
Fu et al. Journal of Cloud Computing (2022) 11:73
https://doi.org/10.1186/s13677-022-00348-9

RESEARCH

Distributed reinforcement learning‑based
memory allocation for edge‑PLCs in industrial
IoT
Tingting Fu1, Yanjun Peng1, Peng Liu1, Haksrun Lao2* and Shaohua Wan3 

Abstract 

The exponential device growth in industrial Internet of things (IIoT) has a noticeable impact on the volume of data
generated. Edge-cloud computing cooperation has been introduced to the IIoT to lessen the computational load
on cloud servers and shorten the processing time for data. General programmable logic controllers (PLCs), which
have been playing important roles in industrial control systems, start to gain the ability to process a large amount of
industrial data and share the workload of cloud servers. This transforms them into edge-PLCs. However, the continu-
ous influx of multiple types of concurrent production data streams against the limited capacity of built-in memory in
PLCs brings a huge challenge. Therefore, the ability to reasonably allocate memory resources in edge-PLCs to ensure
data utilization and real-time processing has become one of the core means of improving the efficiency of industrial
processes. In this paper, to tackle dynamic changes in arrival data rate over time at each edge-PLC, we propose to
optimize memory allocation with Q-learning distributedly. The simulation experiments verify that the method can
effectively reduce the data loss probability while improving the system performance.

Keywords:  Industrial internet of things, Edge-PLC, Resource allocation, Q-learning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Internet of things (IoT) devices promote the intellectu-
alization of industrial production and at the same time
exponentially increase the amount of data to be handled
and analyzed. The heavy burden on the central severs
together with the transmission delay results in the ina-
bility to quickly and accurately obtain information from
data. Edge computing appears to only share the workload
placed on the central server and address the shortcom-
ing [1, 2]. Multiple edge servers (ESes) [3] are common in
real applications which distribute data computing tasks
closer to data sources and users. In some complicated
scenarios, such as the industrial Internet of things and
smart city Internet of things, the hierarchical architecture

and edge-cloud computing cooperation turn out to be
very important and efficient [4, 5]. Thus, the industrial
IoT supported by edge-cloud computing cooperation will
potentially push traditional industries into a new stage of
intelligence.

PLC is an electronic equipment used for digital opera-
tion in industrial production. It is in continuous progress
to adapt to the complexity and uncertainty of modern
industrial development. Modern PLCs gradually trans-
form into edge-PLCs as a result of combining traditional
logic control with networking, data collection, and pro-
cessing [6, 7]. Most PLCs have work memory and load
memory for storing user programs and data, respectively.
Due to the cost control and ability of the equipment itself,
the storage capacity of an edge-PLC is limited compared
with a huge amount of production data, monitoring data,
and user data. Possible data loss will affect the reliability
of data analysis results.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: haksrunlao@hotmail.com

2 Center of Engineering and Design, Chhong Cheng Chinese School, Phnom
Penh, Cambodia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00348-9&domain=pdf

Page 2 of 14Fu et al. Journal of Cloud Computing (2022) 11:73

This paper examines an intelligent factory’s industrial
control system using edge-PLCs. These edge-PLCs are
embedded in factory equipment, receiving data streams
from internal or external sensors, and putting the data
into a pre-allocated memory space for analyzing and
processing. IoT devices and edge-PLCs are the two main
types of entities in the proposed scenario, as shown in
Fig. 1. Edge-PLCs function as distributed intelligent
agents that process data requests and produce control
commands to avoid the high cost of central server [8].

Due to flexible manufacturing, various parameters
of the industrial environment are likely to change more
frequently over time. The characteristics of the data flow
for each particular time period will differ even though
the overall trend of the data flow in the industrial pro-
cess may follow a particular type of distribution. In this
case, the static memory allocation method for edge-PLCs
is not able to achieve the optimal system performance, so
it is necessary to study the dynamic allocation strategy
of edge-PLC memory. We use a simple example to illus-
trate the importance of the dynamic memory allocation.
As shown in Fig. 2, to simulate various real data flow in

the manufacturing process, arrival data streams from Tp1
to Tp4 are all produced using a Poisson distribution, with
Tp1 having the maximum average arrival rate and Tp4
having the minimum. It can be seen from the figure that
the arrival data amount of Tp1 is not always maximal in
all time periods, nor is the arrival number of Tp4 always
minimal. When T = 1 , a large amount of data indicated
by Tp1 arrives in the system, so it is necessary to allocate
more memory space to Tp1 to reduce data loss probabil-
ity. However, if this allocation status is kept unchanged
all the time, the system performance will decrease when
T = 5 . Because at this time, the amount of data indicated
by Tp2 increases significantly, while that of Tp1 decreases.
Therefore, the allocation scheme should be adjusted to
give more memory space to Tp2.

We need to analyze how to dynamically change the
allocation instances of edge-PLC memory according to
the amount of various types of data in the arriving data
stream in each time period. The ultimate goal is to mini-
mize the overall data loss probability of the system and
optimize the resource utilization under constraints of
limited memory capacity. To accomplish this, we model

Fig. 1  Application scenario of edge-PLC

Page 3 of 14Fu et al. Journal of Cloud Computing (2022) 11:73 	

the issue as a Markov Decision Process (MDP) first. Then
we apply reinforcement learning distributedly to inter-
act with the environment and learn from experience to
obtain the optimal strategy, and put it into practice. The
main contributions of this paper are:

•	 The continuous time is divided into discrete variables
and modeled as MDP to fit the variability of the data
stream.

•	 Q-learning based dynamic allocation algorithm
is designed with appropriate reward function to
improve performance.

•	 The experiments are carried out on a practical appli-
cation scenario, and prove that the algorithm can
learn better allocation of each time period, to mini-
mize the data loss probability while improving the
utilization of resources.

The remainder of this paper is arranged as follows: Sec-
tion II discusses approaches to solve resource allocation
and scheduling problems and the advantages of rein-
forcement learning. Section III presents the mathemati-
cal models and the target problem. In Section IV, the
detail of the dynamic allocation algorithm of edge-PLC
memory, i.e., Q-learning based reinforcement learning, is
explained. In Section V, the simulation experiment is car-
ried out based on the synthetic data set. Finally, Section
VI summarizes this paper.

Related Work
Many previous studies have used heuristic algorithms
to solve the problem of resource management [9].
Chen et al. [10] proposed a distributed game theory
approach to solve the computational migration prob-
lem. Wang et al. [11] proposed the alternative direction

method to realize the optimization of cache resource
allocation strategy in mobile edge calculation. Most of
the researches on task scheduling and resource allo-
cation focus on designing different and efficient static
schemes [12]. Taking the fog computing system as an
example, Liu et al. [13] applied queueing theory to study
the delay, energy consumption, and payment cost in the
offloading process. They proposed a multi-objective opti-
mization problem with a minimized cost function and
solved the problem by looking for offloading decisions.
Wan et al. [14] propose the video segmentation algorithm
based on the multi-modal linear features combination
which divides the video sequence into segments of inter-
ests, and then extracts the video clips from these seg-
ments. A Lyapunov optimization-based energy-efficient
offloading-decision algorithm is proposed in [15] to bal-
ance the energy-delay tradeoff based on various offload-
ing-decision criteria. Considering the impact of different
hop wireless communication ranges on task completion
in a mobile edge computing scenario, the authors intro-
duce the hop count k and select the neighboring nodes
in the k-hop wireless communication range as the can-
didate edge servers [16]. Deng et al. [17] discussed the
tradeoff between delay and energy consumption in a fog-
cloud hybrid computing system and solved the related
workload allocation problem accordingly. Dinh et al. [18]
proposed an optimization framework for task offloading
to optimize task allocation decisions and allocation of
computing resources. This approach’s drawback is that
to optimize performance, the problem must be recalcu-
lated against the model and re-debugged in the experi-
ment each time some aspects of the problem change.
A multi-objective optimization with constraints that
aims to maximize the acceptance rate and minimize the
provider’s cloud cost is how some research approaches

Fig. 2  The amount of various types of data arriving at different time periods

Page 4 of 14Fu et al. Journal of Cloud Computing (2022) 11:73

resource allocation optimization in vehicular cloud com-
puting [19]. However, the actual resource management
problem becomes more and more complex. Firstly, the
complexity of the environment leads to the difficulty of
accurate modeling. In addition, the suggested method
must perform well in different conditions given that the
environment may be constantly changing.

Facing resource management problems, more and
more studies suggest that reinforcement learning can be
used to improve the method. DQN has been applied in
task offloading and bandwidth allocation for multi-user
mobile edge computing [20], which considers where to
execute tasks and how much bandwidth should be allo-
cated for dual communications. In [21], the authors take
surrounding vehicles as a Resource Pool (RP). A distrib-
uted computation offloading strategy based on Deep
Q-learning Network (DQN) is proposed to find the best
offloading method to minimize the execution time of
a compound task. Deng et al. [22] modeled the service
resource allocation of the edge servers in edge comput-
ing as Markov Decision Process (MDP) and then used
the reinforcement learning method to obtain the trained
resource allocation strategy, which can always dynami-
cally generate appropriate resource allocation scheme
according to the system state. Value-function-based algo-
rithms are widely used in reinforcement learning, these
algorithms are more suitable for complex and changeable
environments. Q-learning and SARSA are two classic
algorithms. To address the issue of allocating radio net-
work resources, Kaur et al. [23] proposed a multi-agent
model-free reinforcement learning scheme and adopted
Q-learning of reinforcement learning and SARSA decen-
tralized cooperation to implement the resource alloca-
tion strategy under the presumption of enhancing energy
efficiency and guaranteeing service quality. To maxi-
mize long-term advantages, Cui et al. [24] investigated
the issue of dynamic resource allocation for multi-UAV
communication networks. To simulate the dynamics and
uncertainty in the environment, the long-term resource
allocation problem is made into a random game problem
with the maximum expected return, in which each UAV
is an agent and each resource allocation scheme corre-
sponds to the actions taken by the UAV, a multi-agent
reinforcement learning framework is proposed. Each
agent finds its own best strategy through learning accord-
ing to its local observation, each agent independently
executes a decision algorithm, but shares a common
structure based on Q-learning. Baek et al. [25] aimed at
the problem that a single fog node could not perform
computationally intensive tasks in fog calculation, they
proposed to use the deep reinforcement learning method
to study the design of joint task offloading and resource
allocation while ensuring user service quality. Their

approach is to model the problem as a partially observ-
able random game, using a deep recursive Q network
approach to approximate the optimal value function to
maximize the local reward for each fog node.

However, few references have targeted at the problem
of PLC memory allocation for varying data flow in indus-
trial Internet of things. Most existing work uses static
allocation plans. Therefore, a light-weight and efficient
dynamic allocation method is an emerging demand.

Problem Formulation and System Model
Description of dynamic resource allocation
Since there is no central server, each edge-PLC makes its
decision distributedly. We consider that the total mem-
ory space of a single edge-PLC is divided into N memory
blocks of the same size, and these memory blocks are
allocated to m types of data. The allocated space can-
not be greater than the total memory capacity of the
PLC. Continuous time is divided into discrete variables
t = 0, 1, 2, ..., n , and the duration of each time period is T.
The real-time arrival rate of data in different time peri-
ods is disparate, so it is necessary to allocate appropriate
memory space for the data that is about to arrive within
each T. That is, the allocation of memory resources will
change dynamically with the change of data arrival rate
in different time periods, to achieve the effectiveness of
adaptive resource allocation. As shown in Fig. 3, in an
industrial scene where edge-PLCs are used, the memory
partition of a single edge-PLC will change according to
the data stream that will arrive in different time peri-
ods. The squares of four colors in the figure correspond
to the four types of data in Fig. 2 respectively, and the
size change of the squares represents the change of the
memory space allocated to such data. m types of data in
each T are likely to arrive randomly, and these data types
share the memory of the PLC. We redistribute the mem-
ory space of the PLC for the data in the next time slice at
every time t so that the data loss probability in each time
slice is minimized, and then the global loss probability is
also minimized.

We assume that each type of data is processed indepen-
dently, and use S1, S2, ..., Sm respectively represents the
processing unit of each type of data. Each type of data can
only be stored and processed by the corresponding type
of memory space and processing unit, and the processing
unit can process only one unit of data at a time. When
data is waiting for processing in memory, it follows the
queuing rule of first come, first served. When any data
arrives, if the corresponding processing unit Si is idle, it
is assigned to Si . If the same type of data is already pre-
sent in the Si , the system will try to store the data in the
memory block if there is room for it. However, the input
data is discarded if there is no room in the designated

Page 5 of 14Fu et al. Journal of Cloud Computing (2022) 11:73 	

memory block. The memory occupied by the data is only
freed after the data has been processed. Although the
queue and processing unit of each type of data are inde-
pendent of each other, the memory space of each type of
data is influenced by one another because the whole PLC
memory is shared. We regard the whole system as a com-
plete environment, and all types of data are analyzed in
the model. At each time t, a memory allocation strategy is
chosen for the data arriving in the next time period. This
strategy includes the memory space allocated to each
type of data, and then the loss probability of each type
of data and the overall data loss probability of the system
are calculated according to the data volume, allocation
method, and real-time processing rate of the PLC.

Vector Pt = (n1t , n
2
t , ..., n

m
t) represents the resource

allocation method at time t. In fact, the memory space
allocated to Tpi at time t is lit = nit ∗ xi . And at(at ∈ A)
represents the resource allocation strategy adopted at
time t. And, A contains all possible memory partitioning
method, that is, every item of A is a vector Pt , then the
resource allocation in the next period Pt+1 = at , where
the definition of relevant variables is shown in Table 1.

Establish the MDP model
Data arrival and processing take place over several time
periods, which requires careful consideration. The allo-
cation strategy chosen at the last minute determines the
resource allocation plan for each time period. MDP can
be used to describe this process, and Table 1 provides

definitions of key variables that are used. To be in accord-
ance with other work adopting reinforcement learning,
we regard each edge-PLC as an intelligent agent.

(1)	State space

st = (t,Pt) represents the state of the system at the
beginning of time t. In the same industrial production
process, the data flow generated by the equipment during
the same time period across days is similar. In the learn-
ing phase, the agent learns the most appropriate memory

Fig. 3  System model of dynamic memory allocation of edge-PLCs

Table 1  Symbolic variables used by the system model

Variable Meaning

Tpi Data type i

lit Absolute memory capacity allocated to Tpi at time t

xi The actual size of Tpi type data

nit The allocated data unit quantity for Tpi at time t

m The total number of data types that exist in the system

Pt The partition of memory at time t.

S The set of all the states

A The set of all the actions

Rt+1 The reward value corresponding to (st , at)

Mem Edge PLC memory maximum capacity

Plossit Loss probability of Tpi between t and t + 1

Arit The amount of Tpi that arrives between t and t + 1

lossit The amount of Tpi that is lost between t and t + 1

Page 6 of 14Fu et al. Journal of Cloud Computing (2022) 11:73

allocation method for each time period of the day, that is,
which allocation method should be adopted at each time
t. The results of this learning can then be used to guide
the rational allocation of resources in subsequent indus-
trial production. The action taken at the current moment
determines the allocation method in the next time slice,
which in turn determines the amount of data still waiting
in the queue for processing at the next moment. These data
should also be considered when selecting the action at the
next moment, so the state at the current moment will affect
the state and action at the next moment.

(2)	Action space

at(at ∈ A) is used to represent the actions taken by the
agent under the state st . The allocation of memory space is
constrained due to the limited number of data types and
available memory. All allocation methods can be found as
action space. The action space includes all possible combi-
nations of the amount of various types of data that can be
stored simultaneously in the memory of the PLC. We can
also eliminate some allocation methods that are known in
advance to have poor performance, such as having too little
memory allocated to each type of data.

(3)	Reward function

At the end of each time slice, the data loss probability can
be calculated, and the reward function can be defined as: if
the agent takes an action and the data loss probability for
that time period is 0, the reward value for that action in
the current state is positive. At this point, the reward value
should be inversely proportional to the allocated mem-
ory space capacity. The less memory space occupied, the
greater the reward value is. The reward value is the remain-
ing memory space that has not been allocated to any kind
of data, (st , at) corresponds to a reward value of

The reward value is negative if the probability of data
loss is greater than 0. The reward value is inversely pro-
portional to the sum of the loss probability of all types
of data in each time period. The larger the loss probabil-
ity is, the smaller the reward value is. Here, the negative
value of the sum of the loss probability of all types of data
is taken as the reward value. In this case, the reward value
corresponding to (st , at) is

(1)Rt+1 = Mem−

m

i=1

lit

(2)Rt+1 = −

m∑
i=1

Plossit

A sequence seq = [st , at , st+1, at+1, ...] at each moment
t can be obtained according to the state st and strategy
π at the current moment. The cumulative return of this
sequence can be expressed as

The agent should consider both the immediate and long-
term rewards when calculating the total return, which
is why γ is the discount factor. However, the longer the
interval is, the more inaccurate the future reward value
will be. Therefore, discount factors should be used to
reduce the proportion of future rewards in current
returns.

Because strategy π is a probability distribution, there
may be a variety of different seq, using the expectation
of Gt to evaluate the cumulative return of state st = s , as
shown in (5):

Given a strategy β , ρβ represents the probability density
function of β , and the expected cumulative return of
strategy π is

The ultimate goal is to maximize the cumulative return
expectation, so the problem turns into finding the strat-
egy π∗ in (7):

Proposed solutions
Reinforcement learning
Reinforcement learning can solve problems in a complex
environment where the model is unknown, evaluate the
value of the current behavior through interaction with
the environment, and then improve the next behavior to
achieve the final goal. In the scenario we proposed, the
agent can continuously improve its behavior by evaluat-
ing performance indicators such as data loss probability
and resource utilization, to achieve better allocation of
edge-PLC memory resources. And reinforcement learning
is suitable for the analysis of time series data, the current

(3)Plossit =
lossit

Arit

(4)Gt = Rt+1 + γRt+2 + ... =

∞∑
k=0

γ kRt+k+1

(5)Qπ (s, a) = Eπ [

∞∑
k=0

γ kRt+k+1|st = s, at = a]

(6)
Uβ(π) =

∫

x∈S

∫

y∈A
ρβ(x)Qπ (x, y)dxdy

=Ex∼ρβ ,y∼β [Qπ (x, y)]

(7)π∗ = arg max
π

Uβ(π)

Page 7 of 14Fu et al. Journal of Cloud Computing (2022) 11:73 	

action will have an impact on subsequent results. Because
of this, this paper analyzes the allocation of memory
resources using reinforcement learning to discover the
best strategy through interaction with the environment
and implements the adaptive dynamic allocation strategy.
This is done to effectively deal with the change in data
arrival rate in different time periods.

Reinforcement learning algorithms include model-
based methods and model-free methods. The model-
based method must know the state transition probability,
but in the resource allocation system, due to the random-
ness and uncertainty of the process, the accurate state
transition probability matrix cannot be obtained.

The proposed Q‑learning based algorithm
Q-learning is an off-policy learning algorithm in rein-
forcement learning. It can explore more states than
SARSA and its behavior strategy is incompatible with
the target strategy. In the scene studied in this paper,
there are many optional actions, and the results of dif-
ferent actions are quite different. To make the algorithm
find the global optimal solution as much as possible, and
also learn some “unfavorable” actions to the target in
the learning stage, to prevent the subsequent selection
of these actions, Q-learning is more suitable to solve the
problems proposed in this paper. The model-free method
of Q-learning is considered to solve the problem. The
reasons for using the Q-learning method are as follows:

(1)	 Q-learning algorithm has good flexibility and is
self-adaptive. It can dynamically adjust the memory
resource allocation scheme according to the arrival
rates of data flows at different time periods.

(2)	 In the Monte-Carlo method of reinforcement learning,
the experience update can only be carried out after the
complete resource allocation process from the initial
state to the termination state is completed each time.
If the complete resource allocation process takes a
long time, there will be a large update delay. Temporal-
Difference methods can be updated immediately after
a time step, so it has a wider application range, and
Q-learning is one of Temporal-Difference methods.

(3)	 Q-learning is an algorithm based on a value func-
tion, which only needs to describe and solve prob-
lems through the state-action pair of parameters,
while the strategy-based algorithm needs to be
trained with the same strategy to obtain an appro-
priate model. However, in the scene proposed in
this paper, uncertainty and volatility are large, so the
strategy-based iterative method is not applicable.

The updated formula of the Q-learning algorithm’s
state-action value function (Q value) is

Where α(α ∈ [0, 1]) is the learning rate. This value rep-
resents the extent to which the old value is covered in
the learning process. The larger α is, the less influence
the previous learning experience has on the subsequent
decision.

The process of the Q-learning algorithm is shown
in Fig. 4, where the ε − greedy strategy is given,
ε(0 < ε < 1) , and a number between 0 and 1 will be ran-
domly generated in the algorithm before the agent makes
a decision each time. If this random number is less than
ε , the agent will select the action with the largest Q value
corresponding to the current state according to the accu-
mulated experience; otherwise, the agent will randomly
select an action in the action space for execution. In other
words, the agent has the probability of ε to make deci-
sions based on experience, and the probability of 1− ε to
randomly select actions to explore new optimal solutions
beyond the current experience. Before the agent starts
the learning process, the Q table is first initialized, then
in each episode, the algorithm starts from the initial state.
At each state, the agent selects an action based on the
ε − greedy strategy, obtains the reward value of the state-
action pair, and the environment transitions to the next
state, and then the Q value is updated according to (8).
After the end of this state, the next state is regarded as
the current state, and the operation of “action selection”
is repeated until the current state is terminated, then this
episode terminates. The above operation is repeated in
the next episode until all Q values converge or the itera-
tion termination condition is reached.

Based on Q-learning, we propose Dynamic Mem-
ory Resource Allocation (DMRA) algorithm for edge-
PLCs. DMRA is located in the edge server which is
close to edge-PLCs because it requires large computa-
tion power and sensitive to delay. Its process is shown
in algorithm 1. Firstly, the Q value table is initialized,
because this Q value table is updated by the agent in
the process of continuous learning and accumulation
of experience, the main purpose of initialization is to
determine the action space in the table. And in the
subsequent process, the Q value of each state under all
actions is written into the table. Each iteration starts
from the initial state. At each time t, the agent first
determines whether the current state has been stored
in the Q table, if not, it adds the state to the table.
Then, the ε − greedy strategy is adopted to select the
allocation method at the current moment. The reward
value of the action is calculated according to (1) and
(2). The state at the next moment is obtained, then
the Q value is updated. After that, the program enters
the next moment. Once the time is up, a complete

(8)Q(st ,at)←Q(st ,at) + �[Rt+1 + �max
a

Q(st+1,a) − Q(st ,at)]

Page 8 of 14Fu et al. Journal of Cloud Computing (2022) 11:73

iteration process is completed, and the next iteration
will continue. When the termination condition of the
iteration is reached, the program will be terminated.

Experiments
Experimental setup
In order to provide more realistic performance evalu-
ations, we fully account for reality in the experiment
and simulate the arrival data flow as well as the PLC’s
processing power for different types of data. Pro-
duction data flows are generated in the same indus-
trial environment for ten days. In a real scenario, IoT
devices connected to different servers are almost the
same kind. And in the same industrial production pro-
cess, the difference in the data flow rates generated by
the devices at the same time every day will be relatively
small. To make the data as close to reality as possible,
the data set refers to the transmission data size of the
four types of industrial equipment collected in the lit-
erature [6], as shown in Table 2. The synthetic data set
is simulated by the above conditions. To better show
the experimental results, this experiment considers the
allocation of the edge-PLC memory capacity of 10kB
and uses one hour as a time slice to study the memory
allocation strategy for each day. The average arrival

Fig. 4  Q-learning algorithm flow chart

Algorithm 1 Dynamic Memory Resource Allocation for edge-PLC (DMRA)

Page 9 of 14Fu et al. Journal of Cloud Computing (2022) 11:73 	

rate of data in each time slice of a day in the simulation
data set is shown in Fig. 5, where the data on device
types 1 to 4 are Tp1 ∼ Tp4 . And the learning rate and
discount factor of the DMRA algorithm are set to 0.01
and 0.9, respectively. The performance is compared
with two baseline methods, i.e., greedy and Stackel-
berg game-based [26].

Simulation results and analysis

(1)	The changing trend of the total loss probability of all
data flows during the reinforcement learning training
process

Table 2  Four types of parameters of factory equipment

Device type Device name Amount
of data

1 Heat exchanger Heat-HR-A3-V52 8B

2 Smart meters Elemeter-LC-EX8016 18B

3 Door system door-DGM-V52 20B

4 Power supply Power-BYD-V52 24B

Fig. 5  The average rate of arrival in each time period

Fig. 6  The total data loss probability of each period in the training process

Page 10 of 14Fu et al. Journal of Cloud Computing (2022) 11:73

Figure 6 shows the sum of all types of data loss prob-
ability in each iteration of the DMRA algorithm. It can be
seen that after a certain number of iterations, the agent
gradually finds the optimal solution. The algorithm uses
the ε − greedy strategy, the agent may randomly take
actions every time, so the result is an oscillating curve.
However, because each decision made by the agent will
have an impact on the corresponding Q value, the experi-
ment’s ultimate aim is to develop a Q value table that will
be used to direct future memory allocation. In this exper-
iment, to speed up the convergence rate of the Q-value
table, some cases where too little memory space is allo-
cated to each type of data are removed when initializing
the action space, the performance of these allocation
methods will be significantly poorer.

(2)	The proportion of the amount of data arriving in
each time period and the proportion of the amount
of data that can be stored in the allocated space

After the DMRA algorithm trains the Q table, a new
piece of data simulated under the same conditions is
used to test the result of memory allocation based on
the Q table. Figure 7(a) shows the proportion of various
types of data in the data stream that arrive in each time
period of the day. We can see that Tp1 had the most of
the amount of data in the first 14 hours, followed closely
by Tp2 and Tp3 , and Tp4 had the least. But, the propor-
tions of Tp1 and Tp3 decrease from the 15th to the 20th
hour, while the proportions of Tp2 and Tp4 show an
increase. In the 21st and 22nd hours, the proportion of
Tp3 increases significantly. In the last two hours, the pro-
portion of Tp1 becomes the largest.

Let this new data select the action with the largest Q
value corresponding to the current state in the Q table
at each time period. Figure 7(b) displays the percent-
age of the various data types that can be stored after the
memory is divided in each time period. As can be seen
from the figure, the changing trend of the memory par-
titioning method in some time periods is not exactly the
same as the changing trend of the arriving data stream.
This is because memory resource allocation is not only
affected by the current time period. The data waiting
for processing in the queue in the previous time period,
may still be waiting in the current time period. So these
data will still occupy memory space and keep waiting.
The data that is currently in the queue must also be
taken into account when allocating memory resources.
As a result, the allocation of memory resources depends
on the amount of data and the allocation strategy used
in the previous and the current time period. Even if the
data stream is the same in some time periods, the mem-
ory division method may be different.

(3)	Comparison of loss probability of the same data
stream in random strategy, greedy algorithm, and
DMRA algorithm

Figure 8(a) and (b) respectively compare the data loss
probability of the actions selected by the agent accord-
ing to the random strategy, greedy algorithm, and DMRA
algorithm at each time period and the total loss probabil-
ity of all time periods. It can be seen that the loss prob-
ability caused by the random strategy and the greedy
algorithm is higher than that caused by the DMRA algo-
rithm at each time period. The combined data loss prob-
ability of these two approaches is significantly higher than
that of the DMRA algorithm, indicating that the proposed
approach can successfully achieve the goal of lowering
data loss probability. In the majority of time periods, the
DMRA algorithm forces the agent to choose the action

Fig. 7  a The proportion of the amount of each type of data that
arrives. b The proportion of the amount of different types of data that
can be stored in the allocated memory space

Page 11 of 14Fu et al. Journal of Cloud Computing (2022) 11:73 	

with the lowest loss probability, but there are a few when
the chosen actions still result in partial data loss. This
may be because the data arrival rate is too high relative
to the data processing rate in certain time periods. At this
time, the reason for the data loss is not only the size of
the allocated memory space, but the more important fac-
tor is the PLC processing capability does not match the
data arrival rate. Figure 9 shows the sum of the data loss
probability for all time periods of Tp1 at different average
processing rates when the agent selects actions for the
same data stream according to the same Q table. It is the
average value after the experiment has been repeated for
50 times. When the processing rate is small, even if the
strategy is selected in the same way, it will cause a larger

loss probability, which shows that the loss probability will
be affected by the data processing rate.

(4)	Performance comparison between static allocation
and dynamic allocation of memory resources

Figure 10 compares the total memory space occupied
by the actions selected by the dynamic memory resource
allocation method and the space occupied by the optimal
static allocation method calculated by the Markov chain
method described in our previous work [7] at each time
period for processing the same piece of data. Because
static allocation uses an unchanged allocation method,
the amount of memory used over time is constant. Among

Fig. 8  a The loss probability of each time period. b Total loss probability for all time periods

Page 12 of 14Fu et al. Journal of Cloud Computing (2022) 11:73

them, the memory space used by dynamic allocation in
each time period is significantly lower than that of static
allocation, this is because the reward function is designed
so that the action taking up less space is rewarded more for
the same loss probability. In static allocation, the memory
resource allocation needed for the time period with the
most data is typically chosen as the final result to ensure
that the loss probability of each time period is the smallest.
However, during other time periods, this allocation will
have more unused space for the data stream, which lowers
the utilization of the resources assigned.

The experiment utilizes simulation data from the
same day to test the program’s running time. As shown
in Fig. 11, the DMRA algorithm trains the Q table and
makes a strategy for the data of that day and is compared
with the execution of the Markov chain method [7], the
execution time is reduced by about half. Static allocation

Fig. 9  Loss probability at different average processing rates

Fig. 10  Static allocation and dynamic allocation occupy memory space size

Fig. 11  Comparison of running time between Markov Chain and
DMRA algorithm

Page 13 of 14Fu et al. Journal of Cloud Computing (2022) 11:73 	

takes longer to run because it has to compare every
memory resource allocation approach before settling on
the best one. Therefore, even the static allocation method
can find the allocation method that minimizes the loss
probability, and the advantage of the dynamic allocation
proposed in this paper is also greater.

Conclusion
In the memory resource allocation problem of the
edge-PLC, because the various types of data streams
generated by the industrial production system in dif-
ferent time periods are also different, if the allocation
method is static, it may not achieve good performance.
Therefore, we divide continuous time into discrete
variables, analyze the arrival data stream of each time
period, and consider changing the method of mem-
ory allocation with the change of arrival rates of data
flow of different time periods to realize the adaptive
dynamic allocation of memory resources. We model
the problem as an MDP and design a dynamic allo-
cation algorithm of memory resources based on the
Q-learning method of reinforcement learning to learn
the most efficient allocation method for each time
period. Reinforcement learning algorithms can inter-
act with dynamic environments and learn experiences,
so even in different scenarios, this method can learn
the best resource allocation method in that scenario.
Simulation experiments show that the dynamic allo-
cation algorithm of memory resources can effectively
improve system performance.

Abbreviations
IIot: Industrial internet of things; PLC: Programmable logic controller.

Acknowledgements
The authors thank the editor and anonymous reviewers for their helpful com-
ments and valuable suggestions.

Authors’ contributions
Tingting Fu found the target problem and proposed the solution. Yanjun Peng
completed most of the writing of this manuscript. Peng Liu led the write up
of the manuscript. Haksrun Lao took part in the discussion of the solution and
the writing. Shaohua Wan helped in revising the paper and gave many useful
suggestions. All authors have read and approved the manuscript.

Authors’ information
Tingting Fu received the B.S. degree from Hangzhou Dianzi University, Hang-
zhou, China, in 2000, and the M.S. degree from Zhejiang University, Hangzhou,
in 2005. She is currently an Associate Professor at Hangzhou Dianzi University.
She was a Visiting Scholar at Lehigh University, Bethlehem, PA, USA, from 2014
to 2015. Her research interests are in the area of Internet of Things, big data,
wireless networks, and mobile computing.
Yanjun Peng was a graduate student at Hangzhou Dianzi University. Her
research interest is industrial Internet of things and edge computing. Peng Liu
received his B.S. and M.S. in Computer Science and Technology from Hang-
zhou Dianzi University respectively in 2001 and 2004, and Ph.D in Computer
Science and Technology from Zhejiang University in 2007, China. Currently, he
is an associate professor at Hangzhou Dianzi University. His research interests
include Internet of things, edge computing, and vehicular ad-hoc networks.

Haksrun Lao is a teacher at Chhong Cheng Chinese School, Cambodia. His
research interests include Internet of things and visual light communication.
Shaohua Wan is a professor at Shenzhen Institute for Advanced Study, Uni-
versity of Electronic Science and Technology of China. His research interests
include edge computing, Internet of vehicles and machine learning.

Funding
This work is supported by the Natural Science Foundation of China under
Grant 62172134.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Computer Science and Technology, Hangzhou Dianzi University,
Hangzhou, China. 2 Center of Engineering and Design, Chhong Cheng Chinese
School, Phnom Penh, Cambodia. 3 Shenzhen Institute for Advanced Study,
University of Electronic Science and Technology of China, Shenzhen, China.

Received: 6 August 2022 Accepted: 11 October 2022

References
	1.	 Wu H, Li X, Deng Y (2020) Deep learning-driven wireless communica-

tion for edge-cloud computing: opportunities and challenges. J Cloud
Comput 9:21

	2.	 Chen C, Li H, Li H, Fu R, Liu Y, Wan S (2022) Efficiency and fairness oriented
dynamic task offloading in internet of vehicles. IEEE Trans Green Com-
mun Netw 1. https://​doi.​org/​10.​1109/​TGCN.​2022.​31676​43

	3.	 You Q, Tang B (2021) Efficient task offloading using particle swarm opti-
mization algorithm in edge computing for industrial internet of things. J
Cloud Comput 10(1):41

	4.	 Wu H, Zhang Z, Guan C, Wolter K, Xu M (2020) Collaborate edge and
cloud computing with distributed deep learning for smart city internet
of things. IEEE Internet Things J 7(9):8099–8110. https://​doi.​org/​10.​1109/​
JIOT.​2020.​29967​84

	5.	 Zhang Z, Wang N, Wu H, Tang C, Li R (2021) Mr-dro: A fast and efficient task
offloading algorithm in heterogeneous edge/cloud computing environ-
ments. IEEE Internet Things J 1–1. https://​doi.​org/​10.​1109/​JIOT.​2021.​31261​01

	6.	 Wu H, Yan Y, Sun D, Wu H, Liu P (2021) Multi buffers multi objects
optimal matching scheme for edge devices in iiot. IEEE Internet Things J
8(14):11514–11525. https://​doi.​org/​10.​1109/​JIOT.​2021.​30530​17

	7.	 Peng Y, Liu P, Fu T (2020) Performance analysis of edge-plcs enabled
industrial internet of things. Peer Peer Netw Appl 13(5):1830–1838

	8.	 Safavat S, Sapavath NN, Rawat DB (2020) Recent advances in mobile
edge computing and content caching. Digit Commun Netw 6(2):189–
194. https://​doi.​org/​10.​1016/j.​dcan.​2019.​08.​004

	9.	 Chen J, Du T, Xiao G (2021) A multi-objective optimization for
resource allocation of emergent demands in cloud computing. J
Cloud Comput 10:17

	10.	 Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offload-
ing for mobile-edge cloud computing. IEEE/ACM Trans Networking
24(5):2795–2808. https://​doi.​org/​10.​1109/​TNET.​2015.​24873​44

	11.	 Wang C, Liang C, Yu FR, Chen Q, Tang L (2017) Computation offloading
and resource allocation in wireless cellular networks with mobile edge
computing. IEEE Trans Wirel Commun 16(8):4924–4938. https://​doi.​org/​
10.​1109/​TWC.​2017.​27039​01

	12.	 Sadatdiynov K, Cui L, Zhang L, Huang JZ, Salloum S, Mahmud MS (2022)
A review of optimization methods for computation offloading in edge
computing networks. Digit Commun Netw. https://​doi.​org/​10.​1016/j.​
dcan.​2022.​03.​003

https://doi.org/10.1109/TGCN.2022.3167643
https://doi.org/10.1109/JIOT.2020.2996784
https://doi.org/10.1109/JIOT.2020.2996784
https://doi.org/10.1109/JIOT.2021.3126101
https://doi.org/10.1109/JIOT.2021.3053017
https://doi.org/10.1016/j.dcan.2019.08.004
https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1109/TWC.2017.2703901
https://doi.org/10.1109/TWC.2017.2703901
https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/10.1016/j.dcan.2022.03.003

Page 14 of 14Fu et al. Journal of Cloud Computing (2022) 11:73

	13.	 Liu L, Chang Z, Guo X, Mao S, Ristaniemi T (2017) Multiobjective optimiza-
tion for computation offloading in fog computing. IEEE Internet Things J
5(1):283–294

	14.	 Wan S, Ding S, Chen C (2022) Edge computing enabled video segmenta-
tion for real-time traffic monitoring in internet of vehicles. Pattern Recog
121:108146. https://​doi.​org/​10.​1016/j.​patcog.​2021.​108146

	15.	 Wu H, Sun Y, Wolter K (2020) Energy-efficient decision making for mobile
cloud offloading. IEEE Trans Cloud Comput 8(2):570–584. https://​doi.​org/​
10.​1109/​TCC.​2018.​27894​46

	16.	 Chen C, Zeng Y, Li H, Liu Y, Wan S (2022) A multi-hop task offloading deci-
sion model in mec-enabled internet of vehicles. IEEE Internet Things J 1.
https://​doi.​org/​10.​1109/​JIOT.​2022.​31435​29

	17.	 Deng R, Lu R, Lai C, Luan TH, Liang H (2016) Optimal workload allocation
in fog-cloud computing toward balanced delay and power consumption.
IEEE Internet Things J 3(6):1171–1181

	18.	 Dinh TQ, Tang J, La QD, Quek TQ (2017) Offloading in mobile edge com-
puting: Task allocation and computational frequency scaling. IEEE Trans
Commun 65(8):3571–3584

	19.	 Wei W, Yang R, Gu H, Zhao W, Chen C, Wan S (2021) Multi-objective optimi-
zation for resource allocation in vehicular cloud computing networks. IEEE
Trans Intell Transp Syst 1–10. https://​doi.​org/​10.​1109/​TITS.​2021.​30913​21

	20.	 Huang L, Feng X, Zhang C, Qian L, Wu Y (2019) Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing. Digit Commun Netw 5(1):10–17. https://​
doi.​org/​10.​1016/j.​dcan.​2018.​10.​003

	21.	 Chen C, Zhang Y, Wang Z, Wan S, Pei Q (2021) Distributed computation
offloading method based on deep reinforcement learning in icv. Applied
Soft Computing 103:107108. https://​doi.​org/​10.​1016/j.​asoc.​2021.​107108

	22.	 Deng S, Xiang Z, Zhao P, Taheri J, Gao H, Yin J, Zomaya AY (2020) Dynami-
cal resource allocation in edge for trustable Internet-of-things systems: A
reinforcement learning method. IEEE Trans Ind Inform 16(9):6103–6113.
https://​doi.​org/​10.​1109/​TII.​2020.​29748​75

	23.	 Kaur A, Kumar K (2020) Energy-efficient resource allocation in cognitive
radio networks under cooperative multi-agent model-free reinforcement
learning schemes. IEEE Trans Netw Serv Manag 17(3):1337–1348. https://​
doi.​org/​10.​1109/​TNSM.​2020.​30002​74

	24.	 Cui J, Liu Y, Nallanathan A (2020) Multi-agent reinforcement learning-
based resource allocation for uav networks. IEEE Trans Wirel Commun
19(2):729–743. https://​doi.​org/​10.​1109/​TWC.​2019.​29352​01

	25.	 Baek J, Kaddoum G (2021) Heterogeneous task offloading and resource
allocations via deep recurrent reinforcement learning in partial observ-
able multifog networks. IEEE Internet Things J 8(2):1041–1056. https://​doi.​
org/​10.​1109/​JIOT.​2020.​30095​40

	26.	 Li Q, Lu C, Cao B, Zhang Q (2019) Caching resource management of
mobile edge network based on stackelberg game. Digital Communica-
tions and Networks 5(1):18–23. https://​doi.​org/​10.​1016/j.​dcan.​2018.​10.​006

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.patcog.2021.108146
https://doi.org/10.1109/TCC.2018.2789446
https://doi.org/10.1109/TCC.2018.2789446
https://doi.org/10.1109/JIOT.2022.3143529
https://doi.org/10.1109/TITS.2021.3091321
https://doi.org/10.1016/j.dcan.2018.10.003
https://doi.org/10.1016/j.dcan.2018.10.003
https://doi.org/10.1016/j.asoc.2021.107108
https://doi.org/10.1109/TII.2020.2974875
https://doi.org/10.1109/TNSM.2020.3000274
https://doi.org/10.1109/TNSM.2020.3000274
https://doi.org/10.1109/TWC.2019.2935201
https://doi.org/10.1109/JIOT.2020.3009540
https://doi.org/10.1109/JIOT.2020.3009540
https://doi.org/10.1016/j.dcan.2018.10.006

	Distributed reinforcement learning-based memory allocation for edge-PLCs in industrial IoT
	Abstract
	Introduction
	Related Work
	Problem Formulation and System Model
	Description of dynamic resource allocation
	Establish the MDP model

	Proposed solutions
	Reinforcement learning
	The proposed Q-learning based algorithm

	Experiments
	Experimental setup
	Simulation results and analysis

	Conclusion
	Acknowledgements
	References

