggregate data port concept in the AADL
contributes to addressing asynchronous distributed system issues by
providing time-consistent data transfer.

4. END-TO-END LATENCY

The avionics system has a number of flows, namely, signal streams that
require periodic processing and aperiodic command processing flows such as
the flow of control information from sensors to actuators and changing the
Navigation Radio channel. A critical requirement for these flows is to meet
the maximum latency requirements. This end-to-end latency analysis can be
based on deadline and worst-case execution time of individual steps in the
flow executed by threads and on the worst-case latency specified for the
transfer of information from one step to the next. We can separately
determine whether threads meet their deadline given their worst-case
execution times for a given processor binding, and whether the bus can
schedule the transfer of data for those connections that must communicate
via the bus within their transfer latency limits. In this section we focus on
end-to-end latency analysis on the assumption that the thread execution and
data transfer performance properties have been validated.

AADL supports the declaration of flows as flow specifications, i.e., as
externally observable flows through components, as flow paths, i.e., the
realization of the specified flows, and end-to-end flows, i.e., flow paths with
specific start and end points. Such flows are represented as sequences of
connections and threads. From their timing characteristics as periodic
threads with a given period, delayed and immediate connections, and
whether connections are bound to periodic buses, we can derive the end-to-
end latency. Worst-case latency of a flow is effectively the cumulative
latency along the path of a flow, i.e., latency due to execution (competition
for execution resources), communication (competition for the bus as
resource), and sampling or pacing (delay due to dispatch delay and/or
queuing delay). This can be based on the maximum execution latency and
maximum communication latency figures. We can also consider average
case end-to-end latency for those flows where it is acceptable.

When dealing with flows there are two major concerns: adjusting the
end-to-end latency to meet requirements, and understanding the interaction
between multiple flows, in particular at their merge points. When actual

60 Architecture Description Languages

end-to-end latency does not meet the requirements, a typical response is to
ask application developers to make their code run more efficiently.
However, this may be futile because certain latency contributors are inherent
in the system or application architecture and are insensitive to a reduction in
actual execution time by a thread. For example, consider output that is to be
communicated over a periodic bus. Having a source thread execute faster to
output a little earlier will not result in improvement unless the change
crosses a period boundary of the bus sampling. Similarly, a periodic thread
receiving data through a data port connection does not receive the data
earlier if the sending thread is also periodic, since the data transfer semantics
in that case are defined by the AADL to be deterministic.

The representation of an application architecture in the AADL, with
timing characteristics for both threads and connections and an explicit
specification of flows, allows us to quickly identify the key contributors to
end-to-end latency. In the previous sections, we have encouraged the
consideration of delayed connections between threads to improve processor
utilization and reduce constraints on partition scheduling order. These are
decisions that can be revisited to reduce end-to-end latency. We may also
eliminate sampling latencies if delayed connections can be turned into
immediate connections. We can examine latency contributors due to the
binding of the application system to the execution platform. For example, we
can consider placing processing steps in a critical flow on the same
processor. We can examine latency contributors due to allocation of
application components into partitions. For example, we can consider
collocating two sequential processing steps in the same partition.

A key issue with multiple flows is the interaction of their latency
characteristics. If we have a periodic thread receiving data from an aperiodic
thread, the actual completion time of the sending thread relative to the
dispatch of the receiving periodic thread determines which value is
accessible to the receiving thread. Variation in actual completion time may
result in either the old or the new value being accessible, i.e., data latency
may non-deterministically vary by a period. This potential non-determinism
can be identified through analysis and recorded as a property in the AADL
model. Note that the semantics of immediate and delayed data port
connections have been defined in the AADL such that neither immediate nor
delayed data port communication between periodic threads introduces
latency non-determinism.

Non-determinism in latency can result in potentially undesirable
consequences. For example non-deterministic variation in phase delay has
the effect of an oscillating target position resulting in a blurred display. In
general, whenever two data streams merge and one data stream has non-
deterministic latency there is a potential problem. In actual systems, the

Architecture Description Languages 61

merge point is often a controller. In that case, any oscillation observed by the
control engineer may be perceived as noise in the sensor data, which the
control engineer may compensate for by adjustments in the controller.

In summary, an AADL model specifies timing characteristics for both the
execution of threads and the transfer of data between threads. The AADL
supports the specification of end-to-end flows as well as flow specifications
through individual components as part of their interface specification. As a
result the worst-case end-to-end latency of an end-to-end flow specified for a
system can be determined in terms of the expected worst-case latency
specified as part of the flow specification of each subsystem. In particular,
this permits end-to-end latency analysis early in development to identify
potential problem spots when subsystem implementations may not have been
completed yet. As the implementation of the system gets refined the latency
analysis results can become less conservative to reflect the full
implementation.

5. REDUNDANCY IN APPLICATION
ARCHITECTURES

Many embedded real-time systems have a requirement for high
dependability. Dependability is the ability of a system to continue to produce
the desired service to the user when the system is exposed to undesirable
conditions (LaPrie, 2002). One method to increase computer systems'
dependability is through redundancy of hardware, software or both. The
AADL contains constructs that allow the developer to clearly represent and
subsequently model the redundant artifacts at various levels of abstraction.
In this section, we focus on the dependability aspects of a system and how
general fault tolerant approaches can be supported by the AADL.

A typical diagram of such a software architecture mapped onto the
hardware is shown in Figure 4. Multiple instances of hardware and software
are shown with little or no indication as to the intended functional
redundancy. This results in speculation about the intended behavior of the
system under fault conditions. Such information tends to be spread
throughout the design document. For example, there are four MFD
processors, four DMs, and four WAMs. Are they one operational unit with
three spares, two operational units each with its own spare, or four fully
functional operational units? What is the mechanism by which failures are
detected? What is the mechanism by which failover is achieved? Does each

62 Architecture Description Languages

replicated unit perform failover switching separately, or are groups of
replicated tasks switched together? What data is necessary, if any, for state
space preservation? What are the data sources that feed the redundant
entities? Answers to these types of questions could not be ascertained from
the architectural drawings. Reading through software design documentation
uncovered some useful information, but not enough to completely model the
system. It is in this setting that the AADL abstractions help guide us to a
clear understanding of the fault tolerant aspects of the system.

MFD Processors
Copilot Pilot

Mission

processors

Figure 4. Typical Documentation of Avionics System Architecture

Analysis of this architecture from a dependability perspective begins with
understanding what is being replicated. The intentions of the redundancy
design can be expressed as a set of properties on the basic system
architecture. In Figure 5 we are showing the above system as an AADL
model. The logical grouping capability is used to clearly indicate which
logical units are treated as redundant units. The degree of redundancy is
indicated through a property shown visually in an oval decorator icon.
Specific choices of redundancy mechanisms, such as master/slave, and the
form of replication, are indicated through properties pre-declared as part of
the AADL core language. Collocation constraints of components on
processors and memory as well as connections over buses are similarly
specified through properties.

Specific redundancy mechanisms can also be modeled in AADL as
separate patterns. Figure 6 illustrates the master-slave pattern we found
documented for several subsystems, each written with their own words and
limited precision. This made it difficult to discern whether a single master-

Architecture Description Languages 63

slave mechanism and protocol was used or whether different subsystems had
variations. Questions that should be answerable from a design document
include: Are both the master and slave active? What is the operational
scenario for failover? Is state information exchanged between the redundant
components? Who decides whether a component failed?

Figure 5. AADL Representation of Avionics System Redundancy

We use the AADL mode concept to model alternative fault tolerant
system configurations. Figure 6 shows the replicated subsystem PCM as
PCM.repl and PCM.rep2 contained in PCM, which takes on the role of SSI
(Figure 5). The left hand side illustrates the different mode configurations of
the master-slave pattern. In Master mode, PCM.repl is active, receives input,
and provides output (shown in black). PCM.rep2 (the slave copy) is not
active and does not receive input nor produce output (shown in grey). In
Slave mode the opposite is the case. The right-hand side of Figure 6
illustrates a hot-standby Master-Slave pattern of a stateful application
component. In this case both copies of the component are supplied with
input and both process the data. However, the output of only one copy is
made available to the component output. The state of the component is
modeled with the data component construct and is shown as exchanged
between the components. This exchange can be specified to occur while
operating in a mode, or on a mode transition. The figure also shows an
Observer thread that receives the output from both copies and decides
whether to operate in Master or Slave mode. The data is specified to be
received by the observer thread at the next period. If a mode switch is
necessary, it requests any necessary mode change by raising an appropriate
event through the respective event out port (shown as a double arrow head).
This event is routed to the appropriate mode transition in the mode state
transition diagram. If the event arrives at an outgoing transition of the
current mode, a mode switch is initiated.

64 Architecture Description Languages

APCM-
r*tef fv1t>cf«r

— ^ V

/

\

..'V PCM Slave

^ •PCIVI,rep2

K

Figure 6. Hot Standby Master-Slave Mode Logic

In summary, the AADL allows the aggregation of application and
execution platform components into a system hierarchy. Properties can be
associated with components to specify the degree and form of desired
redundancy. Redundancy protocols can be modeled in the AADL utilizing
modes, mode transitions, routing of events that reflect detected faults to
appropriate mode transitions. Binding constraints address collocation
restrictions of replicated components. Error models support stochastic
modeling of fault occurrences for reliability analysis.

6. CONCLUSION

In this paper, we have analyzed an existing avionics system to show use
of the SAE AADL, an emerging international standard for modeling the
system architecture of embedded real-time systems. The AADL focuses on
modeling task and communication architectures by modeling application
system architectures as threads, processes, and aggregates thereof, and by
modeling their interactions as port connections, synchronous subprogram
calls, or concurrency controlled access to shared data. An application system
architecture is then mapped onto an execution platform to support analysis of
runtime system properties such as schedulability and reliability.

In the process of applying the AADL in the analysis of an existing
avionics system, we were led to modeling the system so that implementation
decisions were separated from architecture decisions. In particular, we were
able to model the system interactions purely in the form of port
communication, although the actual system is implemented with
communication through shared variables. The use of the AADL abstractions
allowed us to quickly identify potential issues with the shared variable
communication solution within partitions.

The AADL model and its support for characterizing timing for both
threads and connections allowed us to establish a framework for negotiating
tradeoffs in resource demand between the application developer (typically, a

Architecture Description Languages 65

control engineer) and the system engineer who is responsible for integrating
the application components into an operational system. The characterization
of connections as immediate and delayed also allowed us to identify issues
with respect to partition ordering on the static partition scheduling timeline
and permitted us to perform end-to-end latency analysis effectively.

Finally, the use of the AADL modeling capability allowed us to describe
the redundancy aspects of the system architecture and to address fault
tolerance concisely. By focusing on separation of concerns, we were able to
describe the application system perspective, the realization of the chosen
redundancy protocol, and the mapping onto the execution platform as three
views.

7. REFERENCES

AS2C, 2004,SAE AS-2c Subcommittee "Scope of the SAE AADL Standard". Excerpt from
draft standard document, http://www.aadl.info

AADL, 2004 , Society of Automotive Engineers (SAE) Avionics Systems Division (ASD)
AS-2C Subcommittee. "Avionics Architecture Description Language Standard." Draft
vO.99. May 2004.

Feileret.al., 2003, P. Feiler, B. Lewis, S. Vestal, "The SAE AADL Standard: A Basis for
Model-Based Architecture-Driven Embedded Systems Engineering", Workshop on
Model-Driven Embedded Systems, Real-Time Application Systems (RTAS) Conference,
May 2003. See publications at http://www.aadl.info.

Feileret.al., 2000, P. Feiler, B. Lewis, S. Vestal, "Improving Predictability in Embedded
Real-time Systems" Software Engineering Institute, Special Report, CMU/SEI-2000-SR-
01.

Feiler et.al., 2004, P. Feiler, D. Gluch, B. Lewis, J. Hudak, "Embedded System Architecture
Analysis Using SAE AADL" Software Engineering Institute Technical Note CMU/SEI-
2004-TN005, April 2004.

Klein, et.al., 1993, M. H. Klein, T. Ralya, B. Pollak, R. Obenza, M. Gonzalez Harbour, "A
Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for
Real-Time Systems," Kluwer Academic Publishers.

OSEK, 2003, Open systems and the corresponding interfaces for automotive electronics,
OSEK, http://www.osek-vdx.org (2003).

ARINC653, 1997, "Avionics Application Software Standard Interface", ARINC
Specification 653, Airlines Electronic Engineering Committee, Aeronautical Radio Inc.,
1997.

TTA, 2003, "TTA: Time-Triggered Architecture", http://www.tttech.com/ and
http://www.vmars.tuwien.ac.at/projects/tta/

LaPrie, 2002, J.C. LaPrie (editor), "Dependability: Basic Concepts and Terminology",
Springer Verlag (publisher), November 2002, ISBN: 037822968.

