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Abstract: Oil well drilling is a complex process which frequently is leading to 
operational problems. The process generates huge amounts of data. In order to 
deal with the complexity of the problems addressed, and the large number of 
parameters involved, our approach extends a pure case-based reasoning 
method with reasoning within a model of general domain knowledge. The 
general knowledge makes the system less vulnerable for syntactical variations 
that do not reflect semantically differences, by serving as explanatory 
supportfor case retrieval and reuse. A tool, called TrollCreek, has been 
developed. It is shown how the combined reasoning method enables focused 
decision support for fault diagnosis and prediction of potential unwanted 
events in this domain. 
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Engineering, Prediction, Petroleum Engineering,. 

1. INTRODUCTION 

This paper presents a new level of active computerized support for 
information handling, decision-making, and on-the-job learning for drilling 
personnel in their daily working situations. We focus on the capturing of 
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useful experiences related to particular job tasks and situations, and on their 
reuse within future similar contexts. Recent innovations from the areas of 
data analysis, knowledge modeling and casebased reasoning has been 
combined and extended. The need for such a method was driven by the fact 
that current state-of-the-art technology for intelligent experience reuse has 
not been able to address the complexity of highly data-rich and information-
intensive operational environments. An operational environment, in the 
context of this research, refers to a job setting where people's decisions 
quickly lead to some operational action, which in turn produce results that 
trigger decisions about new actions, and so on. The overall objective of this 
work has been to increase the efficiency and safety of the drilling process. 
Efficiency is reduced due to unproductive downtime. Most problems 
(leading to downtime) need to be solved fast. Since most practical problems 
have occurred before, the solution to a problem is often hidden in past 
experience, experience which either is identical or just similar to the new 
problem. The paper first gives an overview of our combined case-based and 
model-based reasoning method. This is followed, in section 3, by an oil well 
drilling scenario and an example from a problem solving session. This is 
followed by a summary of related research (section 4), and a discussion with 
future works in the final section. 

2. KNOWLEDGE-INTENSIVE CASE-BASED 
REASONING 

Based on earlier results within our own group i-4, as well as other related 
activities, the method of case-based reasoning (CBR) has proven feasible 

for capturing and reusing experience and best practice in industrial 
operations5-7. CBR as a technology has now reached a certain degree of 
maturity, but the current dominating methods are heavily syntax-based, i.e. 
they rely on identical term matching. To extend the scope of case matching, 
and make it more sensitive to the meaning of the terms described in the cases 
- including their contextual interpretation - we suggest a method in which 
general domain knowledge is used to support and strengthen the case-based 
reasoning steps. The general domain knowledge serves as explanatory 
support for the case retrieval and reuse processes, through a model-based 
reasoning (MBR) method. That is, the general domain knowledge extends 
the scope of each case in the case base by allowing a case to match a broader 
range of new problem descriptions (queries) than what is possible under a 
purely syntactic matching scheme. Integration of CBR and MBR is referred 
to as "knowledge intensive case-based reasoning" (Ki-CBR). Ki-CBR allows 
for the construction of explanations to justify the possible matching of 
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syntactically dissimilar - but semantically/pragmatically similar - case 
features, as well as the contextual (local) relevance of similar features. 
Earlier research reported from our group has also addressed this issue. 
However, the resulting architectures and implemented systems were 
basically CBR systems with a minor model-based addition, and tailored to 
specific problems. This has been taken further into a novel and flexible 
system architecture and tool - called TroUCreek - in which the model-based 
and case-based components may be combined in different ways. 

2.1 The Model-Based Component 

Methods for development of knowledge models for particular domains 
(e.g.drilling engineering) have over the last years improved due to 
contributions both from the knowledge-based systems field of artificial 
intelligence, and the knowledge management field of information systems. 
The knowledge models are often expressed in a standard language (XML-
based). This facilitate that knowledge structures can end up in shared 
libraries, to become available for others. During the development of a 
knowledge modelling methodology for the petroleum technology domain, 
existing, more general, frameworks and methodologies, in particular 
CommonKADS, Components of Expertise, and CBR-related 
methodologiess-iowere adapted. 

d::«1)J;«iifvÄ Pi:^mi^m 

^'''^"^mm 

Figure 1. A part of the top-level ontology, showing concepts linked together with structural 

relations of type "has subclass". Each relation has its inverse (here "subclass-of, not shown). 

At the simplest level, the TroUCreek general domain model can be seen 
as a labeled, bi-directional graph. It consists of nodes, representing concepts, 
connected by links, representing relations. Relation types also have their 
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semantic definition, i.e. they are concepts. The uppermost ontology of the 
TrollCreek model is illustrated in Figure 1. Different relations have different 
numerical strength, i.e. a value in the range 0-1, corresponding to a relation's 
default "explanatory power". For example, a "causes" relation has default 
strength 0.90, a "leads to" relation 0.80, and an "indicates" relation 0.50. All 
parameter values that the system reasons with are qualitative, and need to be 
transformed from quantitative values into qualitative concepts, as 
exemplified in Table 1. The entity "Weight On Bit" (WOB) is taken as an 
example. WOB is a subclass of Operational Parameter which is subclass of 
Observable Parameter in our ontology model. Currently, the oil drilling 
domain model contains about 1300 concepts related through 30 different 
relation types. 

Table 1. Qualitative values and their definitions 

Quafiiaijve value Qitumtiiiirvc' value Qy af̂ iitaoÄ e dell n iir 011 
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In Table 2 some relations between entities (other than subclass) are 
presented. 

Table 2. Relations betv̂ êen some concepts. 
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2.2 The Case-Based Component 

Cases are descriptions of specific situations that have occurred, indexed 
by their relevant features. Cases may be structured into subcases at several 
levels. They are indexed by direct, non-hierarchical indices, leaving indirect 
indexing mechanisms to be taken care of by the embedding of the indices 
within the general domain model. Initial case matching uses a standard 
weighted feature similarity measure. This is followed by a second step in 
which the initially matched set of cases are extended or reduced, based on 
explanations generated within the general domain model. Cases from the oil 
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drilling domain have been structured in a manner which makes them suitable 
for finding the solution of a problem and/or search for missing knowledge. 
All cases therefore contain the following knowledge: 

• characteristics that give the case a necessary, initial "fingerprint", like 
owner of problem (operator); Place/date; Formation/geology; 
installation/well section; depth/mud type 

• definition of the searched data / recorded parameter values / specific 
errors or failures 

• necessary procedures to solve the problem, normative cases, best 
practice, repair path consists normally of a row of events. An initial repair 
path is always tried out by the drilling engineer and usually he succeeds. If 
his initial attempts fail, then the situation turns into a new case, or a new 
problem. 

• the final path, success ratio of solved case, lessons learned, frequently 
applied links From a case, pointers or links may go to corporate databases of 
different formats. Typical examples are logging and measurement databases, 
and textual "lessons learned" documents or formal drilling reports. 

3. OIL WELL DRILLING SCENARIO 

During oil well drilling the geological object may be as far as 10 km 
away from 

the drilling rig, and must be reached through selecting proper equipment, 
material 

and processes. Our work is addressing all phases of the drilling process; 
planning 

(for planning purposes the TroUCreek tool is addressing the drilling 
engineer), plan 

implementation (addressing the driller and the platform superintendent) 
and post 

analyses (addressing the drilling engineer and management). Of all 
possible 

problems during oil well drilling we have in this scenario selected one 
specific 

failure mode; Gradual or sudden loss of drilling fluid into cracks in the 
underground. 

This failure is referred to as Lost Circulation. Lost circulation (LC) 
occurs when the 

geological formation has weaknesses like geological faults, cavernous 
formations or 
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weak layers. The risk of losses increases when the downhole drilling 
fluid pressure 

becomes high, caused by i.e. restrictions in the flow path or by the 
drilling fluid 

becoming more viscous. 

3.1 An Example 

Assume that we are in a situation where drilling fluid losses are observed, 
and the situation turns into a problem (Lost Circulation), See the case 
description to the left in Figure 2. TrollCreek produces first of all a list of 
similar cases for review of the user, see Figure 3, bottom row. Testing of 
Case LC 22 suggests that Case LC 40 is the best match, with case 25 as the 
second best. Inspecting case 25 shows a matching degree of 45%, and a 
display of directly matched, indirectly (partly) matched, and non-matched 
features. Examination of the best-matched cases reveals that Case LC 40 and 
25 are both of the failure type Natural Fracture (an uncommon failure in our 
case base). By studying Case LC 40 and 25 the optimal treatment of the new 
problem is devised (the "has-solution" slot, see right part of figure 2), and 
the new case is stored in the case base. The user can choose to accept the 
delivered results, or construct a solution by combining several matched cases. 
The user may also trigger a new matching process, after having added (or 
deleted) information in the problem case. The user can also browse the case 
base, for example by asking for cases containing one specific or a 
combination of attributes. 
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Figure 2. Unsolved case (left) and the corresponding solved case (right) of Case LC 22. 

3.2 The role of general domain knowledge 

A model of causal and other dependency relations between parameter 
states, linked within a set of taxonomical, part-subpart, and other structural 
relations, constitutes the core of the general domain model. This enables the 
system to provide a partial explanation for the reason of a failure. Figure 4 
shows parts of the explanation structure explaining why Case LC 22 is a 
problem of the type Natural Fracture. An important notion in identifying a 
failure mode is the notion of a non-observable parameter, i.e. a parameter 
which is not directly measurable or observable, usually related to conditions 
down in the well. In Figure 4, examples of such parameters are Annular 
Flow Restrictions, Increasing Annular Pressure,Decreasing Fracture Pressure, 
Leaking Fm, Large LCD, Pressure Surge, High Annular Pressure. An 
important reasoning task is to relate failures to possible non-observable 
parameters, using the knowledge model, then relate these to other measured 
parameters until a set of possible failure modes are suggested. 
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Figure 3. Results of matching a new case (Case LC 22 unsolved) with the case base 

Indirect (partial) matching of case features is exemplified in Figure 3. 
The lower half of the display (hiding all but one of the unmatched features), 
shows a graphical display of concepts involved in the matching, and a 
textual description explaining the match. Identifying a failure and a repair 
for the failure are two types of tasks that the system can reason about. An 
explicit task-subtask structure is a submodel within the domain model, which 
is used in controlling the reasoning process. This is exemplified in Figure 5, 
which also shows (upper right) tasks linked to failure states. States are also 
interlinked within a state structure (not shown). By combining task and state 
models, with causal reasoning as illustrated in Figure 4, a solution may be 
found by model-based reasoning within the general domain model, even if a 
matching case is not found. If so, the system will - as shown before - store 
the problem solving session as a new case, hence transforming general 
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domain knowledge, combined with case-specific data, into case-specific 
knowledge. 
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Figure 4. Some of the explanation paths behind the failure in Case LC 22 
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Figure 5. Partial task hierarchy, linked with parts of a failure hierarchy 
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4. RELATED WORK 

Several oil companies recognize the need to retain and centralize the 
knowledge and experience of the organization, among other reasons due to 
outsourcing and spreading of knowledge. Generally, diagnostic tools 
represent the largest area of application for AI systemsn. Amoco/Phillips 
and Shell serve as examples of oil companies that have reached far with 
respect to implementation of experience transfer tools. Amoco/Phillips 12 
presents a heuristic (experience based) simulation approach to the Oil Well 
Drilling domain, based on data sets of 22 actual wells. The accumulated data 
are treated statistically and fitted to a model based on combining human 
thought, artificial intelligence and heuristic problem solving. The model will 
adapt to a specific geological area, and capture experience, reuse it and 
gradually improve and learn. They encompass and model the complete 
drilling process, rather than specific subproblems. Their approach is 
therefore less focused than our approach. Parallel to this activity CIRIO13 is 
leading a "Drilling club" in which all members contribute with well data 
from around the world. By means of a CBR technique, previous, analogous 
wells or aspects of well are selected through similarity matching, and 
adapted to new wells. Shelli4has taken a similar approach as above, as they 
have selected the reservoir as a case entity. A common reservoir knowledge 
base, containing relevant reservoir information like reservoir description, 
development plans, production reports, etc., can be shared by any Shell staff 
around the world. The individual user may retrieve the best matching 
reservoir through similarity matching (reservoir analogues). The Shell 
approach represents, on the one hand, a more ambitious approach than ours, 
but on the other a less focused one. CBR are known to be well suited for 
maintenance of other complex processes, related to our domain. Mount and 
Liaoii describe a research and learning prototype which helps find the 
answers and explanations of fatigue-cracking failures in a power generation 
process. The prototype covers both support in failure investigation and 
suggests the primary cause of a failure in a priory list, leaving the ultimate 
decision to the user. Nettem 5 points out that CBR provides significant 
advantages over other techniques for developing and maintaining diagnosis 
systems, while accuracy and coverage may be low. By comparing with 
surveillance of the process this is certainly true. Surveillance can be 
performed at high accuracy but to a limited amounts of selected parameters. 
Monitoring of torque and drag 16 is promising for predicting wellbore 
cleaning / stuck pipe situations. High accuracy and coverage of CBR 
systems can be improved but comes at a high price. A large case library and 
complex ontology must be developed. Our approach differs from the above 
in the combination of case-specific and general domain knowledge. Further, 
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the model-based reasoning module in TroUCreek assumes open and weak 
theory domains, i.e. domain domains characterized by uncertainty, 
incompletes, and change. Hence, our inference methods are abductive, rather 
than deductive, forming the basis for plausible reasoning by relational 
chainingi7. 

5. CONCLUSION AND FUTURE WORK 

As has been described, a new tool for handling knowledge-intensive 
case-based reasoning has been developed, and is now being tested. New 
cases are matching similar past cases with a high degree of user credibility, 
due to the ability of the system to justify its suggestions by explanations. 
Work related to failure diagnosis and repair is presented in this paper. 
Ongoing, parallel work includes prediction of unwanted events before they 
occur - also in the oil drilling domain, incorporating time-dependent cases 
and temporal reasoningis. Another challenge is how to automatically update 
the general domain model based on data, where we study probabilistic 
networks as a data mining method2,i8. Additionally, work has been started to 
improve the knowledge acquisition and modeling methodology for both 
general and case-specific knowledgeio, automatically generate past case 
descriptions from text reports, and to facilitate this type of decision support 
in a mobile-computing environment. On the agenda for future research is 
extending the representational capacity of the system, e.g. to handle flexible 
forms of decision rules and conditionals on relationships. In the drilling 
industry the engineers tend to group problem related knowledge into 
decision trees. Decision trees are inherently instable, and alternative trees 
may produce different resultsi9. A combination of the two may work well, 
our cases being the exceptions of the more rule based tree. Some frequently 
reoccurring problems may gradually (depending on failure rate) turn into a 
decision rule. Such problems will then enter the default best practice of the 
oil company. Best practice, or lessons leamed, are notions of large interest in 
the oil drilling industry. Others have also investigated usefulness of case-
based support tools for capturing lessons leamedio. The approach presented 
in this paper is a contribution to a total strategy of retaining and putting 
useful knowledge and information to use when needed. We are currently 
discussing this issue, on a broader scale, with some oil companies. The 
challenges here are essentially twofold: One is to integrate a knowledge-
based decision support tool smoothly into the other computer-based systems 
in an operational environment. The other, and not less challenging, is to 
integrate computerized decision support into the daily organizational and 
human communication structure on-board a platform or on shore. 
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