[go: up one dir, main page]

Skip to main content
Log in

Strain Rate Dependences of Dynamic Fracture Toughness and Fracture Energy of Rocks

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper considers dynamic rock fracture from the viewpoint of the force and energy limiting criteria formulated from the concepts of the structural-temporal approach. For each limiting criterion set at a given fracture time, the incubation time is calculated as a key constant material characteristic within the proposed approach which depends on the scale and is the main measure of the material response. Experimental literature data on three-point bending are used to discuss the strain rate dependences of rock fracture toughness with varying specimen notch length and fracture work. Using the dynamic fracture of coal and granite as an example, it is shown that the incubation time determined by the force criterion is independent of the specimen notch length. Comparison is made of the marble incubation times obtained from the strain rate dependences of fracture toughness and fracture work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zhang, Q.B. and Zhao, J., Effect of Loading Rate on Fracture Toughness and Failure Micromechanisms in Marble, Eng. Fract. Mech., 2013, vol. 102, pp. 288–309. https://doi.org/10.1016/j.engfracmech.2013.02.009

    Article  Google Scholar 

  2. Chen, R., Xia, K., Dai, F., Lu, F., and Luo, S.N., Determination of Dynamic Fracture Parameters Using a Semi-Circular Bend Technique in Split Hopkinson Pressure Bar Testing, Eng. Fract. Mech., 2009, vol. 76, pp. 1268–1276. https://doi.org/10.1016/j.engfracmech.2009.02.001

    Article  Google Scholar 

  3. Gao, G., Huang, S., Xia, K., and Li, Z., Application of Digital Image Correlation (DIC) in Dynamic Notched Semi-Circular Bend (NSCB) Tests, Exp. Mech., 2015, vol. 55, pp. 95–104. https://doi.org/10.1007/s11340-014-9863-5

    Article  Google Scholar 

  4. Zhao, Y., Gong, S., Hao, X., Peng, Y., and Jiang, Y., Effect of Loading Rate and Bedding on the Dynamic Fracture Toughness of Coal: Laboratory Experiments, Eng. Fract. Mech., 2017, vol. 178, pp. 375–391. https://doi.org/10.1016/j.engfracmech.2017.03.011

    Article  Google Scholar 

  5. Song, Y. and Yue, Z., Experimental Study on Dynamic Fracture Behaviors of Beishan NSCB and CCNSCB Granite Specimens under Different Loading Rates, Soil Dyn. Earthq. Eng., 2021, vol. 141, p. 106512. https://doi.org/10.1016/j.soildyn.2020.106512

    Article  Google Scholar 

  6. Yao, W., Xia, K., and Zhang, T., Dynamic Fracture Test of Laurentian Granite Subjected to Hydrostatic Pressure, Exp. Mech., 2019, vol. 59, pp. 245–250. https://doi.org/10.1007/s11340-018-00437-4

    Article  Google Scholar 

  7. Zhang, Q.B. and Zhao, J., Quasi-Static and Dynamic Fracture Behaviour of Rock Materials: Phenomenona and Mechanisms, Int. J. Fracture, 2014, vol. 189, pp. 1–32. https://doi.org/10.1007/s10704-014-9959-z

    Article  Google Scholar 

  8. Kazarinov, N.A., Petrov, Y.V., and Cherkasov, A.V., Instability Effects of the Dynamic Crack Propagation Process, Eng. Fract. Mech., 2021, vol. 242, p. 107438. https://doi.org/10.1016/j.engfracmech.2020.107438

    Article  Google Scholar 

  9. Zhou, X.Q. and Hao, H., Modelling of Compressive Behaviour of Concrete-Like Materials at High Strain Rate, Int. J. Solids Struct., 2008, vol. 45, no. 17, pp. 4648–4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002

    Article  Google Scholar 

  10. Hao, Y. and Hao, H., Numerical Investigation of the Dynamic Compressive Behaviour of Rock Materials at High Strain Rate, Rock Mech. Rock Eng., 2012, vol. 46, no. 2, pp. 373–388. https://doi.org/10.1007/s00603-012-0268-4

    Article  ADS  Google Scholar 

  11. Chakraborty, T., Mishra, S., Loukus, J., Halonen, B., and Bekkala, B., Characterization of Three Himalayan Rocks Using a Split Hopkinson Pressure Bar, Int. J. Rock Mech. Min. Sci., 2016, vol. 85, pp. 112–118. https://doi.org/10.1016/j.ijrmms.2016.03.005

    Article  Google Scholar 

  12. Mishra, S., Meena, H., Parashar, V., Khetwal, A., Chakraborty, T., Matsagar, V., Chandel, P., and Singh, M., High Strain Rate Response of Rocks under Dynamic Loading Using Split Hopkinson Pressure Bar, Geotech. Geol. Eng., 2018, vol. 36, pp. 531–549. https://doi.org/10.1007/s10706-017-0345-2

    Article  Google Scholar 

  13. Tuler, F.R. and Butcher, B.M., A Criterion for the Time Dependence of Dynamic Fracture, Int. J. Fract. Mech., 1968, vol. 4, no. 4, pp. 431–437. https://doi.org/10.1007/BF00186808

    Article  Google Scholar 

  14. Nikiforovsky, V.S. and Shemyakin, E.I., Dynamic Fracture of Solids, Novisibirsk: Nauka, 1979.

  15. Petrov, Y.V., Karihaloo, B.L., Bratov, V.V., and Bragov, A.M., Multi-Scale Dynamic Fracture Model for Quasi-Brittle Materials, Int. J. Eng. Sci., 2012, vol. 61, pp. 3–9. https://doi.org/10.1016/j.ijengsci.2012.06.004

    Article  Google Scholar 

  16. Bratov, V. and Petrov, Y., Application of Incubation Time Approach to Simulate Dynamic Crack Propagation, Int. J. Fract., 2007, vol. 146, pp. 53–60. https://doi.org/10.1007/s10704-007-9135-9

    Article  Google Scholar 

  17. Bratov, V., Incubation Time Fracture Criterion for FEM Simulations, Acta Mech. Sin., 2011, vol. 27, pp. 541–549. https://doi.org/10.1007/s10409-011-0484-2

    Article  ADS  Google Scholar 

  18. Petrov, Yu.V., Gruzdkov, A.A., and Bratov, V.A., Structural-Temporal Theory of Fracture as a Multiscale Process, Phys. Mesomech., 2012, vol. 15, no. 3–4, pp. 232–237. https://doi.org/10.1134/S1029959912020117

    Article  Google Scholar 

  19. Selyutina, N.S. and Petrov, Y.V., Fracture of Saturated Concrete and Rocks under Dynamic Loading, Eng. Fract. Mech., 2020, vol. 225, p. 106265. https://doi.org/10.1016/j.engfracmech.2018.11.052

    Article  Google Scholar 

  20. Zhang, Q.B. and Zhao, J., Determination of Mechanical Properties and Full-Field Strain Measurements of Rock Material under Dynamic Loading, Int. J. Rock Mech. Min., 2013, vol. 60, pp. 423–439. https://doi.org/10.1016/j.ijrmms.2013.01.005

    Article  Google Scholar 

  21. Lim, I.L., Johnston, I.W. and Choi, S.K., Stress Intensity Factors for Semi-Circular Specimens under Three-Point Bending, Eng. Fract. Mech., 1993, vol. 44, no. 3, pp. 363–382. https://doi.org/10.1016/0013-7944(93)90030-V

    Article  Google Scholar 

  22. Miao, S., Pan, P., Yu, P.-Z., Zhao, S., and Shao, C., Fracture Analysis of Beishan Granite after High-Temperature Treatment Using Digital Image Correlation, Eng. Fract. Mech., 2020, vol. 225, p. 106847. https://doi.org/10.1016/j.engfracmech.2019.106847

    Article  Google Scholar 

  23. Bragov, A.M., Petrov, Yu.V., Karihaloo, B.L., Konstantinov, A.Yu., Lamzin, D.A., Lomunov, A.K., and Smirnov, I.V., Dynamic Strengths and Toughness of an Ultra High Performance Fibre Reinforced Concrete, Eng. Fract. Mech., 2013, vol. 110, pp. 477–488. https://doi.org/10.1016/j.engfracmech.2012.12.019

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (Projects Nos. 21-51-53008, 20-01-00291) and RF President Grant for young scientists MK-78.2021.1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Selyutina.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 2, pp. 101–108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyutina, N.S. Strain Rate Dependences of Dynamic Fracture Toughness and Fracture Energy of Rocks. Phys Mesomech 25, 366–372 (2022). https://doi.org/10.1134/S1029959922040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922040105

Keywords:

Navigation