
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Mao et al. J Wireless Com Network (2023) 2023:44
https://doi.org/10.1186/s13638-023-02254-3

EURASIP Journal on Wireless
Communications and Networking

A statistical approach for neural network
pruning with application to internet of things
Chengchen Mao1*, Qilian Liang1*   , Chenyun Pan1 and Ioannis Schizas1 

Abstract 

Pruning is showing huge potential for compressing and accelerating deep neural
networks by eliminating redundant parameters. Along with more terminal chips
integrated with AI accelerators for internet of things (IoT) devices, structured pruning is
gaining popularity with the edge computing research area. Different from filter prun-
ing and group-wise pruning, stripe-wise pruning (SWP) conducts pruning at the level
of stripes in each filter. By introducing filter skeleton (FS) to each stripe, the existing
SWP method sets an absolute threshold for the values in FS and removes the stripes
whose corresponding values in FS could not meet the threshold. Starting with investi-
gation into the process of stripe wise convolution, we use the statistical properties of
the weights located on each stripe to learn the importance between those stripes in a
filter and remove stripes with low importance. Our pruned VGG-16 achieves the exist-
ing results by a fourfold reduction in parameter with only 0.4% decrease in accuracy.
Results from comprehensive experiments on IoT devices are also presented.

Keywords:  Prune, Stripe-wise, Edge device, Normal distribution, Internet of things

1  Introduction
In the Internet of Things (IoT) realm, sensors and actuators seamlessly integrate with the
environment [1], enabling cross-platform information flow for environmental metrics,
while numerous connected devices generate massive data, offering convenience but also
high latency [2]. However, applications, such as vehicle-to-vehicle (V2V) communica-
tion which enhances the traffic safety by automobile collaboration, are highly latency-
sensitive and security-sensitive [3]. Edge computing offers vast potential for consumers
and entrepreneurs by bringing data processing closer to end users, enhancing response
times, bandwidth availability, privacy, and alleviating information security threats [4, 5].

Even though chip giants are integrating more and more AI accelerators into their
design for the IoT devices [6, 7], the massive number of parameters and the huge amount
of computation would bring horrible experience to the consumers when Deep Neural
Networks (DNNs) are employed in their devices [8]. To alleviate such kind of problems,
researchers have made efforts in many directions, which could be mainly categorized
into two types: unstructured ones and structured ones.

*Correspondence:
chengchen.mao@mavs.uta.edu;
liang@uta.edu

1 Department of Electrical
Engineering, The University
of Texas at Arlington, Arlington,
TX, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-023-02254-3&domain=pdf
http://orcid.org/0000-0002-3630-8010

Page 2 of 21Mao et al. J Wireless Com Network (2023) 2023:44

Pruning the individual weights whose values are close to 0 is one way to downsize the
number of parameters in DNNs [9, 10]. This kind of unstructured method could wind up
as a sparse structure and maintain the original performance. However, the random and
unpredictable positions of the remaining weights bring the burden of extra records of
themselves and make this method unable to utilize AI accelerators effectively [11].

By contrast, as shown in Fig. 1, structured methods remove the weights at higher
levels and avoid the problem brought by unstructured ones. Filter (channel) pruning
(FP)-based methods prunes weights at the level of filters or channels [12–14]. Usually,
a traditional FP-based method needs to follow the “Train, Prune, Fine-tune” pipeline.
Group-wise pruning-based methods delete the weights at the identical position among
all the filters in a certain layer [15]. However, these approaches ignore the assumption
of filters’ independence. Stripe-wise pruning (SWP)-based methods trim all the weights
laid in some stripes of certain filters [16]. The proposed method introduced the concept
of filter skeleton (FS). During the training, when some values on FS are under a certain
threshold, the corresponding stripes can be pruned.

However setting an absolute threshold sometimes could not express the relative
importance of each stripe in a filter. To resolve this problem, in this work, we put for-
ward a new method, using the statistical properties of the weights located on each stripe,
to learn the importance between those stripes in a filter. The intuition of this method
is triggered by the process during stripe wise convolution and the properties of normal
distributions. Our principal contributions in this paper could be summarized as follows:

•	 New threshold determination approach for SWP: The research proposes a new
method for determining which weights in a neural network can be pruned without

Fig. 1  Different types of pruning. (Red parts were pruned.) a Filter-wise. b Channel-wise. c Group-wise

Page 3 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

sacrificing accuracy. Our pruned VGG16 achieves results comparable to the existing
model, with a fourfold reduction in parameters and only a 0.4% decrease in accuracy.

•	 Stable theoretical basis: The proposed method is based on sound theoretical princi-
ples, making it more trustworthy and easier to understand and apply.

•	 Deployment of different deep layers on edge devices: The effectiveness of the pro-
posed approach is tested on different neural network architectures (VGG11, VGG13,
VGG16, and ResNet56) and evaluated on edge devices with limited computational
resources.

To provide a brief outline of this study, we first review related work in Sect. 2. In Sect. 3,
we present our method as well as the theoretical framework behind it. Section 4 explains
the experimental details and data processing. In Sect. 5, we demonstrate comparisons
between our method and the original method, as well as exhibit the performance of our
method deployed on edge devices. In Sect. 6, we discuss the implications of our findings.
Finally, concluding remarks are provided in Sect. 7.

2 � Related work
Neural network pruning algorithms have undergone decades of research [17]. As
mentioned in Sect. , these algorithms could be mainly categorized into two types, i.e.,
unstructured ones and structured ones.

Unstructured pruning methods prune individual weights based on the importance of
themselves. For example, by using the second-order derivatives of the error function,
Optimal Brain Damage and Optimal Brain Surgery proposed to remove unimportance
weights from a trained network [9, 10]. Deep compression compressed neural networks
by pruning the unimportant connections, quantizing the network, and applying Huff-
man coding [18]. With Taylor expansion that approximates the change in the cost func-
tion, [19] pruned convolutional kernels to enable efficient inference and could handle
the transfer learning tasks effectively. Lookahead pruning scheme, a magnitude-based
method, minimized the Frobenius distortion of multi-layer operation and avoids tun-
ing hyper-parameters [20]. A major downside of the unstructured methods is the sparse
matrix and the relative indices after pruning, which leads to the complexity and ineffi-
ciency on hardware [11].

Structured methods prune weights in a predictable way [12] pruned unimportant fil-
ters with L1 norm. [21] pruned filters based on statistics information computed from its
next layer, not the current layer. [13] pruned channels by LASSO regression. By using
scaling factors from batch normalization layers, [14] removed unimportant channels.
[15] revisited the idea of brain damage and extended it to group wise, obtaining the
sparsities in new neural network. [22] put forward a structured sparsity learning (SSL)
approach. With group Lasso regularization, SSL could learn a compressed structure,
including filters, channels and filter shapes. To the best of our knowledge, one recent
study [16] proposed a stripe-wise pruning-based methods by introducing filter skeleton
to learn the shape of filters, and then performed pruning on the stripes according to the
corresponding values of the filter skeleton. However, setting an absolute threshold some-
times is unable to distinguish the importance of the convolution result for one stripe
from the other result for corresponding stripes.

Page 4 of 21Mao et al. J Wireless Com Network (2023) 2023:44

The comparisons of the two methods are summarized in Table 1.

3 � The proposed method
In this section, we begin with introducing stripe wise convolution (SWC), and then ana-
lyze our threshold determination with stripe weight combination based on the prop-
erties of normal distributions. Furthermore, we discuss our approach for stripe-wise
pruning (SWP).

3.1 � Stripe wise convolution

In lth convolution layer, suppose the weight 4-D matrix W is of size RN×C×K×K  , where
N, C and K are the numbers of filters, the channel dimension and the kernel size,
respectively.

Let xlc,h,w be one point of feature map in the lth layer and xl+1
n,h,w be the convolution

result in the l + 1 th layer. Mathematically, the standard convolution in a neural network
could be written as (1). We modify the calculation order as (2) to stripe wise convolu-
tion. These two types of convolution are illustrated in Figs. 2 and 3, respectively.

Table 1  Unstructured and structured pruning methods

Methods Advantages Disadvantages

Unstructured [9–11] Sparse structure original performance High com-
plexity and
inefficiency on
hardware

Structured [12–15, 22] Prune weights in a predictable way May not main-
tain unpruned
performance

Fig. 2  Standard convolution (The kernel size of the filter is 3)

Page 5 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

xlc,p,q = 0 , when p < 1 or p > MH or q < 1 or q > MW  . MH is the height of the feature
map, while MW represents the width.

From Fig. 3, we could find that in stripe wise convolution, the convolution result
of individual filter is the summation of the convolution result of the stripes which
belongs to this filter. One intuition is that if the convolution result of the stripe 1 is
much smaller than the convolution result of the stripe 2, stripe 1 could be pruned and
stripe 2 could be kept as shown in Fig. 4. The following part will prove it in a theoreti-
cal manner.

(1)xl+1
n,h,w =

C

c

K

i

K

j

wl
n,c,i,j × xl

c,h+i− K+1
2 ,w+j− K+1

2

(2)=

K
∑

i

K
∑

j

(

C
∑

c

wl
n,c,i,j × xl

c,h+i− K+1
2 ,w+j− K+1

2

)

(3)=

K
∑

i

K
∑

j

(xl+1
n,h,w,i,j)

Fig. 3  Stripe wise convolution (The kernel size of the filter is 3)

Page 6 of 21Mao et al. J Wireless Com Network (2023) 2023:44

3.2 � Theoretical analysis

Batch normalization (BN) is widely used in a neural network. This method could
make DNN faster and more stable [23]. In one filter, suppose B is a mini-batch of size
m, i.e., B = {a1, ...am} . BN layer processes these following transformation steps:

where µB and σB are the empirical mean and standard deviation of B. To resume the
representation ability of the network, scale γ and shift β are learned during the whole
process.

(4)µB =
1

m

m
∑

i=1

ai

(5)σ 2
B =

1

m

m
∑

i=1

(ai − µB)
2

(6)âi =
ai − µB
√

σ 2
B + ǫ

(7)xi = γ âi + β ≡ BNγ ,β(ai)

Fig. 4  Stripe wise convolution (Single filter case). The squares with dark orange indicate they have larger
stripe convolution results than the light orange ones, which means the corresponding stripes could be
remained during pruning

Page 7 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

After transformation in the BN layer, in cth channel of lth layer, the input feature map
could be

When MH is large, (Xl
c)i,j ∼ N (β l

c, (γ
l
c)

2) . From (2), we could get

Assuming all data is independently identically distribution, with the properties of nor-
mal distribution [24], we have

where

To reduce the number of parameters wl
n,c,i,j and avoid the value of µl+1

n in (11) change,
we introducing an importance indicator Ql

n,i,j to the output of convolution of each stripe
and have the following loss function.

where gn(Q) =
∑K

i

∑K
j

∣

∣

∣Ql
n,i,j

∣

∣

∣,Ql
n,i,j = 1 or 0.

Let

If we assume β l
1 = β l

2 · · · = β l
c = β l , combing with (11), (13) could be written as

which can be further written as

(8)Xl
c ∼ N (β l

c, (γ
l
c)

2).

(9)Xl+1
n =

K
∑

i

K
∑

j

(

C
∑

c

wl
n,c,i,j × (Xl

c)i,j

)

(10)Xl+1
n ∼ N (µl+1

n , (σ l+1
n)2)

(11)µl+1
n =

K
∑

i

K
∑

j

(

C
∑

c

wl
n,c,i,jβ

l
c

)

(12)(σ l+1
n)2 =

K
∑

i

K
∑

j

(

C
∑

c

(wl
n,c,i,j

)2

(γ l
c)

2)

(13)Ln = loss



µl+1
n ,

K
�

i

K
�

j

Ql
n,i,j

�

C
�

c

wl
n,c,i,jβ

l
c

�



+ αgn(Q)

(14)sln,i,j �

C
∑

c

wl
n,c,i,j .

(15)Ln = loss



β l
K
�

a

K
�

b

sln,a,b,β
l

K
�

i

K
�

j

Ql
n,i,js

l
n,i,j



+ αgn(Q)

Page 8 of 21Mao et al. J Wireless Com Network (2023) 2023:44

where

Obviously,

To minimize (16), we could set Ql
n,i,j = 0 to those Tl

n,i,j close to 0, which means the cor-
responding stripes will be pruned.
Tl
n,i,j could be used to describe the relative importance of stripei,j in filtern . When

Tl
n,i,j → 1 , stripei,j contributes more than other stripes. When Tl

n,i,j → 0 , stripei,j contrib-
utes less than other stripes and could be pruned.

3.3 � Method description

Before setting a threshold for Tl
n,i,j to prune stripes, we need to impose regularization on

the whole neural network to achieve sparsity. This method could avoid so-called “Train,
Prune, Fine-tune” pipeline. The regularization on the FS will be

where α adjusts the degree of regularization. g(W) is L1 norm penalty on W and could be
written as:

To avoid using sub-gradient at non-smooth point, instead of the L1 penalty, we deploy
the smooth-L1 penalty [25].

Summarize the proposed algorithm below.

(16)

Ln = loss

�

1,

�K
i

�K
j Ql

n,i,js
l
n,i,j

�K
a

�K
b sln,a,b

�

+ α′gn(Q)

= loss



1,

K
�

i

K
�

j

Ql
n,i,jT

l
n,i,j



+ α′gn(Q)

(17)Tl
n,i,j =

sln,i,j
∑K

a

∑K
b sln,a,b

(18)
K
∑

i

K
∑

j

T l
n,i,j = 1, 0 ≤ Tl

n,i,j < 1

(19)L =
∑

(x,y)

loss(f(x,W), y)+ αg(W)

(20)g(W) =

L
�

l=1





N
�

n=1

C
�

c=1

K
�

i=1

K
�

j=1

�

�

�Wl
n,c,i,j

�

�

�





Page 9 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

3.4 � Computational complexity

Assuming the number of weight parameters to be P, the computational cost for imple-
menting the smooth-L1 penalty is O(P). Assuming that the computational cost of each
epoch of neural network training is O(Q), the process of pruning costs O(e · Q) compu-
tations, where e denotes the percentage of pruning in the neural network of an epoch.
Therefore, the computational cost for each epoch is O(P + e · Q) . If K denotes the total
number of iterations, the computational complexity of our method is O(K (P + e ·Q)).

4 � Experiments
In order to assess the performance of the proposed model and confirm its effectiveness,
we carry out experiments on two datasets including CIFAR-10 and bearings dataset
from the Case Western Reserve University.

4.1 � Experiments on CIFAR‑10

4.1.1 � Implementation details

Our method is implemented using the publicly available Torch [26].
Dataset and Model: CIFAR-10 [27] is one of the most popular image collection data

sets. This dataset contains 60K color images from 10 different classes. 50K and 10K
images are included in the training and testing sets respectively. By adopting CIFAR-
10, we evaluated the proposed method mainly on VGG [28] and ResNet56 [29]. VGG16
and ResNet56 are the networks used to demonstrate the performance before and after
network pruning. VGG11 and VGG13, which have sizes more compact than VGG16,
are then deployed to make comparisons with VGG16 in terms of the total time which is
required for classifying 3270 image patches of size 224 × 224 , i.e., inference time.

Baseline Setting: We train the model using mini-batch size of 64 for 100 epochs.
The initial learning rate is set to 0.1, and is divided by 10 at the epoch 50. Random crop
and random horizontal flip are used as data augmentation for training images. Image is
scaled to 256× 256 . Then, a 224 × 224 part is randomly cropped from the scaled image
for training. The testing is the center crop with 224 × 224.

Experiment environment: NVidia 1080-TI and Intel Core i5-8500B are selected as
two different computing platforms representatives of the server and the edge device,
respectively. The first is a GPU which has high computation ability, however needs

Page 10 of 21Mao et al. J Wireless Com Network (2023) 2023:44

communication with sensors and actuators. The second is a CPU to represent the restricted
computer power of an edge device.

4.2 � Experiments on bearings dataset

Rotating element bearings (REBs) are among the most common parts in rotating equip-
ment, and their malfunction is a leading cause of machinery failure. The Case Western
Reserve University (CWRU) Bearing Data Center’s dataset has emerged as a benchmark
in the domain of bearing diagnostics [30]. We will use the data from this center for the fol-
lowing part of the experiment. The fundamental configuration of the testing apparatus is
displayed in Fig. 5.

The testing setup includes a 2 hp reliance electric motor that powers a shaft equipped
with a torque transducer and encoder. Torque is exerted on the shaft via a dynamometer
and electronic control system.

4.2.1 � Symmetrized dot pattern

Symmetrized dot pattern (SDP) is a technique used for visual representation of acoustic
and vibration signals to quickly identify any faulty condition of the system [31]. This tech-
nique transforms the time-domain signal into a scatter plot with sextuple symmetry.

The time-domain signal is S = {s1, s2..., si..., sD} , si is the ith sampling point. Then, si could
be transformed into its corresponding polar coordinate space P(r(i), θ(i),φ(i)).
P(r(i)) is the radius, which could be expressed as follows:

where smax and smin are the maximum and minimum amplitudes values of the time-
domain signal sequence, respectively.
θ(i) is the clockwise rotation angle of the initial line, while φ(i) represents the counter-

clockwise one. These angles could be expressed as follows:

(21)r(i) =
si − smin

smax − smin

(22)θ(i) = φ −
si − smin

smax − smin
ζ

Fig. 5  CWRU bearing test rig. (The components of the test stand include a 2 hp motor on the left, a torque
transducer/encoder in the center, and a dynamometer on the right)

Page 11 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

where φ is the initial rotation angle ( φ = 60m+ φ0,m = 1, ..., 6 , φ0 is a starting term that
can rotate the plot). ζ is the amplification coefficient.

The time-domain signal S can be transformed into its corresponding polar plot by
marking all θ points as red and all φ points as blue, as shown in Fig. 6.

4.2.2 � Data categories and preprocess

Four different operational conditions were tested at varying bearing loads (0–3 hp) to
collect vibration signals. Each operational condition contains datasets representing roll-
ing element faults and inner and outer race faults. In addition to the normal condition,
the SDP for these three operating faults are shown in Fig. 7. The outer race faults are fur-
ther classified into three categories based on their location relative to the load zone: ‘cen-
tered’ (fault at 6 o’clock position), ‘orthogonal’ (fault at 3 o’clock position), and ‘opposite’
(fault at 12 o’clock position). Combining with fault size (0.007 to 0.028 in.), we choose
twelve fault categories as shown in Table 2. Adding one healthy state resulted in a total
of thirteen different bearing categories.

In order to test the performance of the proposed framework under various working
environments, several sub-datasets are created as follows.

•	 Training data and testing data are both from vibration signals under the same work-
ing load.

•	 e.g., Training data and testing data are both from vibration signals under working
load of 0 hp.

•	 Training data come from vibration signals under a certain working load while testing
data are from different working loads.

•	 e.g., Training data come from vibration signals under working load 0 hp while test-
ing data are from working load of 3 hp.

Therefore, there are 16 sub-datasets, with each bearing sub-dataset treated as a 13-class
classification task for fault diagnosis. To facilitate the demonstration, we use Dij to

(23)φ(i) = φ +
si − smin

smax − smin
ζ

Fig. 6  Typical time-domain signal for SDP technique (a) and corresponding SDP plot (b)

Page 12 of 21Mao et al. J Wireless Com Network (2023) 2023:44

represent a sub-dataset, where the training set is derived from the workload of i hp, and
the testing set is derived from the workload of j hp. Each sub-dataset consists of 500
samples for each machine state, resulting in a total of 6500 samples for the 13 classes.
Each sample is derived from a randomly cropped 1600-length time-domain signal, and
augmented by rotating the image using a random value of φ0 in the SDP transformation
to expand the dataset.

The following steps are the same as those used with CIFAR-10.

Fig. 7  SDP a Normal case. b Inner race fault. c Outer race fault. d Rolling element fault

Table 2  Twelve fault categories

Fault diameter Inner race Ball Outer race position relative to load zone

centered @6 orthogonal @3 opposite @12

0.007” IR007 B007 OR007@6 OR007@3 OR007@12

0.014” IR014 B014 – – –

0.021” IR021 B021 OR021@6 OR021@3 OR021@12

Page 13 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

5 � Results
5.1 � Results on on CIFAR‑10

5.1.1 � Comparing with the original SWP

To compare our method with the original SWP, we revisit the concept of filter skeleton
(FS) from [16]. As mentioned before, in lth layer, the weight W is of size RN×C×K×K  .
Then, the size of FS in this layer is RN×K×K  . Each value in FS corresponds to a stripe in
the filter. During training, the filters’ weights are multiplied with FS. With I representing
the FS, the stripe wise convolution could be written as

where I ln,i,j is initialized with 1.
The regularization on the FS will be

where ⊙ denotes dot product and α adjusts the degree of regularization. g(I) is written
as:

For convenience, in Table 3 for the comparison on CIFAR-10, both the original
method and our method use FS to train and prune the whole neural network. Both of
them use the coefficient α of regularization, which is set to 1e−5 and 5e−5. The dif-
ference is that for the original method, pruning is based on the value in FS which cor-
responds to a stripe and for our method, pruning is based on Tl

n,i,j which combines the
weights located in a stripe. Regarding the choice of T, we used the value corresponding
to the highest accuracy.

From the table, we could find both methods could reduce the number of parameters
and the amount of computation (FLOPs) in a considerable volume without losing net-
work performance. For the backbone is VGG16 situation, when α = 1e−5, the number
of parameters and the amount of computation of our method are larger than the original

(24)xl+1
n,h,w =

K
∑

i

K
∑

j

I ln,i,j

(

C
∑

c

wl
n,c,i,j × xl

c,h+i− K+1
2 ,w+j− K+1

2

)

(25)L =
∑

(x,y)

loss(f(x,W ⊙ I), y)+ αg(I)

(26)g(I) =

L
�

l=1





N
�

n=1

K
�

i=1

K
�

j=1

�

�

�I ln,i,j

�

�

�





Table 3  Comparison with the original SWP on CIFAR-10

Backbone Metrics Params FLOPS Accuracy

VGG16 Baseline 14.76M 627.37 M 93.76%

Original ( α = 1e−5) 3.62M 350.28 M 93.46%

Original ( α = 5e−5) could not converge

Ours ( α = 1e−5, T = 0.0001) 4.63 M 385.49 M 93.43%

Ours ( α = 5e−5, T = 0.005) 0.84 M 126.03 M 93.06%

ResNet56 Baseline 0.87M 251.50 M 93.11%

Original ( α = 1e−5) 0.60M 150.63 M 93.41%

Ours ( α = 5e−5, T = 0.001) 0.23 M 60.76 M 92.96%

Page 14 of 21Mao et al. J Wireless Com Network (2023) 2023:44

approach. This is because our method will keep at least one stripe in a filter, while the
original approach might prune a whole filter. However, when α = 5e−5, the original
approach could not converge and our method could reach a high compression rate both
in the number of parameters and the amount of computation. Our pruned VGG16 could
achieve 95% reduction in memory demands.

For the backbone is Resnet56 situation, we present our result of α = 5e−5. To compare
with the original approach’s result of α = 1e−5, our method could see a large reduction
in the number of parameters and the amount of computation while sacrificing a bit of
accuracy. Our pruned Resnet56 could achieve 75% reduction in memory demands.

5.1.2 � Ablation study

In our method, there are two decisive hyper-parameters in the neural network, the coef-
ficient α of regularization in (25) and the weight combination threshold T in (17). As the
outcomes of the experiment demonstrated in Table 4, we display the effects of the hyper-
parameters in pruning consequences. It could be noticed that α = 5e − 5 and T = 0.005
holds an acceptable pruning ratio as well as test accuracy.

In Fig. 8, we show how many stripes in VGG16 on CIFAR-10 are kept after SWP. We
could find that most stripes (around 85%) in the first and the last layers are pruned.
There are higher pruning ratios in the second half layers than the first half ones. The
pruning ratio for this VGG16 neural network is 26.25%.

Table 4  Different coefficient α and weight combination threshold

α 1e−5 5e−5

T 0.0001 0.001 0.01 0.0001 0.0005 0.001 0.005

Params (M) 4.63 4,17 2.89 0.78 0.80 0.79 0.84

FLOPS (M) 385.49 327.17 200.09 130.96 135.56 134.68 126.03

Accuracy (%) 93.43 93.28 92.99 92.79 92.86 92.96 93.06

Fig. 8  The ratio of remaining stripes in each layer

Page 15 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

5.1.3 � Edge device performance

We further verify our approach in an edge device. As shown in Fig. 9, pruning is exe-
cuted on the server as training consumes computing resources on learning the impor-
tance between the stripes and serval complete passes of the training dataset through
the whole neural network. The pruned networks are then deployed on these two com-
puting platforms to test results and get the inference time. The comparison is shown
in Figs. 10, 11, 12 and 13. It should be noted that stripe wise convolution is not yet
optimized in CUDA. Along with the increase in percentage of parameters pruned, the
decline in inference time in servers is not quite clear. However, the inference time in
edge device drops by half when 75–95% of parameters are pruned.

Separately speaking, Fig. 10 shows the variation of the inference time when using
pruned VGG16. On edge device, the inference time decreases from 195.1 (s) to 77.9
(s). For the server setup, the inference time decreases from 24.01 (s) to 19.53 (s). Fig-
ures 11 and 12 show the variation of the inference time with pruned VGG13 and
VGG11, respectively. Similar results of decrease in inference time could be observed
on both VGG structures.

Figure 13 reports the results of using pruned ResNet56. On edge device, the infer-
ence time decreases from 277.7 (s) to 100.5 (s). For the server setup, the inference
time decreases from 61.9 (s) to 54.9 (s).

Figure 14 compares the inference time of 3 types of VGG as well as ResNet56 when
deployed on the edge device. Due to the reduction in the number of layers, regardless

Fig. 9  Experiment setup of edge device performance

Fig. 10  Inference time required for pruned VGG16

Page 16 of 21Mao et al. J Wireless Com Network (2023) 2023:44

of parameters pruned percentage, VGG11 could classify the most images at the same
time in all pruned models, while ResNet56 classifies the least.

It could also be found in Table 3, in terms of memory requirement, the percentage
reduction in parameters for our pruned ResNet56 is also not great as pruned VGG16.

5.2 � Results on bearings dataset

5.2.1 � Comparison of the original model and the pruned model

Without loss of generality, we choose VGG16 as the backbone and set the coefficient α to
5e−5 and the weight combination threshold T to 0.005 in the pruned model. The accu-
racy results of the classification are shown in Table 5. It can be observed that both the
original and pruned models achieved good accuracy rates in each of the sub-datasets.

In Table 6, we compare the performance on the original method and our method. The
sub-dataset used is D03 and the backbone is VGG16. It is noticeable that pruned models

Fig. 11  Inference time required for pruned VGG13

Fig. 12  Inference time required for pruned VGG11

Page 17 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

are capable of reducing the number of parameters and FLOPs significantly, without com-
promising network performance.

5.2.2 � Edge device performance

We also verify our approach in the edge device. The experimental setup and procedures are
identical to that used for the CIFAR-10 dataset in the previous part. The sub-dataset used
is D12 and the backbone is VGG16. The results are presented in Fig. 15, which shows that
the inference time of the pruned model did not significantly change in terms of edge device
performance.

Fig. 13  Inference time required for pruned ResNet56

Fig. 14  Inference time required for different backbone models

Page 18 of 21Mao et al. J Wireless Com Network (2023) 2023:44

6 � Discussion
Our pruned VGG16 achieves results comparable to the existing model, with a fourfold
reduction in parameters and only a 0.4% decrease in accuracy. When deployed on the
edge device, the inference time in the pruned network could drop by half. In addition

Table 5  Comparison of accuracy under different sub-datasets

Sub-dataset Accuracy

(a) Original model

D00 0.94385

D01 0.99277

D02 0.92292

D03 0.97400

D10 0.98923

D11 0.96615

D12 0.97908

D13 0.98846

D20 0.98031

D21 0.98308

D22 0.97077

D23 0.98892

D30 0.98600

D31 0.98092

D32 0.98877

D33 0.96462

Pruned model

D00 0.97846

D01 0.99323

D02 0.98800

D03 0.97246

D10 0.98785

D11 0.95077

D12 0.98554

D13 0.99031

D20 0.97477

D21 0.98600

D22 0.97000

D23 0.99031

D30 0.98923

D31 0.98062

D32 0.97754

D33 0.97615

Table 6  Comparison with the original SWP on D03

Backbone Metrics Params FLOPS Accuracy

VGG16 Baseline 14.76 M 627.37 M 97.40%

Original ( α = 1e − 5) 3.32 M 341.65 M 97.35%

Ours ( α = 1e − 5 , T = 0.0001) 4.43 M 375.68 M 97.43%

Page 19 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

to validating our pruned model on CIFAR-10, we also tested our model on the widely
used bearing dataset from the Case Western Reserve University (CWRU) Bearing Data
Center. The accuracy and the inference time are similar to those when using CIFAR-10.
To the best of our knowledge, this is the first time that a stripe-wise pruning algorithm
has been applied to the edge devices and Bearing datasets. However, due to the relatively
small size of the CIFAR-10 and Bearing Data Center datasets, the pruned model may
have limitations. We need to validate our theories on larger datasets.

7 � Conclusion
In this work, we avoid using an absolute threshold in existing stripe-wise pruning by
combining the weights located on each stripe. This allows us to learn the importance
between stripes in a filter and remove those with low importance. Our pruned method
effectively reduces the parameters and inference time of our VGG16 model without sig-
nificantly impacting accuracy. In future work, we will explore the introduction of reg-
ularizers to prune filters with single stripes, which may further compress deep neural
networks and improve performance.

Abbreviations
BN	� Batch normalization
CIFAR	� Canadian Institute for Advanced Research
CWRU​	� Case Western Reserve University
DNNs	� Deep neural networks
FLOP	� FLoating-point operations per second
FS	� Filter skeleton
IoT	� Internet of things
LASSO	� Least absolute shrinkage and selection operator
REBs	� Rotating element bearings
SDP	� Symmetrized dot pattern
SWC	� Stripe wise convolution
SSL	� Structured sparsity learning
SWP	� Stripe-wise pruning
V2V	� Vehicle-to-vehicle
GG	� Visual geometry group

Acknowledgements
Not applicable.

Fig. 15  Inference time required for pruned VGG16

Page 20 of 21Mao et al. J Wireless Com Network (2023) 2023:44

Author’ contributions
CM proposed the algorithm, and all authors helped revising the algorithm and designing the experiment. All authors
read and approved the final manuscript.

Funding
This work was supported by U.S. National Science Foundation (NSF) under Grant CCF-2219753.

Availability of data and materials
This study utilized two datasets: CIFAR-10 and the Bearings Dataset from The Case Western Reserve University. The
CIFAR-10 dataset is publicly available and can be accessed and downloaded from the official website of the Canadian
Institute for Advanced Research (CIFAR) at https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html. The Bearings Dataset from The
Case Western Reserve University is also publicly accessible. It can be obtained from the Bearing Data Center’s website at
https://​engin​eering.​case.​edu/​beari​ngdat​acent​er/​downl​oad-​data-​file.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 14 April 2023 Accepted: 17 May 2023

References
	1.	 J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (IoT): a vision, architectural elements, and future

directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)
	2.	 P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S.A. Ashraf, B. Almeroth, J. Voigt, I. Riedel et al.,

Latency critical IoT applications in 5g: perspective on the design of radio interface and network architecture. IEEE
Commun. Mag. 55(2), 70–78 (2017)

	3.	 J. Mei, K. Zheng, L. Zhao, Y. Teng, X. Wang, A latency and reliability guaranteed resource allocation scheme for LTE
V2V communication systems. IEEE Trans. Wirel. Commun. 17(6), 3850–3860 (2018)

	4.	 W. Yu, F. Liang, X. He, W.G. Hatcher, C. Lu, J. Lin, X. Yang, A survey on the edge computing for the internet of things.
IEEE Access 6, 6900–6919 (2018). https://​doi.​org/​10.​1109/​ACCESS.​2017.​27785​04

	5.	 W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646
(2016)

	6.	 J. Tang, D. Sun, S. Liu, J.-L. Gaudiot, Enabling deep learning on IoT devices. Computer 50(10), 92–96 (2017)
	7.	 S. Hooker, The hardware lottery. Commun. ACM 64, 58–65 (2021)
	8.	 H. Li, K. Ota, M. Dong, Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE

Netw. 32(1), 96–101 (2018)
	9.	 Y. LeCun, J.S. Denker, S.A. Solla, Optimal brain damage, in Advances in Neural Information Processing Systems (1990),

pp. 598–605
	10.	 C.M. Bishop et al., Neural Networks for Pattern Recognition (Oxford University Press, Oxford, 1995)
	11.	 S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, EIE: efficient inference engine on compressed deep

neural network. ACM SIGARCH Comput. Archit. News 44(3), 243–254 (2016)
	12.	 H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for efficient convnets. arXiv preprint arXiv:​1608.​08710

(2016)
	13.	 Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural networks, in Proceedings of the IEEE Inter-

national Conference on Computer Vision (2017), pp. 1389–1397
	14.	 Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional networks through network slimming,

in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 2736–2744
	15.	 V. Lebedev, V. Lempitsky, Fast convnets using group-wise brain damage, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2016), pp. 2554–2564
	16.	 F. Meng, H. Cheng, K. Li, H. Luo, X. Guo, G. Lu, X. Sun, Pruning filter in filter. Adv. Neural. Inf. Process. Syst. 33,

17629–17640 (2020)
	17.	 R. Reed, Pruning algorithms—a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)
	18.	 S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization

and Huffman coding. arXiv preprint arXiv:​1510.​00149 (2015)
	19.	 P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural networks for resource efficient infer-

ence. arXiv preprint arXiv:​1611.​06440 (2016)
	20.	 S. Park, J. Lee, S. Mo, J. Shin, Lookahead: A far-sighted alternative of magnitude-based pruning. arXiv preprint arXiv:​

2002.​04809 (2020)
	21.	 J.-H. Luo, J. Wu, W. Lin, Thinet: a filter level pruning method for deep neural network compression, in Proceedings of

the IEEE International Conference on Computer Vision (2017), pp. 5058–5066
	22.	 W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep neural networks. Adv. Neural. Inf. Process.

Syst. 29, 2074–2082 (2016)
	23.	 S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in

International Conference on Machine Learning (PMLR, 2015), pp. 448–456
	24.	 W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2 (Wiley, New York, 2008)

https://www.cs.toronto.edu/%7ekriz/cifar.html
https://engineering.case.edu/bearingdatacenter/download-data-file
https://doi.org/10.1109/ACCESS.2017.2778504
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/2002.04809
http://arxiv.org/abs/2002.04809

Page 21 of 21Mao et al. J Wireless Com Network (2023) 2023:44 	

	25.	 M. Schmidt, G. Fung, R. Rosales, Fast optimization methods for l1 regularization: a comparative study and two new
approaches, in European Conference on Machine Learning (Springer, 2007), pp. 286–297

	26.	 R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: a matlab-like environment for machine learning, in BigLearn (NIPS
Workshop, 2021)

	27.	 A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images. Technical report, University of
Toronto, Toronto, Ontario (2009)

	28.	 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​
1409.​1556 (2014)

	29.	 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2016), pp. 770–778

	30.	 K. Loparo, Case western reserve university bearing data center. Bearings Vibration Data Sets, Case Western Reserve
University, pp. 22–28 (2012)

	31.	 C.A. Pickover, On the use of symmetrized dot patterns for the visual characterization of speech waveforms and
other sampled data. J. Acoust. Soc. Am. 80(3), 955–960 (1986)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

	A statistical approach for neural network pruning with application to internet of things
	Abstract
	1 Introduction
	2 Related work
	3 The proposed method
	3.1 Stripe wise convolution
	3.2 Theoretical analysis
	3.3 Method description
	3.4 Computational complexity

	4 Experiments
	4.1 Experiments on CIFAR-10
	4.1.1 Implementation details

	4.2 Experiments on bearings dataset
	4.2.1 Symmetrized dot pattern
	4.2.2 Data categories and preprocess

	5 Results
	5.1 Results on on CIFAR-10
	5.1.1 Comparing with the original SWP
	5.1.2 Ablation study
	5.1.3 Edge device performance

	5.2 Results on bearings dataset
	5.2.1 Comparison of the original model and the pruned model
	5.2.2 Edge device performance

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

