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Abstract Gridded population distribution data are

finding increasing use in a wide range of fields,

including resource allocation, disease burden esti-

mation and climate change impact assessment. Land

cover information can be used in combination with

detailed settlement extents to redistribute aggregated

census counts to improve the accuracy of national-

scale gridded population data. In East Africa, such

analyses have been done using regional land cover

data, thus restricting application of the approach to

this region. If gridded population data are to be

improved across Africa, an alternative, consistent

and comparable source of land cover data is

required. Here these analyses were repeated for

Kenya using four continent-wide land cover datasets

combined with detailed settlement extents and

accuracies were assessed against detailed census

data. The aim was to identify the large area land

cover dataset that, combined with detailed settlement

extents, produce the most accurate population

distribution data. The effectiveness of the population

distribution modelling procedures in the absence of

high resolution census data was evaluated, as was

the extrapolation ability of population densities

between different regions. Results showed that the

use of the GlobCover dataset refined with detailed

settlement extents provided significantly more accu-

rate gridded population data compared to the use

of refined AVHRR-derived, MODIS-derived and

GLC2000 land cover datasets. This study supports

the hypothesis that land cover information is

important for improving population distribution

model accuracies, particularly in countries where

only coarse resolution census data are available.

Obtaining high resolution census data must however

remain the priority. With its higher spatial resolution

and its more recent data acquisition, the GlobCover

dataset was found as the most valuable resource to

use in combination with detailed settlement extents

for the production of gridded population datasets

across large areas.
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Introduction

Gridded population distribution data are increasingly

being used for resource allocation, disease burden

estimation and climate change impact assessment

amongst other applications, at global, continental and

national scales. Detailed and spatially disaggregated

population data are essential resources in the assessment

of the number of impacted people in decision-making

processes related to developmental or health issues

(Bhaduri et al. 2002; Dobson et al. 2000; Hay et al. 2005;

Salvatore et al. 2005). Existing gridded population data

have been used, for example, to quantify populations at

risk of several infectious diseases such as malaria

(Guerra et al. 2006; Hay et al. 2009), yellow fever and

dengue (Rogers et al. 2006), or avian influenza (Fergu-

son et al. 2005; Rao et al. 2009). Global population

datasets have also been used to study the spatial

distribution of infant mortality (Storeygard et al. 2008)

and child hunger (Balk et al. 2005c). Moreover, gridded

population distribution data have shown application in

the analysis of the impacts of climate change, such as sea

level rise (McGranahan et al. 2007) and the collapse of

an Antarctic ice sheet (Nicholls et al. 2005), while the

vulnerability of people to natural disasters has also been

quantified (Balk et al. 2005a; Maynard-Ford et al. 2008).

Three global gridded population datasets are avail-

able for undertaking such studies; the Gridded Popu-

lation of the World (GPW), the Global Rural Urban

Mapping Project (GRUMP), and the LandScan Global

Population database. The United Nation Environment

Programme (UNEP) has also compiled gridded pop-

ulation data for Africa, Asia and Latin America. In the

GPW database–which was first released in 1995

(Tobler et al. 1995, 1997), then updated in 2000

(Deichmann et al. 2001) and 2004 (Balk and Yetman

2004)–population data were simply areal-weighted per

administrative unit, thus assuming that the population

is uniformly distributed within each administrative

unit. GRUMP uses a similar approach to GPW, but

incorporates satellite nighttime light-derived urban

extents and their corresponding populations in the

spatial reallocation of census counts (Balk et al.

2005b). LandScan was first developed in 1998 (Dob-

son et al. 2000), then updated yearly from 2000 to 2008.

LandScan uses ancillary data such as roads, slope, land

cover and nighttime lights to estimate probabilities of

population occurrence in grid cells. Populations are

spatially reallocated within each areal unit using

modelling approaches based on these probability

coefficients (Dobson et al. 2000; Bhaduri et al. 2007).

Finally, the UNEP database was constructed based on

an accessibility surface developed from road networks

and populated places datasets (Deichmann 1996;

Hyman et al. 2004; Nelson 2004).

These existing large area population datasets

exhibit significant drawbacks due to the coarse nature

of the input census data used in their construction for

many countries, particularly those in the low income

regions of the World. For the majority of African

countries, census data are often over a decade old and

at a provincial or district level resolution (Tatem et al.

2008). The use of modelling techniques for the spatial

reallocation of populations within census units is

therefore particularly relevant for Africa. Dasymetric

modelling methods involve using ancillary data to

redistribute populations from administrative units to

more homogenous units such as square grids (Mennis

2003). However, these approaches only increase

population distribution model accuracies over the

simple gridding (areal weighting) of census data if the

ancillary data is more detailed and complete spatially

than the input census data, and can be detrimental to

modelling accuracies otherwise (Hay et al. 2005;

Tatem et al. 2007). Land cover and land use data,

particularly on settlements, at a spatial resolution finer

than the scale of census data administrative units offer

an opportunity for improving population distribution

models in areas with poor ancillary spatial data, such

as sub-Saharan Africa. Population density is assumed

to vary according to land use and land cover types

(Mennis 2003; Wright 1936). Land use classes–

defined by purposes for which humans exploit the

land cover–are closely linked to people activities,

which make it a more effective indicator of population

distribution than land cover. Satellite remote sensing

offers a cheap and effective solution to obtain spatial

information such as land cover and land use data at

different spatial scales (Tatem et al. 2004).

Recent work forming part of the AfriPop project

(www.afripop.org) has shown that detailed satellite

imagery-based mapping of settlements combined

with land cover information can be used to increase

population model accuracies across large areas

(Tatem et al. 2007). Using East Africa as an example,

Tatem et al. (2007) showed that the combination of

detailed settlement extents data with land cover data

produced more accurate population distribution data
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than simple areal weighting or the allocation of

people only to the grid squares classified as settle-

ment. Dasymetric modelling methods based on land

use data require the definition of relative weights

associated with land use classes (Hay et al. 2005;

Tatem et al. 2007). These weights are first calculated

for regions where high resolution census data are

available and then applied to other geographically

proximate or similar regions with coarser census data.

The aim of the AfriPop project is to extend these

dasymetric methods to model population distributions

across the whole of Africa. As census data are coarse

and outdated in many of these countries, land cover

specific weights will be calculated based on regions

where accurate, detailed and contemporary data are

available and then extrapolated to neighbouring

regions. The extrapolation level will depend on

available data. This spatial extrapolation of relative

population weights assumes that the weights are

consistent across the regions considered.

The work performed by Tatem et al. (2007) relied

upon East Africa-specific land cover information

(Africover, www.africover.org), thus restricting

application to East Africa. The extension of these

approaches beyond the region requires the identifica-

tion and testing of candidate land cover datasets of

wider extent. This paper aims to identify the large area

land cover dataset that, combined with detailed set-

tlement extents, produces the most accurate popula-

tion distribution data. The most appropriate land cover

data, refined with detailed settlement extents, will

then be used for population distribution modelling

across Africa. Here, four satellite imagery derived

global land cover datasets are first refined in the same

way, and then tested with Kenyan census data on their

ability to improve the accuracy of population distri-

bution models. In addition, the spatial extrapolation

ability of the relative weights calculated from the four

refined land cover datasets was also tested.

Data

Land cover and land use

Four freely available global land cover datasets were

acquired. The main characteristics of these four global

land cover datasets along with their sources are

presented in Table 1. The first one is a global land T
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cover classification at a spatial resolution of 1 km,

using 14 years of imagery from the NASA/NOAA

Pathfinder Land (PAL) Advanced Very High Resolu-

tion Radiometer (AVHRR) dataset (Hansen et al.

2000). A second global land cover classification at

1 km spatial resolution was obtained, this time using

1 year of Moderate Resolution Imaging Spectrometer

(MODIS) data (Friedl et al. 2002). Thirdly, the Global

Land Cover 2000 (GLC2000) dataset was acquired.

This 1 km spatial resolution global land cover dataset

was derived from daily global images from the

VEGETATION sensor on board the SPOT 4 satellite

over a 14 month period (Fritz et al. 2002). Finally, the

GlobCover Land Cover product (GlobCover) was

obtained. This most recent land cover dataset, with a

spatial resolution of 300 meters and compatible with

the UN Land Cover Classification System (LCCS),

was derived from a time-series of Medium Resolution

Imaging Spectrometer (MERIS) images acquired from

December 2004 to June 2006 (Arino et al. 2007, 2008).

These four datasets describe mainly land cover

features, but also give some land use information.

Settlements

Settlement maps at 30 m spatial resolution were

created by Tatem et al. (2007) for five East African

countries (Kenya, Uganda, Burundi, Rwanda and

Tanzania) based upon methodologies detailed in

Tatem et al. (2004). In brief, bands 1–5, 7 and 8 from

Landsat Enhanced Thematic Mapper (ETM) imagery

and eight texture layers extracted from Radarsat-1

synthetic aperture radar (SAR) were combined for

classifier training. The imagery was split into segments

and spatial-spectral segmentation was undertaken in

each segment. A feed-forward neural network classi-

fier was then used to identify settlements within each

spectrally and spatially contiguous zone, using Afri-

cover and settlement centroid data for training and

testing. In highly rugged areas, only ETM data were

used to avoid strong radar responses due to variations

in topography.

Census

Administrative unit level 0 (national), 1 (province), 2

(district), 3 (division), 4 (location), 5 (sublocation)

Kenya census data were obtained from the 1999

population and housing census report, available at the

Central Bureau of Statistics in Nairobi (CBS 2001),

along with corresponding administrative unit bound-

aries. Also obtained were corresponding census data at

administrative unit level 6 (enumeration area) with

corresponding boundaries for 58 of the 69 Kenyan

districts.

Methods

Population distribution modelling approach

Here we use land cover datasets that cover the world

combined with detailed settlement extents and census

data to produce gridded population distribution data

for Kenya. Four main methodological stages were

undertaken: (1) refining of the settlement extents of

the global land cover data, (2) dividing enumeration

areas in two samples, (3) deriving land cover specific

weights and modelling population distribution based

on each refined global land cover dataset and (4)

assessing the accuracy of the population distribution

models produced. Fig. 1 summarizes the whole pro-

cedure and shows these four parts in different boxes.

Land cover data refinement (Fig. 1, box 1)

The global land cover maps were ‘refined’ to

accommodate the more detailed and accurate infor-

mation on settlements provided by Tatem et al.

(2007). The four global land cover datasets were first

resampled to 100 m spatial resolution. For each land

cover dataset, the urban class, which typically

overestimates settlement extent size (Tatem et al.

2005, 2007), was removed and the surrounding

classes expanded equally to fill the remaining space.

The 30 m settlement map constructed in Tatem et al.

(2007) was also degraded to 100 m spatial resolution.

This more detailed settlement map was then overlaid

onto the ‘urban class deprived’ land cover map and

land covers beneath were replaced to produce a

refined land cover map. Four refined land cover

datasets were therefore created for Kenya.

Sampling methods (Fig. 1, box 2)

In order to use different datasets for modelling and

accuracy assessment, the 46,034 Kenyan enumeration

areas (EA) were divided in two samples. Different

528 GeoJournal (2011) 76:525–538

123



sampling methods were used in order to evaluate the

extrapolation ability of the spatial population data

production. Here we tested the impact of an increas-

ing extrapolation level (EXL) on the precision of

population data produced. The EXL represents the

level at which population weights are extrapolated,

from close and similar regions to more distant and

environmentally different regions. The EXL only

determines the sampling method used in the popula-

tion modelling procedure. With a low EXL, EAs used

for modelling and EAs used for accuracy assessment

were chosen randomly. With higher EXL levels, EAs

were selected based on the administrative unit they

belong to: EAs from half of the administrative units

were selected for modelling, and the other half was

used for accuracy assessment. For example, the

sampling method with maximum EXL (EXL = L1)

randomly selects 4 of the 8 Kenyan provinces, EAs

belonging to the 4 selected provinces constituting the

first modelling sample and other EAs constituting

the second accuracy assessment sample. In this case,

the two samples are much more clustered, and

population weights are extrapolated from one prov-

ince to the other. Table 2 shows the different EXL

with their corresponding sampling method.

Dasymetric modelling (Fig. 1, box 3)

The refined land cover data and Kenyan enumeration

area census data were then used to define per land

Fig. 1 Summary of the

methodology followed in

this paper. * Global land

cover data: AVHRR,

MODIS, GLC2000 or

GlobCover (Table 1).

** Sampling method:

depends on EXL, i.e. RD,

L5, L4, L3, L2 or L1

(Table 2). *** Totals

correction methods (TCM):

depends on the level of

administrative data used,

i.e. ADMIN-5, ADMIN-4,

ADMIN-3, ADMIN-2,

ADMIN-1, ADMIN-0 or no

correction by the totals

(Table 3)
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cover class population densities (i.e. the average

number of people per 100 9 100 m pixel). Mennis

and Hultgren (2006) described and compared different

methods for estimating population densities based on

land cover data. Here, the average population density

of one specific land cover class was calculated based

on EAs from the first sample that record this land cover

class for the majority of their pixels. Different tables

were produced containing the population density per

land cover class for each of the four newly created land

cover datasets. Zeros were attributed to classes with no

human habitation, mainly water bodies.

These per land cover class densities were then

used as weights to reallocate populations within

Kenyan administrative units. In one administrative

unit, the sum of per-pixel population counts is

therefore equivalent to the census population data.

The administrative unit level of the census data used

to adjust population totals is defined by the TCM

(totals correction method). The population modelling

procedure was repeated using different TCM, i.e.

census data at different administrative levels, in order

to explore the effectiveness of the population mod-

elling procedures in the absence of high resolution

census data (Table 3). To facilitate the comparison

with available census data in other countries, the

TCM used is associated with the average spatial

resolution (ASR) of the administrative unit level of

census data in Kenya. The ASR measures the

effective resolution of administrative units in kilo-

metres. It is calculated as the square root of the land

area divided by the number of administrative units

(Balk and Yetman 2004). Different 100 m population

distribution datasets were created for the entire of

Kenya based on the land cover data and the totals

correction method (TCM) used. The gridded popula-

tion data produced are not projected, but are refer-

enced by geographic WGS84 coordinates.

Accuracy assessment (Fig. 1, box 4)

The accuracies of these population distribution data

were tested principally using the second sample of

EA census data, the first sample having been used for

the relative weights calculation. With an average of

23,017 EAs and an ASR of 3.21 km (8.4 EAs per

sublocation in average), these provided a valuable

dataset for assessing the accuracy with which popu-

lations had been distributed within each administra-

tive unit by the application of each global land cover

data. Predicted population data per EA were com-

pared to observed population data from the 1999

Kenyan census. Accuracy statistics including root

mean square errors (RMSE) and Pearson correlation

coefficients were computed. Accuracies were also

tested by comparing the output population distribu-

tion data derived from each land cover product to

areal weighting, to examine which approaches pro-

duced improvements over this simplest of methods.

As discussed previously, the areal weighting method

is a simple population distribution modelling method

consisting of a homogenous distribution of popula-

tions within census units, and represents the basis by

which the existing widely used global population

data, Gridded Population of the World (Balk et al.

2006), are constructed.

Table 2 Extrapolation levels (EXL) with their corresponding

sampling method

EXL Sampling method

RD Random selection

L5 Selection based on admin. level 5 (sublocations)

L4 Selection based on admin. level 4 (locations)

L3 Selection based on admin. level 3 (divisions)

L2 Selection based on admin. level 2 (districts)

L1 Selection based on admin. level 1 (provinces)

The sampling method divides EAs in two samples–one for

modeling and one for accuracy assessment–in order to evaluate

the extrapolation ability of the population modelling approach

Table 3 Totals correction methods (TCM) with their corre-

sponding average spatial resolution (ASR) in Kenya

TCM Administrative level ASR (km)

ADMIN-5 Sublocation 9.35

ADMIN-4 Location 15.73

ADMIN-3 Division 35.01

ADMIN-2 District 91.65

ADMIN-1 Province 269.17

ADMIN-0 National 761.33

No correction / /

The TCM is the level of administrative data used to correct

population numbers by the administrative unit totals. The ASR

measures the effective resolution of administrative units in

kilometers. It is calculated as the square root of the land area

divided by the number of administrative units (Balk and

Yetman 2004)
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Tests and replications

In summary, each population distribution dataset

produced in this study is characterized by input land

cover data (AVHRR, MODIS, GLC2000 or Glob-

Cover), a TCM (ADMIN-5, ADMIN-4, ADMIN-3,

ADMIN-2, ADMIN-1, ADMIN-0, or no correction)

and an EXL (RD, L5, L4, L3, L2 or L1) (Fig. 1).

In a first step, we fixed the extrapolation level to

the maximum (i.e. EXL = L1)–because a high

extrapolation level is likely to be required to produce

population distribution data in other African coun-

tries–and varied the TCM. This allowed for explora-

tion of the effectiveness of the population modelling

procedures in the absence of high resolution census

data. With EXL = L1, the sampling method is based

on the Kenyan provinces. The selection of 4 out of

the 8 provinces was replicated 25 times and these 25

different combinations (out of 70) were used to

produce population distribution datasets. This was

also repeated with the four land cover datasets as

input data.

In a second step, we fixed the TCM and produced

population distribution data for each of the 6 EXL. As

sampling methods associated with EXL include a

random component, each stage was replicated 25

times. This was repeated with the four land cover

datasets as input data. In this second step, the TCM

was fixed to ADMIN-2. To decide which level to use,

we looked at the average spatial resolution of

available census data in other African countries. On

average, the census data available that is georegis-

tered to administrative boundaries for African

countries have an ASR of 84.88 km, which is closer

to the district level (ADMIN-2) in Kenya (Table 3).

Figure 2 shows the ASR of African countries.

Statistical analyses including analyses of variance

and Tukey’s honest significant difference tests were

performed to test for differences between different

land cover data, TCM and EXL. The Tukey’s honest

significant difference statistical test is used to identify

which means are significantly different from the

others. This test is based on the range of the sample

means rather than the individual differences.

Fig. 2 Average spatial

resolution (ASR) of census

data used in the

construction of Gridded

Population of the World v3

(GPWv3) and the Global

Rural Urban Mapping

Project (GRUMP) in

African countries. The ASR

measures the effective

resolution of administrative

units in kilometers. It is

calculated as the square root

of the land area divided by

the number of

administrative units (Balk

and Yetman 2004)

GeoJournal (2011) 76:525–538 531

123



Results

Results from the first series of replications (with EXL

fixed to L1) are presented in Figs. 3, 4. Firstly, Fig. 3

shows that in most of the cases (with TCM = AD-

MIN-4, ADMIN-3, ADMIN-2 and ADMIN-1), the

GlobCover dataset used as input land cover data

produced the lowest RMSE on average. An analysis of

variance including the global land cover and the TCM

as independent variables confirmed that the land cover

dataset used in combination with detailed settle-

ment extents had a significant impact on the RMSE

(F value = 3.11; p = 0.026). Complete results from

the analysis of variance are presented in table 4. The

Tukey’s test confirmed the significant difference

between the GlobCover-based population distribution

data and the AVHRR-based population data

(p = 0.016). When removing the TCM = ADMIN-

0 particular case, the Tukey’s test showed significant

differences between the GlobCover-based popula-

tion data and all three other groups of population

distribution data (with all p-values \ 0.0001). The

significant interaction factor shows that the effect of

the choice of land cover is different according to the

TCM level (Table 4).

The accuracy of population distribution data

decreased drastically with coarser administrative

levels used for TCM, both in terms of RMSE and

correlation coefficient (Fig. 4). This is even more

marked for ASR below 100 km. Without any

correction by totals, the population distribution data

produced show similar Pearson correlation coeffi-

cients as those of population data produced with

TCM = ADMIN-0, but RMSE approximately 100

times higher, with average RMSEs between 411,467

for the GLC2000-based population model and

615,896 for the GlobCover-based population model.

Figure 3 also allows comparison of the accuracy

of population distribution data produced with the

areal weighting method (dotted line in the graphs).

We observe that with TCM = ADMIN-5, the areal

weighted method produced more accurate population

Fig. 3 Results from accuracy assessments of population

distribution data produced with EXL = L1. Boxplots show

the RMSEs according to the TCM and the global land cover

data used as input data. Each stage was replicated 25 times.

The dotted line corresponds to the RMSE associated with the

areal weighted method (i.e. homogenous distribution of people

within administrative units) for each administrative level
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distribution data than the procedure described in this

paper, whereas for the other levels of TCM, the land

cover based population data were generally more

accurate. Moreover, for ADMIN-2 and ADMIN-1

levels of TCM, the improvement shown for the

GlobCover-based population distribution dataset

compared to the areal weighted data is much clearer

than the population data based on other land cover

datasets.

Results from the second series of replications

(with TCM fixed to ADMIN-2) are presented in

Fig. 5. This figure shows that the accuracy of

population distribution models decreases slightly

with an increasing level of extrapolation. Gridded

data produced by extrapolating population densities

from one province to the other (EXL = L1) provided

the highest RMSEs on average. However, the differ-

ences between extrapolation levels is not significant

at the 95% confidence level according to our analysis

of variance, whereas the global land cover data used

in the modelling procedure is still highly significant

(Table 5). According to the Tukey’s test, the Glob-

Cover-based population distribution data are again

significantly different from the population distribu-

tion data based on other global land cover data (with

all p-values \ 0.0001).

We performed 25 random simulations for each

combination of TCM and EXL. Results showed that

the average RMSE converged appreciably after this

reasonable number of simulations, with changes in

the average RMSE in the last 5 simulations generally

lower than 2% and lower than 1% in 84% of cases.

Discussion

The primary aim of this work was to identify which

global land cover data could be used in combination

with detailed settlement extents to produce the most

accurate population distribution modelling across

Africa. Results showed that, combined with detailed

settlement extents, the GlobCover dataset generally

provided significantly more accurate population dis-

tribution models than other global land cover datasets

in Kenya. As a massive majority of people across the

World reside in settlements, it was important to refine

global land cover datasets with as detailed as possible

settlement extents data. However, we showed that

different refined land cover data resulted in signifi-

cantly different output population distribution data-

sets, which confirms that the use of additional land

cover classes for dasymetric modelling can further

improve population distribution models.

Fig. 4 Average RMSE and

Pearson correlation

coefficients as a function of

the ASR of the 6

administrative levels in

Kenya used for TCM in the

population distribution

modelling procedure

Table 4 Results from the analysis of variance performed on

RMSEs extracted from population maps

F value Pr ([ F)

a. TCM 762.44 \0.0001

LC 3.11 0.02586

TCM:LC 2.98 0.00013

b. TCM 1471.64 \0.0001

LC 16.76 \0.0001

TCM:LC 5.54 \0.0001

The analysis includes the TCM, the land cover dataset used in

combination with detailed settlement extents for population

distribution modelling (LC) and the interaction between these

two factors (TCM:LC) as independent factors. EXL is here

fixed to L1. The first analysis of variance (a) includes all TCM

levels, whereas in the second analysis (b) the particular case

TCM = ADMIN-0 was removed
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Because our ultimate objective is to extend the

population modelling method to other African coun-

tries, we tested the effectiveness of the population

modelling procedures in the absence of high resolu-

tion census data. In the majority of African countries,

the most detailed census data available have an ASR

higher than 75 km (Fig. 2). For such coarse resolu-

tion data (close to ADMIN-2 in Kenya, see Table 3),

GlobCover clearly provided the most accurate results

(Fig. 3, 4). Figure 6 shows an example of gridded

population distribution data produced for Kenya

based on the GlobCover dataset with TCM = AD-

MIN-2 and EXL = L1.

We also tested the effectiveness of the population

distribution modelling procedures with different

extrapolation levels. Our results showed no signifi-

cant influence of the extrapolation level used on the

accuracy of the output population distribution data-

sets for Kenya. This does not exclude accuracy

losses when land cover specific population densities

are extrapolated from one country to the other for

large area population distribution modelling, as the

relationship between population density and land

cover differs from one country to the other. The

spatial extrapolation level should therefore be min-

imized as much as possible in any large area

population distribution modelling. Even if the impact

of a high extrapolation level was limited in our

analysis, whichever global land cover data used,

population weights can only be extrapolated to

spatially proximate and environmentally similar

regions.

The better performance of the GlobCover dataset

for population distribution modelling is most likely

due to its finer spatial resolution (300 m compared to

1 km for AVHRR, MODIS and GLC2000). The

GlobCover dataset also includes a larger number

of land cover classes compared to other global land

Fig. 5 Results from

accuracy assessments of

population distribution data

produced with

TCM = ADMIN-2.

Boxplots show the RMSEs

according to the EXL and

the global land cover data

used as input data. Each

stage was replicated 25

times. The dotted line
corresponds to the RMSE of

the population data

calculated without sampling

method (i.e. all EAs were

used for both modeling and

accuracy assessment)

Table 5 Results from the analysis of variance performed on

RMSEs extracted from population maps

F value Pr ([ F)

EXL 2.00 0.07635

LC 17.37 \0.0001

EXL:LC 0.93 0.52857

The analysis includes the EXL, the land cover dataset used in

population mapping (LC) and the interaction between these

two factors (EXL:LC) as independent factors. TCM is here

fixed to ADMIN-2
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cover datasets (Table 1), which could enable greater

precision in the derivation and modelling of land

cover-population density relationships. However, a

large number of different land cover classes would

only improve the accuracy of population distribution

data produced if population densities are significantly

different by land cover class. The optimal land cover

data for population distribution modelling would be a

land cover classification that maximizes within land

cover class homogeneity and maximizes between-

class heterogeneity in relation to population density.

In addition, the per land cover specific weights

calculated can actually be less accurate with a higher

number of classes. Combining land cover classes

could therefore increase the accuracy of population

distribution data. An additional analysis showed that

combining GlobCover land cover classes did not

however influence significantly the accuracies of

output population distribution datasets here (see

supplementary material).

GlobCover provided less accurate average results

in the worst modelling situation, i.e. with the highest

level of extrapolation (EXL = L1) and the lowest

administrative level for the correction by the totals

(TCM = ADMIN-0) (see the last boxplot in Fig. 3)

or without any correction by the totals. In some

particular cases, the population distribution data

produced using the GlobCover dataset provided very

high RMSEs, which increased the RMSE variation

and reduced considerably the average accuracy. The

large number of land cover classes in the GlobCover

dataset made the per land cover class specific

densities sometimes less accurate because they were

calculated based on a limited number of EAs where

these land cover classes are dominant. The RMSEs of

GlobCover-based population data are thus higher in

some particular situations, but the correlation coef-

ficient is always higher on average for GlobCover-

based population distribution data (Fig. 4). Aggre-

gating land cover classes could limit this effect.

Fig. 6 Population distribution maps for Kenya. a example of

population distribution predicted using GlobCover data for

dasymetric modelling, with TCM = ADMIN-2 and EXL =

L1. b enumeration area census data (observed data). c close-up

of the population distribution map for Kisumu district. d close-

up of enumeration area census data for Kisumu district
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The time of land cover data acquisition may also

influence the results. The date of imagery acquisition

for MODIS and GLC2000 (2001 and 2000 respec-

tively, see Table 1) were close to the census data

(1999), whereas the AVHRR data were older (1981–

1994) and the MERIS imagery used for GlobCover

were more recent (2005–2006). With substantial

population growth and urbanization taking place

across Africa, the expansion of cities may have been

important. In our analysis, the urban classes of land

cover data have been refined based on the settlement

map from Tatem et al. (2007), which relied upon data

collected between 1999 and 2002. The discrepancy

between census and land cover data is therefore

limited for urban areas in our analysis. However,

other land use changes, such as the expansion of

cropland over natural vegetation may have changed

in Kenya and could have induced discrepancies

between census and land cover data.

This study supports prior work on population

distribution modelling. Firstly, the gridded population

distribution datasets produced from census data and

satellite imagery derived land cover data generally

provided more accurate results than areal weighting,

as already shown in Tatem et al. (2007) and Mennis

and Hultgren (2006). However, when using subloca-

tion level census data in Kenya (with ASR \ 10 km),

the areal weighting method provided the most

accurate results (first boxplot in Fig. 3). This suggests

that when very fine-resolution census data are

available, the use of land cover data at the spatial

resolutions considered here in population distribution

modelling does not necessarily improve the simple

areal weighting method. This demonstrates that the

approach only increases population distribution

model accuracies over the simple gridding of census

data if land cover data are significantly more detailed

than the input census data. In our case, more spatially

detailed ancillary data would be needed to improve

the redistribution of populations within sublocation

units in Kenya. Secondly, Fig. 4 shows the accuracy

changes experienced with different ASR of census

data available for modelling. As already described in

Hay et al. (2005), it demonstrates that obtaining as

high a spatial resolution of census data as possible

must be the priority starting point in population

distribution modelling. Given the resolution of census

data available, the ancillary data can improve pop-

ulation model accuracies to a lesser extent. The

potential improvement provided by land cover data is

higher with coarser ASR of input census data.

In conclusion, GlobCover, in combination with

detailed settlement extents, likely represents a more

accurate source of land cover data for dasymetric

modelling than other global land cover datasets. In

addition, GlobCover is the most recent global land

cover dataset, being derived from 2005/2006 MERIS

imagery. Moreover, the robust automated processes

used in the data production (Arino et al. 2007, 2008)

allows for updates to be incorporated in the coming

years. A complete land cover dataset for the year

2009 is currently under production (ESA GlobCover

Team 2009). For all these reasons, GlobCover

represents the preferred global land cover dataset

for use as an alternative to regional land cover

products in the creation of population distribution

data across large areas.

These analyses form part of a wider initiative, the

AfriPop project (www.afripop.org), aimed at pro-

viding detailed and open access gridded population

distribution data for all African countries. AfriPop

aims to produce datasets based on freely available

data and methods that can easily incorporate new data

as it becomes available.
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