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Abstract—We present novel optimization-based classifica-
tion models that are general purpose and suitable for
developing predictive rules for large heterogeneous biological
and medical data sets. Our predictive model simultaneously
incorporates (1) the ability to classify any number of distinct
groups; (2) the ability to incorporate heterogeneous types of
attributes as input; (3) a high-dimensional data transforma-
tion that eliminates noise and errors in biological data; (4)
the ability to incorporate constraints to limit the rate of
misclassification, and a reserved-judgment region that pro-
vides a safeguard against over-training (which tends to lead
to high misclassification rates from the resulting predictive
rule); and (5) successive multi-stage classification capability
to handle data points placed in the reserved-judgment region.
To illustrate the power and flexibility of the classification
model and solution engine, and its multi-group prediction
capability, application of the predictive model to a broad
class of biological and medical problems is described.
Applications include: the differential diagnosis of the type
of erythemato-squamous diseases; predicting presence/ab-
sence of heart disease; genomic analysis and prediction of
aberrant CpG island meythlation in human cancer; discri-
minant analysis of motility and morphology data in human
lung carcinoma; prediction of ultrasonic cell disruption for
drug delivery; identification of tumor shape and volume in
treatment of sarcoma; discriminant analysis of biomarkers
for prediction of early atherosclerois; fingerprinting of native
and angiogenic microvascular networks for early diagnosis of
diabetes, aging, macular degeneracy and tumor metastasis;
prediction of protein localization sites; and pattern recogni-
tion of satellite images in classification of soil types. In all
these applications, the predictive model yields correct clas-
sification rates ranging from 80 to 100%. This provides
motivation for pursuing its use as a medical diagnostic,
monitoring and decision-making tool.
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INTRODUCTION

A fundamental problem in discriminant analysis,
or supervised learning, concerns the classification of
an entity into one of GðG � 2Þa priori, mutually
exclusive groups based upon k specific measurable
features of the entity. Typically, a discriminant rule is
formed from data collected on a sample of entities for
which the group classifications are known. Then new
entities, whose classifications are unknown, can be
classified based on this rule. Such an approach has
been applied in a variety of domains, and a large
body of literature on both the theory and applications
of discriminant-analysis exists (e.g., see the bibliog-
raphy in McLachlan67).

In experimental biological and medical research,
very often, experiments are performed and measure-
ments are recorded under different conditions and/or
on different cells/molecules. A critical analysis involves
the discrimination of different features under different
conditions that will reveal potential predictors for
biological and medical phenomena. Hence, classifica-
tion techniques play an extremely important role in
biological analysis, as they facilitate systematic corre-
lation and classification of different biological and
medical phenomena. A resulting predictive rule can
assist, for example, in early disease prediction and
diagnosis, identification of new target sites (genomic,
cellular, molecular) for treatment and drug delivery,
disease prevention and early intervention, and optimal
treatment design.
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There are five fundamental steps in discriminant
analysis. (a) Determine the data for input and the
predictive output classes. (b) Gather a training set of
data (including output class) from human experts or
from laboratory experiments. Each element in the
training set is an entity with corresponding known
output class. (c) Determine the input attributes to
represent each entity. (d) Identify discriminatory
attributes and develop the predictive rule(s); (e) Vali-
date the performance of the predictive rule(s).

In our Center for Operations Research in Medicine
and HealthCare, we have developed a general-purpose
discriminant analysis modeling framework and com-
putational engine for various biological and biomedi-
cal informatics analyses. Our model, the first discrete
support-vector machine, offers distinct features (e.g.,
the ability to classify any number of groups, manage-
ment of the curse of dimensionality in data attri-
butes, and a reserved-judgment region to facilitate
multi-stage classification analysis) that are not simul-
taneously available in existing classification soft-
ware.32,33,49,50,56 Studies involving tumor volume
identification, ultrasonic cell disruption in drug deliv-
ery, lung tumor cell motility analysis, CpG island
aberrant methylation in human cancer, predicting
early atherosclerosis using biomarkers, and finger-
printing native and angiogenic microvascular networks
using functional perfusion data indicate that our
zapproach is adaptable and can produce effective and
reliable predictive rules for various biomedical and
bio-behavior phenomena.13,25,26,51,53,55,57,

Section ‘‘Background’’ briefly describes the back-
ground of discriminant analysis. Section ‘‘Discrete
Support-Vector Machine Predictive Models’’ describes
the optimization-based multi-stage discriminant anal-
ysis predictive models for classification. The use of the
predictive models on various biological and medical
problems are presented in Section ‘‘Classification
Results on Real-World Applications.’’ This is followed
by a brief summary in Section ‘‘Summary and
Conclusion.’’

BACKGROUND

The main objective in discriminant analysis is to
derive rules that can be used to classify entities into
groups. Discriminant rules are typically expressed in
terms of variables representing a set of measurable
attributes of the entities in question. Data on a sample
of entities for which the group classifications are
known (perhaps determined by extraordinary means)
are collected and used to derive rules that can be used
to classify new yet-to-be-classified entities. Often there
is a trade-off between the discriminating ability of the

selected attributes and the expense of obtaining mea-
surements on these attributes. Indeed, the measure-
ment of a relatively definitive discriminating feature
may be prohibitively expensive to obtain on a routine
basis, or perhaps impossible to obtain at the time that
classification is needed.

Thus, a discriminant rule based on a selected set of
feature attributes will typically be an imperfect
discriminator, sometimes misclassifying entities.
Depending on the application, the consequences of
misclassifying an entity may be substantial. In such a
case, it may be desirable to form a discrimination rule
that allows less specific classification decisions, or even
non-classification of some entities to reduce the prob-
ability of misclassification.

To address this concern, a number of researchers
have suggested methods for deriving partial discrimi-
nation rules.12,37,41,72,75 A partial discrimination rule
allows an entity to be classified into some subset of the
groups (i.e., rule out membership in the remaining
groups), or be placed in a ‘‘reserved-judgment’’ cate-
gory. An entity is considered misclassified only when it
is assigned to a non-empty subset of groups not con-
taining the true group of the entity. Typically, methods
for deriving partial discrimination rules attempt to
constrain the misclassification probabilities (e.g., by
enforcing an upper bound on the proportion of mis-
classified training sample entities). For this reason, the
resulting rules are also sometimes called constrained
discrimination rules.

Partial (or constrained) discrimination rules are
intuitively appealing. A partial discrimination rule
based on relatively inexpensive measurements can be
tried first. If the rule classifies the entity satisfactorily
according to the needs of the application, then nothing
further needs to be done. Otherwise, additional mea-
surements—albeit more expensive—can be taken on
other, more definitive, discriminating attributes of the
entity.

One disadvantage of partial discrimination methods
is that there is no obvious definition of optimality
among any set of rules satisfying the constraints on the
misclassification probabilities. For example, since
some correct classifications are certainly more valuable
than others (e.g., classification into a small subset
containing the true group vs. a large subset), it does
not make sense simply to maximize the probability of
correct classification. In fact, to maximize the proba-
bility of correct classification, one would simply clas-
sify every entity into the subset consisting of all the
groups—clearly, not an acceptable rule.

A simplified model, whereby one incorporates only
the reserved-judgment region (i.e., an entity is either
classified as belonging to exactly one of the given
a priori groups, or it is placed in the reserved-judgment
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category), is amenable to reasonable notions of opti-
mality. For example, in this case, maximizing the
probability of correct classification is meaningful. For
the two-group case, the simplified model and the more
general model are equivalent. Research on the two-
group case is summarized in McLachlan.67 For three
or more groups, the two models are not equivalent,
and most work has been directed toward the devel-
opment of heuristic methods for the more general
model.12,37,72,75

Assuming that the group density functions and
prior probabilities are known, Anderson1 showed that
an optimal rule for the problem of maximizing the
probability of correct classification subject to con-
straints on the misclassification probabilities must be
of a specific form when discriminating among multiple
groups with a simplified model. The formulae in
Anderson�s result depend on a set of parameters sat-
isfying a complex relationship between the density
functions, the prior probabilities, and the bounds on
the misclassification probabilities. Establishing a viable
mathematical model to describe Anderson�s result, and
finding values for these parameters that yield an opti-
mal rule are challenging tasks. Gallagher et al.33 pre-
sented the first computational model for Anderson�s
results.

A variety of mathematical-programming models
have been proposed for the discriminant-analysis
problem.3,5,6,16,28,29,36,38,39,40,44,61,63,64,74,80,82 None of
these studies deal formally with measuring the per-
formance of discriminant rules specifically designed to
allow allocation to a reserved-judgment region. There
is also no mechanism employed to constrain the level
of misclassifications for each group.

Many different techniques and methodologies have
contributed to advances in classification, including
artificial neural networks, decision trees, kernel-based
learning, machine learning, mathematical program-
ming, statistical analysis, and support-vector
machines.7,10,21,23,62,68,84 There are some review papers
for classification problems with mathematical-pro-
gramming techniques. Stam79 summarizes basic con-
cepts and ideas and discusses potential research
directions on classification methods that optimize a
function of the Lp-norm distances. The paper focuses
on continuous models and includes normalization
schemes, computational aspects, weighted formula-
tions, secondary criteria, and extensions from two-
group to multi-group classifications. Zopounidis and
Doumpos89 review the research conducted on the
framework of the multi-criteria decision aiding, cov-
ering different classification models. Mangasarian65

and Bradley et al.9 give an overview of using mathe-
matical-programming approaches to solve data mining
problems. Most recently, Lee and Wu60 provide a

comprehensive overview of continuous and discrete
mathematical-programming models for classification
problems.

DISCRETE SUPPORT-VECTOR MACHINE

PREDICTIVE MODELS

In our computational center, since 1997, we have
been developing a general-purpose discriminant-anal-
ysis modeling framework and computational engine
that is applicable to a wide variety of applications,
including biological, biomedical and logistics prob-
lems. Utilizing the technology of large-scale discrete
optimization and support-vector machines, we have
developed novel predictive models that simultaneously
include the following features: (1) the ability to classify
any number of distinct groups; (2) the ability to
incorporate heterogeneous types of attributes as input;
(3) a high-dimensional data transformation that elim-
inates noise and errors in biological data; (4) con-
straints to limit the rate of misclassification, and a
reserved-judgment region that provides a safeguard
against over-training (which tends to lead to high
misclassification rates from the resulting predictive
rule); and (5) successive multi-stage classification
capability to handle data points placed in the reserved-
judgment region. Based on the description in Galla-
gher et al.,32,33 Lee et al.,56 and Lee,49,50 we summarize
below some of the classification models we have
developed.

Modeling of Reserved-Judgment Region for General
Groups

When the population densities and prior probabili-
ties are known, the constrained rules with a reject
option (reserved judgment), based on Anderson�s re-
sults, calls for finding a partition fR0; . . . ;RGg of <k

that maximizes the probability of correct allocation
subject to constraints on the misclassification proba-
bilities; i.e.

Maximize
XG

g¼1
pg

Z

Rg

fgðwÞdw ð1Þ

Subject to

Z

Rg

fhðwÞdw � ahg; h; g ¼ 1; . . . ;G; h 6¼ g;

ð2Þ

where fh; h ¼ 1; . . . ;G, are the group conditional den-
sity functions, pg denotes the prior probability that a
randomly selected entity is from group g; g ¼ 1; . . . ;G,
and ahg; h 6¼ g, are constants between zero and one.
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Under quite general assumptions, it was shown that
there exist unique (up to a set of measure zero) non-
negative constants kih; i; h 2 f1; . . . ;Gg; i 6¼ h, such that
the optimal rule is given by

Rg ¼ fx 2 <k : LgðxÞ ¼ max
h2f0;1;...Gg

LhðxÞg; g¼ 0; . . .;G

ð3Þ

where

L0ðxÞ ¼ 0 ð4Þ

LhðxÞ ¼ phfhðxÞ �
XG

i ¼ 1
i 6¼ h

kihfiðxÞ; h ¼ 1; . . . ;G ð5Þ

For G=2 the optimal solution can be modeled
rather straightforward. However, finding optimal kihs
for the general case, G � 3, is a difficult problem, with
the difficulty increasing as G increases. Our model of-
fers an avenue for modeling and finding the optimal
solution in the general case. It is the first such model to
be computationally viable.32,33

Before proceeding, we note that Rg can be written
as Rg ¼ fx 2 <k : LgðxÞ � LhðxÞ for all h ¼ 0; . . . ;Gg.
So, since LgðxÞ � LhðxÞ if, and only if, ð1=

PG
t¼1 ftðxÞÞ

LgðxÞ � ð1=
PG

t¼1 ftðxÞÞLhðxÞ, the functions Lh; h ¼
1; . . . ;G; can be redefined as

LhðxÞ ¼ phphðxÞ �
XG

i ¼ 1
i 6¼ h

kihpiðxÞ h ¼ 1; . . . ;G ð6Þ

where piðxÞ ¼ fiðxÞ=
PG

t¼1 ftðxÞ. We assume that Lh is
defined as in Eq. (6) in our model.

Mixed Integer Programming (MIP) Formulations

Assume that we are given a training sample of N
entities whose group classifications are known; say ng
entities are in group g, where

PG
g¼1 ng ¼ N. Let the k

dimensional vectors xgj; g ¼ 1; . . . ;G; j ¼ 1; . . . ; ng,
contain the measurements on k available characteris-
tics of the entities. Our procedure for deriving a dis-
criminant rule proceeds in two stages. The first stage is
to use the training sample to compute estimates, f̂h,
either parametrically or non-parametrically, of the
density functions fh

67 and estimates, p̂h, of the prior
probabilities ph; h ¼ 1; . . . ;G. The second stage is to
determine the optimal kihs given these estimates. This
stage requires being able to estimate the probabilities
of correct classification and misclassification for any
candidate set of kihs. One could, in theory, substitute
the estimated densities and prior probabilities into

equations (5), and directly use the resulting regions Rg

in the integral expressions given in (1) and (2). This
would involve, even in simple cases such as normally
distributed groups, the numerical evaluation of k-
dimensional integrals at each step of a search for the
optimal kihs. Therefore, we have designed an alterna-
tive approach. After substituting the f̂h�s and p̂h�s into
Eq. (5), we simply calculate the proportion of training
sample points which fall in each of the regions
R1; . . . ;RG. The MIP models discussed below attempt
to maximize the proportion of training sample points
correctly classified while satisfying constraints on the
proportions of training sample points misclassified.
This approach has two advantages. First, it avoids
having to evaluate the potentially difficult integrals in
Eqs. (1) and (2). Second, it is non-parametric in con-
trolling the training sample misclassification probabil-
ities. That is, even if the densities are poorly estimated
(by assuming, for example, normal densities for non-
normal data), the constraints are still satisfied for the
training sample. Better estimates of the densities may
allow a higher correct classification rate to be achieved,
but the constraints will be satisfied even if poor esti-
mates are used. Unlike most support-vector machine
models that minimize the sum of errors, our objective
is driven by the number of correct classifications, and
will not be biased by the distance of the entities from
the supporting hyperplane.

A word of caution is in order. In traditional
unconstrained discriminant analysis, the true proba-
bility of correct classification of a given discriminant
rule tends to be smaller than the rate of correct
classification for the training sample from which it
was derived. One would expect to observe such an
effect for the method described herein as well. In
addition, one would expect to observe an analogous
effect with regard to constraints on misclassification
probabilities—the true probabilities are likely to be
greater than any limits imposed on the proportions of
training sample misclassifications. Hence, the ahg
parameters should be carefully chosen for the appli-
cation in hand.

Our first model is a non-linear 0/1 MIP model
with the non-linearity appearing in the constraints.
Model 1 maximizes the number of correct classifi-
cations of the given N training entities. Similarly, the
constraints on the misclassification probabilities are
modeled by ensuring that the number of group g
training entities in region Rh is less than or equal to
a pre-specified percentage, ahgð0<ahg<1Þ, of the
total number, ng, of group g entities, h; g 2
f1; . . . ;Gg; h 6¼ g.

For notational convenience, let G ¼ f1; . . . ;Gg and
Ng ¼ f1; . . . ; ngg, for g 2 G. Also, analogous to the
definition of pi, define p̂i by p̂iðxÞ ¼ f̂iðxÞ=

PG
t¼1 f̂tðxÞ:
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In our model, we use binary indicator variables to
denote the group classification of entities. Mathemat-
ically, let uhgj be a binary variable indicating whether
or not xgj lies in region Rh; i.e., whether or not the jth
entity from group g is allocated to group h. Then
Model 1 can be written as follows:

Maximize
X

g2G

X

j2Ng

uggj

Subject to

Lhgj ¼ p̂hp̂hðxgjÞ �
X

i2Gnh
kihp̂iðxgjÞ h; g 2 G; j 2 Ng

ð7Þ

ygj ¼ maxf0;Lhgj : h ¼ 1; . . . ;Gg g 2 G; j 2 Ng ð8Þ

ygj � Lggj �Mð1� uggjÞ g 2 G; j 2 Ng ð9Þ

ygj � Lhgj � eð1� uhgjÞ h; g 2 G; j 2 Ng; h 6¼ g ð10Þ

X

j2Ng

uhgj � ahgng
� �

h; g 2 G; h 6¼ g ð11Þ

�1<Lhgj<1; ygj � 0; kih � 0; uhgj 2 f0; 1g

Constraint (7) defines the variable Lhgj as the value
of the function Lh evaluated at xgj. Therefore, the
continuous variable ygj, defined in constraint (8), rep-
resents maxfLhðxgjÞ : h ¼ 0; . . . ;Gg; and consequently,
xgj lies in region Rh if, and only if, ygj ¼ Lhgj. The
binary variable uhgj is used to indicate whether or not
xgj lies in region Rh; i.e., whether or not the jth entity
from group g is allocated to group h. In particular,
constraint (9), together with the objective, force uggj to
be 1 if, and only if, the jth entity from group g is
correctly allocated to group g; and constraints (10) and
(11) ensure that at most ahgng

� �
(i.e., the greatest

integer less than or equal to ahgng) group g entities are
allocated to group h; h 6¼ g. One caveat regarding the
indicator variables uhgj is that although the condition
uhgj ¼ 0; h 6¼ g, implies (by constraint (10)) that xgj j2Rh,
the converse need not hold. As a consequence, the
number of misclassifications may be overcounted.
However, in our preliminary numerical study we found
that the actual amount of overcounting is minimal.
One could force the converse (thus, uhgj=1 if and only
if xgj 2 Rh) by adding constraints ygj � Lhgj �
Mð1� uhgjÞ, for example. Finally, we note that the
parameters M and e are extraneous to the discrimi-
nant-analysis problem itself, but are needed in the
model to control the indicator variables uhgj. The
intention is for M and e to be, respectively, large and
small positive constants.

Model Variations

We explore different variations in the model to
grasp the quality of the solution and the associated
computational effort.

A first variation involves transforming Model 1 to
an equivalent linear mixed integer model. In particular,
Model 2 replaces the N constraints defined in (8) with
the following system of 3GN+2N constraints:

ygj � Lhgj h; g 2 G; j 2 Ng ð12Þ

~yhgj � Lhgj �Mð1� vhgjÞ h; g 2 G; j 2 Ng ð13Þ

~yhgj � p̂hp̂hðxgjÞvhgj h; g 2 G; j 2 Ng ð14Þ

X

h2G
vhgj � 1 g 2 ; j 2 Ng ð15Þ

X

h2G
~yhgj ¼ ygj g 2 G; j 2 Ng ð16Þ

where ~yhgj � 0 and vhgj 2 f0; 1g; h; g 2 G; j 2 Ng. These
constraints, together with the non-negativity of ygj
force ygj ¼ maxf0;Lhgj : h ¼ 1; . . . ;Gg.

The second variation involves transforming Model 1
to a heuristic linear MIP model. This is done by
replacing the non-linear constraint (8) with
ygj � Lhgj; h; g 2 G; j 2 Ng, and including penalty terms
in the objective function. In particular, Model 3 has the
objective

Maximize
X

g2G

X

j2N g

buggj�
X

g2G

X

j2N g

cygj;

where b and c are positive constants. This model is
heuristic in that there is nothing to force
ygj ¼ maxf0;Lhgj : h ¼ 1; . . . ;Gg. However, since in
addition to trying to force as many uggj�s to one as
possible, the objective in Model 3 also tries to make the
ygj�s as small as possible, and the optimizer tends to
drive ygj toward maxf0;Lhgj : h ¼ 1; . . . ;Gg.We remark
that b and c could be stratified by group (i.e., introduce
possibly distinct bg; cg; g 2 G) to model the relative
importance of certain groups to be correctly classified.

A reasonable modification to Models 1, 2, and 3
involves relaxing the constraints specified by (11).
Rather than placing restrictions on the number of type
g training entities classified into group h, for all
h; g 2 G; h 6¼ g, one could simply place an upper bound
on the total number of misclassified training entities. In
this case, the G(G)1) constraints specified by (11)
would be replaced by the single constraint

X

g2G

X

h2Gnfgg

X

j2Ng

uhgj � aNb c ð17Þ
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where a is a constant between 0 and 1. We will refer to
Models 1, 2, and 3, modified in this way, as Models 1T,
2T, and 3T, respectively. Of course, other modifica-
tions are also possible. For instance, one could place
restrictions on the total number of type g points mis-
classified for each g 2 G.Thus, in place of the con-
straints specified in (17), one would include the
constraints

P
h2Gnfgg

P
j2Ng

uhgj � agN
� �

; g 2 G, where
0<ag<1.

We also explore a heuristic linear model of Model 1.
In particular, consider the linear program (DALP):

Minimize
X

g2G

X

j2Ng

c1wgj þ c2ygj
� �

ð18Þ

Subject to

Lhgj ¼ php̂hðxgjÞ �
X

i2Gnfhg
kihp̂iðxgjÞ h; g 2 G; j 2 Ng

ð19Þ

Lggj � Lhgj þ wgj � 0 h; g 2 G; h 6¼ g; j 2 Ng ð20Þ

Lggj þ wgj � 0 g 2 G; j 2 Ng ð21Þ

�Lhgj þ ygj � 0 h; g 2 G; j 2 Ng ð22Þ

�1<Lhgj<1; wgj; ygj; kih � 0

Constraint (19) defines the variable Lhgj as the value
of the function Lh evaluated at xgj. As the optimization
solver searches through the set of feasible solutions, the
kih variables will vary, causing the Lhgj variables to
assume different values. Constraints (20), (21), and
(22) link the objective-function variables with the Lhgj

variables in such a way that correct classification of
training entities, and allocation of training entities into
the reserved-judgment region, are captured by the
objective-function variables. In particular, if the opti-
mization solver drives wgj to zero for some g, j pair,
then constraints (20) and (21) imply that
Lggj ¼ maxf0;Lhgj : h 2 Gg. Hence, the jth entity from

group g is correctly classified. If, on the other hand, the
optimal solution yields ygj=0 for some g, j pair, then
constraint (22) implies that maxf0;Lhgj : h 2 Gg ¼ 0.
Thus, the jth entity from group g is placed in the re-
served-judgment region. (Of course, it is possible for
both wgj and ygj to be zero. One should decide prior to
solving the linear program how to interpret the clas-
sification in such cases.) If both wgj and ygj are positive,
the j th entity from group g is misclassified.

The optimal solution yields a set of kihs that best
allocates the training entities (i.e., ‘‘best’’ in terms of
minimizing the penalty objective function). The opti-
mal kihs can then be used to define the functions
Lh; h 2 G,which in turn can be used to classify a new
entity with feature vector x 2 <k by simply computing
the index at which maxfLhðxÞ : h 2 f0; 1; . . . ;Ggg is
achieved.

Note that Model DALP places no a priori bound on
the number of misclassified training entities. However,
since the objective is to minimize a weighted combi-
nation of the variables wgj and ygj, the optimizer will
attempt to drive these variables to zero. Thus, the
optimizer is, in essence, attempting either to correctly
classify training entities (wgj=0), or to place them in
the reserved-judgment region (ygj=0). By varying the
weights c1 and c2, one has a means of controlling the
optimizer�s emphasis for correctly classifying training
entities vs. placing them in the reserved-judgment re-
gion. If c2=c1<1, the optimizer will tend to place a
greater emphasis on driving the wgj variables to zero
than driving the ygj variables to zero (conversely, if
c2=c1>1). Hence, when c2=c1<1, one should expect to
get relatively more entities correctly classified, fewer
placed in the reserved-judgment region, and more
misclassified, than when c2=c1>1. An extreme case is
when c2=0. In this case, there is no emphasis on
driving ygj to zero (the reserved-judgment region is
thus ignored), and the full emphasis of the optimizer is
to drive wgj to zero.

Table 1 summarizes the number of constraints, the
total number of variables, and the number of 0/1
variables in each of the discrete support-vector
machine models, and in the heuristic LP model

TABLE 1. Model size.

Model Type Constraints Total variables 0/1 Variables

1 Non-linear MIP 2GN + N + G(G)1) 2GN + N + G(G)1) GN

2 Linear MIP 5GN + 2N + G(G)1) 4GN + N + G(G)1) 2GN

3 Linear MIP 3GN + G(G)1) 2GN + N + G(G)1) GN

1T Non-linear MIP 2GN + N + 1 2GN + N + G(G)1) GN

2T Linear MIP 5GN + 2N + 1 4GN + N + G(G)1) 2GN

3T Linear MIP 3GN + 1 2GN + N + G(G)1) GN

DALP Linear program 3GN NG + N + G(G)1) 0
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(DALP). Clearly, even for moderately sized discrimi-
nant-analysis problems, the MIP instances are rela-
tively large. Also, note that Model 2 is larger than
Model 3, both in terms of the number of constraints
and the number of variables. However, it is important
to keep in mind that the difficulty of solving an MIP
problem cannot, in general, be predicted solely by its
size; problem structure has a direct and substantial
bearing on the effort required to find optimal solu-
tions. The LP relaxation of these MIP models pose
computational challenges as commercial LP solvers
return (optimal) LP solutions that are infeasible, due to
the equality constraints, and the use of big M and
small e in the formulation.

It is interesting to note that the set of feasible
solutions for Model 2 is ‘‘tighter’’ than that for Model
3. In particular, if Fi denotes the set of feasible solu-
tions of Model i, then

F1 ¼fðL; k; u; yÞ : there exists ~y; v

such that ðL; k; u; y; ~y; vÞ 2 F2gg(F3:
ð23Þ

The novelties of the classification models developed
herein include: (1) they are suitable for discriminant
analysis given any number of groups, (2) they accept
heterogeneous types of attributes as input, (3) they use
a parametric approach to reduce high-dimensional
attribute spaces, and (4) they allow constraints on the
number of misclassifications, and utilize a reserved
judgment to facilitate the reduction of misclassifica-
tions. The latter point opens the possibility of per-
forming multi-stage analysis.

Clearly, the advantage of an LP model over an MIP
model is that the associated problem instances are
computationally much easier to solve. However, the
most important criterion in judging a method for
obtaining discriminant rules is how the rules perform
in correctly classifying new unseen entities. Once the
rule is developed, applying it to a new entity to
determine its group is trivial. Extensive computational
experiments have been performed to gauge the quali-
ties of solutions of different models.14,33,49,50,56

Computational Strategies

The MIP models described herein offer a compu-
tational avenue for numerically estimating optimal
values for the kih parameters in Anderson�s formulae.
However, it should be emphasized that MIP problems
are themselves difficult to solve. (Anderson1 himself
noted the extreme difficulty of finding an optimal set of
kihs.) Indeed, MIP is an NP-hard problem.35 Never-
theless, due to the fact that integer variables—and in
particular, 0/1 variables—are a powerful modeling
tool, a wide variety of real-world problems have been

modeled as mixed integer programs. Consequently,
much effort has been invested in developing compu-
tational strategies for solving MIP problem instances.

The numerical work reported in Section ‘‘Classifi-
cation Results on Real-World Applications’’ is based
on an MIP solver which is built on top of a general-
purpose mixed integer research code, MIPSOL.45 (A
competitive commercial solver (CPLEX) was not
effective in solving the problem instances considered.)
The general-purpose code integrates state-of-the-art
MIP computational devices such as problem prepro-
cessing, primal heuristics, global, and local reduced-
cost fixing, and cutting planes into a branch-and-
bound framework. The code has been shown to be
effective in solving a wide variety of large-scale real-
world instances.8 For our MIP instances, special
techniques such as variable aggregation, a heuristic
branching scheme, and hypergraphic cut generations
are employed.14,24,33

CLASSIFICATION RESULTS ON REAL-WORLD

APPLICATIONS

The main objective in discriminant analysis is to
derive rules that can be used to classify entities into
groups. Computationally, the challenge lies in the
effort expended to develop such a rule. Feasible
solutions obtained from our classification models
correspond to predictive rules. Empirical results33,56

indicate that the resulting classification model in-
stances are computationally very challenging, and
even intractable by competitive commercial MIP
solvers. However, the resulting predictive rules prove
to be very promising, offering correct classification
rates on new unknown data ranging from 80 to 100%
on various types of biological/medical problems. Our
results indicate that the general-purpose classification
framework that we have designed has the potential to
be a very powerful predictive method for clinical
setting.

The choice of MIP as the underlying modeling and
optimization technology for our support-vector ma-
chine classification model is guided by the desire to
simultaneously incorporate a variety of important and
desirable properties of predictive models within a
general framework. MIP itself allows for incorporation
of continuous and discrete variables, and linear and
non-linear constraints, providing a flexible and pow-
erful modeling environment.

Validation of Model and Computational Effort

We performed 10-fold cross-validation, and
designed simulation and comparison studies on our
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preliminary models. The results, reported in Gallagher
et al.,33 and Lee et al.,56 show the methods are prom-
ising, based on applications to both simulated data and
real-application datasets from the machine learning
database repository.69 Furthermore, our methods
compare well to existing methods, often producing
better results when compared to other approaches such
as artificial neural networks, quadratic discriminant
analysis, tree classification, and other support-vector
machines.

Applications to Biological and Medical Problems

Our mathematical modeling and computational
algorithmic design shows great promise. The resulting
predictive rules are able to produce higher rates of
correct classification on new biological data (with
unknown group status) compared to existing classifi-
cation methods. This is partly due to the transforma-
tion of raw data via the set of constraints in (7). While
most support-vector machines (Lee and Wu 200660)
directly determine the hyperplanes of separation using
raw data, our approach transforms the raw data via a
probabilistic model, before the determination of the
supporting hyperplanes. Further, the separation is
driven by maximizing the sum of binary variables
(representing correct classification or not of entities),
instead of minimizing a sum of errors (representing
distances of entities from hyperplanes), as in other
support-vector machines. The combination of these
two strategies offers better classification capability.
Noise in the transformed data is not as profound as in
raw data. And the magnitudes of the errors do not
skew the determination of the separating hyperplanes,
as all entities have ‘‘equal’’ importance when correct
classification is being counted. To highlight the broad
applicability of our approach, in this paper, we briefly
summarize the application of our predictive models
and solution algorithms to nine different biological
and medical problems. Most of the projects were
carried out in close partnership with experimental
biologists and/or clinicians. Applications to finance
and other industry applications are described else-
where.14,15,33,56

Determining the type of erythemato-squamousdisease.69

The differential diagnosis of erythemato-squamous
diseases is an important problem in dermatology. They
all share the clinical features of erythema and scaling,
with very little differences. The six groups are psoriasis,
seboreic dermatitis, lichen planus, pityriasis rosea,
cronic dermatitis, and pityriasis rubra pilaris. Usually a
biopsy is necessary for the diagnosis but unfortunately
these diseases share many histopathological features as
well. Another difficulty for the differential diagnosis is
that a disease may show the features of another disease

at the beginning stage and may have the characteristic
features at the following stages.

The six groups consist of 366 subjects (112, 61, 72,
49, 52, 20, respectively) with 34 clinical attributes.
Patients were first evaluated clinically with 12 features.
Afterwards, skin samples were taken for the evaluation
of 22 histopathological features. The values of the
histopathological features are determined by an anal-
ysis of the samples under a microscope. The 34 attri-
butes include (1) clinical attributes: erythema, scaling,
definite borders, itching, koebner phenomenon,
polygonal papules, follicular papules, oral mucosal
involvement, knee and elbow involvement, scalp
involvement, family history, age; and (2) histopatho-
logical attributes: melanin incontinence, eosinophils in
the infiltrate, PNL infiltrate, fibrosis of the papillary
dermis, exocytosis, acanthosis, hyperkeratosis, para-
keratosis, clubbing of the rete ridges, elongation of
the rete ridges, thinning of the suprapapillary epider-
mis, spongiform pustule, munro microabcess, focal
hypergranulosis, disappearance of the granular layer,
vacuolization and damage of basal layer, spongiosis,
saw-tooth appearance of retes, follicular horn plug,
perifollicular parakeratosis, inflammatory monoluclear
infiltrate, band-like infiltrate.

Our multi-group classification model selected 27
discriminatory attributes, and successfully classified
the patients into six groups, each with an unbiased
correct classification of greater than 93% (with 100%
correct rate for groups 1, 3, 5, 6) with an average
overall accuracy of 98%. Using 250 subjects to develop
the rule, and testing the remaining 116 patients, we
obtain a prediction accuracy of 91%.

Predicting presence/absence of heart disease. The four
databases concerning heart disease diagnosis were col-
lected by Dr. Janosi of Hungarian Institute of Cardiol-
ogy, Budapest; Dr. Steinbrunn of University Hospital,
Zurich; Dr. Pfisterer of University Hospital, Basel,
Switzerland; and Dr. Detrano of V.A. Medical Center,
Long Beach and Cleveland Clinic Foundation. Each
database contains the same 76 attributes.69 The ‘‘goal’’
field refers to the presence of heart disease in the patient.
The classification attempts to distinguish presence (val-
ues 1,2,3,4, involving a total of 509 subjects) from ab-
sence(value 0, involving 411 subjects). The attributes
include demographics, physio-cardiovascular condi-
tions, traditional risk factors, family history, personal
lifestyle, and cardiovascular exercise measurements.
This data set has posed some challenges to past analysis
via various classification approaches, resulting in less
than 80% correct classification. Applying our classifi-
cation model without reserved judgment, we obtain
79% and 85% correct classification for each group
respectively. To gauze the usefulness of multi-stage
analysis, we apply two-stage classification. In the first
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stage, 14 attributes were selected as discriminatory. 135
Group absence subjects were placed into the reserved-
judgment region, with 85%of the remaining classified as
Group absence correctly; while 286 Group presence
subjects were placed into the reserved-judgment region,
and 91% of the remaining classified correctly into the
Group presence. In the second stage, 11 attributes were
selected with 100 and 229 classified into Group absence
and presence respectively. Combining the two stages, we
obtained a correct classification of 82% and 85%
respectively for diagnosis of absence or presence of heart
disease. Figure 1 illustrates the two-stage classification.

Predicting aberrant CpG Island methylation in human
cancer.25,26 Epigenetic silencing associated with aber-
rant methylation of promoter region CpG islands is
one mechanism leading to loss of tumor suppressor
function in human cancer. Profiling of CpG island
methylation indicates that some genes are more fre-
quently methylated than others, and that each tumor
type is associated with a unique set of methylated
genes. However, little is known about why certain
genes succumb to this aberrant event. To address this
question, we used Restriction Landmark Genome
Scanning (RLGS) to analyze the susceptibility of 1749
unselected CpG islands to de novo methylation driven
by overexpression of DNMT1. We found that, whereas
the overall incidence of CpG island methylation was
increased in cells overexpressing DNMT1, not all loci
were equally affected. The majority of CpG islands
(69.9%) were resistant to de novo methylation,
regardless of DNMT1 overexpression. In contrast, we
identified a subset of methylation-prone CpG islands
(3.8%) that were consistently hypermethylated in
multiple DNMT1 overexpressing clones. Methylation-
prone and methylation-resistant CpG islands were not
significantly different with respect to size, C+G
content, CpG frequency, chromosomal location, or

gene- or promoter-association. To discriminate meth-
ylation-prone from methylation-resistant CpG islands,
we developed a novel DNA pattern recognition model
and algorithm,52 and coupled our predictive model
described herein with the patterns found. We were able
to derive a classification function based on the fre-
quency of seven novel sequence patterns that was
capable of discriminating methylation-prone from
methylation-resistant CpG islands with 90% correct-
ness upon cross-validation, and 85% accuracy when
tested against blind CpG islands unknown to us on the
methylation status. The data indicate that CpG islands
differ in their intrinsic susceptibility to de novo meth-
ylation, and suggest that the propensity for a CpG
island to become aberrantly methylated can be pre-
dicted based on its sequence context.

The significance of this research is 2-fold. First, the
identification of sequence patterns/attributes that dis-
tinguish methylation-prone CpG islands will lead to a
better understanding of the basic mechanisms under-
lying aberrant CpG island methylation. Because genes
that are silenced by methylation are otherwise struc-
turally sound, the potential for reactivating these genes
by blocking or reversing the methylation process rep-
resents an exciting new molecular target for chemo-
therapeutic intervention. A better understanding of the
factors that contribute to aberrant methylation,
including the identification of sequence elements that
may act to target aberrant methylation, will be an
important step in achieving this long-term goal. Sec-
ond, the classification of the more than 29,000 known
(but as yet unclassified) CpG islands in human chro-
mosomes will provide an important resource for the
identification of novel gene targets for further study as
potential molecular markers that could impact on both
cancer prevention and treatment. Extensive RLGS
fingerprint information (and thus potential training
sets of methylated CpG islands) already exists for a
number of human tumor types, including breast, brain,
lung, leukemias, hepatocellular carcinomas, and
PNET.19,20,31,77 Thus, the methods and tools devel-
oped are directly applicable to CpG island methylation
data derived from human tumors. Moreover, new
microarray-based techniques capable of �profiling�
more than 7000 CpG islands have been developed and
applied to human breast cancers.11,86,87 We are un-
iquely poised to take advantage of the tumor CpG
island methylation profile information that will likely
be generated using these techniques over the next
several years. Thus, our general-predictive modeling
framework has the potential to lead to improved
diagnosis and prognosis and treatment planning for
cancer patients.

Discriminant analysis of cell motility and morphology
data in human lung carcinoma.13 This study focuses on

FIGURE 1. A tree diagram for two-stage classification and
prediction of heart disease.
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the differential effects of extracellular matrix proteins
on the motility and morphology of human lung epi-
dermoid carcinoma cells. The behavior of carcinoma
cells is contrasted with that of normal L-132 cells,
resulting in a method for the prediction of metastatic
potential. Data collected from time-lapsed videomi-
croscopy were used to simultaneously produce quan-
titative measures of motility and morphology. The
data were subsequently analyzed using our discrimi-
nant-analysis model and algorithm to discover rela-
tionships between motility, morphology, and
substratum. Our discriminant analysis tools enabled
the consideration of many more cell attributes than is
customary in cell motility studies. The observations
correlate with behaviors seen in vivo and suggest spe-
cific roles for the extracellular matrix proteins and their
integrin receptors in metastasis. Cell translocation
in vitro has been associated with malignancy, as has an
elongated phenotype88 and a rounded phenotype.76

Our study suggests that extracellular matrix proteins
contribute in different ways to the malignancy of
cancer cells, and that multiple malignant phenotypes
exist.

Ultrasonic assisted cell disruption for drug delivery.55

Although biological effects of ultrasound must be
avoided for safe diagnostic applications, ultrasound�s
ability to disrupt cell membranes has attracted interest
as a method to facilitate drug and gene delivery. This
preliminary study seeks to develop rules for predicting
the degree of cell membrane disruption based on
specified ultrasound parameters and measured acoustic
signals. Too much ultrasound destroys cells, while cell
membranes will not open up for absorption of mac-
romolecules when too little ultrasound is applied. The
key is to increase cell permeability to allow absorption
of macromolecules, and to apply ultrasound tran-
siently to disrupt viable cells so as to enable exogenous
material to enter without cell damage. Thus our task is
to uncover a ‘‘predictive rule’’ of ultrasound-mediated
disruption of red blood cells using acoustic spectrums
and measurements of cell permeability recorded in
experiments.

Our predictive model and solver for generating
prediction rules are applied to data obtained from a
sequence of experiments on bovine red blood cells. For
each experiment, the attributes consist of four ultra-
sound parameters, acoustic measurements at 400 fre-
quencies, and a measure of cell membrane disruption.
To avoid over-training, various feature combinations
of the 404 predictor variables are selected when
developing the classification rule. The results indicate
that the variable combination consisting of ultrasound
exposure time and acoustic signals measured at the
driving frequency and its higher harmonics yields the
best rule, and our method compares favorably with

classification tree and other ad hoc approaches, with
correct classification rate of 80% upon cross-validation
and 85% when classifying new unknown entities. Our
methods used for deriving the prediction rules are
broadly applicable, and could be used to develop
prediction rules in other scenarios involving different
cell types or tissues. These rules and the methods used
to derive them could be used for real-time feedback
about ultrasound�s biological effects. For example, it
could assist clinicians during a drug delivery process,
or could be imported into an implantable device inside
the body for automatic drug delivery and monitoring.

Identification of tumor shape and volume in treatment
of sarcoma.53 This project involves the determination
of tumor shape for adjuvant brachytherapy treatment
of sarcoma, based on catheter images taken after sur-
gery. In this application, the entities are overlapping
consecutive triplets of catheter markings, each of
which is used for determining the shape of the tumor
contour. The triplets are to be classified into one of two
groups: Group 1= triplets for which the middle
catheter marking should be bypassed, and Group
2= triplets for which the middle marking should not
be bypassed. To develop and validate a classification
rule, we used clinical data collected from 15 soft tissue
sarcoma (STS) patients. Cumulatively, this comprised
620 triplets of catheter markings. By careful (and te-
dious) clinical analysis of the geometry of these triplets,
65 were determined to belong to Group 1, the ‘‘by-
pass’’ group, and 555 were determined to belong to
Group 2, the ‘‘do-not-bypass’’ group.

A set of measurements associated with each triplet is
then determined. The choice of what attributes to
measure to best distinguish triplets as belonging to
Group 1 or Group 2 is non-trivial. The attributes in-
volved distance between each pair of markings, angles,
curvature formed by the three triplet markings. Based
on the selected attributes, our predictive model was
used to develop a classification rule. The resulting rule
provides 98% correct classification on cross-valida-
tion, and was capable of correctly determining/pre-
dicting 95% of the shape of the tumor on new patients�
data. We remark that the current clinical procedure
requires manual outline based on markers in films of
the tumor volume. This study was the first to use
automatic construction of tumor shape for sarcoma
adjuvant brachytherapy.53

Discriminant analysis of biomarkers for prediction of
early atherosclerosis.51 Oxidative stress is an important
etiologic factor in the pathogenesis of vascular disease.
Oxidative stress results from an imbalance between
injurious oxidant and protective antioxidant events in
which the former predominate.66,78 This results in the
modification of proteins and DNA, alteration in gene
expression, promotion of inflammation, and deterio-
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ration in endothelial function in the vessel wall, all
processes that ultimately trigger or exacerbate the
atherosclerotic process.17,83 It was hypothesized that
novel biomarkers of oxidative stress would predict
early atherosclerosis in a relatively healthy non-
smoking population who are free from cardiovascular
disease. One hundred and twenty-seven healthy non-
smokers, without known clinical atherosclerosis had
carotid intima media thickness (IMT) measured using
ultrasound. Plasma oxidative stress was estimated by
measuring plasma lipid hydroperoxides using the
determination of reactive oxygen metabolites (d-
ROMs) test. Clinical measurements include traditional
risk factors including age, sex, low density lipoprotein
(LDL), high density lipoprotein (HDL), triglycerides,
cholesterol, body-mass-index (BMI), hypertension,
diabetes mellitus, smoking history, family history of
CAD, Framingham risk score, and Hs-CRP.

For this prediction, the patients are first clustered
into two groups: (Group 1: IMT � 0:68,Group 2:
IMT<0.68). Based on this separator 30 patients be-
long to Group 1, and 97 belong to Group 2. Through
each iteration, the classification method trains and
learns from the input training set and returns the most
discriminatory patterns among the 14 clinical mea-
surements; ultimately resulting in the development of a
prediction rule based on observed values of these dis-
criminatory patterns among the patient data. Using all
127 patients as a training set, the predictive model
identified age, sex, BMI, HDLc, Fhx CAD<60, hs-
CRP and d-ROM as discriminatory attributes that
together provide unbiased correct classification of
90%, and 93%, respectively, for Group 1 (IMT ‡ 0.68)
and Group 2 patients (IMT<0.68). To further test the
power of the classification method for correctly pre-
dicting the IMT status on new/unseen patients, we
randomly selected a smaller patient training set of size
90. The predictive rule from this training set yields
80% and 89% correct rates for predicting the
remaining 37 patients into Groups 1 and 2, respec-
tively. The importance of d-ROM as a discriminatory
predictor for IMT status was confirmed during the
machine learning process, this biomarker was selected
in every iteration as the ‘‘machine’’ learned and trained
to develop a predictive rule to correctly classify pa-
tients in the training set. We also performed predictive
analysis using Framingham Risk Score and d-ROM; in
this case the unbiased correct classification rates (for
the 127 individuals) for Groups 1 and 2 are 77% and
84%, respectively. This is the first study to illustrate
that this measure of oxidative stress can be effectively
used along with traditional risk factors to generate a
predictive rule that can potentially serve as an inex-
pensive clinical diagnostic tool for prediction of early
atherosclerosis.

Fingerprinting native and angiogenic microvascular
networks through pattern recognition and discriminant
analysis of functional perfusion data.57 The cardiovas-
cular system provides oxygen and nutrients to the en-
tire body. Pathological conditions that impair normal
microvascular perfusion can result in tissue ischemia,
with potentially serious clinical effects. Conversely,
development of new vascular structures fuels the pro-
gression of cancer, macular degeneration, and athero-
sclerosis. Fluorescence-microangiography offers
superb imaging of the functional perfusion of new and
existent microvasculature, but quantitative analysis of
the complex capillary patterns is challenging. We
developed an automated pattern-recognition algorithm
to systematically analyze the microvascular networks,
and then apply our classification model herein to
generate a predictive rule. The pattern-recognition
algorithm identifies the complex vascular branching
patterns, and the predictive rule demonstrates 100%
and respectively 91% correct classification on per-
turbed (diseased) and normal-tissue perfusion. We
confirmed that transplantation of normal bone mar-
row to mice in which genetic deficiency resulted in
impaired angiogenesis eliminated predicted differences
and restored normal-tissue perfusion patterns (with
100% correctness). The pattern recognition and clas-
sification method offers an elegant solution for the
automated fingerprinting of microvascular networks
that could contribute to better understanding of
angiogenic mechanisms and be utilized to diagnose and
monitor microvascular deficiencies. Such information
would be valuable for early detection and monitoring
of functional abnormalities before they produce obvi-
ous and lasting effects, which may include improper
perfusion of tissue, or support of tumor development.

The algorithm can be used to discriminate between
the angiogenic response in a native healthy specimen
compared to groups with impairment due to age, or
chemical or other genetic deficiency. Similarly, it can
be applied to analyze angiogenic responses as a result
of various treatments. This will serve two important
goals. First, the identification of discriminatory pat-
terns/attributes that distinguish angiogenesis status
will lead to a better understanding of the basic mech-
anisms underlying this process. Because therapeutic
control of angiogenesis could influence physiological
and pathological processes such as wound and tissue
repairing, cancer progression and metastasis, or mac-
ular degeneration, the ability to understand it under
different conditions will offer new insight in developing
novel therapeutic interventions, monitoring and treat-
ment, especially in aging, and heart disease. Thus, our
study and the results form the foundation of a valuable
diagnostic tool for changes in the functionality of the
microvasculature and for discovery of drugs that alter

Classification Models in Medicine and Biology 1105



the angiogenic response. The methods can be applied
to tumor diagnosis, monitoring and prognosis. In
particular, it will be possible to derive microangio-
graphic fingerprints to acquire specific microvascular
patterns associated with early stages of tumor devel-
opment. Such ‘‘angioprinting’’ could become an ex-
tremely helpful early diagnostic modality, especially
for easily accessible tumors such as skin cancer.

Prediction of protein localization sites. The protein
localization database consists of eight groups with a
total of 336 instances (143, 77, 52, 35, 20, 5, 2, 2,
respectively) with seven attributes.69 The eight groups
are eight localization sites of protein, including cp
(cytoplasm), im (inner membrane without signal se-
quence), pp (perisplasm), imU (inner membrane, un-
cleavable signal sequence), om (outer membrane), omL
(outer membrane lipoprotein), imL (inner membrane
lipoprotein), imS (inner membrane, cleavable signal
sequence). However, the last four groups are taken out
from our classification experiment since the population
sizes are too small to ensure significance.

The seven attributes include mcg (McGeoch�s
method for signal sequence recognition), gvh (von
Heijne�s method for signal sequence recognition), lip
(von Heijne�s Signal Peptidase II consensus sequence
score), chg (Presence of charge on N-terminus of pre-
dicted lipoproteins), aac (score of discriminant analysis
of the amino acid content of outer membrane and
periplasmic proteins), alm1 (score of the ALOM
membrane spanning region prediction program), and
alm2 (score of ALOM program after excluding puta-
tive cleavable signal regions from the sequence).

In the classification we use four groups, 307 in-
stances, with seven attributes. Our classification model
selected the discriminatory patterns mcg, gvh, alm1,
and alm2 to form the predictive rule with unbiased
correct classification rates of 89%, compared to the
results of 81% by other classification models.43

Pattern recognition in satellite images for determin-
ing types of soil. The satellite database consists of the
multi-spectral values of pixels in 3 · 3 neighborhoods
in a satellite image, and the classification associated
with the central pixel in each neighborhood.69 The aim
is to predict this classification, given the multi-spectral
values. In the sample database, the class of a pixel is
coded as a number. There are six groups with 4435
samples in the training dataset and 2000 samples in
testing dataset; and each sample entity has 36 attri-
butes describing the spectral bands of the image.

The original Landsat Multi-Spectral Scanner image
data for this database was generated from data pur-
chased from NASA by the Australian Centre for Re-
mote Sensing. The Landsat satellite data is one of the
many sources of information available for a scene. The
interpretation of a scene by integrating spatial data of

diverse types and resolutions including multi-spectral
and radar data, maps indicating topography, land use
etc. is expected to assume significant importance with
the onset of an era characterized by integrative ap-
proaches to remote sensing (for example, NASA�s
Earth Observing System commencing this decade).

One frame of Landsat MSS imagery consists of four
digital images of the same scene in different spectral
bands. Two of these are in the visible region (corre-
sponding approximately to green and red regions of the
visible spectrum) and two are in the (near) infra-red.
Each pixel is an 8-bit binary word, with 0 corresponding
to black and 255 to white. The spatial resolution of a
pixel is about 80 m · 80 m. Each image contains
2340· 3380 such pixels.

The database is a (tiny) sub-area of a scene, consist-
ing of 82 · 100 pixels. Each line of data corresponds to a
3 · 3 square neighborhood of pixels completely con-
tained within the 82 · 100 sub-area. Each line contains
the pixel values in the four spectral bands (converted to
ASCII) of each of the 9 pixels in the 3 · 3 neighborhood
and a number indicating the classification label of the
central pixel. The number is a code for the following six
groups: red soil, cotton crop, gray soil, damp gray soil,
soil with vegetation stubble, very damp gray soil.
Running our classification model, 17 discriminatory
attributes were selected to form the classification rule,
producing an unbiased prediction with 85% accuracy.

SUMMARY AND CONCLUSION

In the article, we present a class of general-purpose
predictive models that we have developed based on the
technology of large-scale optimization and support-
vector machines.14,33,49,50,56 Our models seek to maxi-
mize the correct classification rate while constraining
the number of misclassifications in each group. The
models incorporate the following features: (1) the
ability to classify any number of distinct groups; (2)
allow incorporation of heterogeneous types of attri-
butes as input; (3) a high-dimensional data transfor-
mation that eliminates noise and errors in biological
data; (4) constraining the misclassification in each
group and a reserved-judgment region that provides a
safeguard against over-training (which tends to lead to
high misclassification rates from the resul ting predic-
tive rule); and (5) successive multi-stage classification
capability to handle data points placed in the reserved-
judgment region. The performance and predictive
power of the classification models is validated through
a broad class of biological and medical applications.

Classificationmodels are critical to medical advances
as they can be used in genomic, cell, molecular, and
system level analyses to assist in early prediction,
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diagnosis and detection of disease, as well as for inter-
vention and monitoring. As shown in the CpG island
study for human cancer, such prediction and diagnosis
opens up novel therapeutic sites for early intervention.
The ultrasound application illustrates its application to
a novel drug delivery mechanism, assisting clinicians
during a drug delivery process, or in devising implant-
able devices into the body for automated drug delivery
and monitoring. The lung cancer cell motility offers an
understanding of how cancer cells behave under differ-
ent protein media, thus assisting in the identification of
potential gene therapy and target treatment. Prediction
of the shape of a cancer tumor bed provides a person-
alized treatment design, replacing manual estimates by
sophisticated computer predictive models. Prediction of
early atherosclerosis through inexpensive biomarker
measurements and traditional risk factors can serve as a
potential clinical diagnostic tool for routinephysical and
health maintenance, alerting doctors and patients to the
need for early intervention to prevent serious vascular
disease. Fingerprinting of microvascular networks
opens up the possibility for early diagnosis of perturbed
systems in the body thatmay trigger disease (e.g., genetic
deficiency, diabetes, aging, obesity,macular degeneracy,
tumor formation), identify target sites for treatment,
and monitoring prognosis and success of treatment.
Determining the type of erythemato-squamous disease
and the presence/absence of heart disease helps clini-
cians to correctly diagnose and effectively treat patients.
Thus classification models serve as a basis for predictive
medicine where the desire is to diagnose early and
provide personalized target intervention. This has the
potential to reduce healthcare costs, improve success of
treatment, and improve quality-of-life of patients.

A theoretical study will be performed on these
models to understand their characteristics and the
sensitivity of the predictive patterns to model/param-
eter variations. The modeling framework for discrete
support-vector machines offers great flexibility, en-
abling one to simultaneously incorporate the features
as listed above, as well as many other features. How-
ever, deriving the predictive rules for such problems
can be computationally demanding, due to the NP-
hard nature of MIP (Garey and Johnson 1979).35 We
continue to work on improving optimization algo-
rithms utilizing novel cutting plane and branch-and-
bound strategies, fast heuristic algorithms, and parallel
algorithms.8,24,45,46–48,58,59
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