
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 607467, 18 pages
doi:10.1155/2010/607467

Research Article

FPGA-Based Vehicular Channel Emulator for Real-Time
Performance Evaluation of IEEE 802.11p Transceivers

T. M. Fernández-Caramés, M. González-López, and L. Castedo

Department of Electronics and Systems, University of A Coruña, A Coruña 15071, Spain

Correspondence should be addressed to T. M. Fernández-Caramés, tmfernandez@udc.es

Received 1 August 2009; Revised 17 October 2009; Accepted 15 December 2009

Academic Editor: Markus Rupp

Copyright © 2010 T. M. Fernández-Caramés et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

IEEE 802.11p is one of the most promising future wireless standards due to the increasing demand of vehicular communication
applications. At the time of writing, the document of the standard is in draft and much research is still required to study and
improve the performance of transceivers in common vehicular scenarios. In this paper, we present a framework to evaluate the
PHY layer of IEEE 802.11p systems in realistic situations. We detail the design and implementation of an FPGA-based real-time
vehicular channel emulator. Contrarily to commercial emulators, ours is cheap, very flexible, and reconfigurable. We show its
capabilities by evaluating performance in different high-speed scenarios. We also study the importance of coding and the benefits
of using IEEE 802.11p instead of IEEE 802.11a in vehicular environments. Towards this aim, we developed a reference IEEE 802.11p
PHY transceiver software model that can be taken as a convenient starting point for transceiver design.

1. Introduction

Wireless communications between moving vehicles (Vehicle-
To-Vehicle, TV or V2V) and from vehicles to infrastructure
(V2I or Roadside-to-Vehicle, RTV) have recently received
a lot of attention due to the increasing demand for
solutions to tackle critical issues such as vehicular safety
and to provide services like traveling information, payment
automation or infotainment. Related to these services, a
huge amount of vehicular applications has been proposed:
collision prevention, accident warnings, hazardous vehicles
monitoring, traffic jams avoidance, road works alerts, route
recommendation, weather forecast, toll collection, payment
in parking facilities and gas stations, mobile internet access
at vehicular high speeds, tourist information, and so forth.
All these applications constitute the realm of Intelligent
Transportation Systems (ITS).

ITS relies on the existence of a suitable wireless com-
munication architecture and the IEEE 802.11p standard
is the best positioned to be the reference of vehicular
communications in the near future. The standard (still in
draft 5.0 at the time of writing) is based on the specifications
given in [1]. The Medium Access Control (MAC) and
Physical (PHY) layers are very similar to those used in the

wireless local area network standard IEEE 802.11a [2]. Slight
changes are included to allow operating in high delay spread
scenarios, which are typically present in urban canyons.

To assess the performance of IEEE 802.11p systems, it is
desirable to evaluate it in realistic situations. The tests can
be performed directly in a vehicle, driving through different
environments. However, this is a time-consuming task and
the experiments can be affected by unintended side effects
that may be uncontrollable. It is more convenient to use a
hardware channel emulator and measure the performance
inside a testing lab with a testbed platform as in [3–
5]. Nevertheless, commercial channel emulators are usually
very expensive and may not offer enough flexibility when
configuring the wireless channel parameters.

Motivated by these observations, we decided to build a
cheap and flexible alternative to evaluate the performance
of an IEEE 802.11p system in vehicular environments: we
implemented a software transceiver and designed an emula-
tor that can be reconfigured fast and easily, providing enough
flexibility to implement customized wireless channel models.
To achieve these goals, we made use of rapid-prototyping
software for developing the evaluation framework: Simulink
for the transceiver and Xilinx System Generator for the FPGA
(Field-Programmable Gate Array) -based vehicular channel

2 EURASIP Journal on Wireless Communications and Networking

emulator. System Generator is specially useful because it
allows us to design the channel emulator much faster
than using conventional hardware description languages like
VHDL or Verilog.

The implemented channel models are based on [6, 7],
where the authors obtain channel models from data acquired
during a measuring campaign carried out in a metropolitan
area at a frequency of 5.9 GHz. Six different situations
are considered, including measures in common vehicular
environments such as a highway, an urban canyon and a
suburban area.

The remaining of this article is organized as follows.
Section 2 includes a comprehensive review of the current
state of the art of IEEE 802.11p transceivers and ad-hoc
channel emulators. Section 3 shows the theoretical and prac-
tical design of our FPGA-based channel emulator. Section 4
briefly describes our reference IEEE 802.11p transceiver soft-
ware model and Section 5 is dedicated to experimental IEEE
802.11p performance evaluation using the vehicular channel
emulator. Finally, Section 6 is devoted to conclusions.

2. State of the Art

IEEE 802.11p is an amendment to the IEEE 802.11 standard
that addresses the challenges that arise when providing
wireless access in vehicular environments. The standard
has its origin in 1999, when the Dedicated Short Range
Communications (DSRC) spectrum band, a band of 75 MHz
at 5.9 GHz, was allocated in the United States. In that
moment, a need to define a common framework to develop
hardware and applications for the DSRC band emerged. A
deep description of the standard is beyond the scope of this
paper, but we encourage the interested reader to take a look
at the excellent overviews given in [8, 9].

2.1. IEEE 802.11p: Current Standard and Transceivers. The
main advantage of IEEE 802.11p over IEEE 802.11a when
overcoming the effects of vehicular channels, is its band-
width. The 20 MHz bandwidth used in IEEE 802.11a is
reduced to only 10 MHz in IEEE 802.11p. Thus, the OFDM
(Orthogonal Frequency Division Multiplexing) symbols are
longer in the time domain and the system can deal with large
delay spreads, being able to avoid ISI (Inter Symbol Inter-
ference). The practical implementation is straightforward,
since there is only the need to double all the OFDM timing
parameters used by the IEEE 802.11a devices.

Due to the novelty of the MAC layer, most of the evalu-
ations of the standard in the literature are aimed at studying
it, by using simulators like ns-2 [10] or following analytical
approaches [11]. There are also software implementations
of the standard: some of them describe generic transceivers
[12], but the majority are focused on the performance of
the receiver by using techniques for getting better channel
estimations [13–16] or improved decisions [17].

Before the development of the IEEE 802.11p amendment
there were several proposals to support DSRC applications.
Most of the already available prototypes were designed for
the particular regulations of countries like Japan [18] or
Korea [19], or for the European standard [20]. As the draft

of the IEEE 802.11p has been evolving, more prototypes
have arisen, such as [21], that the authors declare as the first
platform where IEEE 802.11p and IEEE 1609 (that defines
the upper MAC layer and the network pulse session layer)
have been implemented.

Finally, DSRC-based processing modules have been
developed as well. For instance, in [22], a fast OFDM mod-
ulator/demodulator allows performing an IFFT/FFT in less
time than the symbol interval (8 μs) and in [23] a software-
defined FPGA-based channel simulator was designed for
testing baseband transceivers of different wireless communi-
cation systems, showing an example of its use with an IEEE
802.11p system.

2.2. Traditional and Ad-Hoc Channel Emulators. Channel
emulation is typically used when evaluating product perfor-
mance in realistic situations before commercial release. With
the aid of a channel emulator the equipment manufacturers
avoid unintended interferences, hence the simulation envi-
ronment can be controlled. Furthermore, the tiresome task
of performing successive field measurements is limited to
the minimum (to obtain the channel model, if there is none
already available) and the rest of the experiments are carried
out inside a testing lab.

There are many commercial channel emulators that
are manufactured by companies such as Spirent [24],
Rhode & Schwarz [25], Azimuth Systems [26], Agilent
[27]. These emulators are usually general-purposed (for
instance, Spirent’s SR5500 or Rhode’s AMU200A), but there
are some that are aimed at evaluating a specific technol-
ogy, like Azimuth’s 400WB MIMO Channel Emulator (for
IEEE 802.11n and Mobile WiMAX Multiple-Input Multiple-
Output systems) or Agilent’s N5106A PXB MIMO Receiver
Tester (with built-in LTE and Mobile WiMAX channels).

All these channel emulators are robust and work great for
most applications, but they are normally quite expensive and
may not offer enough flexibility to researchers while setting
channel configuration parameters. To tackle these issues a
number of low-cost ad-hoc channel emulators have recently
been proposed.

To develop a low-cost and easily-reconfigurable channel
emulator, different technologies can be assessed. Due to real-
time constraints, microcontrollers and affordable DSPs (Dig-
ital Signal Processors) are not valid. Among the rest of the
semiconductor technologies, three of them are specially suit-
able for implementing a channel emulator: CPLDs (Complex
Programmable Logic Devices), ASICs (Application-Specific
Integrated Circuits) and FPGAs. Although ASICs offer
superior performance, their developing time is too high for
a prototype (they are mainly used for final products). Thus,
the choice has to be made between CPLDs and FPGAs. The
latter are the most commonly used due to two reasons:

(i) FPGAs own specific resources that are more adequate
for implementing a channel emulator, such as coun-
ters or arithmetic operator blocks.

(ii) Although CPLDs can execute tasks at a faster rate,
the maximum allowed complexity of the designs is
inferior to that offered by an FPGA.

EURASIP Journal on Wireless Communications and Networking 3

Therefore, most of the proposed ad-hoc emulators are
based on FPGA technology. Moreover, during the last years
FPGAs have become a more attractive tool to researchers:
their unitary cost has been dramatically reduced and new
implementation tools make the formerly tedious tasks of
programming and design verification easier.

Some examples of FPGA-based channel emulators are
described in [28–30]. In [28] an FPGA-based AWGN chan-
nel, emulator is implemented. The emulator is based on a
hardware white Gaussian noise generator that is developed
by combining the Box-Muller and Central limit theorems,
and designing the whole model in VHDL.

Similarly, in [29], the authors use a Xilinx Virtex-II Pro
to implement a fading channel emulator. The fading process
models use sum-of-sinusoids (SOS) algorithms that allow
designing and implementing Rician and Rayleigh fading
channels. The final designs use only between 2% and 5% of
the FPGA slices and are able to generate 201 million 16-bit
complex-valued fading samples per second.

Finally, [30] presents a baseband multipath fading
channel emulator implemented on a Virtex-IV using Xilinx
XtremeDSP FPGA platform. The emulator is implemented
using Simulink models and System Generator IP blocks.
The final design is limited to a two-path channel due to
the extensive use of FPGA resources; the input/output rate
is set to 20 MHz, and the Doppler frequency is 5 Hz. After
the verification stage, the emulator was downloaded to the
FPGA board and tested with a baseband QPSK signal,
achieving results similar to those obtained through MATLAB
simulations.

The above mentioned developments have at least two
major drawbacks. First, the use of low-level description
languages such as VHDL results in slow development
stages. Although in most cases VHDL allows to obtain a
resource-efficient FPGA design, programming can become a
cumbersome task that may consume a large amount of time
and economic resources. There are new sophisticated tools
like System Generator which allow working with high-level
blocks that enable to build complex designs easier and faster.

The second problem is precisely related to the use of
high-level tools. These tools facilitate fast prototyping but
they usually generate non-optimized large designs that may
not fit into the FPGA. For instance, in [30] the authors
only download a two-path channel emulator due to the lack
of available hardware resources. Hence, for large designs,
optimizations must be made.

Several papers have also identified and quantified the
effects related to the cited drawbacks. For instance, in [31],
the authors used rapid prototyping tools (Generic C, Matlab
and Simulink) to accelerate the implementation process.
Besides, in order to save space, they limited their channel
emulator to 8 or 16 paths (depending on the channel model).
To quantify the error introduced by this reduction of the
number of paths, they compared the average RMS (Root
Mean Squared) delay spread of the original and the reduced
model, finding a lower delay profile in the latter, what caused
an error in the channel emulation.

Another interesting paper is [32], which presents a
MIMO development platform made of scalable processing

boards that contain TI C6414 DSPs and Xilinx Virtex 2
FPGAs. The article is not focused on saving FPGA resources,
but it constitutes a good example of how to shorten the
development cycle using rapid prototyping and hardware-in-
the-loop techniques. In fact, the authors were able to build
fast a MIMO channel emulator based on the COST 259
recommendations, splitting the processing into two stages:
the impulse response of the channel resides in the DSP, while
the convolution of the transmitted signal with the impulse
response is performed in the FPGA.

The last example we would like to mention is [33].
There, the authors implemented a configurable multipath
fading channel emulator using Matlab and Xilinx System
Generator. They built a resource-efficient white Gaussian
noise generator (it occupies less than 450 logic cells of a
Xilinx Virtex-IV) and they made use of IIR Doppler filters
instead of FIR filters in order to avoid the utilization of
a large number of taps, typically required by the latter
(however, their IIR filters are less accurate when representing
the original Doppler spectrum).

The vehicular emulator described in this paper addresses
the two mentioned drawbacks: we use System Generator to
develop the channel emulator faster than using VHDL and
we optimize our design in order to be able to implement a
twelve-path channel emulator, even leaving space for future
extensions.

3. Real-Time FPGA-Based Vehicular
Channel Emulator

3.1. Implemented Vehicular Channel Models. The imple-
mented channel models are based on the excellent work in
[6, 7], that is mainly based on a measurement campaign
at 5.9 GHz carried out in the spring of 2006 in Atlanta,
Georgia. Thanks to these measurements the authors were
able to obtain channel models for six different environments
that cover some of the most common situations where VTV
and RTV communications may take place. The six selected
environments can be grouped in three major scenarios:

(i) urban canyons, with dense and tall buildings, where
vehicles move at speeds between 32 km/h and
48 km/h,

(ii) suburban expressways, with moderately dense, low-
story buildings, where the measurement speed was
approximately 105 km/h,

(iii) suburban surface streets, with moderately dense, low-
story buildings, where the driving speed was between
32 km/h and 48 km/h.

In these environments, the measurements were taken in
two different ways depending on the situation. For VTV
communications, data was exchanged between vehicles with
8 dBi omnidirectional antennas mounted magnetically on
the roof. For RTV channels, the communications were
performed between a vehicle with one of the mentioned
omnidirectional antennas and a monopole or half-dome
antenna mounted on a pole by the side of the road at a height
of 6.1 meters.

4 EURASIP Journal on Wireless Communications and Networking

The main characteristics of the vehicular scenarios
are the following (for a more detailed description of the
measurements see Section 5.2 in [7]).

3.1.1. VTV-Expressway Oncoming. Two oncoming vehicles
approached at high speeds in a stretch of highway without
middle wall. Both vehicles were synchronized to enter the
highway at the same time and then each vehicle accelerated
to 105 km/h. During the modelling, the authors only con-
sidered the measurements taken when the vehicles were at a
distance of 300–400 meters, where they observed a fixed LOS
Doppler shift in the first path.

3.1.2. VTV-Urban Canyon Oncoming. Two oncoming vehi-
cles at 32–48 km/h approached in an urban canyon. During
the modelling, only the data segments obtained with a
separation of 100 meters were selected.

3.1.3. RTV-Suburban Street. A vehicle at 32–48 km/h
received packets from a monopole antenna placed next to
a suburban street intersection. The vehicle approached the
intersection from any of the four possible directions. Only
the data acquired at 100 meters were taken into account in
the model. Besides, the data segments with a signal level
lower than a threshold were discarded from the modelling
process.

3.1.4. RTV-Expressway. The communications were per-
formed between a half-dome antenna mounted on a pole
off the side of an expressway and a vehicle at 105 km/h.
The measurements were taken at a distance of 300–400
meters as the vehicle approached from both directions of the
expressway.

3.1.5. VTV-Expressway Same Direction with Wall. For this
scenario, the data were obtained in different locations along
several expressways where there was a middle wall between
oncoming lanes. In all these situations, two vehicles at
105 km/h carried out communications when travelling in the
same direction. Only the measurements at a distance of 300–
400 meters were used during the modelling of the channel.

3.1.6. RTV-Urban Canyon. A transmitting monopole
antenna was mounted on a pole near an urban intersection
and a vehicle was approaching at a speed of 32–48 km/h.
For the model, only the measurements at a distance of 100
meters were taken into account. To avoid deep fades, the
data with a signal level lower than an arbitrarily set threshold
were not used in the modelling of the channel.

The values of the parameters of the vehicular models
implemented in our channel emulator are clearly sum-
marized at the end of [6]. Although the measurement
campaign was performed at 105 km/h in expressways and
32 km/h to 48 km/h for surface streets, the authors scaled
the models to make their Doppler frequencies consistent
with vehicle speeds of 140 km/h and 120 km/h, respectively.
Furthermore, the distances were also made consistent with
100 meters for surface streets and approximately 400 meters

for expressways, what seem to be typical ranges where
vehicles carrying IEEE 802.11p transceivers are expected to
operate.

It must be mentioned that the authors have also proposed
a modification of the RTV-Expressway channel with Doppler
frequencies consistent with a speed of 200 km/h [7]. We
have not implemented it because of the similarities with the
model of the same scenario at 140 km/h and to carry out
a fair comparison at the same speed among the different
expressway channels.

The key characteristics of the vehicular channels are
summarized in Table 1. For each model, the following
parameters are shown: distance between the transmitter
and the receiver, speed of the vehicle, number of paths
of the channel and their modulation (Rician or Rayleigh),
maximum delay spread, RicianK for the Rician paths, overall
K factor (i.e., the ratio of the deterministic power over the
total random power of all taps), maximum frequency shift
for all paths, maximum fading Doppler (i.e., maximum half-
width of the fading spectral shapes of all the paths of each
channel) and LOS Doppler of the Rician paths.

Table 1 also gives an idea of the complexity involved
in the implementation of the channels. These high speed
and high delay spread scenarios own large Doppler shifts
that force the emulator to interpolate and rapidly update
each path coefficients. Moreover, although the amount of
required FPGA hardware is reduced by working with the
baseband IQ components at 10 MHz, it is not possible to
implement the six channels into a single FPGA: as it can
be seen in Table 2, 76% of the slices are occupied in the
best case and, regarding the rest of the resources (flip-flops,
LUTs (Look-Up Tables), FIFO16/RAMB16 memory blocks
and DSP48 blocks), between 19% and 65% are used. Thus,
six independent. bit files are generated, though in practice,
only three different FPGA designs are needed due to the
model similarities.

(i) One design is exclusively dedicated to the channel
VTV-Expressway Oncoming which is the only one
with eleven paths.

(ii) Another model is used for VTV-Expressway Same
Direction with Wall because it requires the existence
of two Rician and ten Rayleigh paths, while the
rest of the channels (apart from VTV-Expressway
Oncoming) consists of just one Rician path and eleven
Rayleigh paths.

(iii) One design for the other four channels, which differ
in their configuration parameters but share all their
FPGA resources.

Finally, it should be mentioned that all models experience
the same latency in our channel emulator. The latency is
the time delay between the input and output signals. We
have measured this parameter and obtained the value of
2.813 ms. The latency parameter is important when testing
real transceivers although in this paper this information is
not necessary, since the channel emulator is evaluated using
a software transceiver.

EURASIP Journal on Wireless Communications and Networking 5

Table 1: Main characteristics of the vehicular models.

Vehicular
Channel

Distance
TX-RX (m)

Speed
(km/h)

Path
Modulation
(number of
paths)

Maximum
Delay
Spread
(ns)

Rician
K (dB)

Overall
Factor
(dB)

Maximum
Freq. Shift
(Hz)

Maximum
Fading
Doppler
(Hz)

LOS
Doppler
(Hz)

VTV-
Expressway
Oncoming

300–400 140
Rician (1)/
Rayleigh (10)

302 −1.6 −3.6 1466 858 1452

RTV-Urban
Canyon

100 120
Rician(1) /
Rayleigh (11)

501 7.2 6.7 720 994 654

RTV-Express
way

300–400 140
Rician(1)/
Rayleigh (11)

401 −5.3 4.3 769 813 770

VTV-Urban
Canyon
Oncoming

100 120
Rician(1)/
Rayleigh (11)

401 4.0 3.0 1145 936 1263

RTV-
Suburban
Street

100 120
Rician(1)/
Rayleigh (11)

700 3.3 2.1 648 851 635

VTV-Express.
Same Dir.
with Wall

300–400 140
Rician(2)/
Rayleigh (10)

701
23.8,
5.7

3.3 −561 1572
−60,
4

Table 2: General parameters and resources occupied by the vehicular channel emulator.

Vehicular
Channel

Coefficient
generation
Rate
[Effective
rate] (Hz)

Interpolation
rate

Occupied
Slices (%)

Occupied
Slice Flip-
Flops (%)

Occupied
LUTs (%)

Occupied
FIFO16/
RAMB16s
(%)

Occupied
DSP48s (%)

VTV-
Expressway
Oncoming

3484 [4000] x2500 76% 36% 50% 19% 60%

RTV-Urban
Canyon

2194.6 [2500] x4000 84% 39% 57% 20% 65%

RTV-
Expressway

2168 [2500] x4000 84% 39% 57% 20% 65%

VTV-Urban
Canyon
Oncoming

3314 [4000] x2500 84% 39% 57% 20% 65%

RTV-Suburban
Street

1988 [2000] x5000 84% 39% 57% 20% 65%

VTV-Express.
Same Direction
With Wall

3170 [4000] x2500 85% 40% 57% 24% 65%

3.2. Theoretical Model. For the generation of each channel
coefficient at the ith path in the time instant t, we used the
following model:

h(i, t) =
√

KiPi
(Ki + 1)

h(i, t) +

√
Pi

(Ki + 1)
hw(i, t), (1)

where we have

(i) Ki: Rice factor of the ith path,

(ii) Pi: power of the ith path,

(iii) hw(i, t): represents the contribution of the non-line-
of-sight (NLOS) component to the i-th path at the
time instant t It is a random variable that follows a
complex Gaussian distribution with mean zero and
unit variance,

(iv) h(i, t): contribution of the line-of-sight (LOS) com-
ponent to the i-th path at the time instant t. It is
determined by

h(i, t) = e j(2π fD,i cos(θi)t+φi), (2)

6 EURASIP Journal on Wireless Communications and Networking

where we have

(i) fD,i: maximum Doppler spread of the ith path.

(ii) θi: angle of arrival of the ith path.

(iii) φi: phase of the LOS component of the ith path.

To decrease the number of input configuration parame-
ters, we calculate off-line several of the operations involved
in (1) and (2). As it can be viewed in Figure 1, the emulator
only needs five parameter blocks.

(i) Sigma block contains the power factors of the NLOS
components:

σ =
√

Pi
(Ki + 1)

. (3)

(ii) A block holds the power factors of the LOS compo-
nents:

A =
√

KiPi
(Ki + 1)

(4)

(iii) FrequencyLOS block contains part of the expo-
nent of h(i, t):

fLOS = 2π fD,i cos(θi.) (5)

(iv) PhaseLOS block is simply φi.

(v) Taps delay block holds the normalized delays of
the different paths. Note that the delays need to
be normalized since the FPGA’s sampling period
is 100 ns, but the model has delay values that
differ in only one nanosecond (for instance, paths
6 to 8 of VTV-Expressway Oncoming are delayed
200 ns, 201 ns and 202 ns, resp.). The authors of
the model justify this in [6, Section III]: to avoid
problems with their commercial channel emulator
(Spirent SR5500), paths comprising a single tap were
separated in delay by one nanosecond. Instead, our
FPGA-based channel emulator does not present such
kind of problems and, thus, the one-nanosecond
artificial delays in the models are suppressed. That is,
the previously mentioned delays of 200 ns, 201 ns and
202 ns, will occur at the same time instant (200 ns).

3.3. Hardware and Software. The vehicular channel emulator
is implemented on an FPGA using Nallatech’s BenADDA-IV
development kit, which has the following features.

(i) It contains a Virtex IV (XC4VSX35-10FF668) that
allows using Xtreme-DSP slices of up to 400 MHz.

(ii) It has 2 14-bit ADCs able to work up to 105 MS/s and
2 14-bit DACs that can run up to 160 MS/s.

(iii) Dedicated internal clock up to 105 MHz, although it
can use an external clock.

(iv) 4 MB of 166 MHz ZBT-RAM.

(v) Possibility to connect the kit using a PC (via the PCI
bus) or in stand-alone mode.

In order to diminish the amount of time required to
implement the channel model on the FPGA, we decided to
use System Generator for DSP because it enables to design
and program our Virtex IV faster. It allows using libraries
of high-level blocks and can interact with MATLAB and
Simulink. Moreover, another advantage of this software is
its ability to exchange data between a design running in the
FPGA and a software implementation that is executed on a
PC. In fact, for our tests (Section 5) we have run in MATLAB
and Simulink an IEEE 802.11p transceiver that interacts with
the vehicular emulator, which is running on the FPGA.

3.4. Hardware Setup to Evaluate Physical Transceivers.
Although in this paper we describe and show performance
results obtained using a software transceiver, it is straight-
forward to connect the emulator with a hardware testbed or
with commercial transceivers. Depending on the transceiver
outputs, there are two ways of setting up the hardware.

On the one hand, if the transceiver provides IF (Inter-
mediate Frequency) or RF outputs, we need a hardware
setup like the one depicted in Figure 2. The transmitter
is connected to a downconverter, which obtains the IQ
representation of the signal, that is sent to the emulator
ADCs. After the emulator applies the channel model in
real time to the IQ digitized signal, the output samples are
forwarded to the emulator DACs. Then, the analog signal
is sent to the upconverter, which, finally, transmits it to the
receiver.

Since the emulator currently does not perform down
or up conversions, additional hardware is required for this
purpose. In the case shown in Figure 2, both operations
are carried out by commercial devices. A spectrum analyzer
equipped with a downconversion module (Agilent E4404B)
is used to downconvert signals of up to 6.7 GHz. The
upconversion is performed by using a vector signal generator
(Agilent E4438C) that receives the IQ signal from the
emulator and upconverts it to frequencies up to 6 GHz.

On the other hand, if the physical transceiver is able
to provide the emulator with IQ outputs, then the up and
downconversion stages are not needed. The signals would be
acquired by the emulator ADCs and sent directly from the
DACs to the receiver.

3.5. FPGA Design Overview. Figure 1 shows a general view
of the hardware design. Several blocks represented in such
figure contain sub-blocks which are shown throughout
this paper: the Coefficient Generator block includes
Figures 3, 4 and 5, the Interpolator block contains a
number of interpolators like the one shown in Figure 6 and
the FIR block is shown in Figure 7.

Notice that the design presented in Figure 1 is optimized
for a specific channel (VTV-Expressway Oncoming) in order
to minimize the amount of required hardware, though the
rest of channels share most of the hardware resources, as it
was mentioned at the end of Section 3.1.

The design can be divided into different parts that carry
out six different major tasks: acquisition of the channel
parameters, Gaussian noise generation, Doppler filtering,
LOS Doppler generation, interpolation, and FIR filtering.

EURASIP Journal on Wireless Communications and Networking 7

To shared FIFO23

In1

Valid

To shared FIFO22

In1

Valid

Taps delay

Out1
Out2
Out3
Out4
Out5
Out6
Out7
Out8
Out9

Out10

Sigma

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Out8

Out9

Out10

Out11

PhaseLOS

Out1
Interpolator

I1
Q1
I2
Q2
I3
Q3
I4
Q4
I5
Q5
I6
Q6
I7
Q7
I8
Q8
I9
Q9
I10
Q10
I11
Q11
ValidIn

coef_real1
coef_imag1

coef_real2
coef_imag2

coef_real3
coef_imag3

coef_real4
coef_imag4

coef_real5
coef_imag5

coef_real6
coef_imag6

coef_real7
coef_imag7

coef_real8
coef_imag8

coef_real9
coef_imag9
coef_real10

coef_imag10
coef_real11

coef_imag11
ValidOut

FromFIFOs_IandQ

ValidCoefs
I
Q

ValidOut

FrequencyLOS

Out1

FIR

CoefI1
CoefQ1
CoefI2
CoefQ2
CoefI3
CoefQ3
CoefI4
CoefQ4
CoefI5
CoefQ5
CoefI6
CoefQ6
CoefI7
CoefQ7
CoefI8
CoefQ8
CoefI9
CoefQ9
CoefI10
CoefQ10
CoefI11
CoefQ11
DelayTap1
DelayTap2
DelayTap3
DelayTap4
DelayTap5
DelayTap6
DelayTap7
DelayTap8
DelayTap9
DelayTap10

ValidIn

ValidCoefs

Convert

Cast

Constant

0

Coefficient generator

Reset

Sigma1

Sigma2

Sigma3

Sigma4

Sigma5

Sigma6

Sigma7

Sigma8

Sigma9

Sigma10

Sigma11

FreqLOS

PhaseLOS

CoefI1
CoefQ1
CoefI2

CoefQ2
CoefI3

CoefQ3
CoefI4

CoefQ4
CoefI5

CoefQ5
CoefI6

CoefQ6
CoefI7

CoefQ7
CoefI8

CoefQ8
CoefI9

CoefQ9
CoefI10

CoefQ10
CoefI11

CoefQ11
Valid_out

Out1

System
generator

yI

yQ

xI
xQ

A1

A

Figure 1: General view of the System Generator model optimized for the vehicular channel VTV-Expressway Oncoming.

Transmitter
IF/RF

Receiver
IF/RF

I QI Q

A
D

C
A

D
C

D
A

C
D

A
C

Upconverter
(Agilent E4438C)

Downconverter
(Agilent E4404B)

Vehicular emulator

Figure 2: Hardware set-up for testing an IEEE 802.11p physical transceiver with IF/RF outputs on our real-time channel emulator.

3.5.1. Acquisition of the Channel Parameters. The generation
of the configuration parameters of the vehicular channel is
performed offline to reduce the amount of used hardware
and due to the fact that these parameters remain constant
throughout the emulation. The parameters are stored into
registers that will be read by the FPGA-based emulator.
Notice that every channel has its own peculiarities and all
the parameters equal to zero can be removed from the
design to save hardware. For example, all the channels but
VTV-Expressway Same Direction With Wall have one Rician
component, so in these channels we only need one register to
store each of the LOS parameters detailed in Section 3.2.

3.5.2. White Gaussian Noise Generation. To obtain NLOS
coefficients, first, we need to use the System Generator’s
White Gaussian Noise Generator (WGNG) block that gen-
erates i.i.d. samples from a Gaussian distribution with zero
mean and unit variance. Since the maximum number of
complex paths is twelve, we need twenty four real values of
such noise samples that will be filtered depending on the
Doppler shift experienced by each path.

Figure 3 shows the way we reduce the amount of
FPGA resources consumed by the 24-output Gaussian noise
generator: instead of using twenty four independent WGNG
blocks, we multiplex in time the samples produced by only
one WGNG block. This optimization is crucial since each
WGNG block consumes an important amount of FPGA
resources.

For this specific vehicular emulator, the use of only
one WGNG block together with a multiplexor results in
a functionality that is equivalent to making use of twenty
four parallel WGNG blocks. Since each WGNG block runs
at 10 MHz, using a twenty five output multiplexor like the
one shown in Figure 3 (twenty five is the integer divider of
10 MHz closest to twenty-four), produces twenty-four noise
samples at a frequency of 400 KHz that still is several orders
of magnitude higher than the desired channel coefficient
generation effective rates (see Table 2).

To quantify the amount of resources saved thanks to
this optimization, we isolated the 24-output Gaussian noise
generator in a different design (to measure the resources that
it requires) and we compared the optimized and the non-
optimized versions (the latter uses twenty-two WGNG blocks

8 EURASIP Journal on Wireless Communications and Networking

Available noise

25

Noise24
24

Noise23
23

Noise22
22

Noise21
21

Noise20
20

Noise19
19

Noise18
18

Noise17
17

Noise16
16

Noise15
15

Noise14
14

Noise13
13

Noise12
12

Noise11
11

Noise10
10

Noise9
9

Noise8
8

Noise7
7

Noise6
6

Noise5
5

Noise4
4

Noise3
3

Noise2
2

Noise1
1

White Gaussian
noise generator

Reset

Time division demultiplexer

q0
q1
q2
q3
q4
q5
q6
q7
q8
q9

q10
q11
q12
q13
q14
q15
q16
q17
q18
q19
q20
q21
q22
q23
q24

TDD

Terminator

Inverter

Not

Down sampleDelay TDMDelay Gaussian Delay CMult

Constant

0

CMult

Fix_17_15Noise

z−10 z−2 z−25
z−1

↓ 25

d

Figure 3: Resource-efficient 24-output Gaussian noise generator.

as if it was aimed at emulating the channel VTV-Expressway
Oncoming). We would like to show the real savings but,
unfortunately, our PC (Intel Core 2 Duo E8500@4.33 GHz,
2 GB of RAM, Windows XP) always runs out of memory
while performing the synthesis of the non-optimized model
due to the large amount of resources it requires. However, it
is possible to obtain an estimation of the required resources
using System Generator’s Resource Estimator block. Table 3
shows the estimated amount of resources occupied by both
versions. It can be clearly observed that WGNG blocks
should be used carefully in order to avoid wasting FPGA
resources.

If we needed to reduce even more the number of
occupied resources, it would be possible to generate the
channel coefficients in MATLAB and then transfer them to
the FPGA. However, this solution is not desirable due to the
following reasons.

(i) If the channel coefficients were only transmitted from
MATLAB during the initialization phase, due to the
limited amount of memory on the FPGA, there
would be a time when the channel coefficients would
have to be used again. Therefore, correlation in the
output signal would appear.

EURASIP Journal on Wireless Communications and Networking 9

1
In1

2
In2

3
en

↑ 2
Up sample1

↑ 2
Up sample2

Mux

Sel

d0

d1

Fix 17 14

UFix 1 0

UFix 1 0

FIR compiler v3 11
Cast

Convert

Not

Inverter z−1

en

Delay1

z−1

en

Delay2

z−1

Delay3

↓ 2
z−1

Down sample1

↓ 2
z−1

Down sample2

1
Out1

2
Out2

Figure 4: Optimized blocks for applying the Doppler Spectrum.

Table 3: Estimated savings due to optimizing the Gaussian
generator.

Resource type

Optimized
24-output
Gaussian
generator

Non-
optimized
24-output
Gaussian
generator

Estimated
Savings (%)

Slices 1347 20355 93.3%

Flip-flops 1729 19607 91.2%

RAM Blocks 8 176 95.4%

LUTs 997 21850 95.4%

Embedded
4 88 95.4%

Multipliers

(ii) If we transfer a new set of channel coefficients from
MATLAB at fixed intervals, we would not be able to
use the emulator in stand-alone mode since we always
would relay on having a computer running MATLAB
linked to the FPGA.

3.5.3. Doppler Filtering. To generate the actual NLOS com-
ponents, the generated white Gaussian noise samples have
to be filtered according to each path’s Doppler spectrum.
This spectrum is determined by a fading spectral shape,
a frequency shift and a maximum Doppler shift. Table 1
shows these latter two parameters for the considered channel
models. Four different spectral shapes are considered: round,
flat, classic 3 dB and classic 6 dB [7].

Figure 4 shows the blocks that allow applying the
Doppler spectrum to each Rayleigh path. Each Doppler filter
consists of 256 coefficients. This filter size provides a good
tradeoff between precision and hardware complexity. Since
each filter is unique for each path of each vehicular channel,
we hard coded the coefficients in each of the six.bit files.
If we desired to build a more generic vehicular emulator, it
would be possible to reload dynamically the coefficient sets,
but each filter block would need additional control lines.

To reduce to a half the required hardware, we exploit the
fact that the real and the imaginary parts of the filter can be
used twice for each path to perform the complex FIR filtering
(see Figure 5). This optimized block can be seen in Figure 4,
which is contained under the block Doppler Filter shown in
Figure 5.

Table 4 shows some of the resource savings, achieved
when reducing to a half the number of filters in a vehicular

channel with eleven paths. Like we did in the previous
subsection with the Gaussian generators, we isolated the
optimized and non-optimized versions of the filter block
and we obtained the size they occupy. In this case, we
could synthesize both designs and obtain the actual hardware
occupation without using the Resource Estimator block. It
can be observed in Table 4 that, although the optimized block
uses slightly more slices, the savings occur in the DSP48
and the RAMB16 blocks, that are reduced by 50%. This is
important, since the lack of this type of blocks is a bottleneck
to keep on designing the rest of the emulator.

Finally, LOS Doppler has also to be taken into account
in the vehicular channels and must be applied to each
Rician path according to (2). To achieve this, we use the
System Generator’s DDS (Direct Digital Synthesizer) block
that generates a sine and a cosine with the required phase
and frequency parameters. Since the angle of arrival of the
LOS component has not been considered in [6], we always
set its value to zero, what means that the received Rician
paths arrive straight from the driving direction. This implies
that the LOS Doppler is always equal to the path’s maximum
Doppler spread.

3.5.4. Interpolation. After adding the LOS and NLOS com-
ponents according to (1) (see Figure 5), the coefficients must
adapt their rate to the rate of the incoming signal (i.e.,
the signal from the IEEE 802.11p transmitter that arrives
at 10 MHz). These coefficients are generated at a rate that
depends on the maximum Doppler shift and that is much
lower than the FPGA’s frequency. Indeed, in a specific vehic-
ular channel, the implicit sample rate is twice the maximum
Doppler shift of all paths. In the implemented vehicu-
lar channel models, this rate fluctuates between 1988 Hz
and 3484 Hz (see Table 2). To avoid designing a complex
resampling stage, instead of using the original coefficient
generation rate, we use an effective sample rate that is equal
to the nearest superior integer divider of 10 MHz. Thus,
we only need to interpolate between two already generated
coefficients. For doing this, we use two cascaded linear
interpolators, each one having its own interpolation factor.
The product of both interpolation factors gives the global
interpolation rate of the corresponding channel (shown in
Table 2).

Every single cascaded linear interpolator (see Figure 6)
obtains p intermediate values following the following steps.

10 EURASIP Journal on Wireless Communications and Networking

Table 4: Savings due to the optimization of the Doppler filter block.

Resource type
Optimized Doppler Non-optimized Doppler

Total resources in the FPGA Savings (%)
Filter block Filter block

Slices 7382 7239 15360 −1.9%

DSP48 blocks 88 176 192 50%

RAMB16 blocks 44 88 192 50%

6
NoiseI

7
NoiseQ

2
Sigma

5
Reset

3
FrecLOS

4

PhaseLOS

8
Enable

Fix 17 15

Mult

Fix 17 15

Mult1

1
A

Reset

Frec

Phase

Sine

Cosine

LOS

In1

In2

Enable

Out1

Out2

Doppler filter

Fix 17 15

Mult2

Fix 17 15

Mult3

z−4

en
Delay2

z−4

en

Delay1

Fix 18 15

AddSub

Fix 18 15

AddSub1

2
CoefQ

1
CoefI

Figure 5: Generation and addition of the LOS and NLOS components of each path.

(i) At the time instant t = 1, 2 . . . the current coefficient,
st, and the one generated at the previous time instant,
st−1, are copied p times, being p the interpolation
factor. As a result, we have two vectors of upsampled
coefficients

st =
⎡
⎣ p︷ ︸︸ ︷
st , st, . . . , st

⎤
⎦ (6)

and

st−1 =
⎡
⎣ p︷ ︸︸ ︷
st−1, st−1, . . . , st−1

⎤
⎦. (7)

We assume the initial condition s0 = 0.

(ii) Next, the vectors st and st−1 are subtracted and
divided by p to produce the difference vector

Δt = st − st−1

p
. (8)

Obviously, Δt = [

p︷ ︸︸ ︷
Δt,Δt, ...,Δt] where

Δt = st − st−1

p
. (9)

(iii) Finally, Δt inputs an accumulator, that recursively
computes the output as yt = yt−1 + Δ�t/p� for t =
1, 2 . . . where �·� denotes the integer value (floor)
operator. Notice that provided that y0 = 0, yt = st/p
for t = p, 2p, 3p . . . and the accumulator output
corresponds to the output of a linear interpolator.

3.5.5. FIR Filtering. Finally, the signal from the IEEE 802.11p
transmitter is filtered with the interpolated coefficients.
Figure 7 depicts a general view of the developed complex FIR
filter (this figure shows twenty-two paths instead of twenty-
four because it is optimized for the VTV-Expressway Oncom-
ing channel as in Figure 1). In the diagram, two groups of
blocks can be distinguished: blocks aimed at delaying the
incoming signal (DelayBufferI and DelayBufferQ) and
blocks for applying the complex FIR filter to the delayed
signals (FIR Taps1 to FIR Taps4).

3.6. Emulator Basic Operation. The emulator operation can
be summarized as follows.

(1) The configuration parameters of the vehicular chan-
nel are initially read from registers (shown in
Figure 1).

(2) The emulator starts to generate channel coefficients,
both for the LOS and the NLOS components (illus-
trated in Figures 1 to 5).

EURASIP Journal on Wireless Communications and Networking 11

1

In1

z−1

Delay

Fix 18 15

Up sample1

Fix 18 15

Up sample

AddSub1

a− b
a

b
Fix 21 17

CMult

Sel

d0

d1

Mux

Fix 20 17

Accumulator

Cast

Convert

1
Out1

2
In2

Figure 6: One path’s linear interpolator.

(3) The coefficients are interpolated to have their rate
adapted to the incoming signal rate, passing each
path through linear interpolators (like the one shown
in Figure 6). The interpolation is carried out in
two stages, whose interpolation factors depend on
the effective generation rates shown in Table 2. For
instance, in the channel RTV-Urban Canyon, the
coefficients have an effective generation rate equal to
2500 Hz. Since the incoming signal rate is 10 MHz,
the coefficients need to be interpolated with a global
factor of 4,000, which can be applied in two stages
with interpolation factors 25 and 53.

(4) Finally, the incoming signal is applied to a complex
FIR filter that uses the generated channel coefficients
(in Figure 7).

4. IEEE 802.11p Reference Transceiver Model

Figure 8 shows the basic setup of the IEEE 802.11p evaluation
system, whose key parameters can be viewed in Table 5. In a
nutshell, the system consists of a transmitter that generates
packets that are sent to the receiver, passing through the
vehicular channel emulator. The designs of the transmitter
and the receiver, and the interface that connects both with
the emulator, are detailed in the following subsections.

4.1. Transmitter. The blocks of the IEEE 802.11p transmitter
are depicted at the top of Figure 8. The scheme is very similar
to any OFDM transmitter with coding.

First, equally likely data bits are generated using a
Bernoulli binary generator. In each cycle of the model,
enough bits are generated to fill a frame with the number of
desired OFDM symbols to transmit. Then, the generated bits
are scrambled using a 127-bit sequence obtained from the
generator polynomial S(x) = x7 + x4 + 1. A different pseudo
random sequence is used for each transmission.

The scrambled bits are then processed by a rate 1/2
convolutional encoder with the industry-standard generator
polynomials g0 = 133 and g1 = 171. In case of needing higher
rates (2/3 and 3/4 are supported), puncturing is employed.
Afterwards, data interleaving is carried out in a two-step
permutation. The first permutation ensures that adjacent
coded bits are mapped onto non-adjacent subcarriers, whilst

Table 5: Main features of the implemented IEEE 802.11p
transceiver.

Parameter Available Value(s)

Carrier Modulation BPSK, QPSK, 16-QAM, 64-QAM

Code rate 1/2, 2/3, 3/4

No. subcarriers 48 data + 4 pilots

OFDM symbol duration 8μs

Guard time 1.6μs

FFT period 6.4μs

Total bandwidth 10 MHz

Subcarrier spacing 0.15625 MHz

the second permutation ensures that adjacent coded bits
are mapped onto less and more significant bits of the
constellation to avoid long runs of low reliability.

After interleaving, the bits are Gray-mapped into QAM
symbols and placed into subcarriers. Figure 9 shows how the
assignment of positions in each OFDM symbol is performed.
Of the total 64 subcarriers, four are dedicated to pilot signals.
These pilots are always situated in the same subcarriers
(in positions −21, −7, 7, and 21, since subcarriers are
numbered between−32 and 31). Besides, the pilots are BPSK
modulated by a pseudo binary sequence. Forty-eight of the
rest of the subcarriers are used for placing the data symbols.
The subcarrier 0 is reserved for the DC and the remaining
subcarriers are for frequency guards. Finally, the IFFT is
performed.

For each OFDM symbol, a 1/4 cyclic prefix (CP) is
added to prevent ISI and, eventually, a preamble is appended
to the whole frame. Although the preamble is always
transmitted in order to respect the requirements of the
standard, it is not used in reception since we assume perfect
time synchronization and we have not implemented any
algorithms that may need it. Furthermore, the vehicular
channel emulator operates in baseband, so there is no IF
stage, neither in the transmitter nor in the receiver.

4.2. Receiver. The receiver blocks are shown at the bottom
of Figure 8. The first step performed is the addition of white
Gaussian noise in order to obtain BER (Bit Error Rate) and
PER (Packet Error Rate) curves versus Eb/N0 values.

12 EURASIP Journal on Wireless Communications and Networking

ValidCoefs
3

2

1

Subtraction

FIR_Taps4

validIn

coefficientQ_Bus

tap_BusQ

FIR_Taps3

tap_BusI

coefficientQ_Bus

validIn

FIR_Taps2

coefficientI_Bus

tap_BusQ

validIn

FIR_Taps1

tap_BusI

coefficientI_Bus

validIn

DelayBufferQ

ValidIn

detayTap_Bus

Tap1
Tap2
Tap3
Tap4
Tap5
Tap6
Tap7
Tap8
Tap9

Tap10
Tap11

DelayBufferI

detayTap_Bus

ValidIn

Tap1
Tap2
Tap3
Tap4
Tap5
Tap6
Tap7
Tap8
Tap9

Tap10
Tap11

Addition

ValidIn Delay

35

34

33

delayTap10
32

delayTap9
31

delayTap8
30

delayTap7
29

delayTap6
28

delayTap5
27

delayTap4
26

delayTap3
25

delayTap2
24

delayTap1
23

CoefQ11
22

CoefI11
21

CoefQ10
20

CoefI10
19

CoefQ9
18

CoefI9
17

CoefQ8
16

CoefI8
15

CoefQ7
14

CoefI7
13

CoefQ6
12

CoefI6
11

CoefQ5
10

CoefI5
9

CoefQ4
8

CoefI4
7

CoefQ3
6

CoefI3
5

CoefQ2
4

CoefI2
3

CoefQ1
2

CoefI1
1

a
b

en
z−1a + b

z−1

a
b

en
z−1a− bxI

xI

xQ
xQ

y

y

y

y

yI

yQ

Figure 7: General view of the complex FIR filter.

After the preamble and the CP are removed, the FFT is
applied to each OFDM symbol. Next, the channel has to
be estimated. Although we have tested different techniques,
we will only describe the simple method we used in the
experiments in Section 5. We extract the four pilots and
divide them by their respective transmitted values (which
are known by the receiver), obtaining the estimated channel
coefficients for the pilot subcarriers. These estimates are
noisy and the implemented channel inversion method can
even amplify the noise, but we decided to use it due to its
simplicity.

Then, the four channel coefficient estimates are linearly
interpolated to obtain the channel frequency response for the
rest of the subcarriers. After this, an MMSE (Minimum Mean
Square Error) equalizer [34] is employed.

Afterwards, the equalized symbols are sent to a soft
detector. The output LLRs are deinterleaved, inverting the
permutations performed in the transmitter, and the Viterbi
block carries out decoding.

At the end, the decoded bits are descrambled, using the
same scrambler as at the transmitter side and the final bits
are obtained.

EURASIP Journal on Wireless Communications and Networking 13

IEEE 802.11p transmitter

IEEE 802.11p receiver

PC running Matlab Simulink

Bernouli
binary

Bit generator

Scrambler

Scrambler

Convolutional
encoder

Convolutional
encoder

Puncture

Puncturing

General
block

interleaver

Interleaver

Rectangular
QAM

QAM
modulator

In1 Out1 In1 Out1 In1 Out1 In1 Out1

OFDM
symbol

formatting

IFFT CP
addition

Preamble
addition

Transmitted_data

To workspace 1

Received_data

From workspace

Out1 In1 Out1 In1 Out1 In1 Out1 In1 Out1 In1

Channel
estimation

FFT CP
removal

Preamble
removal

White
Gaussian

noise addition
-C-

Noise
power

In1

In2

Out1

Soft
detector

Deinterleaver

Out1 In1

Viterbi decoder

Viterbi decoder

Descrambler

Descrambler

Decided_bits

To workspace1

P
C

I
B

U
S

Vehicular channel
emulator

BenADDA-IV
development kit

Figure 8: General view of the IEEE 802.11p evaluation system.

1
In1

Out1

Pilot generator

Carrier
selector

Reshape
Reshape1

Select
rows

Pilot
selector

Select
rows

Reshape

Reshape

-C-

DC

Reshape

Reshape2

Pad

Zero padding

1
Out1

Matrix
concatenation

1

Figure 9: Placement of the DC, data and pilots into the OFDM symbol subcarriers.

4.3. Emulator Input/Output Interface. The exchange of data
between the software transceiver and the FPGA is performed
through the PCI bus, making use of two different kinds of
memory blocks:

(i) Registers. The configuration parameters are set at the
beginning of the emulation using registers. The value
of these parameters do not change throughout the
emulation, but, if desired, they could be modified
dynamically.

(ii) Shared FIFO (First-In First-Out) memories. This sort
of memories are used for driving the input/output
IQ signals to/from the FPGA. The main advantage of
using shared FIFOs is their ability to accelerate the
simulation speed beyond what is typically possible
with hardware co-simulation. Instead of transferring

one sample per cycle, these blocks can work with
frames of data that are sent in a single cycle to
the FPGA. The largest available FIFO memory can
hold up to 64,000 channel coefficients. Since each
baseband OFDM symbol consists of 80 values (cor-
responding to 64 carriers plus the cyclic prefix), up to
800 OFDM symbols could be stored at the same time
in one single FIFO.

Speed enhancements are achieved thanks to using the
Free-Running Clock mode for hardware simulation, that
allows the FPGA to operate asynchronously with respect to
the Simulink simulation. This means that the FPGA is not
kept in lockstep with the simulation. In our experiments, the
vehicular emulator clock period was 100 ns (10 MHz), while
Simulink’s system period was one second, what implies that
the FPGA was running much faster.

14 EURASIP Journal on Wireless Communications and Networking

Note also that the size of the shared memories can
be reduced to match the simulation requirements. For
instance, when evaluating the performance in Section 5,
we launched simulations with 64-byte packets, hence the
input/output memories were adapted to such amount of
data. In these simulations, when all the memory require-
ments were taken into account, only between 19% and 24%
of the FIFO16/RAMB16 memory blocks were occupied (see
Table 2).

Moreover, the fact of transmitting just one 64-byte packet
at each time becomes an advantage when averaging BER/PER
during performance measurements. In such case, the channel
coefficients of two consecutive packets are less correlated
than when sending the same two packets together in the same
frame, because while the transmitter produces the second
packet, the emulator keeps generating coefficients (with a
period 106 times faster than the transmitter’s period).

The data exchange process can be summarized as fol-
lows.

(1) The configuration parameters of the channel to
emulate are set in registers that are read by the FPGA.

(2) The IEEE 802.11p transmitter generates the packets
to be sent and creates a single data frame with all of
them.

(3) The data frame to transmit is placed in a shared FIFO
that is read by the vehicular emulator.

(4) The emulator applies the channel coefficients to the
transmitted signal and sets the output values in
shared FIFOs.

(5) The output shared FIFOs are read by the IEEE
802.11p software receiver that processes the transmit-
ted packets.

5. Experiments

5.1. Evaluation of the IEEE 802.11p Physical Layer over
Vehicular Channels. To evaluate the performance of our
software implementation of the IEEE 802.11p PHY layer
described in Section 4, we have passed the signal from
the transmitter through the FPGA-based vehicular channel
emulator. We have taken advantage of Xilinx Xtreme DSP
software kit and we have performed measurements using
the co-simulation mode: the transmitter and the receiver are
implemented in MATLAB and Simulink, but the channel
emulator runs on an FPGA.

Figures 10 and 11 depict, respectively, the BER and PER
for the six vehicular channels presented in Section 3.1. We
have also added the curve for the AWGN channel as a
reference of the transceiver performance. In order to achieve
a fair comparison, we set the same transmission parameters
for the IEEE 802.11p transceiver, changing only the channel
for each curve. A rate 1/2 FEC was used, each of the carriers
was QPSK modulated, and a maximum of 10,000 64-byte
data packets were averaged (the simulation stops for each
Eb/N0 value when 100 erroneous packets are detected). The
receiver assumed perfect time synchronization, pilot-aided

10−5

10−4

10−3

10−2

10−1

100

B
E

R

0 5 10 15 20 25

Eb/N0 (dB)

VTV-Expressway Oncoming
RTV-Urban Canyon
RTV-Expressway
VTV-Urban Canyon Oncoming
RTV-Suburban Street
VTV-Expressway Same Direction with wall
AWGN

Figure 10: BER of the transceiver for the different vehicular
channels.

channel estimation was performed and an MMSE linear
equalizer was applied, as described in Section 4.

Notice that [1] states that a vehicular communications
system must be capable of transferring messages to and from
vehicles at speeds of 193 km/h with a PER of less than 10%
for 64-byte data packets. Although the assumed speeds of
the six implemented vehicular channel models are 140 km/h
or 120 km/h (depending on the channel), the minimum
Eb/N0 to reach the 10% PER threshold constitutes a good
reference of the system performance. Table 6 summarizes
the required minimum Eb/N0’s to reach a PER of 10%. The
values fluctuate between 10.1 and 18.2 dB, which are in an
acceptable range when operating in a real scenario.

To justify our results, we compare them with the conclu-
sions of [6]. There, the authors affirm that PER generally
decreases with decreasing Doppler offsets and widths, and
increasing K factors. Using Table 1 and Table 6, we are able
to corroborate this assertion. On the one hand, if we sort
the channels by their Eb/N0 necessary to reach the 10%
PER threshold and by their Rician K (using the Overall K
Factor for VTV-Expressway Same Direction with Wall), we
obtain the same ranking. This allows us to conclude that the
larger the Rician K factor (clearer line-of-sight), the smaller
Eb/N0 is needed to reach the threshold. On the other hand,
regarding the Doppler offset, it can be seen that the vehicular
channel with the largest Doppler offset (VTV-Expressway
Oncoming) is one of the channels that require more Eb/N0

to reach the 10% threshold. However, in other channels
there is not a clear impact in the Eb/N0 threshold. This is
the case of VTV-Urban Canyon Oncoming which owns large
Doppler shifts, fading and LOS offsets. This latter case allows
us to state that the degree of line-of-sight is a critical factor

EURASIP Journal on Wireless Communications and Networking 15

10−4

10−3

10−2

10−1

100

101

P
E

R

0 5 10 15 20 25

Eb/N0 (dB)

VTV-Expressway Oncoming
RTV-Urban Canyon
RTV-Expressway
VTV-Urban Canyon Oncoming
RTV-Suburban Street
VTV-Expressway Same Direction with wall
AWGN

Figure 11: PER of the transceiver for the different vehicular
channels.

Table 6: Minimum Eb/N0 to obtain a PER of 10%.

Vehicular Channel Eb/N0 (dB)

VTV-Expressway Oncoming 15.36

RTV-Urban Canyon 10.10

RTV-Expressway 18.20

VTV-Urban Canyon Oncoming 11.45

RTV-Suburban Street 14.22

VTV-Expressway Same Direction with wall 12.25

since it shadows other influential factors like the mentioned
frequency offsets.

Finally, we would like to stress that in a real transceiver
there are other sources of error (i.e., RF impairments,
synchronization errors, channel estimation mismatches. . .)
which have not been added to the software transceiver but
that could be easily implemented. In that sense, our IEEE
802.11p evaluation framework represents a very useful tool
for transceiver designers, who can isolate the sources of
error and analyze them while assessing the performance in
a realistic scenario.

5.2. Observed Inter-Carrier Interference (ICI) in the Imple-
mented Vehicular Channels. The use of an one-tap equalizer
in the previous section was intentional. Due to the Doppler
effect, it was very likely that ICI appeared in the received sig-
nal, but the practical results for this channel models and the
assumed transmission conditions (i.e., no synchronization
errors or RF impairments) have shown that there is almost
no ICI at the receiver side. A simple explanation follows: let

10−3

10−2

10−1

100

B
E

R
;P

E
R

0 5 10 15 20 25

Eb/N0 (dB)

BER
PER

BER without coding
PER without coding

Figure 12: BER/PER when transmitting with and without coding
through RTV-Expressway.

us first assume that the OFDM signal, after the FFT, can be
modeled as

y f = Fyt = FHtFHs f + Fnt = H f s f + n f , (10)

where yt is the received signal vector, F and FH are matrices
that perform the FFT and the IFFT, respectively (Hdenotes
the Hermitian or conjugate transpose), Ht is the matrix with
the channel coefficients in the time domain, s f contains
the transmitted symbols, and nt and n f represent vectors
with Gaussian noise. In this model, the receiver recovers the
transmitted symbols by estimating the matrix H f = FHtFH .

The presence of ICI depends on the characteristics of
H f . If this matrix is diagonal, the signal received in each
subcarrier depends on the transmitted symbol and only on
one channel coefficient and, therefore, there will be no ICI.
However, if any non-diagonal coefficient of H f is different
from zero, ICI will appear.

For the implemented vehicular channel models, we
observed that H f was almost diagonal. As a specific measure
of this observation, we considered the ratio between the
energy of the coefficient in the diagonal and the sum of the
energies of the rest of the values in the same row of the
channel matrix. For the i-th row of one sample of the channel
matrix, this ratio can be obtained as

qi = |hii|2∑N
j=1 j /= i

∣∣∣hi j∣∣∣2 , (11)

where hi j are the coefficients of H f and N is the length
of the FFT (N = 64 for IEEE 802.11p). We averaged this
ratio for 10,000 channel matrices. It is important to stress
that the channel coefficients were obtained directly from the
emulator, that is, they were not estimations.

Table 7 shows the average energy ratios for the six
vehicular channels. This Table confirms that, on average, the

16 EURASIP Journal on Wireless Communications and Networking

10−3

10−2

10−1

100

B
E

R
;P

E
R

0 5 10 15 20 25

Eb/N0 (dB)

BER
PER

BER without coding
PER without coding

Figure 13: BER/PER when transmitting with and without coding
through VTV-Expressway Same Direction with Wall.

Table 7: Energy ratios for the vehicular channels.

Vehicular Channel Average Energy Ratio

VTV-Expressway Oncoming 2706.4

RTV-Urban Canyon 1151.4

RTV-Expressway 1746.3

VTV-Urban Canyon Oncoming 2769.6

RTV-Suburban Street 770.3

VTV-Expressway Same Direction with wall 940.1

energy of the diagonal element is at least 700 times higher
than the sum of the energies of the rest of the coefficients in
the same row. With such difference, the contribution to the
ICI of the non-diagonal coefficients, though existent, can be
ignored and, hence, a simple one-tap equalizer is enough to
compensate the channel effects.

As said above, the considered emulation setup only
accounted for channel estimation errors. In this case, the
use of an one-tap equalizer was valid for overcoming the
effects of the implemented vehicular channels. When testing
actual transceivers, however, additional sources of error
appear (e.g., synchronization errors, RF impairments. . .). In
addition, the considered vehicular channel models do not
cover all the situations that may appear in real operation.
Thus, transceivers designed to operate in real environments
should, of course, include more sophisticated equalizers to
compensate for larger amounts of ICI.

5.3. Importance of Coding over Vehicular Channels. To show
the importance of using coding when transmitting over
vehicular channels, we chose two different channels and we
measured the performance of our receiver when transmitting
over them. We use the same transmission configuration
described in Section 5.1.

Figures 12 and 13 show, respectively, the BER and PER for
RTV-Expressway and VTV-Expressway Same Direction with

10−5

10−4

10−3

10−2

10−1

100

B
E

R
;P

E
R

0 5 10 15 20 25

Eb/N0 (dB)

BER 802.11a VTV-Expressway Oncoming
PER 802.11a VTV-Expressway Oncoming
BER 802.11a RTV-Urban Canyon
PER 802.11a RTV-Urban Canyon
BER 802.11p VTV-Expressway Oncoming
PER 802.11p VTV-Expressway Oncoming
BER 802.11p RTV-Urban Canyon
PER 802.11p RTV-Urban Canyon

Figure 14: BER/PER comparison between IEEE 802.11p and IEEE
802.11a when transmitting over the channel emulator.

Wall when transmitting with and without coding. In both
channels a PER of 10% is achieved with an Eb/N0 of more
than 25 dB when coding is not used. Notice that performance
is dramatically improved with the utilization of coding. The
BER curves of the experiments that use coding remain, at
low Eb/N0 values, above the non-coded versions due to the
generation of new errors when decoding. Once the decoder
reaches a BER of a little less than a 10%, the decoder is able
to correct errors and the versions with coding outperform
the non-coded versions.

5.4. 802.11p versus 802.11a in Vehicular Channels. Our last
experiment compares the performance of the PHY layers
of IEEE 802.11a and IEEE 802.11p. As it was previously
mentioned, the main difference between both standards
at the physical level is the bandwidth: IEEE 802.11a uses
20 MHz, while IEEE 802.11p only 10 MHz. The reduction in
bandwidth translates into larger OFDM symbols and halves
the transmission rates.

Figure 14 gives a good example of the advantages of using
IEEE 802.11p when transmitting through vehicular channels.
For both chosen channels, the IEEE 802.11a transceiver
performs worse and clearly experiences high error floors,
starting at an Eb/N0 of 15 dB. Furthermore, if we obtain
the PER thresholds for the IEEE 802.11a transceiver, we
see that in RTV-Urban Canyon it requires 12.87 dB (while
IEEE 802.11p only needs 10.1 dB) and, in VTV-Expressway
Oncoming, the IEEE 802.11a transceiver never reaches the
threshold. This difference is due to the high delay spread
of the vehicular channels that introduce interference among
symbols in the case of IEEE 802.11a. Therefore, there
exists an important improvement in using IEEE 802.11p

EURASIP Journal on Wireless Communications and Networking 17

instead of IEEE 802.11a when transmitting over vehicular
environments.

6. Conclusion

We have presented a flexible, reconfigurable, and cost-
effective solution for evaluating IEEE 802.11p transceivers
through the real-time emulation of vehicular wireless chan-
nels. We presented a comprehensive review of the current
state of the art of IEEE 802.11p transceiver designs and real-
time vehicular channel emulators. We described the design
and implementation of a real-time vehicular channel emula-
tor using FPGA technology and rapid prototyping software
tools. At the end, we have presented several examples of
performance evaluation of the IEEE 802.11p PHY layer
over six high-speed scenarios. We also studied the effects of
using coding, which obtains important gains in BER/PER.
Finally, we compared IEEE 802.11p and IEEE 802.11a when
transmitting over vehicular channels, observing that the use
of IEEE 802.11p dramatically improves the performance.

Acknowledgments

This work has been supported by Xunta de Galicia through
contract Ref. PGIDIT06TIC10501PR and by Ministerio de
Educación y Ciencia of Spain and FEDER funds of the
E.U. under Grants TEC2007-68020-C04-01 (MultiMIMO
project) and CSD2008-00010 (COMONSENS project).

References

[1] “Standard specification for telecommunications and informa-
tion exchange between roadside and vehicle systems—5 GHz
band Dedicated Short Range Communications (DSRC),
Medium Access Control (MAC) and Physical Layer (PHY)
specifications,” ASTM Intl., E2213-03, September 2003.

[2] “IEEE 802.11a: Wireless LAN Medium Access Control and
Physical Layer Specifications, High-Speed Physical Layer in the
5 GHz Band,” IEEE, September 1999.

[3] R. Mangharam, J. Meyers, R. Rajkumar, et al., “A multi-hop
mobile networking test-bed for telematics,” in Proceedings of
Society for Automotive Engineers World Congress (SAE ’05),
Detroit, Mass, USA, April 2005.

[4] J. Dulmage, M. Tsai, M. Fitz, and B. Daneshrad, “COTS-based
DSRC testbed for rapid algorithm development, implemen-
tation, and test,” in Proceedings of the 1st ACM International
Workshop on Wireless Network Testbeds, Experimental Evalua-
tion and Characterization (WiNTECH ’06), pp. 113–114, Los
Angeles, Calif, USA, September 2006.

[5] T. M. Fernández-Caramés, J. A. Garcı́a-Naya, M. González-
López, and L. Castedo, “Flex vehd: a flexible testbed for vehic-
ular radio interfaces,” in Proceedings of the 8th International
Conference on Intelligent Transport System Telecommunications
(ITST ’08), pp. 283–287, Phuket, Thailand, October 2008.

[6] G. Acosta-Marum and M. A. Ingram, “Six time-and
frequency-selective empirical channel models for vehicular
wireless LANs,” in Proceedings of IEEE Vehicular Technology
Conference (VTC ’07), pp. 2134–2138, Baltimore, Md, USA,
October 2007.

[7] G. Acosta-Marum, Measurement, modelling and OFDM syn-
chronization for the wideband mobile-to-mobile channel, Doc-
toral thesis, May 2007.

[8] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich,
“Design of 5.9 GHz DSRC-based vehicular safety communica-
tion,” IEEEWireless Communications, vol. 13, no. 5, pp. 36–43,
2006.

[9] D. Jiang and L. Delgrossi, “IEEE 802.11p: towards an interna-
tional standard for wireless access in vehicular environments,”
in Proceedings of IEEE Vehicular Technology Conference (VTC
’08), pp. 2036–2040, Singapore, May 2008.

[10] Y. Wang, A. Ahmed, B. Krishnamachari, and K. Psounis, “IEEE
802.11p performance evaluation and protocol enhancement,”
in Proceedings of IEEE International Conference on Vehicular
Electronics and Safety (ICVES ’08), pp. 317–322, Columbus,
Ohio, USA, September 2008.

[11] S. Eichler, “Performance evaluation of the IEEE 802.11p
WAVE communication standard,” in Proceedings of IEEE
Vehicular Technology Conference (VTC ’07), pp. 2199–2203,
Baltimore, Md, USA, September 2007.

[12] M. Abbassi, Characterization of a 5GHz modular radio
frontend for WLAN based on IEEE 802.11p, M.S. thesis,
Telecommunications, University of Gävle, Vienna, Austria,
2008.

[13] J. Reddy, L. Deneire, L. Van der Perre, B. Gyselinckx, and M.
Engels, “On equalization for OFDM-dedicated short range
communication (DSRC) modem,” in Proceedings of IEEE
International Conference on Personal Wireless Communications
(ICPWC ’00), pp. 230–234, Hyderabad, India, December 2000.

[14] S. Sibecas, C. A. Corral, S. Emami, G. Stratis, and G. Rasor,
“Pseudo-pilot OFDM scheme for 802.11a and R/A in DSRC
applications,” in Proceedings of IEEE Vehicular Technology
Conference (VTC ’03), no. 2, pp. 1234–1237, Orlando, Fla,
USA, October 2003.

[15] Y.-H. Cheng, Y.-H. Lu, and C.-L. Liu, “Adaptive channel equal-
izer for wireless access in vehicular environments,” in Proceed-
ings of the 6th International Conference on ITS Telecommunica-
tions (ITST ’06), pp. 1102–1105, Chengdu, China, June 2006.

[16] H. Abdulhamid, K. E. Tepe, and E. Abdel-Raheem, “Iterative
channel-tracking techniques for 5.9 GHz DSRC applications,”
Research Letters in Communications, vol. 2008, Article ID
485013, 5 pages, 2008.

[17] J. Mar and C. Kuo, “Performance improvement of the
DSRC system using a novel S and PI-decision demapper,” in
Proceedings of the International Conference on Communications
(ICC ’08), Beijing, China, May 2008.

[18] N. Sasho, K. Minami, H. Fujita, et al., “Single-chip 5.8 GHz
DSRC transceiver with dual mode of ASK and π/4-QPSK,”
in Proceedings of the Radio and Wireless Symposium, Orlando,
Fla, USA, January 2008.

[19] S. Shin, S. Yun, S. Cho, et al., “0.18 μm CMOS integrated
chipset for 5.8 GHz DSRC systems with +10 dBm output
power,” in Proceedings of IEEE International Symposium on Cir-
cuits and Systems (ISCAS ’08), Seattle, Mass, USA, May 2008.

[20] N. Almeida, R. Abreu, J. N. Matos, N. B. Carvalho, and J.
S. Gomes, “Low cost transceiver for DSRC applications,” in
Proceedings of the Asia-Pacific Microwave Conference (APMC ’
06), vol. 3, pp. 1501–1504, Yokohama, Japan, December 2006.

[21] T. Tsuboi, J. Yamada, N. Yamauchi, and M. Hayashi, “Dual
receiver communication system for DSRC,” in Proceedings
of the 2nd International Conference on Future Generation
Communication and Networking (FGCN ’08), vol. 1, pp.
459–464, Sanya, China, December 2008.

[22] J. Mar, Y. R. Lin, T. H. Lung, and T. H. Wei, “Realization
of OFDM modulator and demodulator for DSRC vehicular
communication system using FPGA chip,” in Proceedings of
the International Symposium on Intelligent Signal Processing

18 EURASIP Journal on Wireless Communications and Networking

and Communications (ISPACS ’06), pp. 477–480, Tortori,
Japan, December 2006.

[23] J. Mar, C.-C. Kuo, Y.-R. Lin, and T.-H. Lung, “Design
of software-defined radio channel simulator for wireless
communications: case study with DSRC and UWB channels,”
IEEE Transactions on Instrumentation and Measurement, vol.
58, no. 8, pp. 2755–2766, 2009.

[24] Spirent Communications, December 2009, http://www.spir-
ent.com/.

[25] Rhode & Schwarz, December 2009, http://www2.rohde-sch-
warz.com/.

[26] Azimuth Systems, December 2009, http://www.azimuthsys-
tems.com/.

[27] Agilent Technologies, December 2009, http://www.home.agi-
lent.com/.

[28] E. Boutillon, J.-C. Danger, and A. Ghazel, “Design of high
speed AWGN communication channel emulator,” Analog
Integrated Circuits and Signal Processing, vol. 34, no. 2, pp.
133–142, 2003.

[29] A. Alimohammad, S. F. Fard, B. F. Cockburn, and C. Schlegel,
“An accurate and compact Rayleigh and Rician fading channel
simulator,” in Proceedings of IEEE Vehicular Technology
Conference (VTC ’08), pp. 409–413, Singapore, May 2008.

[30] J.-K. Hwang, K.-H. Lin, J.-D. Li, and J.-H. Deng, “Fast FPGA
prototyping of a multipath fading channel emulator via high-
level design,” in Proceedings of the International Symposium
on Communications and Information Technologies (ISCIT ’07),
pp. 168–171, Sydney, Australia, October 2007.

[31] C. Melfhürer, F. Kaltenberger, M. Rupp, and G. Humer, “A
scalable rapid prototyping system for real-time MIMO OFDM
transmissions,” in Proceedings of the IEE/EURASIP Conference
on DSP Enabled Radio, Southampton, UK, September 2005.

[32] F. Kaltenberger, G. Steinboeck, R. Kloibhofer, R. Lieger, and
G. Humer, “A multi-band development platform for rapid
prototyping of MIMO systems,” in Proceedings of the ITG/IEEE
Workshop on Smart Antennas, Duisburg, Germany, April 2005.

[33] J.-K. Hwang, J.-D. Li, R.-L. Chung, and C.-Y. Chen, “Efficient
structure for FPGA implementation of a configurable
multipath fading channel emulator,” in Proceedings of the
International Symposium on Intelligent Signal Processing and
Communications (ISPACS ’06), pp. 481–484, Tottori, Japan,
December 2006.

[34] L. Rugini, P. Banelli, and G. Leus, “Simple equalization of
time-varying channels for OFDM,” IEEE Communications
Letters, vol. 9, no. 7, pp. 619–621, 2005.

	1. Introduction
	2. State of the Art
	3. Real-Time FPGA-Based Vehicular Channel Emulator
	4. IEEE 802.11p Reference Transceiver Model
	5. Experiments
	6. Conclusion
	Acknowledgments
	References

