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Abstract

A joint communication and positioning system based on maximum-likelihood channel parameter estimation is
proposed. The parameters of the physical channel, needed for positioning, and the channel coefficients of the
equivalent discrete-time channel model, needed for communication, are estimated jointly using a priori
information about pulse shaping and receive filtering. The paper focusses on the positioning part of the system. It
is investigated how soft information for the parameter estimates can be obtained. On the basis of confidence
regions, two methods for obtaining soft information are proposed. The accuracy of these approximative methods
depends on the nonlinearity of the parameter estimation problem, which is analyzed by so-called curvature
measures. The performance of the two methods is investigated by means of Monte Carlo simulations. The results
are compared with the Cramer-Rao lower bound. It is shown that soft information aids the positioning. Negative

effects caused by multipath propagation can be mitigated significantly even without oversampling.

1 Introduction

Interest in joint communication and positioning is stea-
dily increasing [1]. Synergetic effects like improved
resource allocation and new applications like location-
based services or a precise location determination of
emergency calls are attractive features of joint commu-
nication and positioning. Since the system requirements
of communication and positioning are quite different, it
is a challenging task to combine them: Communication
aims at high data rates with little training overhead.
Only the channel coefficients of the equivalent discrete-
time channel model, which includes pulse shaping and
receive filtering in addition to the physical channel,
need to be estimated for data detection. In contrast,
positioning aims at precise position estimates. Therefore,
parameters of the physical channel like the time of arri-
val (TOA) or the angle of arrival (AOA) need to be esti-
mated as accurately as possible [2,3]. Significant training
is typically spent for this purpose.

In this paper, a joint communication and positioning
system based on maximum-likelihood channel para-
meter estimation is suggested [4]. The estimator exploits
the fact that channel and parameter estimation are clo-
sely related. The parameters of the physical channel and
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the channel coefficients of the equivalent discrete-time
channel model are estimated jointly by utilizing a priori
information about pulse shaping and receive filtering.
Hence, training symbols that are included in the data
burst aid both communication and positioning.

On the one hand, in [5-7], it is proposed to use a
priori information about pulse shaping and receive fil-
tering in order to improve the estimates of the equiva-
lent discrete-time channel model. However, the
information about the physical channel is neglected in
these publications. On the other hand, channel sounding
is performed in order to estimate the parameters of the
physical channel [8-10]. But, to the authors best knowl-
edge, the proposed parameter estimation methods are
not applied for estimation of the equivalent discrete-
time channel model. The estimator proposed in this
paper combines both approaches: Channel estimation is
mandatory for communication purposes. By exploiting a
priori information about pulse shaping and receive fil-
tering, the channel coefficients can be estimated more
precisely and positioning is enabled. Hence, synergy is
created.

This paper focusses on the positioning part of the pro-
posed joint communication and positioning system.
Most positioning methods suffer from a bias introduced
by multipath propagation. Multipath mitigation is, thus,
an important issue. The proposed channel parameter
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estimator performs multipath mitigation in two ways:
First, the maximum-likelihood estimator is able to take
all relevant multipath components into account in order
to minimize the modeling error. Second, soft informa-
tion can be obtained for the parameter estimates. Soft
information corresponds to the variance of an estimate
and is a measure of reliability. This information can be
exploited by a weighted positioning algorithm in order
to improve the accuracy of the position estimate.

On the basis of confidence regions, two different
methods for obtaining soft information are proposed:
The first method is based on a linearization of the non-
linear parameter estimation problem and the second
method is based on the likelihood concept. For linear
estimation problems, an exact covariance matrix can be
determined in closed form. For nonlinear estimation
problems, as it is the case for channel parameter estima-
tion, there are different approximations to the covar-
iance matrix, which are based on a linearization. These
approximate covariance matrices are generated by most
nonlinear least-squares solvers (e.g., Levenberg-Mar-
quardt method) anyway and can be used after further
analysis [11]. Confidence regions based on the likelihood
method are more robust than those based on approxi-
mate covariance matrices since they do not rely on a
linearization, but they are also more complex to calcu-
late. Heuristic optimization methods like genetic algo-
rithms or particle swarm optimization offer a
comfortable procedure to determine the likelihood con-
fidence region as demonstrated in [12]. Both methods
are only approximate, and their accuracy depends on
the nonlinearity of the estimation problem. In [13],
Bates and Watts introduce curvature measures that indi-
cate the amount of nonlinearity. These measures can be
used to diagnose the accuracy of the proposed methods.

The remainder of this paper is organized as follows:
The system and channel model is described in Section
2. The relationship between channel and parameter
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estimation is explained and the nonlinear metric of the
maximum-likelihood estimator is derived. General
aspects concerning nonlinear optimization are discussed.
In Section 3, the concept of soft information is intro-
duced. Based on confidence regions, two methods for
obtaining soft information concerning the parameter
estimates are proposed. In order to further analyze the
proposed methods, the curvature measures of Bates and
Watts are introduced in Section 4. The curvature mea-
sures are calculated for the parameter estimation pro-
blem and a first analysis of the problem is given.
Afterward, positioning based on the TOA is explained
in Section 5, and the performance of the two soft infor-
mation methods is investigated by means of Monte
Carlo simulations. The results are compared with the
Cramer-Rao lower bound. Finally, conclusions are
drawn in Section 6.

2 System Concept

2.1 System and channel model

Throughout this paper, the discrete-time complex base-
band notation is used. Let x[k] denote the kth modulated
and coded symbol of a data burst of length K. Some sym-
bols x[k] are known at the receiver side ("training sym-
bols”), whereas others are not known ("data symbols”). It
is assumed that data and training symbols can be sepa-
rated perfectly at the receiver side. The received sample y
[k] at time index k can be written as

L
ylkl = > " milke] -xll — 1) +nfk], 0 <k <K+L—1, (1)
1=0

where /1;[k] is the Ith channel coefficient of the equiva-
lent discrete-time channel model with effective channel
memory length L, and n[k] is a Gaussian noise sample
with zero mean and variance o;2. The noise process is
assumed to be white. In Figure 1, the relationship
between the physical channel and the equivalent

Figure 1 Equivalent discrete-time channel model.
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discrete-time channel model is shown. The input/output
behavior of the continuous-time channel is exactly
represented by the equivalent discrete-time channel
model, which is described by an FIR filter with coeffi-
cients /; [k]. The delay elements z! correspond to the
sampling rate ,lr In this paper, only symbol-rate sam-
pling 7 = 75 is considered, where T is the symbol dura-
tion.® The channel coefficients 4, [k] are samples of the
overall impulse response of the continuous-time chan-
nel. This impulse response is given by the convolution
of the known pulse shaping filter g(z) = gr.(7), the
unknown physical channel c(z, £), and the known receive
filter gr,(7). Since the convolution is associative and
commutative, pulse shaping and receive filtering can be
combined: g(7) = g7.(7) * gr(7), where * denotes the
convolution.

The physical channel can be modeled by a weighted
sum of delayed Dirac impulses:

M
o, 0) = ) _fult) - 8(z — (1)), (2)

n=1

where M is the number of resolvable propagation
paths. The parameters f,(f) and 7,(¢) denote the complex
amplitude and the propagation delay of the uth path at
time ¢, respectively. Without loss of generality, it is
assumed that the multipath components are sorted
according to ascending delay: 7;(£) <7(t) < - <zp4(£). The
delay of the first arriving path is called TOA. Positioning
is based on the assumption that the TOA corresponds
to the distance between transmitter and receiver. This is
only true if a line-of-sight (LOS) path exists. In urban or
indoor environments, the LOS path is often blocked. In
these so-called non-LOS (NLOS) scenarios, the model-
ing error reduces the positioning accuracy significantly.
Additionally, positioning typically suffers from a bias
introduced by multipath propagation even if a LOS path
exists. In order to analyze the multipath mitigation abil-
ity of the proposed soft channel parameter estimator,
this paper restricts itself to LOS scenarios. However, the
influence of NLOS is discussed in Section 5.2.

Given c(z, t) and g(z), the overall channel impulse
response /(z, t) can be written as

M
h(z,1) = c(r,0) %8(t) = D fulD) - 8(r = w().  (3)

n=1

After symbol-rate sampling (3) at ¢ = kT, the channel
coefficients can be represented as:

M
lulk] = Y fulkel - g(ITs — z.[K]). )

n=1

Page 3 of 17

In the following, it is assumed that the channel is
quasi time-invariant over the training length (block fad-
ing). Thus, the time index k in (4) can be omitted.

For simulation of communication systems, it is suffi-
cient to consider excess delays. Without loss of general-
ity, 71 = 0 can be assumed then. The effective channel
memory length L is, therefore, determined by the excess
delay 7,7 — 71 plus the effective width T, of g(7).

In case of positioning based on the TOA, however, it

is important taking into account that 7; = ‘i, where d is
the distance between transmitter and receiver and c is
the speed of light. Denoting the maximum possible
delay by 7™, the maximum possible channel memory
length can be pre-calculated according to

~ T+ T
[T

This channel memory length covers all possible propa-
gation scenarios including the worst case. Hence, the
channel impulse response is embedded in a sequence of
zeros as shown in Figure 2.

2.2 Channel parameter estimation

Channel estimation is mandatory for data detection.
Typically, training symbols are inserted in the data
burst for estimation of the equivalent discrete-time
channel model. If the channel is quasi time-invariant
over the training sequence (block fading), least-squares
channel estimation (LSCE) can be applied. In this
paper, a training preamble of length K, is assumed. For
the interval L < k < K; - 1, the received samples
according to (1) can be expressed in vector/matrix
notation as

y=Xh+n, (6)

where X is the training matrix with Toeplitz structure,
y = IL], y[L + 1],..., y[K; - 1117 is the observation vec-
tor, i = [hg, My, ;)7 is the channel coefficient vector,
and #z is a zero mean Gaussian noise vector with

0 1 2 3 4 5 6 7 8 9 10

7/Ts

Figure 2 Example for the overall (time-invariant) channel
impulse response h(z) (dashed curve) and the corresponding
channel coefficients h; (stems) for L = 10.
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covariance matrix C, = a,,zl . The least-squares channel
estimates are given by

h=(X"X)"'X"y =h+e. (7)

Using the assumptions above, the estimation error ¢ is
zero mean and Gaussian with covariance matrix
C. = g'nz(XHX)_l [14]. For a pseudo-random training
sequence, the matrix (X’’ X) becomes a scaled identity
matrix with scaling factor K, - L, and the covariance
matrix of the estimation error reduces to

a2 2
C. = KﬁLI =o;1

The main idea of joining communication and posi-
tioning is based on the relationship in (4). If the para-
meters of the physical channel are stacked into a vector
0 = [Re{f}, Im{fi}, 71, Re{fa}, ..., Tarl, (4) can be rewritten
as:

M
hl(o) = Z (9v+1 +j9v+2)g(lTs - 9v+3)- (8)
o

The parameters € can be estimated by fitting the
model function (8) to the least-squares channel esti-
mates f;. Hence, the channel estimates are not only
used for data detection, but they are also exploited for
positioning. Furthermore, refined channel estimates /,
are obtained by evaluating (8) for the parameter esti-
mate § [4].° On the one hand, positioning is enabled
since the TOA 1, is estimated. On the other hand, data
detection can be improved because refined channel esti-

mates are obtained.

The maximum-likelihood estimate g is given by the
set @ that maximizes the likelihood function [14]

|

hy — hy(0)

h — hy(6)

p(ii0) -], exp |-
' o wo? o2

1 L+1 1 L
() o

& =0

)

2 }
For LSCE with pseudo-random training, this is equiva-
lent to maximizing the likelihood function

i

Yk =Y~ ma(®)xlk — 1]
1=0

Koty 1
-9) = _
pi0)=[] e o2

k=L n

L
vl = 3 (@)l — 1}
0 (10)

K—1

2
1 )"f*b 1
= exp { — .
(ons o &

with respect to 6. The second approach in (10) may
seem more natural to some readers since the parameters
are estimated directly from the received samples. But
since both approaches are equivalent, as proven in the
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“Appendix”, it seems more convenient to the authors to
apply the first approach: Channel estimates are usually
already available in communication systems and the
metric derived from (9) is less complex than the metric
derived from (10). Hence, only the first approach is con-
sidered in the following.

Since the noise is assumed to be Gaussian, the maxi-
mum-likelihood estimator corresponds to the least-
squares estimator:

A

o = argmax {p(fl;é)} - argmax {mp(fz;é)}

L
= argmin {Z ml - hl(é)lz} .

? oo

(11)

Q(h)

The minimization of the metric Q(é) in (11) cannot

be solved in closed form since Q(é) is nonlinear. An
optimization method has to be applied. In order to
chose a suitable optimization method to find ¢, differ-

ent system aspects have to be taken into account, and a
tradeoff depending on the requirements has to be

found. The goal is to find the global minimum of (g).

Unfortunately, () has many Jocal minima due to the

superposition of random multipath components. Conse-
quently, the optimization method of choice should be
either a global optimization method or a local optimiza-
tion method in combination with a good initial guess, i.
e., an initial guess that is sufficiently close to the global
optimum. Both choices involve different benefits and
drawbacks. To find a good initial guess is difficult and,
therefore, may be seen as a drawback itself. But in case
a priori knowledge in form of a good initial guess is
available, a search in the complete search space would
be unnecessary.

For channel parameter estimation, it is suggested to
divide the problem into an acquisition and a tracking
phase. In the acquisition phase, a global optimization
method is applied, and in the tracking phase, the para-
meter estimate of the last data burst may be used as an
initial guess for a local optimization method. This is sui-
table for channels that do not change too rapidly from
data burst to data burst. In this paper, particle swarm
optimization (PSO) [15-17] is suggested for the acquisi-
tion phase, and the Levenberg-Marquardt method
(LMM) [18,19] is proposed for the tracking phase.

PSO is a heuristic optimization method that is able to
find the global optimum without an initial guess and
without gradient information. PSO is easy to implement
because only function evaluations have to be performed.
So-called particles move randomly through the search
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space and are attracted by good fitness values (@) in

their past and of their neighbors. In this way, the parti-
cles explore the search space and are able to find the
global optimum. It is a drawback that PSO does not
assure global convergence. There is a certain probability
(depending on the signal-to-noise ratio) that PSO con-
verges prematurely to a local optimum (outage).
Furthermore, PSO is sometimes criticized because many
iterations are performed in comparison to gradient-
based optimization algorithms.

The LMM belongs to the standard nonlinear least-
squares solvers and relies on a good initial guess. The
gradient of the metric has to be supplied by the user.
For the LMM, convergence to the optimum in the
neighborhood of the initial guess is assured. Second
derivative information is used to speed up convergence:
The LMM varies smoothly between the inverse-Hessian
method and the steepest decent method depending on
the topology of the metric [18]. Furthermore, an
approximation to the covariance matrix of the para-
meter estimates is calculated inherently by the LMM.
The LMM is designed for small residual problems. For
large residual problems (at low signal-to-noise ratio), it
may fail (outage).

3 Soft Information
3.1 Definition of soft information
The concept of soft information is already widely
applied: In the area of communication, soft information
is used for decoding, detection, and equalization. In the
field of navigation, soft information is exploited for sen-
sor fusion [20]. This paper aims at obtaining soft infor-
mation for the parameter estimates in order to improve
the positioning accuracy before sensor fusion is applied.
Soft information is a measure of reliability of the
(hard) estimates. The intention is to determine the a
posteriori distribution of the estimates. Hence, the
(hard) estimate is the mean of the distribution, and the
soft information corresponds to the variance of the dis-
tribution. For linear estimation problems with known
noise covariance matrix, the a posteriori distribution of
the estimates can be determined in closed form [14]. If
the noise is Gaussian distributed, the estimator is,
furthermore, a minimum variance unbiased estimator
(MVU). However, only few problems are linear. A popu-
lar estimator for more general problems is the maxi-
mum-likelihood estimator as already described in
Section 2.2 for channel parameter estimation. The maxi-
mum-likelihood estimator is asymptotically (for a large
number of observations or at a high signal-to-noise
ratio) unbiased and efficient [14]. Furthermore, an
asymptotic a posteriori distribution can be determined.
For Gaussian noise with covariance matrix C = 6, the
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asymptotic covariance matrix of the estimates is given
by the inverse of the Fisher information matrix evalu-
ated at the true parameters [14]. The parameter estimate
@ given by (11) is asymptotically distributed as follows:
0 ~N(@,10)7"), (12)

where I(0) is the Fisher information matrix with
entries

821np(h; 0)
861,66,

L
2 5h2(0) 5hi(6)
R ! ,
o2 :Z 56, 86,

1=0

[1(6)]mn
(13)

in which the star » denotes the conjugate complex.
Given the Jacobian matrix of (8),

Shi(0)

56, (14)

[I(o)]lm =
the Fisher information matrix can be written as well
as

1(6) = 022 Re {J(o)HI(o)} : (15)
The variance of parameter 6, is given by the mth
diagonal entry of the asymptotic covariance matrix:
o? -1
Casymp = 10) ™" = ) (Re {I(o)HI(o)}) . (16)
In general, the true value of the parameters is not
known. Therefore, the asymptotic covariance matrix
cannot be determined and an approximation has to be
found. Different approximate covariance matrices are
given in the literature that should be used with caution
since the approximation may be very poor [11,21]. In
the following section, a short description of confidence
regions is included because they are closely related to
soft information: Some of the confidence regions rely on
the approximate covariance matrices mentioned above.

3.2 Confidence regions

In [11], Donaldson and Schnabel investigate different
methods to construct confidence regions and confidence
intervals. Confidence regions and intervals are closely
related to soft information since they also indicate relia-
bility: The estimated parameters § do not coincide with
the true parameters @ because of the measurement
noise. A confidence region indicates the area around the
estimated parameters in which the true parameters
might be with a specific probability. This probability is
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called the confidence level and is often expressed as a
percentage. A commonly used confidence level is 95%.

For linear problems with Gaussian noise, the confi-
dence regions are elliptical and can be determined
exactly by the covariance matrix Cjjyeqr, which can be
computed in closed form [14]. The linear confidence
region consists of all parameter vectors g that satisfy
the following formula:

(6-8) Cinear (8 -9) = PRI,

in which P = 3M is the number of parameters, N = L
+1 is the number of observations, 1 — « is the confi-
dence level, and F is the Fisher distribution. According
to [11], the most common method to determine a confi-
dence region for a nonlinear problem consists of the lin-
earization of the problem in order to obtain an
approximate covariance matrix. In this paper, the fol-
lowing approximate covariance matrix is applied:

(17)

s? A Ho A1\ 1
Capprox = ) (Re {](0) ](0)}) . (18)
The only difference between Cypprox in (18) and Cugymp
in (16) is that the Jacobian matrix is evaluated at the
parameter estimate g instead of the true parameter 6
and that the variance ¢” is estimated by the residual var-
iance 2 =Q()/(N—P). When Cipeor in (17) is
replaced by C,,prox in (18), an approximate confidence
region for a nonlinear problem is obtained as
(é — ) 2Re {I(é)H](é)} (6-8) <sPR, (19
On the one hand, the computational complexity is
quite low and the results are very similar to the well-
known linear case. On the other hand, the approxima-
tion can be very poor and should be used with caution
[11,21]. Another (more complex) way to determine a
confidence region is the likelihood method [11]: All
parameter vectors g that satisfy
Q(8) — Q) < SPFpp (20)
are included in the likelihood confidence region. This
region does not have to be elliptical but can be of any
form. The likelihood method is approximate for non-
linear problems as well but more precise and robust
than the linearization method since it does not rely on
linearization. There is an exact method, which is called
lack-of-fit method, that is neglected in this paper due to
its high computational complexity and because the like-

lihood method is already a good approximation accord-
ing to [11]. The accuracy of the linearization and the
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likelihood method strongly depends on the problem and
on the parameters. Donaldson and Schnabel [11] suggest
to use the curvature measures of Bates and Watts [13],
which are introduced in Section 4, as a diagnostic tool.
With these measures, it can be evaluated whether the
corresponding method is applicable or not.

3.3 Proposed methods to obtain soft information

After this excursion to confidence regions, the way of
employing this knowledge for obtaining soft information
is now discussed. The first and straightforward idea is to
use the variances of the approximate covariance matrix
Capprox in (18). This method is simple, and many opti-
mization algorithms like the LMM already compute and
output C,pprox Or similar versions of it. But without
further analysis (see Sections 4 and 5), it is questionable
whether this method is precise enough.

The second idea is based on the likelihood confidence
regions. Generally, it is quite complex to generate the
likelihood confidence region since many function eva-
luations have to be performed in the surrounding of the
parameter estimates g . However, heuristic optimization
algorithms like PSO perform many function evaluations
in the whole search space anyway, and therefore, they
are well suited to determine the likelihood confidence
region [12]. A drawback of heuristic algorithms (many
function evaluations are required until convergence) is
transformed into an advantage with respect to likelihood
confidence regions. The procedure proposed in [12] is
as follows: In every iteration, each particle determines

its fitness Q(é), which is stored with the corresponding
parameter set ¢ in a table. After the optimum § with
fitness Q(é) is found, all parameter sets g that fulfill

Pfﬁ,N“p)

are selected from the table and form the likelihood
confidence region. It can be observed that the density of
points near the parameter estimate g is higher than at
the border of the likelihood confidence region. The rea-
son is that the particles are attracted by good fitness
values near the optimum and oscillate in its neighbor-
hood before convergence occurs. Hence, all points §
form a distribution with mean and variance, where the

Q) < 2(6) (1 + Nli (21)

mean coincides with the parameter estimate g . There-
fore, the variance of this distribution can be used as soft
information.

In Section 5, the performance of both methods is eval-
uated and compared. Prior to that the curvature mea-
sures of Bates and Watts [13] are introduced for further
analysis and understanding.
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4 Curvature Measures
4.1 Introduction to curvature measures
In [13], Bates and Watts describe nonlinear least-squares
estimation from a geometric point of view and introduce
measures of nonlinearity. These measures indicate the
applicability of a linearization and its effects on inference.
Hence, the accuracy of the confidence regions described
in Section 3 can be evaluated using these measures. In
the following, the most important aspects of the so-called
curvature measures are presented.

First, the nonlinear least-squares problem is reviewed:
A set of parameters

0=1601,0,,...,0p]" (22)
shall be estimated from a set of observations

h=ho hi,... h)" (23)
with

i =h(8) + &, (24)

where /1; (0) is a nonlinear function of the parameters
0 and g is additive zero mean measurement noise with
variance 2. The least-squares estimate is given by the
value g that minimizes the sum of squares of residuals

L
Q0) = I~ h(6)?,

1=0

(25)

which corresponds to the metric of the maximum-like-
lihood estimator in the case of Gaussian measurement
noise. The sum of squares in (25) can also be written as

2
(26)

Q(6) = “fl —h(6)

Geometrically, (26) describes the distance between
and k(@) in the (L + 1)-dimensional sample space. If the
parameter vector g is changed in the P-dimensional
parameter space (search space), the vector h(é) traces a
P-dimensional surface in the sample space, which is
called solution locus. Hence, the function h(é) maps all

feasible parameters in the P-dimensional parameter space
to the P-dimensional solution locus in the (L+1)-dimen-
sional sample space. Because of the measurement noise,
the observations do not lie on the solution locus but any-

where in the sample space. The parameter estimate g
corresponds to the point on the solution locus h(é) with
the smallest distance to the point of observations f;.

Since the function h(é) is nonlinear, the solution
locus will be a curved surface. For inference, the
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solution locus is approximated by a tangent plane with
an uniform coordinate system. The tangent plane at a
specific point h(f,) can be described by a first-order
Taylor series

h(8) =~ h(Bo) +J(8o) (é - éo) , (27)

where ](éo) is the Jacobian matrix as defined in (14)
evaluated at 50, The informational value of inference
concerning the parameter estimates highly depends on
the closeness of the tangent plane to the solution locus.
This closeness in turn depends on the curvature of the
solution locus. Therefore, the measures of nonlinearity
proposed by Bates and Watts indicate the maximum
curvature of the solution locus at the specific point
h(B,)- It is important to note that there are two differ-
ent kinds of curvatures since two different assumptions
are made concerning the tangent plane. First, it is
assumed that the solution locus is planar at h(f,) and,
hence, can be replaced by the tangent plane (planar
assumption). Second, it is assumed that the coordinate
system on the tangent plane is uniform (uniform coordi-
nate assumption), i.e., the coordinate grid lines mapped
from the parameter space remain equidistant and
straight in the sample space. It might happen that the
first assumption is fulfilled, but the second assumption
is not. Then, the solution locus is planar at the specific
point h(f,), but the coordinate grid lines are curved
and not equidistant. If the planar assumption is not ful-
filled, the uniform coordinate assumption is not fulfilled
either.

In order to determine the curvatures, Bates and Watts
introduce so-called lifted lines. Similar to the fact that
each point @, in the parameter space maps to a point

h(éo) on the solution locus in the sample space, each

straight line in the parameter space through ¢,

0(m) =0 + mv, (28)
maps to a lifted line on the solution locus
hy(m) = h(8, + mv), (29)

where v can be any non-zero vector in the parameter
space. The tangent vector of the lifted line for m = 0 at

6, is given by

_ dhy(m)

_ dn(#)
dm Y

o de

dé(m)

hy
_dm
0o

(30)

=J(0o)v.

The set of all tangent vectors (for all possible vectors
v) forms the tangent plane. For measuring curvatures,
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second-order derivatives are needed additionally. The
second-order derivative of the function h(é) is the Hes-

sian
-1 8%h(0)
[H(o)]m =i (31)

which is a three-dimensional tensor. The /th face of
the Hessian is, thus, a P x P matrix

2m8)  2m(d)
56,86, 86p86;
H,(0) = o (32)
82m(8)  82h(h)
86,56p 56p80p

The second-order derivative of the lifted line is given
by

) d?h,(m)

. Teres
h, dm2 =v H(0o)v,

0

(33)

in which the tensor product is performed such that

[h]l = vTHy(80)w. (34)

The derivatives of the lifted line h, and h, can be
interpreted physically: If a point moves along the lifted
line h,(m) in the sample space, where m denotes the
time, then h, and h, denote the instantaneous velocity
and instantaneous acceleration at time m = 0, respec-
tively. The acceleration can be decomposed in three
parts

[ o g (35)

as shown in Figure 3. hS is parallel to the velocity
vector h, and, thus, parallel to the tangent plane. It
corresponds to the change in velocity of the moving
point. hfj is normal to the tangent plane and describes
the change in direction of the velocity vector h, normal
to the tangent plane. hf is parallel to the tangent plane
and normal to the velocity vector h,. It corresponds to
the geodesic acceleration and indicates the change in
direction of the velocity vector h, parallel to the tan-
gent plane. Based on these acceleration components,
the curvatures of the solution locus at 60 can be deter-
mined:

o
v oL 2 (36)
hy,
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Figure 3 Example for the decomposition of the acceleration
vector h, with respect to the velocity vector h,.

is the normal curvature in direction of v and is called
intrinsic curvature and
..P ..G ..T
h, +h, h,
T
K, = 2 T g2 37)
L I

is the tangential® curvature in direction of v and is called
parameter-effects curvature. The curvatures are divided
into normal and tangential components since each com-
ponent has a different influence on the accuracy of the lin-
ear approximation. On the one hand, the intrinsic
curvature is an intrinsic property of the solution locus. It
only affects the planar assumption. On the other hand, the
parameter-effects curvature only influences the uniform
coordinate assumption and depends on the specific para-
meterization of the problem. Hence, a reparameterization
may change the parameter-effects curvature but not the
intrinsic curvature. In order to assess the effect of the cur-
vatures on inference, they should be normalized. A suita-
ble scaling factor is the so-called standard radius
p = s+/P since its square p° = s°P appears on the right
hand side in (19) and (20), which describe the confidence
regions. The relative curvatures are given by the curva-
tures (36) and (37) multiplied with the standard radius:

YN = KN, (38)

va=Kip. (39)

14

If the relative curvatures are small compared with
1//Fpp for all possible directions v, then the corre-
sponding assumptions are valid. Hence, it is sufficient to

determine the maximum relative curvatures®

N = max( o) (40)

(41)

I'" = max{y, )
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and to compare them to 1/ .7-"11&“_1, in order to assess

the accuracy of the confidence regions [11]. If the confi-
dence region based on the linearization method (19)
with the approximate covariance matrix shall be applied,
both the planar assumption and the uniform coordinate
assumption have to be fulfilled. That means that the
maximum relative curvatures I and I'" have to be

small compared with 1/\/]-"11'[_\,“71). The confidence

region based on the likelihood method (20) is more
robust since only the planar assumption needs to be ful-
filled and only T needs to be small compared with

1 Fonip

4.2 Analysis of the parameter estimation problem

In the following, the parameter estimation problem is
analyzed by calculating the maximum relative curvatures
and by plotting the confidence regions (19) and (20) for
different signal-to-noise ratios (SNRs). The system setup
is as follows: A training preamble of length K, = 256 is
assumed that covers 10% of the data burst of length K =
2,560. A pseudo-random sequence of BPSK symbols is
used as training. Since this paper concentrates on the
positioning part of the proposed joint communication
and positioning system, it is sufficient to focus on the
channel estimation and to neglect the data detection. A
Gaussian pulse shape g(7) = gT,(1) * gR (7) ~ exp (—(z/
T,)?) is assumed. After receive filtering, the noise pro-
cess is slightly colored, but we have verified that the
correlation is negligible with respect to receiver proces-
sing. The training sequence is transmitted over the phy-
sical channel and at the receiver side channel parameter
estimation as suggested in Section 2.2 is performed. For
the purpose of curvature analysis, only PSO as described
in [16] with I = 50 particles and a maximum number of
T = 8,000 iterations is applied for solving the nonlinear
metric Q2(0). PSO delivers the likelihood confidence
region automatically as explained in Section 3.3. The
approximate co variance matrix is calculated afterward
according to (18). A confidence level of 95% is applied
(o = 0.05). Since the curvature measures depend on the
parameter set @ and also on the noise samples, simula-
tions are performed for a fixed channel model at differ-
ent SNRs. Two different channel models are assumed: A
single-path channel (M = 1) and a two-path channel (M
= 2) with a small excess delay (Azry: = 75-77 = 0.817Y),
both with a memory length L = 10. The parameters of
the channels are given in Table 1. Furthermore, the
maximum relative curvatures I'™ and I'" for different

SNRs and the value of 1/,/FpR° , are listed in Table 1.

It can be concluded that the planar assumption is always
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Table 1 Parameters of the investigated channel models
and the corresponding maximum rel. curvatures at
different SNRs

M =1 M=2
real part 6, = 04454 6, = 06401 0, = -0.3464
imaginary part 6, =-0.7715 0, =-1.1086 0s = 0.8363
delay 05 =381T, 05 =381T, 05 = 462 T,
1/ FOR2p 049591 044945
M™Me10dB 005429737 0.08281260
I"@10dB 004205545 362952012
M@30dB 000354615 0.01158592
I"@30dB 000272911 0.75507012
M™M@s50dB 000062543 0.00134538
I'" @ 50dB 0.00047295 0.08727709

fulfilled since I'Y is much smaller than 1 / .7-'3'[?,57 p inall

cases. This means the likelihood method is always accu-
rate. For the single-path channel, the uniform coordi-
nate assumption is also fulfilled for all SNRs (see Table
1), i.e., the confidence regions based on the linearization
method and the approximate covariance matrices are
accurate. This is confirmed by Figure 4a, b, c. In Figure
4, the confidence regions based on the linearization
method (black ellipse) and the likelihood method (filled
dots) are plotted for the parameter combination of the
real part 0; and the delay 65 of the LOS path normal-
ized with respect to the symbol duration 7. Both
regions are similar for the single-path channel. In case
of the two-path channel, a different situation is observed
as shown in Figure 4d, e, f. The uniform coordinate
assumption is violated at low SNR since I'" is not much

smaller than 1/\/ .7-'1())"2,5_ p (see Table 1). The shape of the

likelihood confidence region differs strongly from the
ellipse generated by the approximate covariance matrix.
Only at high SNR, both shapes coincide. For the two-
path channel, the uniform coordinate assumption is
valid from approximately 35-40 dB upward. For different
channel realizations, different results are obtained. It
should be mentioned again that the curvature measures
strongly depend on the parameter set # and on the
noise samples. The larger the excess delay Ar,, the
lower is the nonlinearity of the problem, i.e., the uni-
form coordinate assumption is already valid at lower
SNR and vice versa. It can be summarized that the con-
fidence regions based on the linearization method are
not accurate at low SNR in a multipath scenario. Hence,
the soft information based on the approximate covar-
iance matrix may lead to inaccurate results. The influ-
ence of soft information on positioning is investigated in
the following section.
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(a) Single path channel at 10 dB
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(b) Single path channel at 30 dB

(c) Single path channel at 50 dB.

(d) Two path channel at 10 dB.
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(e) Two path channel at 30 dB.

Figure 4 Confidence regions based on the linearization method (black ellipse) and the likelihood method (filled dots). The estimated
parameters are denoted by a cross and the true parameters by a circle. (a) Single-path channel at 10 dB. (b) Single-path channel at 30 dB. (c)
Single-path channel at 50 dB. (d) Two-path channel at 10 dB. (e) Two-path channel at 30 dB. (f) Two-path channel at 50 dB.

A\

(f) Two path channel at 50 dB.

5 Positioning

5.1 Positioning based on the time of arrival

There are many different approaches to determine the
position, e.g., multiangulation, multilateration, finger-
printing, and motion sensors. This paper focusses on
radiolocation based on the TOA, which is also called
multilateration. Furthermore, two-dimensional position-
ing is considered in the following. An extension to three
dimensions is straightforward.

The position p = [, y]T of a mobile station (MS) is
determined relative to B reference objects (ROs) whose
positions pj, = [x,,y,]” (1 < b < B) are known. For each
RO b, the TOA 1, is estimated. The TOA corresponds
to the distance between this RO and the MS 1, = 71 ¢,
where c is the speed of light. The estimated distances r
= [rp., 5] T are called pseudo-ranges since they consist
of the true distances d(p) = [di(p),..., dg(p)]” and esti-

mation errors 1 = [N1,..., Ng]* with covariance matrix
r=d(p)+n:
r=d(p)+1. (42)

The true distance between the bth RO and the MS is
a nonlinear function of the position p given by

du(p) =/ (x —x0)? + (v — )™ (43)

Thus, positioning is again a nonlinear problem.” There
are alternative ways to solve the set of nonlinear equa-
tions described by (42) and (43). In this paper, two dif-
ferent approaches are considered: The iterative Taylor
series algorithm (TSA) [22] and the weighted least-
squares (WLS) method [23,24].

The TSA is based on a linearization of the nonlinear
function (43). Given a starting position p, (initial
guess), the pseudo-ranges can be approximated by a
first-order Taylor series

r=d(po) +J(Po)(p — Do) + 1, (44)

in which J(p) is the Jacobian matrix of (43) with
entries

ddp(p)

el -7, ohip),

5y (45)

U®)le2 =
Defining Arg =1 —d(p,) and Ap, =p — p, results in
the following linear relationship

Arg = J(po) Apy + 1, (46)

that can be solved according to the least-squares
approach:

-1
8o = (160) WI(hy)) 1) W AT, (@7)
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The weighting matrix W is given by the inverse of the
covariance matrix C, : W = diag( Lo ) A new
o o5

position estimate p, is obtained by adding the correc-
tion factor Ap, to the starting position p,. This proce-
dure is performed iteratively,
Pi1 = P; + AD; (48)
until the correction factor Ap; is smaller than a given
threshold. If the initial guess is close to the true posi-
tion, few iterations are needed. If the starting position is
far from the true position, many iterations may be
necessary. Additionally, the algorithm may diverge.
Hence, finding a good initial guess is a crucial issue. For
the numerical results shown in Section 5.2, the position
estimate of the WLS method is used as initial guess for
the TSA.

The WLS method [23,24] solves the set of nonlinear
equations described by (42) and (43) in closed form.
Hence, this method is non-iterative and less costly than
the TSA. The basic idea is to transform the original set
of nonlinear equations into a set of linear equations. For
this purpose, one RO is selected as reference. Without
loss of generality, the first RO is chosen here. By sub-
tracting the squared distance of the first RO from the
squared distances of the remaining ROs, a linear least-
squares problem with solution

p=(S"WsS)"'S"Wib (49)
is obtained, in which
X2 =X1Y2—N1
S X3 —X1 Y3f)’1 (50)
XB — X1YB — V1
and
5 —1 —R3+R?
b=—1 -1 —RI+R2 61

2

2 2 2 2
5 — 17 — R + Rj

with Rﬁ = x,% + yg. The weighting matrix W’ is given
by:

Wr = dia (1 1).
& o’ "o

Both, the TSA and the WLS method, apply a weight-
ing matrix that contains the variances of the pseudo-
range errors. Reliable pseudo-ranges have higher weights
than unreliable ones and, thus, have a stronger influence
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on the estimation results. Typically, the true variances
are not known. They can only be estimated as described
in Section 3: For each link b, the variance of the TOA

2
IoF
Tib

hood method. This TOA variance is transformed into a

is determined via the linearization® or the likeli-

pseudo-range variance onzb by a multiplication with ¢* If

no information about the estimation error 7 is available,
the weighting matrices correspond to the identity matrix
I (no weighting at all).

The Cramer-Rao lower bound (CRLB) provides a
benchmark to assess the performance of the estimators
[14]:

2
CRLB(p) = Y "[1(p) " 14a (52)

d=1

where

1(p) = J1(p)" Wi(p)

is the Fisher information matrix. If the estimator is
unbiased, its mean squared error (MSE) is larger than or
equal to the CRLB. If the MSE approaches the CRLB,
the estimator is a minimum variance unbiased (MVU)
estimator.

The positioning accuracy depends on the geometry
between the ROs and the MS and, thus, varies with the
position p. This effect is called geometric dilution of
precision (GDOP) [22,25]. In order to separate the influ-
ence of the geometry from the influence of the estima-
tion errors 1 on the positioning accuracy, it is assumed
that all pseudo-ranges are affected by the same error

variance G,,z =1, ie, W = I Given this assumption, the

GDOP is the square root of the CRLB:

(53)

GDOP(p) = /CRLB(p)|w-I. (54)

5.2 Numerical results

In the following, the overall performance of the pro-
posed system concept using soft information is evalu-
ated. For this purpose, two scenarios with different
GDOP as shown in Figure 5 are considered. The ROs
are denoted by black circles and the GDOP is illustrated
by contour lines. For both scenarios, B = 4 ROs are
located inside a quadratic region with side length /2R,
where R = 2Tc is the distance from every RO to the
middle point of the region. For the first scenario, the
ROs are placed in the lower left part of the region,
which results in a large GDOP on average. The second
scenario has a small GDOP on average since the ROs
are placed in the corners of the region. For the commu-
nication links between the MS and the ROs, the same
setup as described in Section 4.2 is applied.
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Ya

Py =[0,0]
p,=0.1-[0,v2R]
p;=0.1- [V2R, 0]
p,=0.1-[V2R,V2R]

Ya

b= [07 0}
p, = [0, V2R]
ps = [\/§R7 0]

Py = [V2R,V2R]

(b) Scenario with small average GDOP.

Figure 5 Two-dimensional scenarios that are considered for
simulations. The ROs are denoted by a black circle, and the GDOP

is indicated by contour lines. (@) Scenario with large average GDOP.
(b) Scenario with small average GDOP.

Furthermore, power control is assumed, i.e., the SNR for
all links is the same. All results reported throughout this
paper are for one-shot measurements.

Three different channel models with memory length L
= 10 are investigated: a single-path channel (M = 1), a
two-path channel (M = 2) with large excess delay (Az,
€ [T,2T;]) and a two-path channel (M = 2) with small
excess delay (At € [IT(‘),TS]). For all channel models,
the LOS delay 7;,, for each link b is calculated from the
true distance d,(p). The excess delay of the multipath
component Ar, for both two-path channels is deter-
mined randomly in the corresponding interval. The
smaller the excess delay is, the more difficult it is to
separate the different propagation paths. The power of
the multipath component is half the power of the LOS
component. The phase of each component is generated
randomly between 0 and 27. For each link, channel
parameter estimation is performed and soft information
based on the linearization method and on the likelihood
method is obtained. For PSO, I = 50 particles and a
maximum number of iterations T = 8,000 are applied.”
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The estimated LOS delays 71, are converted to pseudo-
ranges 7, and the position of the MS is estimated with
the TSA and the WLS method applying the different
soft information methods. For comparison, positioning
without soft information is performed. The position esti-
mate of the WLS method is used as initial guess for the
TSA. Furthermore, in the WLS method, the RO with
the best weighting factor is chosen as reference.

The performance of the estimators is evaluated by
Monte Carlo simulations and the results are compared
with the Cramer-Rao lower bound (CRLB). On the one
hand, simulations are performed over SNR since the
accuracy of the soft information methods depends on
the SNR. In each run, a new MS position p is deter-
mined randomly inside the region of Figure 5. On the
other hand, simulations are performed over space for a
fixed SNR in order to assess the influence of the GDOP.
A fixed 4 x 4 grid of MS positions is applied in this
case.

Different channel realizations are generated during the
Monte Carlo simulations. Since different channel reali-
zations result in different weighting matrices W, a mean
CRLB is introduced,

2
CRLB(p) = E [Z [I(p)l]dd] : (55)

d=1

where the expectation is taken with respect to the
channel realizations. For the simulations over SNR, the
expectation is additionally taken with respect to the ran-
dom positions p.

The simulation results are shown in Figure 6. There
are eight different graphs (6a, b, ¢, d, e, f, g, h) arranged
in an array with two columns and four rows. In the first
column, the results for the simulations over SNR are
shown. The second column contains the results for the
simulations over space at 30 dB. In each row, the results
for a fixed simulation setup are illustrated. All graphs
show the root mean squared error (RMSE) of p nor-
malized with respect to ds = ¢T for positioning without
soft information ("wo”), with soft information from the
likelihood method ("like”), and with soft information
from the linearization method ("lin”). The square root of
the mean CRLB (normalized with respect to d;), which
is denoted simply as CRLB in the following, is plotted
for comparison ("crlb”). Curves labeled with “L” were
obtained for the first scenario with large average GDOP,
and curves labeled with “S” were obtained for the sec-
ond scenario with small average GDOP.

At first, the results for the single-path channel are dis-
cussed because this scenario represents an optimal case:
Both soft information methods are accurate (see Section
4.2) and due to power control, the pseudo-range errors
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Figure 6 RMSE of f) normalized with respect to d; = cTfor positioning without soft information ("wo”), with soft information from
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with respect to d; is plotted ("crlb”). Curves labled with “L" were obtained for the scenario with large average GDOP, and curves labeled with “S"
were obtained for the scenario with small average GDOP. (a) WLS method for a single-path channel. (b) WLS method for a single-path channel
at 30 dB. (¢) TSA for a single-path channel. (d) TSA for a single-path channel at 30 dB. (e) TSA for a two-path channel with Az, € [T,2T. (f) TSA

for a two-path channel with Az, e [T,2T;] at 30 dB. (g) TSA for a two-path channel with A1, € [IT(S), Ts]. (h) TSA for a two-path channel with

Aty e [T, Ty] at 30 6B




Schmeink et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:185

http://jwcn.eurasipjournals.com/content/2011/1/185

for all ROs should be the same. Hence, positioning
without and with weighting is supposed to perform
equally well. The first row of Figure 6 contains the
results for the WLS method, whereas the second row
shows the results for the TSA. As supposed previously,
the RMSE curves for positioning without soft informa-
tion and with soft information from the likelihood and
the linearization method coincide. The TSA is further-
more a MVU estimator since the RMSE approaches the
CRLB for all SNRs and for all positions. The WLS
method performs worse: There is a certain gap between
the CRLB and the RMSE. In Figure 6b, it can be
observed that this gap depends on the position and,
thus, on the GDOP: The larger the GDOP is, the larger
is the gap. Hence, the gap between RMSE and CRLB in
Figure 6a is smaller for the second scenario ("S”) since
the GDOP is smaller on average. For the two-path chan-
nels, a similar behavior of the WLS method was
observed. Therefore, only the results for the TSA are
considered in the following due to its superior
performance.

The third and fourth row of Figure 6 show the simula-
tion results for the two-path channels with large and
small excess delay, respectively. It was observed in Sec-
tion 4.2 that the likelihood method is generally accurate
even for multipath channels. In contrast, the accuracy of
the linearization method depends on the excess delay
and the SNR. The smaller the excess delay, the higher is
the nonlinearity of the problem and the less accurate is
the linearization method. The accuracy increases with
SNR. Hence, it is supposed that the likelihood method
outperforms the linearization method. Only at very high
SNR, both methods are assumed to perform equally
well. Surprisingly, the linearization and the likelihood
method show approximately the same performance for
all cases. The linearization method performs even
slightly better in most cases. Only for very low SNR and
a small excess delay the likelihood method outperforms
the linearization method. The likelihood method seems
to be more susceptible to the GDOP. Hence, the inaccu-
racy of the covariance matrices at low SNR barely influ-
ences the positioning accuracy. Actually, it seems that
the absolute value of the weights in the weighting
matrices W and W’ is not crucial. Rather a correct ratio
of the weights is relevant. Thus, rough soft information
is sufficient as long as the ratio of the pseudo-range var-
iances is accurate. This is fulfilled even for the inaccu-
rate covariance matrices of the linearization method.
Hence, it is suggested to apply the linearization method
because of its lower computational complexity.

For the two-path channel with large excess delay (Fig-
ure 6e, f), the RMSE with or without soft information is
almost the same since the multipath components can
already be separated by the estimator quite well. For a
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small excess delay (Figure 6g, h), the RMSE with soft
information is much closer to the CRLB than without
soft information. With respect to SNR, a gain of
approximately 7-10 dB is achieved (see Figure 6g).
Furthermore, positioning with soft information is less
susceptible to the GDOP (see Figure 6h). Thus, soft
information is well suited to mitigate severe multipath
propagation. The smaller the excess delay is, the more
important it is to apply soft information for positioning.

The influence of the GDOP can be neglected for the
scenario with small average GDOP. The curves labeled
with “S” indicate that even for one-shot estimation with-
out oversampling a positioning accuracy much smaller
than the distance corresponding to the symbol duration,
d,, is achieved for all channel models.

For all simulations, a LOS path has been assumed so
far. Hence, the estimated TOA corresponds to distance
between transmitter and receiver. However, in urban or
indoor environments, the LOS path is often blocked as
already mentioned in Section 2.1. Therefore, the influ-
ence of NLOS propagation is discussed here. In case of
NLOS, a modeling error is introduced that reduces the
positioning accuracy significantly. The proposed soft
channel parameter estimator does not take a priori
information about the physical channel (e.g., probability
of NLOS) into account and, hence, is not able to detect
such a modeling error. The obtained soft information
can only be used to mitigate multipath propagation. In
order to mitigate NLOS effects, further processing has
to be done (e.g., [24]).

Nevertheless, multipath mitigation is an important
issue. The multipath mitigation ability of the proposed
soft channel parameter estimation has been presented
for M = 2 paths due to clarity and simplicity reasons.
The influence of the number of multipath components
is as follows: The complexity of the soft channel para-
meter estimator increases with the number of multipath
components. Furthermore, the reliability of the estimates
decreases with M. Hence, the positioning accuracy dete-
riorates. If M is large and the scatterers are closely
spaced (dense multipath), the estimator becomes biased
and the positioning accuracy saturates. In general, it is
suggested to consider only the dominant paths if M is
large.

It was mentioned before that the TSA may diverge.
Divergence occurred for large GDOP when the initial
guess was far from the true position." This happened
only rarely. The initial guess is determined by the WLS
method which is very susceptible to the GDOP. Hence,
the starting position may be far away from the true
position for large GDOP.

As mentioned in Section 2.2, PSO does not assure glo-
bal convergence. For both two-path channels, PSO
sometimes converges prematurely. In most of these
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cases, it converges to a boundary of the search space,
such that the premature convergence can be detected
(outage). In Figure 7, the outage rates are shown for
both two-path channels: The dashed lines (i) and (iii)
denote the probability that the delay estimation fails for
one RO and the solid lines (ii) and (iv) denote the prob-
ability that two or more ROs fail. If the delay estimation
fails for one RO, the position of the MS can be deter-
mined nevertheless since only three ROs are necessary
for positioning in two dimensions. Only if two or more
ROs fail, the position estimation fails, too. By adding
more ROs, the outage rate for positioning can be
decreased to an arbitrary small amount. The outage
rates for the two-channel models differ significantly. For
the two-path channel with large excess delay (Az, € [T,
2T,]), the outage rates (i) and (ii) are negligible. In con-
trast, the outage rates (iii) and (iv) for the two-path
channel with small excess delay (At; € [IT(S),TS]) are
quite high at low SNR but decrease significantly with
increasing SNR. The smaller the excess delay is, the
higher is the probability that PSO converges
prematurely.

6 Conclusions

In this paper, a channel parameter estimator based on
the maximum-likelihood approach is proposed for
joint communication and positioning. The parameters
of the physical channel (e.g., TOA) and the equivalent
discrete-time channel model are estimated jointly. In
order to mitigate multipath propagation effects and to
improve the positioning accuracy, soft information
concerning the parameter estimates is used. Two dif-
ferent methods to obtain soft information are pro-
posed: The linearization and the likelihood method.
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Figure 7 Outage rate of PSO in %: (i) one RO fails/(ii) two or
more RO fail in the two-path channel with Az, L [T, 2T, (iii)
one RO fails/(iv) two or more ROs fail in the two-path channel
with Aty € [ 13, Ty
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The accuracy of the methods depends on the nonli-
nearity of the parameter estimation problem, which is
evaluated by the curvature measures of Bates and
Watts. It is shown that the likelihood method is
always accurate for the parameter estimation problem.
The linearization method is only accurate in a single-
path channel or at high SNR for a multipath channel.
Nevertheless, Monte Carlo simulations for a two-
dimensional positioning problem show that this has
only very little influence on the positioning. The posi-
tioning algorithms that exploit the soft information
obtained by the linearization and the likelihood
method perform equally well. For severe multipath
propagation, the RMSEs for the weighted positioning
algorithms are closer to the CRLB than the RMSE of
positioning without weighting. A gain of approxi-
mately 7-10 dB can be achieved. Hence, multipath
propagation effects can be mitigated significantly, even
for one-shot estimation without oversampling. Based
on these results, it is suggested to apply the lineariza-
tion method because of its lower computational
complexity.

Endnotes
*For oversampling with factor J it follows: T = 35. PThe

mean squared error of the channel estimates /; is
reduced in comparison to the mean squared error of the

least-squares channel estimates ﬁl, if the number of

parameters, 3M, is less than the number of channel
coefficients, L + 1, to be estimated. For simulation
results please refer to [4]. “Cypprox corresponds to v, in
[11] for a complex-valued problem instead of a real-
valued problem. 9The superscript *, which denotes tan-
gential, should not be mistaken for the superscript T
which denotes the transpose of a matrix. °In [13] a sim-
plified method to determine the maximum relative cur-
vatures is introduced based on linear transformations of
the coordinates in the parameter and the sample space.
This method is neglected here because it is out of the
scope of this paper. ‘In a two-dimensional TOA scenario
at least three ROs are required. For positioning in three
dimensions a fourth RO is needed. For the linearization
method the variance of the TOA corresponds to the 3rd
diagonal entry of the approximate covariance matrix
Capprox- " Furthermore, channel parameter estimation
was performed for the LMM described in [18] with the
true parameters @ as initial guess. Since PSO and the
LMM provided approximately the same performance,
only PSO is considered here for conciseness. 'The out-
liers due to divergence were not considered in the calcu-
lation of the RMSE.
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Appendix
In the following, the equivalence of the maximum-likeli-
hood estimators based on (9) and (10) is shown. First,
both metrics are stated in vector/matrix notation. Then,
the equivalence of both metrics is proven given the
assumptions of Section 2.2. For readability, the terms &
= h(0) and h = h(é) are introduced, where @ denotes
the true parameter set and § denotes the hypothetical
parameter set.

The metric Q((;v) corresponding to (9) was already
derived in (11):

L
Qb)=>
1=0

=(h—h)(h-h).

hy —

(56)

Equivalently, a metric corresponding to (10) can be
derived:

K—1 L 2
w(O) =Y ylkl = h(B)xlk—1] (57)
k=L 1=0

= (y — Xh)"!(y — Xh).

As both metrics have to be minimized, it is sufficient
to show that

E{Q(é)} =c-E{\y(é)}, (58)

where ¢ is a constant that scales the metric but does
not change the location of the minimum. The expecta-
tion of the first metric can also be written as

E{Q(é)} - E{(ﬁ—ﬁ)H(ﬁ— f;)}

=B{(h+ &) (h+ &) = 201 + )i+ ﬁ”;}}

= E{W'h+ 2n'e + efe — 20*h — 261+ ')
= E{n"n) + 26 {ne ] + E {e''e) (59)
— 28 (Wi} - 28 {&""h} + B {EH}]}

-E {h”h} +0+02

- 2E{h”ﬁ} 0 +E{
= E{n"n} — 2 [

i)
}{}2
Ik

=p{th i) (-0} +
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For the second metric follows similarly

E{w @) - £{tr—xi)" (- xi)|

= Efy'ly — 2/"Xh + EHXHXE}
- E{(Xh+n)”(Xh+n)
—2(Xh + n)!'Xh + X! ’sz]
E {hHXHXh + 20X + nl'n
ZoRMXFXR — 2nfXi + B X! ’Xﬁ]
-E {h“XHX"} +2E {h”an} + E{nl'n)

(x| (60

—2E {hHXHxiz} —2E
+E{EHX”X11}

- (K, — L)E {hHh} +0+02

—2(K, — L)E {hHﬁ} — 0+ (K, — L)E { fz]
- (K, — L) [E {hHh} - 2E{hHﬁ}

E{EH'}}J'KGT%L]
-

=(Kt—L)[E{(h‘fl)H(h—f’)+KiL}]'

Comparing (59) and (60) shows that (58) is valid with
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