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Introduction
Research into network based approaches in machine learning has been ongoing with 
the growing sizes of networks produced by users on commercial online social network-
ing platforms. The ways users engage with each other directly on online social network 
platforms from independent activities have given rise to networks with billions of users 
(nodes) [1]. The information provided by the users can be used for investigating different 
phenomena. The interlinking information that produces edges which then can form a 
network, or series of networks, has been studied in the growing field of network science 
[2, 3]. Network science offers many tools and approaches to learn and to draw insight 
about the community structures [4], the centrality distribution [5] of the nodes (users), 
and provides models for how the networks can grow from an initial set of nodes [6, 7]. 
There are many applications for these insights such as in targeted advertising [8] where 
brands seek to have highly central nodes spread advertising content, and another appli-
cation is in the effort to understand the ‘landscape’ of political polarization between 
communities in Twitter [9].
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As well as the node interlinking information which can produce a network (graph), 
there are the attributes of the users which can provide important useful information 
in improving upon predictive analytics. A notable technique used by online shop-
ping platforms is collaborative filtering [10] which works as a recommendation system 
for improving the shopping experience of customers by optimizing the product view 
to those items predicted to be of interest. These new link predictions are based upon 
past purchases and the historical records of other customers. Here ‘clusters’ are formed 
between groups of items in a multidimensional space of these choices [11, 12]. This relies 
on the observation that the items are not selected independently of previous purchases 
and that there is information gained from utilizing the data collected [13]. Another area 
where predictive analytics has used information in order to make predictions is in stu-
dent performance [14]. Logistic regression has been used in  situations where a model 
is required in a decision framework in order to predict achievements [15]. A key differ-
ence between the network based approach and these approaches is that the information 
contained in the network and how the links influence the node of concern are excluded 
from the model which can play a key role in economic behaviors predicted [16]. In the 
effort to fuse these sources together for models to incorporate [17] discusses how user 
identity linkage across online social networks can be accomplished.

Online social networks have been at the forefront of the interest in networks and 
approaches which use the interlinking information due to their size and the effect they 
have on human behaviors [18]. The network topologies of the virtual networks can find 
applications but they also carry over into the physical world. The techniques have been 
used in other domains such as examining the centrality in streets of urban spaces [19] 
which also can be seen as a continuation of the original network/topological graph theo-
retical formulation of Euler’s investigation of the ‘Seven Bridges of Konigsberg’ problem 
[20]. As these urban networks fit within networks of urban spaces themselves, multi-
layer networks [21] are produced that span over the globe allowing an analysis of even 
global migration patterns [22]. In a similar fashion, it is also possible to consider aca-
demic literature as a network with similar properties governing its construction, such 
as homophily [23]. The nodes in such academic networks are publications and the links 
are the citations between the articles that provide information of association. There 
is active research in this field [24] which notes the key motivation is that researchers 
can spend considerable amounts of time searching for the relevant research in order to 
not allocate time on topics already explored with similar approaches. Being able to find 
associative research is of importance since it is possible for research to be directed in 
areas already investigated and waste time as well as materials in research such as studies 
requiring expensive lab equipment. Navigating the network to extract relevant research 
is therefore a key activity in preventing this. The work of [25] discusses how the investi-
gators can seek from these datasets insight for the dynamics of the growth and the inter-
connectivity of scientific thought. With the growth of the citation datasets (such as the 
ones described in “Data” section) the concerns on the processing time, complexity of the 
models and the ability to interpret the results are becoming a key issue.

This then poses key questions about how to process and then reason about the results 
from large datasets with large variations. Questions about the results even require 
effort in their interpretation. Work such as [26] look at the problem from a conceptual 
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perspective on the areas of focus for big data and how the user can interact with the data 
that are results from a post analysis. The work of [27] provides a high level overview of 
the tools and approaches available in visually investigating the data and the results of 
different methods return. It is possible to include the full set of interpretable outcomes 
and the full set of relevant data features, but that does produce a challenge for the prac-
titioner to determine which features are or prime interest. A dimensionality reduction 
approach [28] provides a more effective experience for the practitioner.

Graph Neural Networks (GNNs), [29], provides a methodological framework for com-
bining node feature and the network data information in order to produce predictions 
within a machine learning paradigm. There are many applications ranging from image 
object positions in a non-euclidean space representation, molecular properties and cita-
tion networks [30]. Therefore this work deals with investigating an even more simple 
GNN, the Simple Graph Convolution (SGC) [31], which has a simpler methodological 
definition and a competitive predictive accuracy. It is in developing a modified SGC that 
the task of reducing the dimensionality in large datasets with a GNN will be explored. 
As will be shown in “Methodology” section, the simplicity of the model allows for it to 
be a basis for extensions that can incorporate constraints such as shrinkage upon the 
parameters. This is done in a manner similar to the regularization procedure of Lasso 
[32]. This will allow the large complex datasets to be processed in such a manner as to 
be interpretable and more accessible in terms of the computations resources required. 
Models other than the SGC would incorporate more complexity upon procedures 
already complex making large dataset investigations an increasingly large challenge to 
apply. The work effectively takes the SGC and extends it so that the model can introduce 
constraints upon the parameter vectors in such a manner as to allow the model to be 
more easily interpreted. This allows the parameters for each class to be more sparse and 
for each class to have less of an overlap between each other. Altogether this results in a 
parameter matrix which can more easily be inspected.

In “Related work” section, a selection of previous work highlights the development 
of the GNN which led to the SGC is acknowledged. The “Data” section describes the 
datasets used in exploring the results of the proposed modification on the SGC with 
regularization. The methodology is described in “Methodology” section, where the SGC 
formalism is presented and the proposed modification where the regularization upon 
the features and their parameters allows for a reduction of the redundant features and 
hence ease in the interpretability. The results are displayed in “Results” section where the 
ability for the SGC and the proposed SGC allow the model to fit data which would not 
be linearly separable but is made separable by incorporating the graph information, and 
then the application to a scientific citation dataset (Cora [33]) is shown.

Related work

Convolutional Neural Networks (CNNs) [34] has brought a methodological approach 
for handling high dimensional problems more efficiently than other paradigms. As noted 
in [35] in conjunction with deep learning, CNNs have greatly improved the ability to 
classify sound and image data. The work of [36] introduces formally how graph based 
methods can be used with CNNs. A key contribution of [36] is that the extension of 
the model to generalize to graphs is founded upon localized graph filters instead of the 
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CNN’s localized convolution filter (or kernel). It presents a spectral graph formulation 
and how filters can be defined in respect to individual nodes in the graph with a certain 
number of ‘hops’ distance. These ‘hops’ are representative of the number of edges tra-
versed between nodes and is the result of the powers of the adjacency matrix where the 
number of walks can be calculated [5] (walks are paths which allow node revisits).

An introduction to the motivation from basic principals can be found in [37], where 
the fundamental analysis operations of signals from regular grids (lattice structures) to 
more general graphs is developed. The authors in [38] utilize the theory of signals on 
graphs in order to show how a shift-invariant convolution filter can be formulated as a 
polynomial of adjacency matrices. The discussion of how low pass filters are an underly-
ing principal in the GNN is discussed in [39] which is also described in the work of the 
SGC. [40] proposes a Graph Convolutional Network (GCN) by adapting Convolutional 
Neural Networks (CNNs) for graph-structured data. The GCN learns a graph represen-
tation via layer-wise propagation rules that represents localized spectral filters.

The GNN can allow for the augmentation of a users social network and their features 
to make a more accurate prediction and similarly for an academic paper that the features 
(keywords or low dimensional representation) with the citation links can more accu-
rately place its relevance. The machine learning framework can introduce large over-
heads in the processing time especially for large datasets but fortunately research has 
shown that simpler GNN models display peak performance [41]. The work of [40] which 
introduces a semi-supervised approach to GNNs, shows in appendix B the performance 
of the methodology with the number of ‘layers’ employed in the model and how there 
is an actual degradation of the performance after a few layers. The SGC [31] provides 
an efficient framework to provide a similar model of the data associations as the GCN 
but avoid the necessity of the layers the GCN introduces. The methodology of the SGC, 
as shown in “Methodology” section allows a single layer of matrix computations with 
a non-linear activation function. This is similar to the processing steps taken for logis-
tic regression which can be computed for large datasets very efficiently. Building upon 
this efficient model allows an investigator to explore further constraints which would be 
much more computationally demanding with the incorporation of layers.

Data
Three different datasets are employed in order to explore the model proposed, with 2 of 
them being synthetic and the last being a real dataset which is well explored [33]. The 
first synthetic dataset has 2 dimensional features with data points placed in a circle and 
labels applied on opposite sides of the identity line ( x1 = x2 ). The other synthetic dataset 
also has 2 dimensions and placed in such a way which clustering or a non-network based 
model, relying upon distance measures, would incorrectly classify the node labels. More 
about these 2 datasets is described below.

Circular data

Figure 1 shows the synthetic data produced with points allocated along a circle based 
at the origin. There are 100 points and 50 of them are allocated to each class placing 
them on either side of the identity line. A key aspect of this data is that the model will 
attempt to shrink the feature projections which can incur a penalty on the optimization 
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procedure. The compromise between the error function on the data and the regulari-
zation penalization term will require a balance as a single feature reduces the shrink-
age penalty but the direction for the optimal fit uses both dimensions. This compromise 
is induced since the optimal projection will be with a vector containing non-negative 
parameters for each dimension in equal value at a direction x1 = −x2 therefore high-
lighting the shrinkage of one of the parameters. The network data (the adjacency matrix) 
is a ring network connecting neighboring nodes.

Linearly inseparable data

Figure  2 shows 30 synthetically produced data points in 2 dimensions ( x1, x2 ) which 
form 4 distinct clusters. Each class has 15 data points randomly generated and it is sepa-
rated into 2 clusters across the axis. We produce a non-disjoint network (single compo-
nent) structure for the data points to be connected with a more dense connectivity set 
between points of the same label. This production is inline with the concept of modular-
ity in networks [42] where the density of the edges between nodes of the same label is 
proportionately greater than the density between nodes with different labels. Without 
the network structure, distance metrics would produce erroneous results and the intro-
duction of this information increases the accuracy. This allows the linear operations to 
produce a separation for the class labels.

Methodology
[40] develops Graph Convolutional Networks (GCNs) by adapting Convolutional Neural 
Networks (CNNs) for graph-structured data and the work of [31] (proposing the Simple 
Graph Convolution (SGC)) builds upon it. The SGC removes the non-linear transitions 
between the layers in the model. This simplification speeds up processing time significantly 
yet still performs on par with GCNs and other state-of-the-art graph neural network mod-
els across multiple benchmark graph datasets. The model modification will allow easier 
interpretability of the parameters fitted by the optimization procedure with the applica-
tion of a set of constraints. The constraints introduced into the loss function will force the 
stochastic gradient descent algorithm to find directions which have fewer non-zero values 
and less overlap for the parameters between the classes. This addresses the problem of how 

Fig. 1  The application of the proposed methodology to the circular data. Data points are produced about 
the origin at a fixed radius so that 100 points are equally spaced. The data points have class labels allocated so 
that there are 50 in each of 2 classes. This is shown in the plot with a line which determines the separation
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to inspect effectively the matrix of parameters and the vectors of the parameters for each 
class. This takes inspiration from regularization methods.

We adopt the notations presented in [40] and [31] for the GCN and SGC respectively. A 
graph G = (V ;A) can be defined as a collection of nodes (vertexes) set V = (v1, v2, ..., vN ) 
containing N nodes and an adjacency matrix A ∈ RN×N where aij is the weighted edge 
between node vi and vj ( aij = 0 if vi and vj are not connected). We define the degree matrix 
D = diag(d1, d2, ..., dN ) as a diagonal matrix whose off-diagonal elements are zero and each 
diagonal element di capture the degree of node vi and di =

∑

j aij . There is a feature matrix 
(also referred to as the design matrix) X ∈ R

N×D where each row xi is the feature vector 
measured on each node of the graph. This can be thought of as each row is the feature data 
belonging to a node, and the columns to a different dimension of the features. Each node i 
has a class label from C classes and hence can be coded as one hot vector yi ∈ {0, 1}C.

The GCNs and SGC add self-loops and normalize the adjacency matrix to get the matrix 
S:

where Ã = A + I and D̃ = diag(Ã) . This normalization allows successive powers of the 
matrix to not influence the overall size the projections. The SGC removes non-linear 
transformation from the kth-layer of the GCN resulting in a linear model of the form:

(1)S = D̃− 1
2 ÃD̃− 1

2

Fig. 2  15 data points of 2 classes are randomly generated and form 2 distinct clusters residing on 
the opposite sides of the axis. a Presents the scatter plots of these data points. b Shows the network 
connections among those data points. In terms of a distance metric between the points, or from using a 
linear projection, erroneous label assignments can arise from using only a data but the incorporation of the 
network associations shown in b allows this to be bypassed. The results of the application to the proposed 
methodology is shown in “Methodology” section
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The SGC classifier is then achieved by collapsing the repetitive multiplication of matrix 
S into the k th power matrix SK  and reparameterizing the successive weight matrices as 
� = �

(1)
�

(2) . . .�(K ):

The parameter k corresponds to the number of ‘hops’ which is the number of edge tra-
versals in the network adjacency matrix S . k can be thought of as accumulating informa-
tion from a certain number of hops away from a node (as described visually in [31]). If 
k = 0 the methodology becomes equivalent to a logistic regression application which is 
known to be scalable to large datasets. Since the SGC introduces the matrix S as linear 
operation the same scalability applies. The weight matrix � is trained by minimizing the 
cross entropy loss:

where YL is a collection of labeled nodes.
As motivated in “Introduction”, the SGC shows how an efficient formulation of GNNs 

can be derived, it does not provide as well the ability to reduce the feature set. To reduce the 
number of parameter values, we introduce a flexible set of constraints as shrinkage opera-
tors in the loss for Eq. 4:

The first component of LR is the loss from SGC being L . Next, L1 is the shrinkage term 
for penalizing the number or parameters by reducing the penalization with a larger skew 
in the number of elements in the columns of �R . The term |�R(·,c)|

4 denotes the normal-
ized vector for each class projection in the parameter matrix (which are columns) and 
that each element is raised to the power of 4. The L2 term is the total magnitude of the 
parameter vector so that the distribution of the terms are not influential but only the 
norm result. The term L3 is the term which penalizes class label projection which have 
large overlaps, so that vectors will be orthogonal or depending upon the value of L3 to 
support opposing directions. The parameters for the regularized fit using the shrinkage 
in the loss will be referred to as �R . To impose an orthogonality constraint between the 
projection vectors the term for the L3 is modified:

(2)Ŷ = softmax(S . . . SSX�(1)
�

(2) . . .�(K )).

(3)Ŷ = softmax(SKX�).

(4)L =
∑

l∈YL

∑

c∈C

Ylc ln Ŷlc

(5)

LR = L+ L1 ×
�

c∈C

�

D
�

d=1

|�R(·,c)|
4

�(−1)

+ L2 ×
�

c∈C

��R(·,c)�2

+ L3 ×





�

c1∈C

�

c2∈C

�

|�T
R(·,c1)

| · |�R(·,c2)| : c1 ≺ c2

�




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This methodology therefore delivers a formulation which is based upon an approach 
with layers as other ‘deep learning’ frameworks provide, but without the computational 
burdens that come along with it. The simplified model implementation is therefore capa-
ble to be run on a personal computer with Pytorch [43].

Results
Here we present the results of applying the proposed methodology to the datasets 
described in “Data” section. The synthetic circularly placed datapoints with labels allo-
cated on the sides of the identity line of 2 dimensions, described in “Circular data” sec-
tion of the “Data” section. The synthetic datapoints placed along 2 dimensions without 
a linear separation of the labels based upon a distance metric but possible with the net-
work information is described in “Linearly inseparable data” section and the results for 
it shown in the subsection of “Results” section, “Synthetic linearly inseparable data”. The 
results of the application to the real dataset of [33] (Cora citation dataset) is shown in the 
subsection of “Results” section “Application to the Cora dataset”. The methods of logis-
tic regression, SGC and the regularized SGC are applied and the results are compared 
revealing that the fitted parameter vectors for each class have less overlap between them-
selves so that their characteristics for the classes can be more effectively interpreted.

Synthetic circular data

The results of applying the SGC methodology with and without regularization on the 
synthetic circular data, is shown in Fig. 3. The points in the dataset have 2 features x1 
and x2 . In Subfigure (a) the SGC model produces a perfect accuracy with 2 parameters 
used the projection vectors pointing to the proper direction of each class. The regular-
ized SGC returns different solutions due to the regularization in the parameter matrix 
� . Subfigure (b) shows the regularized parameter vectors under different initializations 
of the learning algorithm which applies constraints. These constraints reduce the num-
ber of parameters used, the size of the vectors as a norm, and the direction between 
the vectors to be more informative. It can be seen how different random initializations 
produce different loss values and accuracy depending upon the local optima arrived at. 
These different stable points do show that the shrinkage factors are affecting the vectors 
for each class in �.

A separation based upon the identity line for the 2 dimensions, represents a situation 
where there is equal weight upon all the features of the data and the inference scheme 
must make a choice in the penalization. The choice results in a decrease in the loss of 
accuracy in order to decrease the penalization from the regularization from the 3 com-
ponents calculated from the projections; L1 , L2 and L3 as discussed in “Methodology” 
section. The variation shows that the model is able to explore a with range of vectors for 

(6)

LR = L+ L1 ×
�

c∈C

�

D
�

d=1

|�R(·,c)|
4

�(−1)

+ L2 ×
�

c∈C

��R(·,c)�2

+ L3 ×





�

c1∈C

�

c2∈C

�

|�T
R(·,c1)

| · |�R(·,c2)| : c1 ≺ c2

�2



.
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the matrix columns of �R . From the range the choice with the largest accuracy (lowest 
loss) can be chosen.

Synthetic linearly inseparable data

In this subsection, we apply the SGC method with and without regularization on the 
linearly inseparable data which contains feature coordinates and a network of associa-
tions. The dataset used here is described in “Data” section’s subsection “Linearly insepa-
rable data” where the coordinate space of the datapoints and the network are displayed. 
The key aspect which this dataset emphasizes is that the features alone without the 
network information cannot produce a linear separation, but with the incorporation of 
the network information (with linear operators) this classification then becomes possi-
ble. Figure 4 shows the results of applying the SGC to the dataset without the network 
information being used k = 0 , and is effectively an application of logistic regression. The 
methodology cannot separate the data correctly with a pair of linear projections but that 
can be alleviated as seen in the next figures by incorporating the network information as 
well ( k > 0).

Using the SGC (by setting the shrinkage parameters to 0), in Fig. 5, Subfigure (a) 
shows that although the vectors for the class projections, as columns in � , do not 
enable a separation between the groups the network information enables a perfect 
accuracy to be produced. This is because although the support for an erroneous 
class can be accumulated for a point, the feature space ‘communicated’ to it from 
the edge connections of features overrides the nodes’ own features in these cases. 

Fig. 3  The above plots show the results of applying the SGC method with and without regularization 
upon the synthetic circular data. In a the dashed line shows the separation line where each side defines the 
point labels and the solid lines shows the SGC projections learned in � , and perfect accuracy is achieved. 
b Presents multiple subplots of separate independent runs of the proposed regularized SGC methodology 
where there are different random initializations using gradient descent. Various comparable fittings are 
found and it can be seen how all the aspects of the regularization upon �R are respected in terms of the 
magnitude, relative directions between class vectors and the number of components (features) used
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Each plot is an independent run with slight changes in � . Subfigure (b) shows a set 
of plots but where the axes x1∗ and x2∗ for each data point represents the projection 
of the features with the ‘neighborhoods’ of the points. With k = 2 , S2 , aggregates the 
weights from ‘2 hops’ distance in the network, so that the multiplication of S2X is 
shown on these new axes. It can then be understood why the data is then ‘linearly’ 
separable after this transformation. This emphasizes how the network information 
can be used to improve the accuracy and maintain model simplicity.

In Fig.  6 the regularized SGC is applied to the dataset (with L2 = 0 ) and the 
parameter vectors for each class from �R are plotted in both Subfigures (a) and (b). 
The constraints (shrinkages) are placed on the sum of the elements within �·,jR

 and 
the direction of the vectors which reduces the total value summation for feature 
extraction. In Subfigure (a) the projection vectors of �R are shown and as with Fig. 5 
the results produce a perfect accuracy. What can be seen is that the model explores 
alternative parameterizations which are not found previously without regulariza-
tion. The projections all display a drop of a features dimension. Subfigure (b) shows 
the S2X projection and that perfect accuracy can still be achieved. In each of the 
plots it can be seen how various equivalent (in terms of the accuracy) projections 
can be searched which reduce effectively the number of features used for each class 
being predicted. The ability for the non-linearly separable data to be correctly classi-
fied without introduction of new parameters or ‘layers’ in the CNN enables explora-
tions to be done more efficiently on large datasets in terms of time and processing 
capabilities. 

The change of the L3 constraint is utilized so that the projection vectors for each 
class are fit to be orthogonal to each other (shown in Eq. 6. This allows the possibil-
ity for a smaller number of classes to be fit, if the class number is not known and dif-
fers from the previous application in that the support for each class would be seen as 
a separate linear function’s projected value. Figure 7 shows the results in Subfigure 
(a) and Subfigure (b) where the vector fit in the space of the data points is seen and 
how the data is transformed into different axes using the network data respectively. 
It can bee seen how the constraint for the orthogonality is preserved and the accu-
racy for the fits is still achieved for this problem.

Fig. 4  Applying logistic regression to a set of datapoints where there features are not linearly separable. This 
is the SGC methodology where k = 0 and the network information is not incorporated
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Application to the Cora dataset

Here is presented the application of the SGC methodology and the proposed regu-
larized SGC to the dataset of Cora [33]. The purpose is to examine the capability 
of both the SGC and the regularized SGC to a dataset with a large number of fea-
tures. There are many situations in big data applications where the datasets have 
large numbers of features due to larger data gathering schemes and a requirement 
to select key features without supervision. The SGC has been applied to the Cora 
dataset [44], and here the performance with a regularized version is mainly directed 
at the interpretability in highlighting the key variables in the feature set while also 
applying other constraints. Figure 8 present the results with 2 Subfigures with heat-
maps displaying the parameter values fitted for each class in � and �R . The dataset 
classifies each document as belonging to one of 7 different classes where the SGC 
then produces a parameter matrix � with 7 columns and d rows for the feature num-
ber. The constraint upon L3 is set so that the projection vectors between classes are 
in opposing direction so that class feature loadings are differentiated by their place-
ment in a histogram of the values. With the SGC applied, Subfigure (a) shows the 
weights of the parameters for each class (a single column in � ) as a separate heat-
map with a legend for the values indicated. Analogously the same set of results but 
produced with the regularized SGC proposed here is shown in Subfigure (b). The 
approach produces a new parameter matrix �R introduces the regularizations in the 

Fig. 5  The results of applying the SGC method on the linearly inseparable data is presented here. a Plots the 
data points and the 2 learned parameter vectors by SGC methodology under different initializations. It can 
be seen how although the displayed classification vectors within � with the network information provide 
the ability for a lossless prediction. Similarly, for b it can be seen how a new set of axes for the projection S2X 
(network and features) the linear separation becomes visible



Page 12 of 17Pho and Mantzaris ﻿J Big Data            (2020) 7:91 

inference scheme for the parameters by penalizing their total sum and directions 
to be as informative about the features in terms of accuracy prediction and lack of 
overlap (removing redundancy within large feature spaces typical of large datasets). 
It can be seen there are fewer variables highlighted for the practitioner to examine, 
which looks to investigate and highlight which variables are important for the class 
membership determination. The 7 cells highlighted in the bottom right are padding.

Using the data in the heatmaps shown in Fig. 8 a histogram of the values for the 
parameter values for each class and the features is created for the SGC and the val-
ues from the regularized SGC held in the matrices � (Subfigure a) and �R (Subfig-
ure b). In Fig. 9, Subfigure (a) shows how there is a smaller group of features which 
provide positive contribution to the class identification and that an apparent 2 mode 
distribution can be made out. Each plot belongs to a different class in the dataset 
and are a different column in � . Subfigure (b) shows the parameter value distribu-
tion within �R . The effect of the regularization can be seen in comparison with Sub-
figure (a) where the number of feature values at value 0 are the majority. This makes 
the exploration and backtracking process the features easier.

Fig. 6  The application of the regularized SGC to the dataset where linear projections are incapable of class 
separation. a Shows the parameter vectors produced by introducing constraints into SGC method on the 
feature space with original data points and how the classification can then produce perfect accuracy. It can 
be seen the proposed SGC reduces the effective number of features used in the columns of the matrix �R . 
b Shows the plots for the same set of weight vectors displayed on the projection axes of S2X where each 
datapoint (node) accumulates feature information from neighbors 2-hops away ( k = 2)
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Discussion
This work proposes a model extension of the Simple Graph Convolution (SGC) which 
aims at producing a smaller and more meaningful set of projections in which clas-
sification labels are presented. It addresses a key issue with interpretability of model 
applications in big data where many features may be used which are redundant and 
remove the ability for a practitioner to examine the weights. A key reason for why the 
SGC was chosen to be extended with this capability is that the operations are linear 
in the methodology with the exception of the softmax function application can be run 
relatively efficiently in comparison to methodologies relying on more parameteriza-
tions and more ‘layers’ in order to improve accuracy.

The SGC incorporating the network information can produce accurate classifica-
tion of points in a feature space which is not linearly separable by utilizing the net-
work information via linear operations. The results demonstrated this capability on a 
small dataset where the network projection effectively linearizes the search by having 
information from the node ‘neighborhood’ accumulated from ‘k-hops’ distance (rely-
ing upon the powers of the adjacency matrix). This allows for fast run times and the 
application to services which rely upon small delays. The methodology was applied to 
the Cora citation dataset which has a large number of features and the reduction is 

Fig. 7  The results of applying the regularized SGC with an orthogonal constraint upon the projection 
achieved by using a change in regularization term L3 . In a the vector projections within the methodology can 
be fit so that there is no loss and the orthogonality constraint is satisfied. In b the transformation upon the 
data with the network information is presented and how within this space the linear projections can separate 
the classes with the orthogonal vectors
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Fig. 8  The plots showing the results of applying the proposed method of SGC with and without 
regularization on the features to the dataset of Cora. a Shows the heatmap of the class columns of matrix 
� which holds the parameter values for the feature projections of the data X after the inference with SGC 
without the regularization. b Analogously shows the parameter values but with the inference procedure 
applying the constraints for the regularization as proposed which produces the shown values of �R . On the 
bottom right of each plot there are 7 cells with padded values to produce the heatmaps. The columns of the 
parameter vector correspond to different classes, each shown separately, and the weights applied to each 
feature belonging to the nodes. It can be seen that the regularization reduces the amount of weighting over 
the features highlighting key variables
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Fig. 9  The distribution of the parameter values inferred for the Cora dataset with the application of the SGC 
and the regularized SGC. In a the SGC is applied and the histograms of the parameter values for each class 
in � is shown in the plots. b Shows the equivalent plots but using the regularized SGC that penalizes the 
number of features. The majority of the features are around value zero



Page 16 of 17Pho and Mantzaris ﻿J Big Data            (2020) 7:91 

significant in the number of features highlighted to the user. This provides a set small 
enough to explore manually if required.

Conclusion and future work
The SGC model extension presented here allows for a more explainable set of results 
to be presented to the user. The regularization terms reduces the number of non-zero 
parameters and the overlap between parameterizations of the different classes. Future 
work could entail a more in depth exploration of how the network can be ‘decomposed’ 
in such a way as to minimize the number of label alterations. Producing a network sep-
aration by eliminating edges can find applications in social networks where polarized 
communities must be isolated as a means of inoculation.
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