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Abstract 

The exponential device growth in industrial Internet of things (IIoT) has a noticeable impact on the volume of data 
generated. Edge-cloud computing cooperation has been introduced to the IIoT to lessen the computational load 
on cloud servers and shorten the processing time for data. General programmable logic controllers (PLCs), which 
have been playing important roles in industrial control systems, start to gain the ability to process a large amount of 
industrial data and share the workload of cloud servers. This transforms them into edge-PLCs. However, the continu-
ous influx of multiple types of concurrent production data streams against the limited capacity of built-in memory in 
PLCs brings a huge challenge. Therefore, the ability to reasonably allocate memory resources in edge-PLCs to ensure 
data utilization and real-time processing has become one of the core means of improving the efficiency of industrial 
processes. In this paper, to tackle dynamic changes in arrival data rate over time at each edge-PLC, we propose to 
optimize memory allocation with Q-learning distributedly. The simulation experiments verify that the method can 
effectively reduce the data loss probability while improving the system performance.
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Introduction
Internet of things (IoT) devices promote the intellectu-
alization of industrial production and at the same time 
exponentially increase the amount of data to be handled 
and analyzed. The heavy burden on the central severs 
together with the transmission delay results in the ina-
bility to quickly and accurately obtain information from 
data. Edge computing appears to only share the workload 
placed on the central server and address the shortcom-
ing [1, 2]. Multiple edge servers (ESes) [3] are common in 
real applications which distribute data computing tasks 
closer to data sources and users. In some complicated 
scenarios, such as the industrial Internet of things and 
smart city Internet of things, the hierarchical architecture 

and edge-cloud computing cooperation turn out to be 
very important and efficient  [4, 5]. Thus, the industrial 
IoT supported by edge-cloud computing cooperation will 
potentially push traditional industries into a new stage of 
intelligence.

PLC is an electronic equipment used for digital opera-
tion in industrial production. It is in continuous progress 
to adapt to the complexity and uncertainty of modern 
industrial development. Modern PLCs gradually trans-
form into edge-PLCs as a result of combining traditional 
logic control with networking, data collection, and pro-
cessing  [6, 7]. Most PLCs have work memory and load 
memory for storing user programs and data, respectively. 
Due to the cost control and ability of the equipment itself, 
the storage capacity of an edge-PLC is limited compared 
with a huge amount of production data, monitoring data, 
and user data. Possible data loss will affect the reliability 
of data analysis results.
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This paper examines an intelligent factory’s industrial 
control system using edge-PLCs. These edge-PLCs are 
embedded in factory equipment, receiving data streams 
from internal or external sensors, and putting the data 
into a pre-allocated memory space for analyzing and 
processing. IoT devices and edge-PLCs are the two main 
types of entities in the proposed scenario, as shown in 
Fig.  1. Edge-PLCs function as distributed intelligent 
agents that process data requests and produce control 
commands to avoid the high cost of central server [8].

Due to flexible manufacturing, various parameters 
of the industrial environment are likely to change more 
frequently over time. The characteristics of the data flow 
for each particular time period will differ even though 
the overall trend of the data flow in the industrial pro-
cess may follow a particular type of distribution. In this 
case, the static memory allocation method for edge-PLCs 
is not able to achieve the optimal system performance, so 
it is necessary to study the dynamic allocation strategy 
of edge-PLC memory. We use a simple example to illus-
trate the importance of the dynamic memory allocation. 
As shown in Fig. 2, to simulate various real data flow in 

the manufacturing process, arrival data streams from Tp1 
to Tp4 are all produced using a Poisson distribution, with 
Tp1 having the maximum average arrival rate and Tp4 
having the minimum. It can be seen from the figure that 
the arrival data amount of Tp1 is not always maximal in 
all time periods, nor is the arrival number of Tp4 always 
minimal. When T = 1 , a large amount of data indicated 
by Tp1 arrives in the system, so it is necessary to allocate 
more memory space to Tp1 to reduce data loss probabil-
ity. However, if this allocation status is kept unchanged 
all the time, the system performance will decrease when 
T = 5 . Because at this time, the amount of data indicated 
by Tp2 increases significantly, while that of Tp1 decreases. 
Therefore, the allocation scheme should be adjusted to 
give more memory space to Tp2.

We need to analyze how to dynamically change the 
allocation instances of edge-PLC memory according to 
the amount of various types of data in the arriving data 
stream in each time period. The ultimate goal is to mini-
mize the overall data loss probability of the system and 
optimize the resource utilization under constraints of 
limited memory capacity. To accomplish this, we model 

Fig. 1  Application scenario of edge-PLC
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the issue as a Markov Decision Process (MDP) first. Then 
we apply reinforcement learning distributedly to inter-
act with the environment and learn from experience to 
obtain the optimal strategy, and put it into practice. The 
main contributions of this paper are:

•	 The continuous time is divided into discrete variables 
and modeled as MDP to fit the variability of the data 
stream.

•	 Q-learning based dynamic allocation algorithm 
is designed with appropriate reward function to 
improve performance.

•	 The experiments are carried out on a practical appli-
cation scenario, and prove that the algorithm can 
learn better allocation of each time period, to mini-
mize the data loss probability while improving the 
utilization of resources.

The remainder of this paper is arranged as follows: Sec-
tion II discusses approaches to solve resource allocation 
and scheduling problems and the advantages of rein-
forcement learning. Section III presents the mathemati-
cal models and the target problem. In Section IV, the 
detail of the dynamic allocation algorithm of edge-PLC 
memory, i.e., Q-learning based reinforcement learning, is 
explained. In Section V, the simulation experiment is car-
ried out based on the synthetic data set. Finally, Section 
VI summarizes this paper.

Related Work
Many previous studies have used heuristic algorithms 
to solve the problem of resource management  [9]. 
Chen et  al.  [10] proposed a distributed game theory 
approach to solve the computational migration prob-
lem. Wang et al.  [11] proposed the alternative direction 

method to realize the optimization of cache resource 
allocation strategy in mobile edge calculation. Most of 
the researches on task scheduling and resource allo-
cation focus on designing different and efficient static 
schemes  [12]. Taking the fog computing system as an 
example, Liu et al. [13] applied queueing theory to study 
the delay, energy consumption, and payment cost in the 
offloading process. They proposed a multi-objective opti-
mization problem with a minimized cost function and 
solved the problem by looking for offloading decisions. 
Wan et al. [14] propose the video segmentation algorithm 
based on the multi-modal linear features combination 
which divides the video sequence into segments of inter-
ests, and then extracts the video clips from these seg-
ments. A Lyapunov optimization-based energy-efficient 
offloading-decision algorithm is proposed in [15] to bal-
ance the energy-delay tradeoff based on various offload-
ing-decision criteria. Considering the impact of different 
hop wireless communication ranges on task completion 
in a mobile edge computing scenario, the authors intro-
duce the hop count k and select the neighboring nodes 
in the k-hop wireless communication range as the can-
didate edge servers  [16]. Deng et  al.  [17] discussed the 
tradeoff between delay and energy consumption in a fog-
cloud hybrid computing system and solved the related 
workload allocation problem accordingly. Dinh et al. [18] 
proposed an optimization framework for task offloading 
to optimize task allocation decisions and allocation of 
computing resources. This approach’s drawback is that 
to optimize performance, the problem must be recalcu-
lated against the model and re-debugged in the experi-
ment each time some aspects of the problem change. 
A multi-objective optimization with constraints that 
aims to maximize the acceptance rate and minimize the 
provider’s cloud cost is how some research approaches 

Fig. 2  The amount of various types of data arriving at different time periods
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resource allocation optimization in vehicular cloud com-
puting  [19]. However, the actual resource management 
problem becomes more and more complex. Firstly, the 
complexity of the environment leads to the difficulty of 
accurate modeling. In addition, the suggested method 
must perform well in different conditions given that the 
environment may be constantly changing.

Facing resource management problems, more and 
more studies suggest that reinforcement learning can be 
used to improve the method. DQN has been applied in 
task offloading and bandwidth allocation for multi-user 
mobile edge computing  [20], which considers where to 
execute tasks and how much bandwidth should be allo-
cated for dual communications. In [21], the authors take 
surrounding vehicles as a Resource Pool (RP). A distrib-
uted computation offloading strategy based on Deep 
Q-learning Network (DQN) is proposed to find the best 
offloading method to minimize the execution time of 
a compound task. Deng et  al.  [22] modeled the service 
resource allocation of the edge servers in edge comput-
ing as Markov Decision Process (MDP) and then used 
the reinforcement learning method to obtain the trained 
resource allocation strategy, which can always dynami-
cally generate appropriate resource allocation scheme 
according to the system state. Value-function-based algo-
rithms are widely used in reinforcement learning, these 
algorithms are more suitable for complex and changeable 
environments. Q-learning and SARSA are two classic 
algorithms. To address the issue of allocating radio net-
work resources, Kaur et  al.  [23] proposed a multi-agent 
model-free reinforcement learning scheme and adopted 
Q-learning of reinforcement learning and SARSA decen-
tralized cooperation to implement the resource alloca-
tion strategy under the presumption of enhancing energy 
efficiency and guaranteeing service quality. To maxi-
mize long-term advantages, Cui et  al.  [24] investigated 
the issue of dynamic resource allocation for multi-UAV 
communication networks. To simulate the dynamics and 
uncertainty in the environment, the long-term resource 
allocation problem is made into a random game problem 
with the maximum expected return, in which each UAV 
is an agent and each resource allocation scheme corre-
sponds to the actions taken by the UAV, a multi-agent 
reinforcement learning framework is proposed. Each 
agent finds its own best strategy through learning accord-
ing to its local observation, each agent independently 
executes a decision algorithm, but shares a common 
structure based on Q-learning. Baek et al.  [25] aimed at 
the problem that a single fog node could not perform 
computationally intensive tasks in fog calculation, they 
proposed to use the deep reinforcement learning method 
to study the design of joint task offloading and resource 
allocation while ensuring user service quality. Their 

approach is to model the problem as a partially observ-
able random game, using a deep recursive Q network 
approach to approximate the optimal value function to 
maximize the local reward for each fog node.

However, few references have targeted at the problem 
of PLC memory allocation for varying data flow in indus-
trial Internet of things. Most existing work uses static 
allocation plans. Therefore, a light-weight and efficient 
dynamic allocation method is an emerging demand.

Problem Formulation and System Model
Description of dynamic resource allocation
Since there is no central server, each edge-PLC makes its 
decision distributedly. We consider that the total mem-
ory space of a single edge-PLC is divided into N memory 
blocks of the same size, and these memory blocks are 
allocated to m types of data. The allocated space can-
not be greater than the total memory capacity of the 
PLC. Continuous time is divided into discrete variables 
t = 0, 1, 2, ..., n , and the duration of each time period is T. 
The real-time arrival rate of data in different time peri-
ods is disparate, so it is necessary to allocate appropriate 
memory space for the data that is about to arrive within 
each T. That is, the allocation of memory resources will 
change dynamically with the change of data arrival rate 
in different time periods, to achieve the effectiveness of 
adaptive resource allocation. As shown in Fig.  3, in an 
industrial scene where edge-PLCs are used, the memory 
partition of a single edge-PLC will change according to 
the data stream that will arrive in different time peri-
ods. The squares of four colors in the figure correspond 
to the four types of data in Fig.  2 respectively, and the 
size change of the squares represents the change of the 
memory space allocated to such data. m types of data in 
each T are likely to arrive randomly, and these data types 
share the memory of the PLC. We redistribute the mem-
ory space of the PLC for the data in the next time slice at 
every time t so that the data loss probability in each time 
slice is minimized, and then the global loss probability is 
also minimized.

We assume that each type of data is processed indepen-
dently, and use S1, S2, ..., Sm respectively represents the 
processing unit of each type of data. Each type of data can 
only be stored and processed by the corresponding type 
of memory space and processing unit, and the processing 
unit can process only one unit of data at a time. When 
data is waiting for processing in memory, it follows the 
queuing rule of first come, first served. When any data 
arrives, if the corresponding processing unit Si is idle, it 
is assigned to Si . If the same type of data is already pre-
sent in the Si , the system will try to store the data in the 
memory block if there is room for it. However, the input 
data is discarded if there is no room in the designated 
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memory block. The memory occupied by the data is only 
freed after the data has been processed. Although the 
queue and processing unit of each type of data are inde-
pendent of each other, the memory space of each type of 
data is influenced by one another because the whole PLC 
memory is shared. We regard the whole system as a com-
plete environment, and all types of data are analyzed in 
the model. At each time t, a memory allocation strategy is 
chosen for the data arriving in the next time period. This 
strategy includes the memory space allocated to each 
type of data, and then the loss probability of each type 
of data and the overall data loss probability of the system 
are calculated according to the data volume, allocation 
method, and real-time processing rate of the PLC.

Vector Pt = (n1t , n
2
t , ..., n

m
t ) represents the resource 

allocation method at time t. In fact, the memory space 
allocated to Tpi at time t is lit = nit ∗ xi . And at(at ∈ A) 
represents the resource allocation strategy adopted at 
time t. And, A contains all possible memory partitioning 
method, that is, every item of A is a vector Pt , then the 
resource allocation in the next period Pt+1 = at , where 
the definition of relevant variables is shown in Table 1.

Establish the MDP model
Data arrival and processing take place over several time 
periods, which requires careful consideration. The allo-
cation strategy chosen at the last minute determines the 
resource allocation plan for each time period. MDP can 
be used to describe this process, and Table  1 provides 

definitions of key variables that are used. To be in accord-
ance with other work adopting reinforcement learning, 
we regard each edge-PLC as an intelligent agent.

(1)	State space

st = (t,Pt) represents the state of the system at the 
beginning of time t. In the same industrial production 
process, the data flow generated by the equipment during 
the same time period across days is similar. In the learn-
ing phase, the agent learns the most appropriate memory 

Fig. 3  System model of dynamic memory allocation of edge-PLCs

Table 1  Symbolic variables used by the system model

Variable Meaning

Tpi Data type i

lit Absolute memory capacity allocated to Tpi at time t

xi The actual size of Tpi type data

nit The allocated data unit quantity for Tpi at time t

m The total number of data types that exist in the system

Pt The partition of memory at time t.

S The set of all the states

A The set of all the actions

Rt+1 The reward value corresponding to (st , at)

Mem Edge PLC memory maximum capacity

Plossit Loss probability of Tpi between t and t + 1

Arit The amount of Tpi that arrives between t and t + 1

lossit The amount of Tpi that is lost between t and t + 1



Page 6 of 14Fu et al. Journal of Cloud Computing           (2022) 11:73 

allocation method for each time period of the day, that is, 
which allocation method should be adopted at each time 
t. The results of this learning can then be used to guide 
the rational allocation of resources in subsequent indus-
trial production. The action taken at the current moment 
determines the allocation method in the next time slice, 
which in turn determines the amount of data still waiting 
in the queue for processing at the next moment. These data 
should also be considered when selecting the action at the 
next moment, so the state at the current moment will affect 
the state and action at the next moment.

(2)	Action space

at(at ∈ A) is used to represent the actions taken by the 
agent under the state st . The allocation of memory space is 
constrained due to the limited number of data types and 
available memory. All allocation methods can be found as 
action space. The action space includes all possible combi-
nations of the amount of various types of data that can be 
stored simultaneously in the memory of the PLC. We can 
also eliminate some allocation methods that are known in 
advance to have poor performance, such as having too little 
memory allocated to each type of data.

(3)	Reward function

At the end of each time slice, the data loss probability can 
be calculated, and the reward function can be defined as: if 
the agent takes an action and the data loss probability for 
that time period is 0, the reward value for that action in 
the current state is positive. At this point, the reward value 
should be inversely proportional to the allocated mem-
ory space capacity. The less memory space occupied, the 
greater the reward value is. The reward value is the remain-
ing memory space that has not been allocated to any kind 
of data, (st , at) corresponds to a reward value of

The reward value is negative if the probability of data 
loss is greater than 0. The reward value is inversely pro-
portional to the sum of the loss probability of all types 
of data in each time period. The larger the loss probabil-
ity is, the smaller the reward value is. Here, the negative 
value of the sum of the loss probability of all types of data 
is taken as the reward value. In this case, the reward value 
corresponding to (st , at) is

(1)Rt+1 = Mem−

m

i=1

lit

(2)Rt+1 = −

m∑
i=1

Plossit

A sequence seq = [st , at , st+1, at+1, ...] at each moment 
t can be obtained according to the state st and strategy 
π at the current moment. The cumulative return of this 
sequence can be expressed as

The agent should consider both the immediate and long-
term rewards when calculating the total return, which 
is why γ is the discount factor. However, the longer the 
interval is, the more inaccurate the future reward value 
will be. Therefore, discount factors should be used to 
reduce the proportion of future rewards in current 
returns.

Because strategy π is a probability distribution, there 
may be a variety of different seq, using the expectation 
of Gt to evaluate the cumulative return of state st = s , as 
shown in (5):

Given a strategy β , ρβ represents the probability density 
function of β , and the expected cumulative return of 
strategy π is

The ultimate goal is to maximize the cumulative return 
expectation, so the problem turns into finding the strat-
egy π∗ in (7):

Proposed solutions
Reinforcement learning
Reinforcement learning can solve problems in a complex 
environment where the model is unknown, evaluate the 
value of the current behavior through interaction with 
the environment, and then improve the next behavior to 
achieve the final goal. In the scenario we proposed, the 
agent can continuously improve its behavior by evaluat-
ing performance indicators such as data loss probability 
and resource utilization, to achieve better allocation of 
edge-PLC memory resources. And reinforcement learning 
is suitable for the analysis of time series data, the current 

(3)Plossit =
lossit

Arit

(4)Gt = Rt+1 + γRt+2 + ... =

∞∑
k=0

γ kRt+k+1

(5)Qπ (s, a) = Eπ [

∞∑
k=0

γ kRt+k+1|st = s, at = a]

(6)
Uβ(π) =

∫

x∈S

∫

y∈A
ρβ(x)Qπ (x, y)dxdy

=Ex∼ρβ ,y∼β [Qπ (x, y)]

(7)π∗ = arg max
π

Uβ(π)
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action will have an impact on subsequent results. Because 
of this, this paper analyzes the allocation of memory 
resources using reinforcement learning to discover the 
best strategy through interaction with the environment 
and implements the adaptive dynamic allocation strategy. 
This is done to effectively deal with the change in data 
arrival rate in different time periods.

Reinforcement learning algorithms include model-
based methods and model-free methods. The model-
based method must know the state transition probability, 
but in the resource allocation system, due to the random-
ness and uncertainty of the process, the accurate state 
transition probability matrix cannot be obtained.

The proposed Q‑learning based algorithm
Q-learning is an off-policy learning algorithm in rein-
forcement learning. It can explore more states than 
SARSA and its behavior strategy is incompatible with 
the target strategy. In the scene studied in this paper, 
there are many optional actions, and the results of dif-
ferent actions are quite different. To make the algorithm 
find the global optimal solution as much as possible, and 
also learn some “unfavorable” actions to the target in 
the learning stage, to prevent the subsequent selection 
of these actions, Q-learning is more suitable to solve the 
problems proposed in this paper. The model-free method 
of Q-learning is considered to solve the problem. The 
reasons for using the Q-learning method are as follows:

(1)	 Q-learning algorithm has good flexibility and is 
self-adaptive. It can dynamically adjust the memory 
resource allocation scheme according to the arrival 
rates of data flows at different time periods.

(2)	 In the Monte-Carlo method of reinforcement learning, 
the experience update can only be carried out after the 
complete resource allocation process from the initial 
state to the termination state is completed each time. 
If the complete resource allocation process takes a 
long time, there will be a large update delay. Temporal-
Difference methods can be updated immediately after 
a time step, so it has a wider application range, and 
Q-learning is one of Temporal-Difference methods.

(3)	 Q-learning is an algorithm based on a value func-
tion, which only needs to describe and solve prob-
lems through the state-action pair of parameters, 
while the strategy-based algorithm needs to be 
trained with the same strategy to obtain an appro-
priate model. However, in the scene proposed in 
this paper, uncertainty and volatility are large, so the 
strategy-based iterative method is not applicable.

The updated formula of the Q-learning algorithm’s 
state-action value function (Q value) is

Where α(α ∈ [0, 1]) is the learning rate. This value rep-
resents the extent to which the old value is covered in 
the learning process. The larger α is, the less influence 
the previous learning experience has on the subsequent 
decision.

The process of the Q-learning algorithm is shown 
in Fig.  4, where the ε − greedy strategy is given, 
ε(0 < ε < 1) , and a number between 0 and 1 will be ran-
domly generated in the algorithm before the agent makes 
a decision each time. If this random number is less than 
ε , the agent will select the action with the largest Q value 
corresponding to the current state according to the accu-
mulated experience; otherwise, the agent will randomly 
select an action in the action space for execution. In other 
words, the agent has the probability of ε to make deci-
sions based on experience, and the probability of 1− ε to 
randomly select actions to explore new optimal solutions 
beyond the current experience. Before the agent starts 
the learning process, the Q table is first initialized, then 
in each episode, the algorithm starts from the initial state. 
At each state, the agent selects an action based on the 
ε − greedy strategy, obtains the reward value of the state-
action pair, and the environment transitions to the next 
state, and then the Q value is updated according to (8). 
After the end of this state, the next state is regarded as 
the current state, and the operation of “action selection” 
is repeated until the current state is terminated, then this 
episode terminates. The above operation is repeated in 
the next episode until all Q values converge or the itera-
tion termination condition is reached.

Based on Q-learning, we propose Dynamic Mem-
ory Resource Allocation (DMRA) algorithm for edge-
PLCs. DMRA is located in the edge server which is 
close to edge-PLCs because it requires large computa-
tion power and sensitive to delay. Its process is shown 
in algorithm 1. Firstly, the Q value table is initialized, 
because this Q value table is updated by the agent in 
the process of continuous learning and accumulation 
of experience, the main purpose of initialization is to 
determine the action space in the table. And in the 
subsequent process, the Q value of each state under all 
actions is written into the table. Each iteration starts 
from the initial state. At each time t, the agent first 
determines whether the current state has been stored 
in the Q table, if not, it adds the state to the table. 
Then, the ε − greedy strategy is adopted to select the 
allocation method at the current moment. The reward 
value of the action is calculated according to (1) and 
(2). The state at the next moment is obtained, then 
the Q value is updated. After that, the program enters 
the next moment. Once the time is up, a complete 

(8)Q(st ,at )←Q(st ,at ) + �[Rt+1 + �max
a

Q(st+1,a) − Q(st ,at )]
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iteration process is completed, and the next iteration 
will continue. When the termination condition of the 
iteration is reached, the program will be terminated.

Experiments
Experimental setup
In order to provide more realistic performance evalu-
ations, we fully account for reality in the experiment 
and simulate the arrival data flow as well as the PLC’s 
processing power for different types of data. Pro-
duction data flows are generated in the same indus-
trial environment for ten days. In a real scenario, IoT 
devices connected to different servers are almost the 
same kind. And in the same industrial production pro-
cess, the difference in the data flow rates generated by 
the devices at the same time every day will be relatively 
small. To make the data as close to reality as possible, 
the data set refers to the transmission data size of the 
four types of industrial equipment collected in the lit-
erature  [6], as shown in Table 2. The synthetic data set 
is simulated by the above conditions. To better show 
the experimental results, this experiment considers the 
allocation of the edge-PLC memory capacity of 10kB 
and uses one hour as a time slice to study the memory 
allocation strategy for each day. The average arrival 

Fig. 4  Q-learning algorithm flow chart

Algorithm 1 Dynamic Memory Resource Allocation for edge-PLC (DMRA)
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rate of data in each time slice of a day in the simulation 
data set is shown in Fig.  5, where the data on device 
types 1 to 4 are Tp1 ∼ Tp4 . And the learning rate and 
discount factor of the DMRA algorithm are set to 0.01 
and 0.9, respectively. The performance is compared 
with two baseline methods, i.e., greedy and Stackel-
berg game-based [26].

Simulation results and analysis

(1)	The changing trend of the total loss probability of all 
data flows during the reinforcement learning training 
process

Table 2  Four types of parameters of factory equipment

Device type Device name Amount 
of data

1 Heat exchanger Heat-HR-A3-V52 8B

2 Smart meters Elemeter-LC-EX8016 18B

3 Door system door-DGM-V52 20B

4 Power supply Power-BYD-V52 24B

Fig. 5  The average rate of arrival in each time period

Fig. 6  The total data loss probability of each period in the training process



Page 10 of 14Fu et al. Journal of Cloud Computing           (2022) 11:73 

Figure 6 shows the sum of all types of data loss prob-
ability in each iteration of the DMRA algorithm. It can be 
seen that after a certain number of iterations, the agent 
gradually finds the optimal solution. The algorithm uses 
the ε − greedy strategy, the agent may randomly take 
actions every time, so the result is an oscillating curve. 
However, because each decision made by the agent will 
have an impact on the corresponding Q value, the experi-
ment’s ultimate aim is to develop a Q value table that will 
be used to direct future memory allocation. In this exper-
iment, to speed up the convergence rate of the Q-value 
table, some cases where too little memory space is allo-
cated to each type of data are removed when initializing 
the action space, the performance of these allocation 
methods will be significantly poorer.

(2)	The proportion of the amount of data arriving in 
each time period and the proportion of the amount 
of data that can be stored in the allocated space

After the DMRA algorithm trains the Q table, a new 
piece of data simulated under the same conditions is 
used to test the result of memory allocation based on 
the Q table. Figure 7(a) shows the proportion of various 
types of data in the data stream that arrive in each time 
period of the day. We can see that Tp1 had the most of 
the amount of data in the first 14 hours, followed closely 
by Tp2 and Tp3 , and Tp4 had the least. But, the propor-
tions of Tp1 and Tp3 decrease from the 15th to the 20th 
hour, while the proportions of Tp2 and Tp4 show an 
increase. In the 21st and 22nd hours, the proportion of 
Tp3 increases significantly. In the last two hours, the pro-
portion of Tp1 becomes the largest.

Let this new data select the action with the largest Q 
value corresponding to the current state in the Q table 
at each time period. Figure  7(b) displays the percent-
age of the various data types that can be stored after the 
memory is divided in each time period. As can be seen 
from the figure, the changing trend of the memory par-
titioning method in some time periods is not exactly the 
same as the changing trend of the arriving data stream. 
This is because memory resource allocation is not only 
affected by the current time period. The data waiting 
for processing in the queue in the previous time period, 
may still be waiting in the current time period. So these 
data will still occupy memory space and keep waiting. 
The data that is currently in the queue must also be 
taken into account when allocating memory resources. 
As a result, the allocation of memory resources depends 
on the amount of data and the allocation strategy used 
in the previous and the current time period. Even if the 
data stream is the same in some time periods, the mem-
ory division method may be different.

(3)	Comparison of loss probability of the same data 
stream in random strategy, greedy algorithm, and 
DMRA algorithm

Figure  8(a) and  (b) respectively compare the data loss 
probability of the actions selected by the agent accord-
ing to the random strategy, greedy algorithm, and DMRA 
algorithm at each time period and the total loss probabil-
ity of all time periods. It can be seen that the loss prob-
ability caused by the random strategy and the greedy 
algorithm is higher than that caused by the DMRA algo-
rithm at each time period. The combined data loss prob-
ability of these two approaches is significantly higher than 
that of the DMRA algorithm, indicating that the proposed 
approach can successfully achieve the goal of lowering 
data loss probability. In the majority of time periods, the 
DMRA algorithm forces the agent to choose the action 

Fig. 7  a The proportion of the amount of each type of data that 
arrives. b The proportion of the amount of different types of data that 
can be stored in the allocated memory space
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with the lowest loss probability, but there are a few when 
the chosen actions still result in partial data loss. This 
may be because the data arrival rate is too high relative 
to the data processing rate in certain time periods. At this 
time, the reason for the data loss is not only the size of 
the allocated memory space, but the more important fac-
tor is the PLC processing capability does not match the 
data arrival rate. Figure 9 shows the sum of the data loss 
probability for all time periods of Tp1 at different average 
processing rates when the agent selects actions for the 
same data stream according to the same Q table. It is the 
average value after the experiment has been repeated for 
50 times. When the processing rate is small, even if the 
strategy is selected in the same way, it will cause a larger 

loss probability, which shows that the loss probability will 
be affected by the data processing rate.

(4)	Performance comparison between static allocation 
and dynamic allocation of memory resources

Figure  10 compares the total memory space occupied 
by the actions selected by the dynamic memory resource 
allocation method and the space occupied by the optimal 
static allocation method calculated by the Markov chain 
method described in our previous work  [7] at each time 
period for processing the same piece of data. Because 
static allocation uses an unchanged allocation method, 
the amount of memory used over time is constant. Among 

Fig. 8  a The loss probability of each time period. b Total loss probability for all time periods
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them, the memory space used by dynamic allocation in 
each time period is significantly lower than that of static 
allocation, this is because the reward function is designed 
so that the action taking up less space is rewarded more for 
the same loss probability. In static allocation, the memory 
resource allocation needed for the time period with the 
most data is typically chosen as the final result to ensure 
that the loss probability of each time period is the smallest. 
However, during other time periods, this allocation will 
have more unused space for the data stream, which lowers 
the utilization of the resources assigned.

The experiment utilizes simulation data from the 
same day to test the program’s running time. As shown 
in Fig.  11, the DMRA algorithm trains the Q table and 
makes a strategy for the data of that day and is compared 
with the execution of the Markov chain method [7], the 
execution time is reduced by about half. Static allocation 

Fig. 9  Loss probability at different average processing rates

Fig. 10  Static allocation and dynamic allocation occupy memory space size

Fig. 11  Comparison of running time between Markov Chain and 
DMRA algorithm
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takes longer to run because it has to compare every 
memory resource allocation approach before settling on 
the best one. Therefore, even the static allocation method 
can find the allocation method that minimizes the loss 
probability, and the advantage of the dynamic allocation 
proposed in this paper is also greater.

Conclusion
In the memory resource allocation problem of the 
edge-PLC, because the various types of data streams 
generated by the industrial production system in dif-
ferent time periods are also different, if the allocation 
method is static, it may not achieve good performance. 
Therefore, we divide continuous time into discrete 
variables, analyze the arrival data stream of each time 
period, and consider changing the method of mem-
ory allocation with the change of arrival rates of data 
flow of different time periods to realize the adaptive 
dynamic allocation of memory resources. We model 
the problem as an MDP and design a dynamic allo-
cation algorithm of memory resources based on the 
Q-learning method of reinforcement learning to learn 
the most efficient allocation method for each time 
period. Reinforcement learning algorithms can inter-
act with dynamic environments and learn experiences, 
so even in different scenarios, this method can learn 
the best resource allocation method in that scenario. 
Simulation experiments show that the dynamic allo-
cation algorithm of memory resources can effectively 
improve system performance.
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