
Massively Parallel Computation of
Discrete Logarithms *

Daniel M. Gordont
Kevin S. McCurley:

Abstract

Numerous cryptosystexns have been designed to be secure under the assumption
that the computation of discrete logarithms is infeasible. This paper reports on an
aggressive attempt to discover the size of fields of characteristic two for which the
computation of discrete logarithms is feasible. We discover several things that were
previously overlooked in the implementation of Cnppersmith's algorithm, some posi-
tive, and some negative. .Is a result of this work we have shown that fields as large a
GF(Z5O3) can definite!y be attacked.

Keywords: Discrete Logarithms, Cryptography.

1 Introduction

The difficulty of computing discrete logarithms wvas first proposed as the basis of security
for cryptographic algorithms in the seminal paper of Diffie and Nel!man [4]. The discrete:
logarithm problem in a finite group is the following: given group elements g and a, find
an integer 2: such that qz = a . We shall write z = log,a, keeping in mind that loggu
is only determined m o d d o ;lie multiplicative order of g. For general information on the
discrete logarithm problem and its cryptographic applications, the reader may consult [9]
and [llj. In this paper we shall report on some computations done for calculating discrete
logarithms in the multiplicative group of a finite field GF(2"), and the !essons we learned
from the computations. The computations that we carried out used a massively parallel
implementation of Coppersmith's algorithm [2!: combined with a new method of smoothness
testing. Coppersmith's algorithm will be described in section 2. and our new method of
smoothness testing will be described in section 2.2. The results of our calculations will be
presented in section 3.

A great deal of effort (and CPU time!) has been expended on the cryptographically rele-
vant problem of factoring integers, b u t comparatively little effort has gone into implementing
discrete logarithm algorithms. The only published reports on computations of discretc log-
arithms in GF(2") are in [l! and 12, 31. Both papers report on the calculation of discrete
logarithms in the field GF(212').

Odlyzko [11] has carried out an extensive analysis on Coppersmith's algorithm and pro-
jected the number of 32-bit operations required to deal with a field of a given size. A similar
analysis was made by van Oorschot [13]. Many of t.heir predictions are consistent with our
experience, but there were some surprising discoveries that show their analysis to be quite

~

'This research was supported in part by t h e C.S Department of Energy under contract number
DE-AC04-i6DPOOTSS

!Department of Computer Science. University of Georgia, Athens, G A 30602. This work wuas begun while
visiting Sandia National Laboratories

:Sandia rational Laborstories. .ilbrlquerquc. U \ l S7185

E.F. Brickell (Ed,): Advances in CryptolOgy - CRYPT0 '92, LNCS 740, PP. 312-323, 1993'
@ Springer-Verlag Berlin Heidelberg 1993

31 3

optimistic. We were able to complete most of the computation to compute discrete loga-
rithms for fields of size up to GF(2503), and can probably go at least a little bit further with
our existing machines. The major limitation at this point seems to lie as much in the linear
algebra as the equation generation, due to the large amount of computation time and storage
needed to process equations for a large factor base.

Analyses of the type made by van Oorschot and Oldyzko can be extremely useful to chart
the increase in difficulty of computing discrete logarithms as the field size increases. It is
however almost impossible to get exact operation counts to within anything better than an
order of magnitude using such an analysis. Among the reasons for this are:

if a high-level language is used, then compilers vary uridely in their ability to efficiently
translate the code into machine instructions.

even counting 32-bit operations is not enough, since the number of clock cycles may
On the nCUBE-2 that was used for most of our computation, 32-bit vary widely.

integer instructions take between 2 and 3s machine cycles.

data cache misses can cost many operations (as many as 10 cycles on the Intel iS60).

For these and other rexons, it is impossible to get very accurate estimates from analytic
methods alone. The only reliable method is to actually implement the algorithms 4 h
careful attention to details. and mexure the running time.

Thc
parallel machines were all LIISID [multiple instruction. multiple data). and included

In the coiirsc of this work, we used a variety of machines for the computations.

a 1024 processor nCUBE-2. w i r h four megabytes per processor,

a 64 processor Intel iPSCjSS0. wi:h 9-32 megabytes per processor.

the 512-processor Intel Touchstone Delta. with 16 megabytes per processor.

We started out with the intention of .ising a Thinking Machines Chl-?? but for teclinicd
reasons associated with the SIhlD hardware and the syst,em software, we found :.his to be
uncompetitive. It, also had t,he disadvantage that it required using a language specific to t.hr
machine, whereas the other machines could all accept standard C: with a few minor changes
to accomodate differences in rneseage passing syntax.

2 C o p p e r s m i t h ' s a lgor i thm

Coppersmith's algorithm belongs to a cl;tss of algorithms that are usually referred to
index calculus methods, and has three stages. In the first stage, we collect a system

of linear equations (called relations) that are satisfied by the discrete logarithms of certain
group elements belonging to a set called a factor base. In our case, the equations are really
congruences modulo the order of the group, or modulo 2" - 1. In the second stage, we
solve the set of equations to determine the discrete logarithms of the elements of our factor
base. In the third stage, we compute any desired logarithm from our precomputed library
of logarithms for the factor base.

For the Coppersmith algorithm. it is convenient that we construct our finite field GF(2")
as GF(2)[z] / (f (z)) , where f is an irreducible polynomial of t,he form T" + f i (z) . with f, of
small degree. Heuristic arguments suggest that this should be possible, and a search that
we made confirms this, since it is possible to find an fl of degree at most 11 for all 71 UP
to 600, and i t it is iisually possible to find one of degree at most 7. For the construction of
fields, it is also convenient to choose f so that the element z (mod f(z)) is primitive, i.e. of
multiplicative order 2" - 1. . is we shall explain later, there arc other factors to be considered
in the choice of

31 4

For a given polynomial f that describes the field. there is an obvious projection from
elements of the field to the set of polynomials over GF(2) of degree a t most n. In our case,
we shall take as our factor base the set of field elements that correspond to the irreducible
polynomials of degree at most B for some integer B to be determined later. Call a polynomial
B-smooth if all its irreduciblefactors have degrees not exceeding B. Let rn be thecardinality
of the factor base, and write gi for an element of the factor base. We note that an equation
of the form n g,e’ I’ (mod f(z))

rn

i= 1

implies a linear relationship of the form
m

e, log, g, G t (mod 3” - 1).

In order to describe the first stage in the Coppersmith method, we shall require further
notation. Let r be an integer, and define h = Ln2-‘) t 1. To generate a relation, we first
choose random relatively prime polynomials u~(z) and 1 1 2 (5 j of degrees a t most d l and dz,
respectively. We then set lol(.r) = u 1 (z) i h + u,(xj and

i=l

w2(xj = wI(z)’’ (mod I(.)).

WZ(Z) = u , (5 2 r) x h - - n j , (L) i 11?(.2’).

(1)

It follows from our special choice of f (z) that we can take

(2)

so that deg(w2) 5 max(Ydl + h3‘ - n + deg(fi), Y d ?) . If we choose d,, dz, and 2‘ to be of
order n1I3, then the degrees of us1 and u2 will be of order n2I3. If they behave as random
polynomials of that degree (as we might expect). then there is a good chance that they will
be B-smooth. If so: then from (I) we obtain a linear equation involving the logarithms of
polynomials of degree 5 B.

An asymptotic analysis of the algorithm suggests that it is possible to choose the param-
eters so that the asymptotic running time of the first stage of the algorithm is of tbe form
in such a way that the expected running time to complete stage one is of the form

exp((c2 t ~ (l)) n ’ ~ ~ I o g ~ / ~ n n) , where c2 < 1.405.

The system of equations generated by the first phase is relatively sparse, and there exist
algorithms to solve the system that have an asymptotic running time of U(m2+‘) (see sec-
tion 2.4). If such algorithms are used, then the asymptotic running time of the algorithm
turns out to be the same as the first phase.

An analysis of the running time for the third stage (which xe do not describe in detail
here) suggest a running time of

exp((c3 -I- o(1))111/3 n) ,

where c3 < 1.098, so it takes less time than the first two stages.

estimate of the time required in practice for actual cases.
The preceding statements pertain to the asymptotic running time, but give only a rough

2.1 Refinements of Stage 1.

Odlyzko has suggested several ways to speed up the performance of stage 1. None of these
affect the asymptotic running time, but each of them may have some practical significance
by speeding u p the implementation by a factor of two or thrpe. \5’e shall not discuss these
methods in great detail. but merely report on some of then .

31 5

Forcing a Factor Into One method that was suggested by Odlyzko for
improving the probability that w1 and w 2 were smooth was by forcing them to contain at
least one small degree factor. The method is described in complete detail in [ll] and 1131,
but roughly speaking we fix polynomials v1 and v 2 of degree at most B , and consider those
(1 1 , , ~ 2) pairs for which w1 and wz are divisible by v1 and u2 respectively. The (u 1 , u ~) pairs
with this property are described by a rather small set of linear equations modulo 2, and we
can easily find such pairs by Gaussian elimination. For the size fields that we considered,
the linear systems had fewer than 50 rows and equations, and a special purpose routine to
solve these systems proved to be extremely efficient (rows could be added together by using
two xor operations on 32-bit integers). One problem with this method is different ~ 1 , 712 pairs
can lead to the same u l r u 2 pairs, making it rather difficult to avoid duplication of effort. AS
far as we can tell, we were the first to implement this method, and our experience with it
seemed to agree with the predictions made by Odlyzko.

Large Prime Variation One well known method for speeding up the generation of equa-
tions is to also use equations that involve one irreducible polynomial of degree only slightly
larger than B. The rationale for this is that these equations can be discovered essentially for
free, and two such equations involving the same ”large prime” can be combined to produce
an equation involving only the irreducibles of degree at most B. h4any such equations can
be discovered by checking whether after removing the smooth part from a polynomial, the
residual factor has small degree. After combining two such equations, the equations pro-
duced are on average twice as dense as the other equations, so they complicate the linear
algebra in stage 2. Many of these equations can however be generated inore or less for free,
so we chose to use them in the calculations.

and wz

Double Large Prime Variation .Just as we can use equations involving only a single i r -
reducible of degree slightly larger than B. we can also use equations having two “large prime”
factors. This has been used to speed up the quadratic sieve integer factoring algorithm [8],
and we might expect the same sort of benefit when it is applied to the Coppersmith algo-
rithm. Many such equations can be produced from reporting those u l ; u2 pairs that produced
a w1 and w2 both of which contained a large prime factor.

Smoothness T e s t i n g The most time-consuming part of the coppersmith algorithm is
the testing of polynomials for smoothness. n t least two methods have been suggested for
doing this, both of which are outlined in [I l l . Of the two methods, we found the one used
by Coppersmith to work faster for our implementation. and this was initially what we used.
For this method, a polynomial W(Z) is tested for m-smoothness by computing

m
w‘(z) IT (x” + x) (mod ~ (x)) .

1= [m/21

A faster method, using a polynomial sieve, will be wutlined in Section 2.2.

Early Abort Strategy One strategy that has been suggested for locating smooth integers
is to search through random integers, initially dividing by small primes. A t a certain point,
we then check to see i f the residual factor has moderate size, and abort the testing if it fails.
It SO happens that a random integer is more likely to be 8-smooth from having man?, very
small prime factors than it is from having jus t a few factors near B , and it follows that we
should not spend a lot of time dividing by moderately large primes to test for smoothness.
This strategy has come to be known as the “early abort‘‘ strategy, and the same heuristic
reasoning carries over to the smoothness testing part of Coppersmith’s algorithm. Odlyzko
predicted that this may result in a speedup of a factor of t,wo in the algorithm, but we
never got around to in:plementine i t . The major wason f o r this is that there seeiils to be

!
~

316

no obvious way to combine this idea with sieving) a n d the latter gave a somewhat better
speedup.

2.2 A P o l y n o m i a l Sieve

Our first implementation of Coppersmith’s algorithm used methods suggested previously
by Odlyzko and Coppersmith to test polynomials for smoothness. After having carried out
the computation for the case n = 313, we looked around for any variations that would speed
up the smoothness testing. Drawing on the knowledge that sieving can be exploited to
great advantage in integer factoring algorithms, we sought a way to use sieving to test many
polynomials simultaneously for smoothness. Sieving over the integers is relatively efficient
due to the fact that integers that belong to a fixed residue class modulo a prime lie a fixed
distance apart, and it is very easy to increment a counter by this quantity and perform a
calculatioE on some memory location corresponding to the set element.

For polynomials, the problem is slightly different, since we saw no obvious way of repre-
senting polynomials in such a way t,hat representatives of a given residue class are a fixed
distance apart. It turns out that this is not a great deterrent, since what is important is
the ability to quickly move through the representatives. and for the data structures that we
iised, this can be done using the not ion of a Gray code.

Polynomials over GF(2) of degree less than d can be t,hought of a s the vertices of a d-
dimensional hypercube, with the coeificient of z‘ in a polynomial corresponding to the i th
coordinate of a vertex. .-Z Gray code gives a nacural way to efficiently step through all such
polynomials. The same applies to all polJ,nomiais that are divisible by a fixed polynomial g .

, G2d be the standard binary reflected Gray code of dimension d. For any
positive integer s , let I (z) be the low-order bit of L. i.e. the integer i such that 2’ 1 1 z. Then
we have (see; for example, [lo]):

PROPOSITION 1. The bit f ha t differs in G, and G,,] is /(z).

This allows us to efficiently step through thc Gray code. Let s[O],
memory locations corresponding to the u 2 of degree less than t in the obvious way (mapping
U ~ (Z) to u2(2j) . Figure 1 describes an algorithm which takes u1: and finds all u2 of degree
less than t such t,hat w1 = u l z h + ug is B-smooth.

Note that the inner loop consists of oniy two 32-bit operations, a sliift to multiplg. g by
zi, and an exclusive-or to add gs: to u2, and one S-bit add.

The actual implementation has a few additions. It checks for large primes, by reporting
any pair for which s [u ~] 2 (degree(w1) + h - L P) , where LP is the maximum degree of a large
prime. -4 sieve by powers of irreducibles u p to degree R is also done. Instead of calculating
U ~ Z * mod g each time to start sieving, x h mod g is saved for each g. Then to step from one

to another, we only have to add a shiit of z h mod g co the starting sieve location.
A sieve over polynomials w2 would work similarly; the main difference is that initializing

u2 requires taking a fourth root, which sloivs things d0w.n. I t turried o u t to be more eficient
to test smoothness of each w2 corresponding to a smooth w1 individually, since only a small
number of pairs u1,u2 survive the to1 sieve

One reason that sieving works so w i l for the quadratic sieve algorithm is that i t replaces
multiple precision integer calculations with simple addition operations. We gain the same
sort of advantage in Coppersmith’s a.lgorithm, by eliminating the need for many modular
multiplications involving polynomials. The actual operation counts for sieving come out
rather close t,o the operation counts given in [I l l and [13], but in the case of sieving the
operations are somewhat simpler. and the speedup is substantial.

The number of 32-bit operations to sieve a range of u l r 7 L 2 pairs is proportional to log B
times the size of the range. This i s hecause there are about 2‘/d irreducible pol~~nomials of
degree d, so the numbcr of steps to sieve a range of i pairs is:

11% much higher degree than w2) .

31 7

for t = 0 t o 2' - 1

s[i] - O /* initialize sieve locations */
f o r d = 1 t o B

dim +- max(t - d,O)

for each irreducible g of degree d

/' dimension of Gray code "/

u2 +- u l z h mod g

if degree(u2) < t then
for i = I t o Zdim

4u21 + s [4 + d
112 t u2 + gz"'] 1' u2 = u l i h mod y + gGi * /

for i = O t o 2' - 1

i f s[Z] 2 (degree(ul) + h - B) t h e n print u I , u z

Figure 1: Pseudocode for sieve algorithni

d c h) =d

where c represents the startup time for each irreducible. Each of these steps uses a fixed
number of 32-bit operations (typically between 2 and 12, depending on the machine, compiler,
and source code used). If 1 is sufficiently large. then the c operations performed for each
irreducible become inconsequential. The time spent on finding the initial locations for sieving
by each polynomial in the factor base can be made inconsequential by amortizing it o w
several sieving runs.

In comparison, the number of 3'2-bit operat.ions needed to test a polynomial for smooth-
ness using Coppersmith's method is at least 3Bh,2/3'2 (see [13]j. where h = jn2-'J 7 1 is the
approximate degree of wl. A s n (and therefore L? and h a well) Seconie large, the advantage
of using a polynomial sieve becomes overwhelming.

Note that the memory access patterns for the array s[.j i n :he sieving algorithm are
somewhat chaotic, since the indices of consecutive values for u2 are widely and irregularly
dispersed. For processors such as the Intel is60 whose performance is heavily dependent on
using memory caches, this severely limits t,he performance improvement gained from sieving.
BY contrast, the nCUBE processor is not so dependent on memory access patterns, and the
improvement from sieving was more pronounced.

2.3 The choice of fi

Once we were quite sure that our sieving code was giving completely reliable results, we
were unpleasantly surprised that the number of relations discovered was not in agreement
with the heuristic arguments given in [llj and j13]; but was instead considerably smaller.
This led us to reconsider the arguments there, in an attempt to produce more accurate
Predictions on the number of equations produced by examining a certain range of u1 and uz.

The assumption made in both [11] and [1:3] that w1 and tu2 are smooth as often as
a random polynomial of the same degree is not quite accurate. We shall provide several
justifications for this statement, based on heuristic arguments showing ways that wl and UJZ

(Particularly u'.:) de\riate from behaviour of random polynomials. We have been unabk to

31 a

fi
z8 + 2' + z4 i I* + I + 1
I* + xi + 2' + xz t z + 1

s9 + z8 + I5 + 1
2 ' O - k 2' 4- Z6 + z3 + z2 t 1
Z 1 O + s y + IS$ zz + 2 + 1

combine all of the effects we know of into an analytical method for accurately predicting
these probabilities. Luckily, it is relatively simple to make random trials to estimate the
actual probabilities.

For the cases that we shall be most interested in, 7u2 has the form

factorization probability
(1 -t ~) ~ (1 + z + z3 + x' + z6)
(1 + z) (l + z2 + x3 + z4 +- z')

(1 + s) 4 (l + 5 + ~ 2) (1 t z + z 3) 0.002607 -,
(1 4- z)'(1 + z3 + z5 + z6 + x R)

0.00246s
0.002366

0.001956
(1 + s) 8 (1 + I + 1 2) 0.002353

where T = 4k - n is 1 or 3, and gcd(ulru2) = 1. In the following discussion, g will be an
irreducible polynomial of degree d.

First, note that if g j u,, then gXu2, and therefore qj'u'1 and gywz. Hence if g 1 w1 or
g } w2, then glu1. It follows that. if if g' 1 wz for some integer e, then

Note that if e 2 2 and de > (T + deg(fl)), then (5) is clearly impossible. since the right
side reduces to a polynomial with only even exponents modulo g 2 , whereas the left side will
have odd powers since T is odd and fl(0) = 1. Hence if d 2 (T + deg(fij)/2, i t follows that
g2 cannot divide WZ. This shows that w2 is much more likely to be squarefree than a random
polynomial, and therefore somewhat less likely to be smooth.

Another example of nonrandom behaviour from w2 can be seen from examining the
expected value of the degree of the power of an irreducible that divides to2, compared to the
expected power that divides a random polynomial. One can easily show that in some sense,
a truly random polynomial wdl be divisible by an irreducible factor g to the e'th power
with probability 1/2d' , and will be exactly divisible by the e'th power with probability
(2 d - l)/2d(e+1). Hence the expected value of the degree of the power of g that divides a
random polynomial is d / (2 d - 1).

The expected contribution to a polynomial w2 is somewhat different. For the case where
g,/'s?fI(z), an easy counting argument on residue classes modulo g shows that the probability
that g divides w2 is (2 d - 1) / (22d- l) = l / (2 d + l) , so that the expected degree of the power of
g dividing 102 is d / (P i 1); somewhat smaller than for a random polynomial. If ye 1 zT,fl(z)
for some integer e _< 4, then g' is automatically guaranteed to divide zu2 whenever g [u2. If
e is large for a small degree 9: then this helps w2 to be smooth, but if e = 1, then it makes
202 less likely to be smooth.

A complete analysis of this situation is probably not worth the effort. In this paper, it
suffices to illustrate the effects by considering the example of n = 593. The only f l ' s of
degree up to 10 for which z~~~ + fi is irreducible are in Table 1. Clearly the first two fl's in
the table have a n advantage from having the smallest degrees, but the third and fifth have
a n advantage from the large power of 1 + z that divides them. The tradeoffs between these
effects are not a t all clear, but the results of the experiments show that the third .fl gives
a slight advantage, in spite of its larger degree. For the case of I L = 503, it turned oiit that
jl = x3 + 1 was the best choice.

31 9

n
313
401
503

2.4 L i n e a r Algebra

The solution of sparse linear systems over finite fields have received much less attention
than the corresponding problem of solving sparse linear systems over the field of real numbers.
The fundamental difference between these two problems is that issues involving numerical
stability problems arising from finite precision arithmetic do not arise when working over a
finite field. The only pivoting that is required is to avoid division by zero. Algorithms for
the solution of sparse linear systems over finite fields include:

standard Gaussian elimination.

sparse matrix dense matrix
equations unknowns nonzeros size nonzeros reduction

108736 58636 1615469 9195 633987 34%
117164 58636 2068707 16139 1203414 72%
434195 210871 10828595 78394 6394049 63%

structured Gaussian elimination.

Wiedemann’s algorithm.

Conjugate Gradient.

Lanczos methods.

A description of these methods can be found in the paper by LaMacchia and Odlyzko [y]:
where they describe their experience in solving systems that arise from integer factoring alga-
rjthms and the computation of discrete logarithms over fields G F (p) for a prime p . We chose
to implement three of these algorithms: conjugate gradient, Wiedemann, and structured
Gaussian elimination. For handling multiple precision integers we used the Lenstra-Manasse
package. The original systems were reduced in size using the structured Gaussian elimina-
tion algorithm, after which the conjugate gradient or LViedemann algorithm w a ~ applied to
solve the smaller (and still fairly sparse) system.

The
structured Gaussian elimination reduced their systems by as much as Y5%, leaving a small
system that could easily be solved on a single processor. We were not as successful, due t o
a feature of the equations that Coppersmith’s method produces. For the equations in [TI,
almost all the coefficients are 11, and so during the Gaussian elimination most operations
involve adding or subtracting one row from another. For our systems, half of the coefficients
are multiples of 4, and so it is often necessary to multiply a row by 1 4 before adding it to
another. This caused the coefficients in the dense part of the matrix to grow rapidly.

This presented a dilemma. If the matrix coefficients are allowed to become large integers.
then the arithmetic operations take considerably more time (and require considerable more
complicated code). The alternative is to restrict which rows can be added to others, to keep
the coefficients down to 32 bits. This results in a larger matrix, which also slows down stage
2. we elected to deal with the larger matrices. Table 2 gives results for partial gaussian
elimination on several systems.

For the 127, 227, and 313 systems, we were able to solve the systems on a workstation (the
last one took approximately ten days). The other systems were clearly too large to be solved
on a single processor workstation, and the algorithm requires too much communication to
effectively run on a network of workstations. We therefore wrote a parallel version (LfII,fD)
o f t h e conjugate gradient code. X single source program was written in C that would compile
for Suns, the Intel iPSC/SSO. the Intel Delta Touchstone, and the nCUBE-2.

This approach was used by LaMacchia and Odlyzko in [7] with great success.

320

Parallelization of the algorithm was accomplished by distributing the matrix rows and
columns across the processors. A matrix-vector multiply is then done by multiplying the
rows held by the processor times the entire vector. After this operation, each processor
communicates to every ot’her processor (in a logarithmic manner) its contribution to the
vector result. The distribution of the matrix rows was done by simply assigning the same
number of rows to each processor. T h e structure of the matrix is such that each processor
then gets essent,ially the same number of nonzero entries. For the distribution of the columns,
this is certainly not the case, as the first few columns contain far more nnnzeros than the
last few columns. The columns of the matrix were then permuted in order to approximately
balance the number of nonzeros assigned to each processor, and some processors ended up
getting far more columns. This creates a slight imbalance in the communication phase, but
is better than an imbalance in the computation phase.

Unfortunately, this approach suffered from a severe problem when scaled to a large num-
ber of processors, since the first column of the reduced ,503 matrix contained 61166 nonzero
entries, but a perfect load balance on 1024 processors would place 6394019/1024 = 6244
nonzeros on each processor. Proper load balancing of the mat.rix multiplication would there-
fore have required that we divide columns between processors, and w e were reluctant to
modify the code for this due to the added complexity.

Instead, we chose to implement the b’iedemanrl method. This had the advantage that it
required only multiplicatioris of the coefficient matrix times a vector, not the multiplication
of the transpose of the mat,rix. Once again, howevm, we discovered that there were scaling
problems in moving to a large number of processors. since the amount of cornrnunication
required for sharing results a t the end of the distributed matrix-vector multiply increased at
least with the logarithm of the number of processors, whereas the amount of computation
decreases linearly with the number of processors. Hence when this code was run on 1024
processors of the nCLBE, it ran only slightly faster than i t would run on 512 processors.
For more dense matrices, the speedup would be larger. but so would the total runtime. This
problem was even worse on the 512 processor Delta, where the bisectinn bandwidth of the
machine is about 16% of that of the nCUBE, but the peak processor speed is about 10 times
faster.

The communication that we used in each matrix-vector multiplication is often called
an all-t,o-a!l broadcast, or global concatenation. For iriachines such as the nCUBE-3, and
iPSC/SSO that use a hypercube topology for their communications network. there is a fairly
obvious algorichm for accomplishing the all-to-all broadcast in logl,p) phases on p processors,
passing a minimal amount of information, with no contention for communication channels.
The Intel Delta Touchstone uses instead a 16 x 32 two-dimensional mesh topology. When we
first ported the code froin the iPSC/SSO to the Delta, w e were using an Intel-supplied library
routine for the communication, but we found that the performance of the Intel routine was
far from optimal on the Delta, and the result was that the Delta showed almost no speedup
in moving to more processors. Subsequent to this, the second author worked with David
Greenberg to develop code and algorithms that improved the performance of the all-to-all
broadcast library routine (gcolx0) by a factor of 21. This work is reported in [5].

The Wiedemann algorithm requires the use of the Berlekamp-Massey algorithm for com-
puting the minimal polynomial of the matrix. In contrast to the matrix-vector multipljca-
tions, this turned out to be quite easy to parallelize, since the core operations required are
polynomial additions that are easily parallelized. The only difficulty arises from the fact that
the degree steadily increases through the computation, requiring continual load balancing.
Eventually the degree of the polynomials becomes large enough that this communication
becomes insignificant, and all communication is between nearest-neighbor processors in the
network topology, giving very good scalability to large parallel machines. In practice. the
Berlekamp-Massey algorithm turned out to consuiiie much less time than the matrix-vector
multiplications.

321

To summarize, after we had invested a substantial amount of time in writing code for the
various algorithms, we became aware that communication would be a severely limiting factor
in the use of distributed memory parallel machinesfor solving the linear systems. Since then
we have learned of other methods (6],(12] that might dramatically improve the performance.
We believe that there remains substantial room for improvement in this area, using these
and other ideas.

3 Results

We have completed the precomputation step required to compute discrete logarithms for
the fields GF(2”) for n = 227, n = 313, and n = 401. Once this step has been completed,
individual logarithms can be found comparatively easily. We have not bothered to implement
the third phase yet, as we expect the running time for this to be substantially less than the
first two phases.

The code for producing equations has gone through many revisions and removal of bugs.
As a result, we ended up using much more computer time for producing the equations for
401 and 503 than would be required with our current version of the code. Moreover, most
of our computations were carried out on the nCUBE2, which has no queueing of jobs, and
no priority system. We therefore wrote our own queueing system, and wrote some code
for other users to kill our jobs, This extremely crude approach allowed us to aggressively
consume computer time while at the same time allow other users to carry on their normal
development activities. The unfortunate result is that many ranges of ul, u1 pairs were only
partially completed before they were killed, 80 that very accurate statistics on the completed
ranges are difficult to keep. After running the code for 503 for several months, we decided to
go back and redo 401 with more care, to keep more accurate records and make an accurate
measurement of the amount of calculation required.

For the case of GF(2‘”’), we chose to search through all u1 of degree up to 20, and all u2
of degree up to 22. The nCUBE2 was able to process approximately 1.5 x lo8 ul,u2 pairs
per hour on a single processor. Using the full 1024.processors of our nCUBE-2, we could
therefore carry out this calculation in approximatelf 111 hours, or just under 5 days. For
comparison, a Sparcstation 2 is able to process approximately 6 x 10s 211, u2 pairs per hour,
so a single Sun workstation would take approximately 19,000 days (or more realistically, 500
workstations would take just over a month).

Searching this range of ul,u2 pairs produced a total of 117,164 equations from a factor
base of 58,636 polynomials (all irreducibles of degree up to 19). It dso produced approxi-
mately 700,000 equations each of which involved only one “large prime” polynomial of degree
20 or 21, which we ended up ignoring due to previously mentioned difficulties with solving
the linear system. Cleaaly there is a tradeoff to be made between producing more equations
with a longer sieving phase, or spending more time on solving a harder system of equations.
Since the sieving can be carried out in a trivially parallel manner, we opted to spend more
time on this rather than claim the whole machine for a long dedicated period to solve a
larger system of equations.

For the m e of n = 503, we attempted to search all u1 of degree up to 22 and all u2
of degree up to 25 (again, some of this range was missed by killed jobs, but the percentage
should be small). This range produced 165,260 equations over the factor base of 210,871
polynomials of degree up to 21. Combining pairs of equations involving a single irreducible
of degree 22 or 23 brought the total up to 361,246 equations. We estimate that repeating
this calculation would take approximately 44 days on the full 1024-processor nCUBE. In
practice it took us several months due to the fact that we were trying to use idle time, and
we never used the full machine. We later extended this calculation to produce a total of
434,197 equations, by running over some u1 polynomials of degree 23.

The parallel conjugate-gradient code was able to solve the system of equations for n = 313
in 8.3 hourspn 16 processors of a 64-processor Intel iPSC/S60. The equations for n = 401
took apmoximatelv 3.7 hours on 32 processors.

322

Note that 2503 - 1 factors a

1 = 3213684984939279 . 121.589870541353007S3 2503 -

~18730306650610SOE94263 . p4

= P l . P 2 . P 3 . P , ,

where p4 is a prime of 96 decimal digits. Solution of the system modulo 2503 - 1 can thus be
accomplished by solving four separate systems modulo these prime factors, and combined
afterwards using the Chinese remainder theorem. The only truly hard part is solving the
system modulo p4, since the individual operations are much slower and the amount of data
to be communicated is also larger.

Our original projections for the solution of the 503 equations were too optimistic, since we
underestimated the cost of communication. We have still not completed the solution of the
503 equations, but have now a t least made timings of individual iterations to estimate the
amount of time required. Timings that we have made on the Delta Touchstone and nCUBE-
2 show that solution of the system modulo p1 using the Wiedemann algorithm would take
approximately 106 hours on 256 processors of the nCUBE for the matrix multiplications, and
35.4 hours on 512 processors of the Delta. The Berlekamp-Massey calculation would require
less than two hours on each of these. For the prime p4, we are unable to run the matrix-vector
multiplications on the nCUBE with our current code due to memory limitations, but the time
for matrix multiplications on the Delta is estimated at approximately 105 hours. Logistics
have simply prevented us from reserving enough time on the machine to solve the equatious
in a single run (after all, the purpose of our project was to investigate the effectiveness of
massively parallel computers and better algorithms, not to do real cryptanalysis).

,

4 Conclusion

We started out by repeating Coppersmith's calculation of discrete logarithms for GF(2"').
Our original goal w a t u determine whether it was possible to compute discrete logarithms
for the field GF(2593), which has been suggested for possible use in a t least one existing
cryptosystem. Odlyzko predicted that fields of size up to 521 should be tractable using
the fastest computers available within a few years (exact predictions are difficult to make
without actually carrying out an implementation). van Oorschot predicted that computing
discrete logarithms in GF(2*01) should he about as difficult as factoring 100 digit numbers.
Both predictions turned out to be reasonable.

We believe that 521 should now be possible to complete. albeit with the consumption of
massive amounts of computing time. Discrete logarithms in GF(Pg3) still seem to be out
of reach. Sandia National Laboratories is scheduled to take delivery of an Intel Paragon
machine in July 1993 whose peak speed is approximately 50 times the speed of the nCUBE-
2 used for this work. Massively parallel machines are expected to be built in the next five
years that will reach peak performance levels approximately 500 times faster than the 1024
processor nCUBE-2 that was our primary machine. Unfortunately, this peak speed will be
harder to attain in future architectures. so the actual increase in speed for a given application
is difficult to project. With a concerted effort on one of these faster machines, or further
algorithmic improvements, computing discrete logarithms in GF(2593) might be possible
within the next 5-10 years. It would require a much larger factor base (we estimate a t least
the irreducibles up to degree 23, or 766150 polynomials). It would also be a computation of
enormous proportions, and is not likely to be completed in the near future without further
innovations.

Acknowledgment
Peter Montgomery for helpful comments in the coiir'se of t,his research.

The authors wish to thank A.. \ f . Odlgzko, Bruce Hendrickson, and

32 3

References

[I] I. F. Blake, It. Fuji-Hara, R. C. Mullin. and 3. A . Vanstone. Computing logarithms in
fields of characteristic two. SIAM Journal of Algebraic and Discrete Methods, 5:276-285,
1984.

[2] D. Coppersmith. Fast evaluation of discrete logarithms in fields of characteristic two.
IEEE Transactions on lnformation Theory, 30:587-534, 1384.

[3] D. Coppersmith and J. H. Davenport. An application of factoring. Journal o fsymbol ic
Computation? 1:241-243, 1985.

[4] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:472-492, 1976.

[5] David S. Greenberg and Kevin S. McCurley. Bringing theory to practice: The reality
of interprocessor communication. unpublished manuscript, 1993.

[6] B. Hendrickson, Robert Leland, and Steve Plimpton. An efficient parallel algorithm for
matrix-vector multiplication. Technical Report SAND92-2765, Sandia National Labo-
ratories, 1992.

[7] B. A . LaMacchia and A . If. Odlyzko. Solving large sparse linear systems over finite
fields. In Advances in Cryptology - Proceedings o j Crypto Y O > volume 537 of Lecture
Notes in Computer Science, pages 109-i33. New York. 1391. Springer-Verlag.

[S] .4. I<. Lenstra a n d Mark Manasse. Factoring with two large primes. In Advances in
Cryptology - Proceedings of Eurocrypt '90. volume 473 of Lecture ,Votes in Computer
Science. pages 72-82, New York, 1991. Springer-Verlag.

191 Kevin S. 1IcCurley. The Discrete Logarithm Problem, volume 42 of Proceedings of
Symposia in Applied .Mathematics, pages 49-74, American 14athematical Society, Prov-
idence, 1390.

[lo] A. Sijenhuis and H.S. LVilf. Combinatorzai Aigorithrns. .Academic Press, Sew York.
second edition, 1978.

[11] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic significance.
In Advances in Cryptobgy (Proceedings of Eurocrypt 84). number 209 in Lecture Notes
in Computer Science? pages 224-314, Berlin, 1985. Springer-Verlag.

[12] A.T. Ogielski and W. Xiello. Sparse matrix computations on parallel processor arrays.
SIAi24 Journal of Scientific and Statistical Computing, 14:??-??. 1993.

[13] Paul C. van Oorschot. .A comparison of practical public-key cryptosystems based on
integer factorization and discrete logarithms. In Gustavus J. Simmons. editor, Con-
temporary Cryptology: The Science of Information Integrity, chapter 5. pages 289-322.
IEEE Press, Piscataway, 1992.

	Massively Parallel Computation ofDiscrete Logarithms *
	1 Introduction
	2 Coppersmith's algorithm
	2.1 Refinements of Stage 1.
	2.2 A Polynomial Sieve
	2.3 The choice of fi
	2.4 Linear Algebra

	3 Results
	4 Conclusion
	References

