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Abstract 

Numerous cryptosystexns have been designed to be secure under the assumption 
that the computation of discrete logarithms is infeasible. This paper reports on an 
aggressive attempt to discover the size of fields of characteristic two for which the 
computation of discrete logarithms is feasible. We discover several things that were 
previously overlooked in the implementation of Cnppersmith's algorithm, some posi- 
tive, and some negative. .Is a result of this work we have shown that fields as large a 
GF(Z5O3) can definite!y be attacked. 
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1 Introduction 

The difficulty of computing discrete logarithms wvas first proposed as the basis of security 
for cryptographic algorithms in the seminal paper of Diffie and Nel!man [4]. The discrete: 
logarithm problem in a finite group is the following: given group elements g and a,  find 
an integer 2: such that qz = a .  We shall write z = log,a, keeping in mind that loggu 
is only determined m o d d o  ;lie multiplicative order of g. For general information on the 
discrete logarithm problem and its cryptographic applications, the reader may consult [9] 
and [llj. In this  paper we shall report on some computations done for calculating discrete 
logarithms in the multiplicative group of a finite field GF(2"), and the !essons we learned 
from the computations. The computations that we carried out used a massively parallel 
implementation of Coppersmith's algorithm [2!: combined with a new method of smoothness 
testing. Coppersmith's algorithm will be described in section 2. and our new method of 
smoothness testing will be described in section 2.2. The results of our calculations will be 
presented in section 3.  

A great deal of effort (and CPU time!) has been expended on the cryptographically rele- 
vant problem of factoring integers, b u t  comparatively little effort has gone into implementing 
discrete logarithm algorithms. The only published reports on computations of discretc log- 
arithms in GF(2") are in [l! and 12, 31. Both papers report on the calculation of discrete 
logarithms in the field GF(212'). 

Odlyzko [11] has carried out an extensive analysis on Coppersmith's algorithm and pro- 
jected the number of 32-bit operations required to  deal with a field of a given size. A similar 
analysis was made by van Oorschot [13]. Many of t.heir predictions are consistent with our 
experience, but there were some surprising discoveries that show their analysis to be quite 
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optimistic. We were able to complete most of the computation to compute discrete loga- 
rithms for fields of size up to GF(2503), and can probably go at  least a little bit further with 
our existing machines. The major limitation at this point seems to lie as much in the linear 
algebra as the equation generation, due to the large amount of computation time and storage 
needed to process equations for a large factor base. 

Analyses of the type made by van Oorschot and Oldyzko can be extremely useful to chart 
the increase in difficulty of computing discrete logarithms as the field size increases. It is 
however almost impossible to get exact operation counts to within anything better than an 
order of magnitude using such an analysis. Among the reasons for this are: 

if a high-level language is used, then compilers vary uridely in their ability to efficiently 
translate the code into machine instructions. 

even counting 32-bit operations is not enough, since the number of clock cycles may 
On the nCUBE-2 that was used for most of our computation, 32-bit vary widely. 

integer instructions take between 2 and 3s machine cycles. 

data  cache misses can cost many operations (as many as 10 cycles on the Intel iS60). 

For these and other rexons, it is impossible to get very accurate estimates from analytic 
methods alone. The only reliable method is to actually implement the algorithms 4 h  
careful attention to details. and mexure the running time. 

Thc 
parallel machines were all LIISID [multiple instruction. multiple data). and included 

In the coiirsc of this work, we used a variety of machines for the computations. 

a 1024 processor nCUBE-2. w i r h  four megabytes per processor, 

a 64 processor Intel iPSCjSS0. wi:h 9-32 megabytes per processor. 

the 512-processor Intel Touchstone Delta. with 16 megabytes per processor. 

We started out with the intention of .ising a Thinking Machines Chl-?? but for teclinicd 
reasons associated with the SIhlD hardware and the syst,em software, we found :.his to be 
uncompetitive. It, also had t,he disadvantage that it required using a language specific to t.hr 
machine, whereas the other machines could all accept standard C: with a few minor changes 
to accomodate differences in rneseage passing syntax. 

2 C o p p e r s m i t h ' s  a lgor i thm 

Coppersmith's algorithm belongs to a cl;tss of algorithms that are usually referred to 
index calculus methods, and has three stages. In the first stage, we collect a system 

of linear equations (called relations) that are satisfied by the discrete logarithms of certain 
group elements belonging to a set called a factor base. In our case, the equations are really 
congruences modulo the order of the group, or modulo 2" - 1. In the second stage, we 
solve the set of equations to determine the discrete logarithms of the elements of our factor 
base. In the third stage, we compute any desired logarithm from our precomputed library 
of logarithms for the factor base. 

For the Coppersmith algorithm. it is convenient that we construct our finite field GF(2") 
as GF(2)[z] / ( f (z)) ,  where f is an irreducible polynomial of t,he form T" + f i (z) .  with f, of 
small degree. Heuristic arguments suggest that this should be possible, and a search that 
we made confirms this, since it is possible to find an fl of degree at  most 11 for all 71 UP 
to 600, and i t  it is iisually possible to find one of degree at most 7. For the construction of 
fields, it is also convenient to choose f so that the element z (mod f(z)) is primitive, i.e. of 
multiplicative order 2" - 1. . is  we shall explain later, there arc other factors to be considered 
in the choice of 



31 4 

For a given polynomial f that describes the field. there is an obvious projection from 
elements of the field to  the set of polynomials over GF(2) of degree a t  most n. In our case, 
we shall take as our factor base the set of field elements that correspond to the irreducible 
polynomials of degree at  most B for some integer B to be determined later. Call a polynomial 
B-smooth if all its irreduciblefactors have degrees not exceeding B. Let rn be thecardinality 
of the factor base, and write gi for an element of the factor base. We note that  an equation 
of the form n g,e’ I’ (mod f(z)) 

rn 

i= 1 

implies a linear relationship of the form 
m 

e, log, g, G t (mod 3” - 1). 

In order to describe the first stage in the Coppersmith method, we shall require further 
notation. Let r be an integer, and define h = Ln2-‘) t 1. To generate a relation, we first 
choose random relatively prime polynomials u~(z) and 1 1 2 ( 5 j  of degrees a t  most d l  and dz, 
respectively. We then set lol(.r) = u 1 ( z ) i h  + u,(xj and 

i=l 

w2(xj = wI(z)’’ (mod I(.)). 

WZ(Z) = u , ( 5 2 r ) x h - - n j , ( L )  i 11?(.2’). 

(1) 

It follows from our special choice of f ( z )  that we can take 

(2 )  

so that  deg(w2) 5 max(Ydl + h3‘ - n + deg(fi), Y d ? ) .  If we choose d,, dz, and 2‘ to be of 
order n1I3, then the degrees of us1 and u2 will be of order n2I3. If they behave as random 
polynomials of that degree (as we might expect). then there is a good chance that they will 
be B-smooth. If so: then from (I) we obtain a linear equation involving the logarithms of 
polynomials of degree 5 B.  

An asymptotic analysis of the algorithm suggests that it is possible to  choose the param- 
eters so that  the asymptotic running time of the first stage of the algorithm is of tbe form 
in such a way that the expected running time to complete stage one is of the form 

exp((c2 t ~ ( l ) ) n ’ ~ ~ I o g ~ / ~ n n ) ,  where c2 < 1.405. 

The system of equations generated by the first phase is relatively sparse, and there exist 
algorithms to solve the system that have an asymptotic running time of U(m2+‘) (see sec- 
tion 2.4). If such algorithms are used, then the asymptotic running time of the algorithm 
turns out to be the same as the first phase. 

An analysis of the running time for the third stage (which xe  do not describe in detail 
here) suggest a running time of 

exp((c3 -I- o( 1))111/3 n ) ,  

where c3 < 1.098, so it takes less time than the first two stages. 

estimate of the time required in practice for actual cases. 
The  preceding statements pertain to the asymptotic running time, but give only a rough 

2.1 Refinements of Stage 1. 

Odlyzko has suggested several ways to speed up the performance of stage 1. None of these 
affect the asymptotic running time, but each of them may have some practical significance 
by speeding u p  the implementation by a factor of two or thrpe. \5’e shall not discuss these 
methods in great detail. but merely report on some of then .  
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Forcing a Factor Into One method that was suggested by Odlyzko for 
improving the probability that w1 and w 2  were smooth was by forcing them to contain at 
least one small degree factor. The method is described in complete detail in [ll] and 1131, 
but roughly speaking we fix polynomials v1 and v 2  of degree at  most B ,  and consider those 
( 1 1 , , ~ 2 )  pairs for which w1 and wz are divisible by v1 and u2 respectively. The ( u 1 , u ~ )  pairs 
with this property are described by a rather small set of linear equations modulo 2, and we 
can easily find such pairs by Gaussian elimination. For the size fields that  we considered, 
the linear systems had fewer than 50 rows and equations, and a special purpose routine to 
solve these systems proved to be extremely efficient (rows could be added together by using 
two xor operations on 32-bit integers). One problem with this method is different ~ 1 ,  712 pairs 
can lead to the same u l r u 2  pairs, making it rather difficult to avoid duplication of effort. AS 
far as we can tell, we were the first to implement this method, and our experience with it 
seemed to agree with the predictions made by Odlyzko. 

Large Prime Variation One well known method for speeding up the generation of equa- 
tions is to also use equations that involve one irreducible polynomial of degree only slightly 
larger than B. The rationale for this is that these equations can be discovered essentially for 
free, and two such equations involving the same ”large prime” can be combined to produce 
an equation involving only the irreducibles of degree at  most B. h4any such equations can 
be discovered by checking whether after removing the smooth part from a polynomial, the 
residual factor has small degree. After combining two such equations, the equations pro- 
duced are on average twice as dense as the  other equations, so they complicate the linear 
algebra in stage 2. Many of these equations can however be generated inore or less for free, 
so we chose to  use them in the calculations. 

and  wz 

Double Large Prime Variation .Just as we can use equations involving only a single i r -  
reducible of degree slightly larger than B. we can also use equations having two “large prime” 
factors. This has been used to speed up the quadratic sieve integer factoring algorithm [8], 
and we might expect the same sort of benefit when it is applied to  the Coppersmith algo- 
rithm. Many such equations can be produced from reporting those u l ;  u2 pairs that produced 
a w1 and w2 both of which contained a large prime factor. 

Smoothness T e s t i n g  The most time-consuming part of the coppersmith algorithm is 
the testing of polynomials for smoothness. n t  least two methods have been suggested for 
doing this, both of which are outlined in [ I l l .  Of the two methods, we found the one used 
by Coppersmith to work faster for our implementation. and this was initially what we used. 
For this method, a polynomial W(Z)  is tested for m-smoothness by computing 

m 
w‘(z)  IT (x” + x) (mod ~ ( x ) ) .  

1= [m/21 

A faster method, using a polynomial sieve, will be wutlined in Section 2.2. 

Early Abort  Strategy One strategy that has been suggested for locating smooth integers 
is to search through random integers, initially dividing by small primes. A t  a certain point, 
we then check to see i f  the residual factor has moderate size, and abort the testing if it fails. 
It SO happens that  a random integer is more likely to be 8-smooth from having man?, very 
small prime factors than it is from having jus t  a few factors near B ,  and it follows that we 
should not spend a lot of time dividing by moderately large primes to test for smoothness. 
This strategy has come to be known as the “early abort‘‘ strategy, and the same heuristic 
reasoning carries over to the smoothness testing part of Coppersmith’s algorithm. Odlyzko 
predicted that  this may result in  a speedup of a factor of t,wo in the algorithm, but we 
never got around to in:plementine i t .  The major  wason f o r  this is that there seeiils to be  

! 
~ 
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no obvious way to  combine this idea with sieving) a n d  the latter gave a somewhat better 
speedup. 

2.2 A P o l y n o m i a l  Sieve 

Our first implementation of Coppersmith’s algorithm used methods suggested previously 
by Odlyzko and Coppersmith to test polynomials for smoothness. After having carried out 
the computation for the case n = 313, we looked around for any variations that would speed 
up the smoothness testing. Drawing on the knowledge that  sieving can be exploited to 
great advantage in integer factoring algorithms, we sought a way to use sieving to test many 
polynomials simultaneously for smoothness. Sieving over the integers is relatively efficient 
due to the fact that  integers that belong to a fixed residue class modulo a prime lie a fixed 
distance apart, and it is very easy to increment a counter by this quantity and perform a 
calculatioE on some memory location corresponding to the set element. 

For polynomials, the problem is slightly different, since we saw no obvious way of repre- 
senting polynomials in such a way t,hat representatives of a given residue class are a fixed 
distance apart. It turns out that this is not a great deterrent, since what is important is 
the ability to  quickly move through the representatives. and for the data  structures that we 
iised, this can be done using the not ion of a Gray code. 

Polynomials over GF(2) of degree less than d can be t,hought of a s  the vertices of a d- 
dimensional hypercube, with the coeificient of z‘ in a polynomial corresponding to the i th  
coordinate of a vertex. .-Z Gray code gives a nacural way to efficiently step through all such  
polynomials. The same applies to all polJ,nomiais that are divisible by a fixed polynomial g .  

, G2d be  the standard binary reflected Gray code of dimension d. For any 
positive integer s ,  let I ( z )  be the low-order bit of L. i.e. the integer i such that 2’ 1 1  z. Then 
we have (see; for example, [lo]): 

PROPOSITION 1. The bit  f ha t  differs in G, and G,,] is /(z). 

This allows us to efficiently step through thc  Gray code. Let s[O], 
memory locations corresponding to the u 2  of degree less than t in the obvious way (mapping 
U ~ ( Z )  to u2(2j ) .  Figure 1 describes an algorithm which takes u1: and finds all u2 of degree 
less than t such t,hat w1 = u l z h  + ug is B-smooth. 

Note that  the inner loop consists of oniy two 32-bit operations, a sliift to multiplg. g by 
zi, and an exclusive-or to add gs: to u2, and one S-bit add. 

The  actual implementation has a few additions. It checks for large primes, by reporting 
any pair for which s [ u ~ ]  2 (degree( w1) + h - L P ) ,  where LP is the maximum degree of a large 
prime. -4 sieve by powers of irreducibles u p  to degree R is also done. Instead of calculating 
U ~ Z *  mod g each time to start sieving, x h  mod g is saved for each g. Then to step from one 

to another, we only have to add a shiit of z h  mod g co the starting sieve location. 
A sieve over polynomials w2 would work similarly; the main difference is that initializing 

u2 requires taking a fourth root, which sloivs things d0w.n. I t  turried o u t  to be more eficient 
to test smoothness of each w2 corresponding to a smooth w1 individually, since only a small 
number of pairs u1,u2 survive the to1 sieve 

One reason that sieving works so w i l  for the quadratic sieve algorithm is that i t  replaces 
multiple precision integer calculations with simple addition operations. We gain the same 
sort of advantage in Coppersmith’s a.lgorithm, by eliminating the need for many modular 
multiplications involving polynomials. The actual operation counts for sieving come out  
rather close t,o the operation counts given in [ I l l  and [13], but in the case of sieving the 
operations are somewhat simpler. and the speedup is substantial. 

The  number of 32-bit operations to sieve a range of u l r  7 L 2  pairs is proportional to log B 
times the size of the range. This i s  hecause there are about 2‘/d irreducible pol~~nomials of 
degree d,  so the numbcr of steps to  sieve a range of i pairs is: 

11% much higher degree than w2) .  
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for t = 0 t o  2' - 1 

s[i] - O /*  initialize sieve locations */  
f o r d  = 1 t o  B 

dim +- max(t - d,O) 

for each irreducible g of degree d 

/' dimension of Gray code "/ 

u2 +- u l z h  mod g 

if degree(u2) < t then 
for i = I t o  Zdim 

4u21 + s [ 4  + d 
112 t u2 + gz"'] 1' u2 = u l i h  mod y + gGi * /  

for i = O t o  2' - 1 

i f  s[Z] 2 (degree(ul) + h - B) t h e n  print u I , u z  

Figure 1: Pseudocode for sieve algorithni 

d c h )  =d 

where c represents the startup time for each irreducible. Each of these steps uses a fixed 
number of 32-bit operations (typically between 2 and 12, depending on the machine, compiler, 
and source code used). If 1 is sufficiently large. then the c operations performed for each 
irreducible become inconsequential. The time spent on finding the initial locations for sieving 
by each polynomial in the factor base can be made inconsequential by amortizing it o w  
several sieving runs. 

In comparison, the number of 3'2-bit operat.ions needed to test a polynomial for smooth- 
ness using Coppersmith's method is at least 3Bh,2/3'2 (see [13]j. where h = jn2-'J 7 1 is the 
approximate degree of wl. A s  n (and therefore L? and h a well) Seconie large, the advantage 
of using a polynomial sieve becomes overwhelming. 

Note that the memory access patterns for the array s[.j i n  :he sieving algorithm are 
somewhat chaotic, since the indices of consecutive values for u2 are  widely and irregularly 
dispersed. For processors such as the Intel is60 whose performance is heavily dependent on 
using memory caches, this severely limits t,he performance improvement gained from sieving. 
BY contrast, the nCUBE processor is not so dependent on memory access patterns, and the 
improvement from sieving was  more pronounced. 

2.3 The choice of fi 

Once we were quite sure that our sieving code was giving completely reliable results, we 
were unpleasantly surprised that the number of relations discovered was not in agreement 
with the heuristic arguments given in [llj and j13]; but was instead considerably smaller. 
This led us to  reconsider the arguments there, in an attempt to produce more accurate 
Predictions on the number of equations produced by examining a certain range of u1 and uz. 

The assumption made in both [11] and [1:3] that w1 and tu2 are smooth as often as 
a random polynomial of the same degree is not quite accurate. We shall provide several 
justifications for this statement, based on heuristic arguments showing ways that wl  and UJZ 

(Particularly u'.:) de\riate from behaviour of random polynomials. We have been unabk to 
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fi 
z8 + 2' + z4 i I* + I + 1 
I* + xi + 2' + xz t z + 1 

s9 + z8 + I5 + 1 
2 ' O - k  2' 4- Z6 + z3 + z2 t 1 
Z 1 O  + s y  + IS$ zz + 2 + 1 

combine all of the effects we know of into an analytical method for accurately predicting 
these probabilities. Luckily, it is relatively simple to make random trials to  estimate the 
actual probabilities. 

For the  cases that we shall be most interested in,  7u2 has the form 

factorization probability 
(1 -t ~ ) ~ ( 1  + z + z3 + x' + z6) 
(1 + z) ( l  + z2 + x3 + z4 +- z') 

(1 + s ) 4 ( l + 5 + ~ 2 ) ( 1  t z + z 3 )  0.002607 -, 
(1 4- z)'(1 + z3 + z5 + z6 + x R )  

0.00246s 
0.002366 

0.001956 
( 1 + s ) 8 ( 1 + I + 1 2 )  0.002353 

where T = 4k - n is 1 or 3,  and gcd(ulru2) = 1. In the following discussion, g will be an 
irreducible polynomial of degree d. 

First, note that if g j u,, then gXu2, and therefore qj'u'1 and gywz. Hence if g 1 w1 or 
g } w2, then glu1. It follows that. if if g' 1 wz for some integer e,  then 

Note that  if e 2 2 and de > (T  + deg(fl)), then ( 5 )  is clearly impossible. since the right 
side reduces to a polynomial with only even exponents modulo g 2 ,  whereas the left side will 
have odd powers since T is odd and fl(0) = 1. Hence if d 2 ( T +  deg(fij)/2, i t  follows that 
g2 cannot divide WZ. This shows that w2 is much more likely to be squarefree than a random 
polynomial, and therefore somewhat less likely to be smooth. 

Another example of nonrandom behaviour from w2 can be seen from examining the 
expected value of the degree of the power of an irreducible that divides to2, compared to the 
expected power that divides a random polynomial. One can easily show that in some sense, 
a truly random polynomial wdl be divisible by an irreducible factor g to the e'th power 
with probability 1/2d' ,  and will be exactly divisible by the e'th power with probability 
( 2 d  - l)/2d(e+1). Hence the expected value of the degree of the power of g that divides a 
random polynomial is d / ( 2 d  - 1). 

The expected contribution to a polynomial w2 is somewhat different. For the case where 
g,/'s?fI(z), an easy counting argument on residue classes modulo g shows that the probability 
that  g divides w2 is ( 2 d -  1) / (22d- l )  = l / ( 2 d + l ) ,  so that the expected degree of the power of 
g dividing 102 is d / ( P  i 1); somewhat smaller than for a random polynomial. If ye 1 zT,fl(z) 
for some integer e _< 4, then g' is automatically guaranteed to divide zu2 whenever g [ u2.  If 
e is large for a small degree 9:  then this helps w2 to be smooth, but if e = 1, then it makes 
202 less likely to be smooth. 

A complete analysis of this situation is probably not worth the effort. In this paper, it 
suffices to illustrate the effects by considering the example of n = 593. The only f l ' s  of 
degree up to 10 for which z~~~ + fi is irreducible are in Table 1. Clearly the first two fl's in 
the  table have a n  advantage from having the smallest degrees, but the third and fifth have 
a n  advantage from the large power of 1 + z that divides them. The tradeoffs between these 
effects are  not a t  all clear, but the results of the experiments show that the third .fl gives 
a slight advantage, in spite of its larger degree. For the case of I L  = 503, it turned oiit that 
jl = x3 + 1 was the best choice. 
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n 
313 
401 
503 

2.4  L i n e a r  Algebra 

The solution of sparse linear systems over finite fields have received much less attention 
than the corresponding problem of solving sparse linear systems over the field of real numbers. 
The fundamental difference between these two problems is that issues involving numerical 
stability problems arising from finite precision arithmetic do not arise when working over a 
finite field. The  only pivoting that is required is to avoid division by zero. Algorithms for 
the solution of sparse linear systems over finite fields include: 

standard Gaussian elimination. 

sparse matrix dense matrix 
equations unknowns nonzeros size nonzeros reduction 

108736 58636 1615469 9195 633987 34% 
117164 58636 2068707 16139 1203414 72% 
434195 210871 10828595 78394 6394049 63% 

structured Gaussian elimination. 

Wiedemann’s algorithm. 

Conjugate Gradient. 

Lanczos methods. 

A description of these methods can be found in the paper by LaMacchia and Odlyzko [y]: 
where they describe their experience in solving systems that arise from integer factoring alga- 
rjthms and the computation of discrete logarithms over fields G F ( p )  for a prime p .  We chose 
to implement three of these algorithms: conjugate gradient, Wiedemann, and structured 
Gaussian elimination. For handling multiple precision integers we used the Lenstra-Manasse 
package. The original systems were reduced in size using the structured Gaussian elimina- 
tion algorithm, after which the conjugate gradient or LViedemann algorithm w a ~  applied to 
solve the smaller (and still fairly sparse) system. 

The 
structured Gaussian elimination reduced their systems by as much as Y5%, leaving a small 
system that could easily be solved on a single processor. We were not as successful, due t o  
a feature of the equations that Coppersmith’s method produces. For the  equations in [TI, 
almost all the  coefficients are 11, and so during the Gaussian elimination most operations 
involve adding or subtracting one row from another. For our systems, half of the coefficients 
are multiples of 4, and so it is often necessary to multiply a row by 1 4  before adding it to 
another. This caused the coefficients in the dense part of the matrix to  grow rapidly. 

This presented a dilemma. If the matrix coefficients are allowed to become large integers. 
then the arithmetic operations take considerably more time (and require considerable more 
complicated code). The alternative is to restrict which rows can be added to others, to  keep 
the coefficients down to 32 bits. This results in a larger matrix, which also slows down stage 
2. we elected to deal with the larger matrices. Table 2 gives results for partial gaussian 
elimination on several systems. 

For the 127, 227, and 313 systems, we were able to solve the systems on a workstation (the 
last one took approximately ten days). The other systems were clearly too large to be solved 
on a single processor workstation, and the algorithm requires too much communication to 
effectively run on a network of workstations. We therefore wrote a parallel version (LfII,fD) 
o f t h e  conjugate gradient code. X single source program was written in C that would compile 
for Suns, the Intel iPSC/SSO. the Intel Delta Touchstone, and the nCUBE-2. 

This approach was used by LaMacchia and Odlyzko in [7] with great success. 
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Parallelization of the algorithm was accomplished by distributing the matrix rows and 
columns across the processors. A matrix-vector multiply is then done by multiplying the 
rows held by the processor times the entire vector. After this operation, each processor 
communicates to every ot’her processor (in a logarithmic manner) its contribution to the 
vector result. The distribution of the matrix rows was done by simply assigning the same 
number of rows to  each processor. T h e  structure of the matrix is such that each processor 
then gets essent,ially the same number of nonzero entries. For the distribution of the columns, 
this is certainly not the case, as the first few columns contain far more nnnzeros than the 
last few columns. The columns of the matrix were then permuted in order to  approximately 
balance the number of nonzeros assigned to  each processor, and some processors ended up 
getting far more columns. This creates a slight imbalance in the communication phase, but 
is better than an imbalance in the computation phase. 

Unfortunately, this approach suffered from a severe problem when scaled to a large num- 
ber of processors, since the first column of the reduced ,503 matrix contained 61166 nonzero 
entries, but a perfect load balance on 1024 processors would place 6394019/1024 = 6244 
nonzeros on each processor. Proper load balancing of the mat.rix multiplication would there- 
fore have required that we divide columns between processors, and w e  were reluctant to 
modify the code for this due to the added complexity. 

Instead, we chose to implement the b’iedemanrl method. This had the advantage that it 
required only multiplicatioris of the coefficient matrix times a vector, not the multiplication 
of the transpose of the mat,rix. Once again, howevm, we discovered that  there were scaling 
problems in moving to a large number of processors. since the amount of cornrnunication 
required for sharing results a t  the end of the distributed matrix-vector multiply increased at 
least with the logarithm of the number of processors, whereas the amount of computation 
decreases linearly with the number of processors. Hence when this code was run on 1024 
processors of the nCLBE, it ran only slightly faster than i t  would run on 512 processors. 
For more dense matrices, the speedup would be larger. but so would the total runtime. This 
problem was even worse on the 512 processor Delta, where the bisectinn bandwidth of the 
machine is about 16% of that of the nCUBE, but the peak processor speed is about 10 times 
faster. 

The communication that we used in each matrix-vector multiplication is often called 
an all-t,o-a!l broadcast, or global concatenation. For iriachines such as the nCUBE-3, and 
iPSC/SSO that use a hypercube topology for their communications network. there is a fairly 
obvious algorichm for accomplishing the all-to-all broadcast in logl,p) phases on p processors, 
passing a minimal amount of information, with no contention for communication channels. 
The Intel Delta Touchstone uses instead a 16 x 32 two-dimensional mesh topology. When we 
first ported the code froin the iPSC/SSO to the Delta, w e  were using an Intel-supplied library 
routine for the communication, but  we found that the performance of the Intel routine was 
far from optimal on the Delta, and the result was that the Delta showed almost no speedup 
in moving to more processors. Subsequent to this, the second author worked with David 
Greenberg to  develop code and algorithms that improved the performance of the all-to-all 
broadcast library routine (gcolx0) by a factor of 21. This work is reported in [5]. 

The Wiedemann algorithm requires the use of the Berlekamp-Massey algorithm for com- 
puting the minimal polynomial of the matrix. In contrast to the matrix-vector multipljca- 
tions, this turned out to be quite easy to parallelize, since the core operations required are 
polynomial additions that are easily parallelized. The only difficulty arises from the fact that 
the degree steadily increases through the computation, requiring continual load balancing. 
Eventually the degree of the polynomials becomes large enough that this communication 
becomes insignificant, and all communication is between nearest-neighbor processors in the 
network topology, giving very good scalability to large parallel machines. In practice. the 
Berlekamp-Massey algorithm turned out to consuiiie much less time than the matrix-vector 
multiplications. 
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To summarize, after we had invested a substantial amount of time in writing code for the 
various algorithms, we became aware that communication would be a severely limiting factor 
in the use of distributed memory parallel machinesfor solving the linear systems. Since then 
we have learned of other methods (6],(12] that might dramatically improve the performance. 
We believe that there remains substantial room for improvement in this area, using these 
and other ideas. 

3 Results 

We have completed the precomputation step required to compute discrete logarithms for 
the fields GF(2”) for n = 227, n = 313, and n = 401. Once this step has been completed, 
individual logarithms can be found comparatively easily. We have not bothered to implement 
the third phase yet, as we expect the running time for this to be substantially less than the 
first two phases. 

The code for producing equations has gone through many revisions and removal of bugs. 
As a result, we ended up using much more computer time for producing the equations for 
401 and 503 than would be required with our current version of the code. Moreover, most 
of our computations were carried out on the nCUBE2, which has no queueing of jobs, and 
no priority system. We therefore wrote our own queueing system, and wrote some code 
for other users to kill our jobs, This extremely crude approach allowed us to aggressively 
consume computer time while at the same time allow other users to carry on their normal 
development activities. The unfortunate result is that many ranges of ul,  u1 pairs were only 
partially completed before they were killed, 80 that very accurate statistics on the completed 
ranges are difficult to  keep. After running the code for 503 for several months, we decided to 
go back and redo 401 with more care, to keep more accurate records and make an accurate 
measurement of the amount of calculation required. 

For the case of GF(2‘”’), we chose to search through all u1 of degree up to 20, and all u2 
of degree up to 22. The nCUBE2 was able to process approximately 1.5 x lo8 ul,u2 pairs 
per hour on a single processor. Using the full 1024.processors of our nCUBE-2, we could 
therefore carry out this calculation in approximatelf 111 hours, or just under 5 days. For 
comparison, a Sparcstation 2 is able to process approximately 6 x 10s 211, u2 pairs per hour, 
so a single Sun workstation would take approximately 19,000 days (or more realistically, 500 
workstations would take just over a month). 

Searching this range of ul,u2 pairs produced a total of 117,164 equations from a factor 
base of 58,636 polynomials (all irreducibles of degree up to 19). It dso produced approxi- 
mately 700,000 equations each of which involved only one “large prime” polynomial of degree 
20 or 21, which we ended up ignoring due to previously mentioned difficulties with solving 
the linear system. Cleaaly there is a tradeoff to be made between producing more equations 
with a longer sieving phase, or spending more time on solving a harder system of equations. 
Since the sieving can be carried out in a trivially parallel manner, we opted to spend more 
time on this rather than claim the whole machine for a long dedicated period to solve a 
larger system of equations. 

For the m e  of n = 503, we attempted to search all u1 of degree up to  22 and all u2 
of degree up to 25 (again, some of this range was missed by killed jobs, but the percentage 
should be small). This range produced 165,260 equations over the factor base of 210,871 
polynomials of degree up to 21. Combining pairs of equations involving a single irreducible 
of degree 22 or 23 brought the total up to 361,246 equations. We estimate that repeating 
this calculation would take approximately 44 days on the full 1024-processor nCUBE. In 
practice it took us several months due to the fact that we were trying to use idle time, and 
we never used the full machine. We later extended this calculation to produce a total of 
434,197 equations, by running over some u1 polynomials of degree 23. 

The parallel conjugate-gradient code was able to  solve the system of equations for n = 313 
in 8.3 hourspn 16 processors of a 64-processor Intel iPSC/S60. The equations for n = 401 
took apmoximatelv 3.7 hours on 32 processors. 
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Note that 2503 - 1 factors a 

1 = 3213684984939279 . 121.589870541353007S3 2503 - 

~18730306650610SOE94263 . p4 

= P l . P 2 . P 3 . P , ,  

where p4 is a prime of 96 decimal digits. Solution of the system modulo 2503 - 1 can thus be 
accomplished by solving four separate systems modulo these prime factors, and combined 
afterwards using the Chinese remainder theorem. The only truly hard part is solving the 
system modulo p4, since the individual operations are much slower and the amount of data 
to be communicated is also larger. 

Our original projections for the solution of the 503 equations were too optimistic, since we 
underestimated the cost of communication. We have still not completed the solution of the 
503 equations, but have now a t  least made timings of individual iterations to estimate the 
amount of time required. Timings that we have made on the Delta Touchstone and nCUBE- 
2 show that  solution of the system modulo p1 using the Wiedemann algorithm would take 
approximately 106 hours on 256 processors of the nCUBE for the matrix multiplications, and 
35.4 hours on 512 processors of the Delta. The Berlekamp-Massey calculation would require 
less than two hours on each of these. For the prime p4, we are unable to run the matrix-vector 
multiplications on the nCUBE with our current code due to memory limitations, but the time 
for matrix multiplications on the Delta is estimated at approximately 105 hours. Logistics 
have simply prevented us from reserving enough time on the machine to solve the equatious 
in a single run (after all, the purpose of our project was to investigate the effectiveness of 
massively parallel computers and better algorithms, not to do real cryptanalysis). 

, 

4 Conclusion 

We started out by repeating Coppersmith's calculation of discrete logarithms for GF(2"'). 
Our original goal w a  t u  determine whether it was possible to compute discrete logarithms 
for the field GF(2593), which has been suggested for possible use in a t  least one existing 
cryptosystem. Odlyzko predicted that fields of size up to 521 should be tractable using 
the fastest computers available within a few years (exact predictions are difficult to make 
without actually carrying out an implementation). van Oorschot predicted that computing 
discrete logarithms in GF(2*01) should he about as difficult as factoring 100 digit numbers. 
Both predictions turned out to be reasonable. 

We believe that 521 should now be possible to  complete. albeit with the consumption of 
massive amounts of computing time. Discrete logarithms in GF(Pg3)  still seem to be out 
of reach. Sandia National Laboratories is scheduled to  take delivery of an Intel Paragon 
machine in July 1993 whose peak speed is approximately 50 times the speed of the nCUBE- 
2 used for this work. Massively parallel machines are expected to  be built in the next five 
years that will reach peak performance levels approximately 500 times faster than the 1024 
processor nCUBE-2 that was our primary machine. Unfortunately, this peak speed will be 
harder to attain in future architectures. so the actual increase in speed for a given application 
is difficult to project. With a concerted effort on one of these faster machines, or further 
algorithmic improvements, computing discrete logarithms in GF(2593) might be possible 
within the next 5-10 years. It would require a much larger factor base (we estimate a t  least 
the irreducibles up to degree 23, or 766150 polynomials). It would also be a computation of 
enormous proportions, and is not likely to be completed in the near future without further 
innovations. 
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