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The Mathematics of Origami

Introduction

Mention of the word “origami” might conjure up images of paper cranes
and other representational folded paper forms, a child’s pasttime, or an art
form. At first thought it would appear there is little to be said about the
mathematics of what is by some approximation merely crumpled paper.

Yet there is a surprising amount of conceptual richness to be teased out
from between the folds of these paper models. Even though researchers are
just at the cusp of understanding the theoretical underpinnings of this an-
cient art form, many intriguing applications have arisen—in areas as diverse
as satellite deployment and internal medicine.

Parallel to the development of these applications, mathematicians have
begun to seek descriptions of the capabilities and limitations of origami in
a more abstract sense. The continuity of the sheet of paper in combination
with the discreteness of a folding sequence lends origami to analysis with
numerous mathematical structures and techniques. In many of these areas,
initial results have proven exciting.

A natural first mathematical question to about origami is “what models
are there? How do we characterize and organize them?” If we conceive of
folding as a mapping from crease patterns (the pattern of creases left on a
sheet of paper unfolded from a model) to folded models, we might wonder
how hard it is, from a computational perspective, to determine whether
a crease pattern can be folded (quite hard!), and if it can, in how many
ways? (it’s hard to tell). In fact we will see that the folding ability of
origami crease patterns can be characterized with tools from knot theory,
potentially leading to a classification of origami models in terms of “folding
complexity.”

Moreover, from a geometric standpoint, it turns out that if the an-
cient Greeks had thrown away their compasses and straightedges and merely
folded their paper (or papyrus, as it may have been), they would have had
much more luck with difficult construction problems. As a one-fold-at-a-
time procedure, the geometric-constructive ability of origami is perhaps the
best-understood component of the discipline. This is where we will begin.

1 Origami Constructions

Some classical problems dating back to the Ancient Greeks proven un-
solvable using a compass and straightedge have been shown to be possi-
ble through the more powerful method of origami. However, not all such
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problems are able to be solved using origami. In order to compare these con-
struction techniques, we must first provide geometric axioms, or operations,
for creating folds in the plane.

1.1 Axioms of Origami

To begin, just as Euclid based his studies on a set of fundamental axioms,
or postulates, the mathematics of origami is based on a set of axioms as
well. There are seven ways single creases can be folded by positioning some
combination of lines and points on paper, known as the Huzita-Justin Ax-
ioms. The first six axioms were discovered by Jacques Justin in 1989, then
rediscovered and reported by Humiaki Huzita in 1991. Axiom 7 was dis-
covered by Koshiro Hatori in 2001, but it turned out all seven axioms were
included in Jacques Justin’s original paper. These axioms describe the geo-
metric constructions possible through origami. It must be noted that using
the term axioms here is misleading, as these axioms are not independent.
Each of these axioms can be derived through repeadetly constructing Ax-
iom 6. Though these are deemed “axioms,” a term like “operations” may be
slightly more appropriate. The first six axioms allow all quadratic, cubic,
and quartic equations with rational coefficients to be solved by setting a
unit length on a piece of paper then folding to find the roots of polynomials.
Using these axioms, it is also possible to construct a regular N-gon for N if
N is of the form 2i3j(2k3l + 1), such that (2k3l + 1) is prime [17]. Lastly,
two of the three problems of antiquity, the trisection of an angle and the
doubling of the cube, can be constructed using these axioms. The seven
Huzita-Justin axioms consist of the following:

1. Given two points p1 and p2, we can fold a line connecting them.

2. Given two points p1 and p2, we can fold p1 onto p2.

3. Given two lines l1 and l2, we can fold line l1 onto l2.

4. Given a point p1 and a line l1, we can make a fold perpendicular to l1
passing through the point p1.

5. Given two points p1 and p2 and a line l1, we can make a fold that
places p1 onto l1 and passes through the point p2.

6. Given two points p1 and p2 and two lines l1 and l2, we can make a fold
that places p1 onto line l1 and places p2 onto line l2.
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7. Given a point p1 and two lines l1 and l2, we can make a fold perpen-
dicular to l2 that places p1 onto line l1. [17]

This seventh axiom does not allow any higher-order equations to be
solved than the original six axioms do [17]. However, it is possible to solve
higher-order equations through multifolds, or more than one simultaneous
crease. The quintisection of an angle, or dividing an angle into five equal
parts, requires solving a fifth-order equation, and thus is not solvable using
the original seven Huzita-Justin Axioms. However, by using one or more
axioms from a set of more complicated axioms defining two simultaneous
folds, quintisecting an angle is possible [16]. Thus, theoretically, polynomi-
als of arbitrary degree are solvable if an arbitrary number of simultaneous
creases are allowed. This leads us to one of the biggest open problems
regarding origami and geometric constructions–which general higher-order
polynomials can be translated into folding problems?

The Greek problems of antiquity are a trio of geometric problems whose
solutions were attempted only through the use of a compass and straight-
edge. These problems include angle trisection, cube duplication, and circle
squaring. Over 2,000 years after the problems were formulated, they were
each proved unsolvable using solely a compass and straightedge. The first
problem, angle trisection, can be solved through origami.

Beginning with rectangular or square paper and labeling the corner
points A, B, C, and D (beginning at the top left corner and labeling the
rest in order counterclockwise), the paper must be creased beginning at
point B and meeting line segment AD, thus denoting the angle θ to be
trisected (see fig. 1.2). Next, two horizontal folds must be made parallel
to the bottom edge of the paper. The following fold must make both the
point where the upper horizontal fold meets the paper’s edge to land on the
angled line denoting the upper boundary for θ, as well as make point B land
on the lower horizontal fold. This fold will cause the lower horizontal fold
to be placed at an angle up the page on the folded portion of paper—the
next fold will be along this angle, ultimately resulting in a crease running
toward point B within the original boundaries of θ. By recreating this fold
such that it fully extends to point B, then folding the bottom edge of the
paper to meet this fold, a trisected angle θ with three segments extending
from point B will have been formed. [2]

Proof. Suppose the three sub-angles of θ are labeled α, β, and γ. Each

of these three sections of θ must be equal and must all equal
θ

3
. 4EBb

has a base EB with EG = GB, height Gb, and sides Eb = Bb, as 4EBb
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θθ

θ θ θ θ

1. 2. 3. 4.

5. 6. 7. 8.

Figure 1.1: Steps to Trisect an Angle

Figure 1.2: Angle Trisection Diagram
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is isosceles. The reflection of 4EBb, 4ebB, is also isosceles. This height,
labeled h2, implies α = β. By symmetry, β = δ. Since GH ‖ BC, γ = δ,

and thus β = γ. Therefore, α = β = γ =
θ

3
. [2]

The Delian problem (dating back to the civilization of Delos) of doubling
the cube is another ancient geometric problem. Given one edge of a cube,
the construction of the edge of a second cube whose volume is double that
of the first cube is required. In order to construct such a number, here’s
how we begin. A piece of square paper must first be folded into thirds, then
folded such that the bottom right corner of the paper touches the left edge
of the page at the same time as the bottom third at S touches the two-thirds
line. We will show that where the corner C meets the left edge of the paper
is where the ratio of the length of the top of the page to the bottom of the
page is x

1 = 3
√

2, or α
β = 3
√

2. Therefore, a cube with side length α will have
twice the volume of a cube of side length β. [2]

Figure 1.3: Initial Folds

Figure 1.4: Doubling the Cube

Proof. Looking at the diagrams, it follows that point C must meet AB while
point S simultaneously meets PQ. We will denote BC as the unit length one,
AC as having length x, and BT as having length y. Thus, edge AB = x+1.

BP =
2(AB)

3
=

2(x+ 1)

3
.

CP = BP–CB =
2(x+ 1)

3
–1 =

2x− 1

3
.

It follows that CT = x+ 1–y. By the Pythagorean Theorem,

CB
2

+BT
2

= CT
2
, so 1 + y2 = (x+ 1− y)2.

Simplification yields y = x2+2x
2x+2 . Continuing,

AP =
AB

3
=
x+ 1

3

6



The Mathematics of Origami

and CP = x–
AB

3
= x–

x+ 1

3
=

2x− 1

3
.

Thus, 4 CBT ∼ 4PSC ⇒ BT

CT
=
CP

CS
,

and
y

x+ 1− y
=

2x−1
3

x+1
3

=
2x− 1

x+ 1
,

and y =
2x2 + x–1

3x
. Combining this and the equation for y found earlier,

we get
x2 + 2x

2x+ 2
=

2x2 + x–1

3x
.

After cross multiplying, the solution simplifies to x3 = 2. Therefore, x = 3
√

2.
[2]

Origami is shown to be far more powerful than compass and straightedge
as a method of construction, as these problems previously proven unsolvable
through the use of compass and straightedge were proved solvable through
the use of origami. However, squaring the circle, or constructing a square
whose area is the same as a given circle, is impossible to construct through
origami because π would need to be constructed. Pi is a transcendental
number, and thus not the root of a polynomial with integer coefficients
(only polynomial equations with rational coefficients can be solved with
origami—π is irrational). However, curved (non-flat) creases can allow for
the construction of non-algebraic numbers. An approximation for π can be
constructed by valley-folding a semicircle (centered at a given point A) along
the long side of a strip of paper, then making an angle of 45◦ or less by valley
creasing from one end of the semicircle (labeled B). An example of a valley
fold can be seen in fig. 2.1. Once the crease is folded flat and the semicircle
is folded, part of a cone should be formed. Then, the raw edge of the paper
positioned by the 45◦ (or less) crease should slide into the semicircle. If the
point where the raw edge touches the other end of the semicircle is creased
and labeled C, the length of BC is the perimeter of the semicircle. Thus, if
the semicircle’s radius AB = 1, BC/AB = π, implying BC = π (to about
two decimal places). [12]

The methods used in this construction could be formalized as follows:
“Given a line L and a curve C, we can align L onto C or vice-versa.” This is
similar to the third Huzita axiom—“Given two lines l1 and l2, we can fold
line l1 onto l2,” though nothing is mentioned about creasing to place L onto
C, only that they can be aligned onto each other. [12]
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When discussing origami constructible numbers, a few concepts must
first be defined. We will begin with two points, p0 and p1, and define the
distance between them, |p0p1|, to be 1.

Definition 1.1. A line l is constructible if a fold can be formed along line
l.

Definition 1.2. A point p is constructible if two lines can be constructed
that cross at point p.

Definition 1.3. A number α is constructible if two points can be constructed
a distance α apart. [7]

In order to establish the Cartesian plane, we must first create a vector
from p0 to p1 as the initial basis vector e1. Then, to find the second basis
vector e2, we construct a line segment with a magnitude equal to that of e1
extending at a right angle from point p0 to e1. The endpoint of this line
segment will be denoted p′1, reaffirming the line segment’s unit length 1.
Thus, e2, the second basis vector, will extend from p0 to p′1. [7]

Function 1. Given two points p0 and p1, construct a third point p′1 a
distance |p0p1| from point p0 such that p0p

′
1 ⊥ p0p1. [7]

The construction of these functions involves the use of the original seven
Huzita-Justin Axioms.

Using Axiom 1, construct the line l1 passing through p0 and p1.
Using Axiom 4, construct the line l2 ⊥ l1 passing through p1.
Using Axiom 4, construct the line l3 ⊥ l1 passing through p0.
Using Axiom 3, construct the line l4 placing l1 onto l2.
The point constructed upon the crossing of l3 and l4 is the point p′1. [7]

Proof. Since p′1 lies on l3 which, by definition, is perpendicular to l1 and
constructible by Axiom 4, p0p1 is perpendicular to p0p′1. The acute angle
formed by l1 and l4 must be equal to that which is created by l2 and l4, since
l1 was placed onto l2 when forming l4. The angle created by l1 and l2 is
bisected by l4. Lines l2 and l3 are parallel, and thus both are perpendicular
to l1. By alternate interior angles, the acute angle made by l2 and l4 is equal
to the angle formed by l3 and l4. Finally, since ∠p0p1p′1 ∼= ∠p0p′1p1,4p1p0p′1
is an isosceles triangle, such that |p0p1| = |p0p′1|. [7]

Function 2. Given two points p0 and p1, a third point p2 can be
constructed such that p2 is collinear with p0 and p1, and thus |p0p1| = |p1p2|.
[7]
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Use Function 1 to create p′1 from p0 and p1 such that ∠p1p0p′1 is a
right angle. From Function 1, l1 (through p0 and p1), l2 (through p1 and
perpendicular to l1), and l3 (through p0 and perpendicular to l1) have been
formed.

Use Axiom 4 to create the line l5 ⊥ l3 through p′1.
Use Axiom 3 to create the line l6 placing l5 onto l2.
The point constructed upon the crossing of l1 and l6 is p2. [7]

Proof. The points p0, p1, and p2 are collinear, since they all lie on l1. By
congruent triangles 4p1p0p′1 ∼= 4p2p1p3 having three equivalent angles and
one equivalent side, where the intersection of l2 and l5 is p3, |p0p1| = |p1p2|.
[7]

All positive and negative integers have been shown to be constructible
along the axes e1 and e2 (whose constructions are described earlier). Thus,
any point in ZxZ is constructible by finding the intersection of a perpen-
dicular extended from integers constructed on each axis. We will now move
from ZxZ to QxQ. [7]

Function 3. Given two constructible numbers α and β, we can construct
α
β , their ratio. [7]

Extending from p0, construct a point pa a distance α along the e1 axis
and a point pb a distance β along the e2 axis.

Use Axiom 4 to construct the line l1 ⊥ p0pa through pa.
Use Axiom 5 to create the line l2 passing through p0 and placing pb onto

l1.
Use Axiom 4 to create the line l3 ⊥ l2 passing through pb. Denote the

intersection of l1 and l3 point p2. Now |p0p2| = β.
Use Axiom 1 to form the line l4 passing through p0 and p2.
Use Function 1 to form p′1 one unit along the e2 axis.
Use Axiom 5 to construct the line l5 passing through p0 and placing p′1

onto l4.
Use Axiom 4 to create the line l6 ⊥ l5 passing through p′1. Denote the

intersection of l4 and l6 point p3. Thus, |p0p3| = 1.
Use Axiom 1 to form the line l0 through p0 and p1.
Use Axiom 4 to construct the line l7 ⊥ l0 passing through p3. Denote

the intersection of l0 and l7 point pr.
Thus, |p0pr| = α

β . [7]

Proof. Denote the intersection of l2 and l3 as px. The lengths of pbpx and
pxp2 must be equivalent, as they are able to be superimposed upon each
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β

α

β

α

1

1
α
β

→

Figure 1.5: Ratio Construction and Creases Involved

other. Next, 4p0pxpb and 4p0pxp2 both share the side p0px, thus by side-
angle-side, the two triangles are congruent. Similarly, it can be proven that
|p0p3| = 1. In addition, 4p0prp3 ∼ 4p0pap2. These two triangles are right
triangles, and both share an angle—thus, all three angles corresponding with
one another are equal, and the triangles are similar. Therefore, the ratio

of corresponding sides is also equal, and
|p0pa|
|p0p2|

=
|p0pr|
|p0p3|

. Since |p0pa| = α,

|p0p2| = β, and |p0p3| = 1, by substitution,
α

β
=
|p0pr|

1
= |p0pr|. [7]

Thus, by extending a perpendicular from the intersection of a ratio of
integers constructed on each axis, any point in Q2 can be constructed [7].
It has been proven that the division of any two constructible numbers is
possible. Since it is apparent we are able to construct the rational num-
bers, we will continue to prove that origami constructible numbers form a
field. The rationals form a field, and thus all we know how to construct
forms a field. To ensure the structure of the field is maintained even if con-
structible non-rational numbers are discovered, we must determine if the
origami constructible numbers are closed under addition, subtraction, and
multiplication, along with the previously proven division. [7]

Function 4. Given two constructible numbers α and β, we can construct
their sum α+ β or their difference α–β. [7]

Create the point pa extending from p0 a distance α along the e1 axis.
Create the point pb extending from pa a distance β along the e1 axis

in the same direction as e1 for addition and in the opposite direction for
subtraction.

Ultimately, |p0pb| = α+ β (or α–β). [7]

Proof. The appropriate sum or difference has obviously been constructed if
any previously constructible points based from pa can indeed be constructed.
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To construct the necessary unit length based from point pa, begin by con-
structing the axes using Axiom 1 to form the line l1 = p0pa and the line
l2 = p0p′1. Therefore, l1 is perpendicular to l2.

Use Axiom 4 to construct the line l3 perpendicular to l2 through point
p′1, and again to form the line l4 perpendicular to l1 through pa. Denote the
intersection of l3 and l4 point p′a.

Use Axiom 3 to construct the line l5 placing l3 onto l4. Denote the
intersection of l1 and l5 point p2.

The lines l1 and l3 are one unit apart and the triangle created is isosceles
(by the proof of Function 2)—thus, p2 is one unit away from pa. The number
β previously constructible from p0 using p1 is now constructible using pa and
p2. [7]

Function 5. Given two constructible numbers α and β, we can construct
αβ, their product. [7]

Because of the repetitive nature of these constructions, these steps will
not be listed here. All that must be done to construct the multiplication of
α and β is divide α by the reciprocal of β—the construction of such division

has already been proven. Using Function 3, we divide one by β to get
1

β
,

then divide α by
1

β
. After simplification, the result is equal to αβ. [7]

It has been proven that the set of constructible numbers is closed un-
der addition, subtraction, multiplication, and division—thus, it can be con-
cluded that the set of constructible numbers forms a field. Ultimately, the
field of origami constructible numbers is closed under taking both square
roots and cube roots. The construction of the square root of any con-
structible number implies the field of origami constructible numbers con-
tains the field of compass and straightedge constructible numbers. For con-
venience, the steps and proofs of these constructions will not be included,
but referring to Shepherd Engle’s paper entitled “Origami, Algebra, and
the Cubic” will give a thorough understanding of the constructions and
their corresponding proofs. The originally unsolvable (through compass and
straightedge) problems of trisecting an angle and doubling the cube, as de-
scribed earlier, were discovered to be easily solvable through origami. This
is due in part to trisecting an angle reducing to solving a cubic equation,
and doubling the cube reducing to constructing the cube root of two [7].

A good route to pursue in the future would look at the efficiency of
origami constructions versus other construction tools. Problems relating to
this topic include the study of the existence of constructions being alge-
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braically and geometrically optimal. Determining the uniqueness and opti-
mality of a given construction remains an open problem. In addition, one
may consider forming relations satisfied by the degrees, levels, and orders of
constructions [21].

1.2 Lill’s method

In 1868, Eduard Lill published a geometric method for finding real roots of
polynomials. Margherita Beloch realized, in 1936, that this method could
be adapted to paper folding, allowing one to find roots of polynomials with
rational coefficients by making a series of folds [13]. With single-fold axioms,
polynomials of degree 3 or less can be solved. In general, if we allow n
simultaneous folds, we can solve polynomials of degree up to n+ 2 [13]. See
[22] for more information on Lill’s Method adapted for origami.

Before looking at Lill’s method, we must learn about Horner’s form of
a polynomial. For a polynomial written in standard form as

p(x) = anx
n + an−1x

n−1 + · · · a1x+ a0,

Horner’s form is

p(x) = (((anx+ an−1)x+ an−2)x+ · · · )x+ a0.

Horner’s form leads to an efficient algorithm for computing values of a poly-
nomial. For finding the value p(x0), compute a series of values:

bn := an

bn−1 := bnx0 + an−1
...

b0 := b1x0 + a0.

Then b0 = p(x0).
This algorithm provides the basis for Lill’s method. We’ll start with an

example of a cubic equation; consider

f(x) = a3x
3 + a2x

2 + a1x+ a0.

We will represent this graphically with a right-angled path, shown in figure
1.6(a). To construct the path, start at the origin and walk a distance a3
vertically. Then turn clockwise 90◦ and walk a distance a2. (Note that if a2
is negative, you will walk backwards.) For each new coefficient, repeat this
process of turning 90◦ and walking for a distance given by the coefficient.
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Figure 1.6: The outer right-angled path has lengths determined by the coefficients. In (a),
the endpoints of the inner and outer paths coincide. In (b), they do not.

Now, create a second right-angled path, represented in 1.6(a) as a dotted
line starting at the origin O. Launch the line at an angle θ and any time
you intersect the original right-angled path, reflect at an angle of 90◦. Now,
vary the angle θ until the endpoints of both paths coincide at s. When the
endpoints coincide, − tan θ is a root of f ; so f(− tan θ) = 0.

Why does this occur? Let’s consider the length l between points s and t
in fig. 1.6(b). In order to find this length, first note that the triangles Op1p2,
p2p3p4, and p4p5t are all similar. Now we’ll find the length of segment p1p2.
Simple trigonometry tells us that it is a3 tan θ. Next, the length of p2p3 is
a2 − a3 tan θ.

Now, let’s find the length of p4p5. In a similar manner to above, we learn
that it is

a1 − (a2 − a3 tan θ) tan θ.

And similarly, the length of l is

a0 − (a1 − (a2 − a3 tan θ) tan θ) tan θ.

Note that when this length is 0, we have

0 = a0 − (a1 − (a2 − a3 tan θ) tan θ) tan θ

and we have constructed Horner’s form of the polynomial f , and so when s
and t coincide, − tan θ is a root of f !

How can we adapt this method to folding? It is fairly simple. We define
a unit length on the paper to be the length between some points p1 and p2.

13
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As long as the coefficients are rational (or in general algebraic if we allow
simultaneous folds), we can construct segments with the lengths determined
by the coefficients. Thus we can construct the outer right-angled path.

Note that for a polynomial

p(x) = anx
n + an−1x

n−1 + · · · a1x+ a0,

we can divide it by an without changing the roots, giving us the monic
polynomial

p(x) = xn +
an−1
an

xn−1 + · · · a1
an
x+

a0
an
.

Using a monic polynomial with origami has the advantage that the first
segment in the outer right-angled path has unit length. This means, in
particular, that the length p1p2 will (up to sign) be a root of the polynomial,
since

p1p2 = an tan θ = tan θ.

So solving a polynomial with origami means constructing segments with
length equal to the (real) roots of the polynomial. Constructing the outer
right-angled path is simple using Axiom 4, which allows us to construct lines
perpendicular to lines we have already. Creating the inner path is more
involved. In the case of a cubic equation, using Axiom 6 will be necesary
to find the proper lines to create the path. Once we have created the inner
right-angled path, we have a length equal to a root of the polynomial.

2 General Foldability

The above constructions, for the most part, rely on making a single crease
and then unfolding it, to use the mark it left on the paper. However, most
origami does not work this way - after making a fold, it stays, and then we
fold over it. Here we discuss the mathematical formalism for this kind of
folding.

One of the best ways to study origami is through studying crease pat-
terns. Intuitively, a crease pattern is obtained by folding an origami model,
and then unfolding the paper. The lines left on the paper by the folds form
the crease pattern. We will only consider crease patterns that use straight-
line creases. While it is possible to fold origami using curved creases, these
types of models are much less common and are more difficult to study mathe-
matically and curved creases will not appear in any of the topics we consider.
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Definition 2.1 (Crease Pattern). A crease pattern is a pair (C,R) where
C is a set of line segments that intersect only at their endpoints and R,
representing the piece of paper, is a closed connected subset of R2, s.t. C ∩
R = C. An intersection of creases is called a vertex. Note that intersections
occurring on the boundary of R will not be considered vertices.

This definition of a crease pattern is inspired by [23]. For an example of
a crease pattern, see fig. 2.2(a), which is the crease pattern for the common
bird base form.

Generally, we will consider origami using a square piece of paper paper.
Note that a crease pattern alone does not capture all of the relevant

information about an origami model. Every crease can fold upwards or
downwards. These are called valley folds and a mountain folds. We depict
valley folds with dashed lines and mountain folds with dash-dotted lines, as
shown in fig. 2.1.

Figure 2.1: A mountain fold with a dash-dotted line, and a valley fold with a dashed line.

Definition 2.2. A mountain-valley assignment of a crease pattern C =
{V,E} is a many-to-one mapping E → {M,V }.

Fig. 2.2(a) is the crease pattern for the bird base, and (b) is the bird
base with a mountain valley assignment.

Applying a different mountain-valley assignment to the same crease pat-
tern leads to a different folded form. Note that for a given crease pattern,
some assignments may by (flat) foldable while others may not be.

When we fold an origami model, we don’t rip the paper or stretch it. In
order to capture this notion, we define a folding.

Definition 2.3 (Folding). A folding of a crease pattern (C,R) is an as-
signment of angles to each crease, such that the paper, when folded with the
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Figure 2.2: A bird base crease pattern, both assigned and unassigned.

angles at the creases, does not rip or stretch, and the faces of the final form
are flat.

In general, we consider folding to take place in an arbitrary number of
dimensions in order to avoid the paper self-intersecting. Sometimes, as in
fig 2.3, we can have a folding in three dimensions where the paper self-
intersects. This does not correspond to how paper behaves in real life. To
avoid avoid this problem we define a valid folding.

Figure 2.3: A valid folding on the left, and invalid on the right, for the same crease pattern.

Definition 2.4 (Valid Folding). A valid folding is a folding that does not
cause the paper to self-intersect, when projected into R3 by ignoring all higher
dimensions.

See fig. 3.5 for an example of a crease pattern that has no valid folding,
but that can be folded flat if the paper is allowed to self-intersect.

Note that the definitions of folding and valid folding do not apply to flat
foldings, but only to foldings in Rn.
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2.1 Foldings and Knot Theory

The following theorem was inspired by a comment made by Jason Ku (MIT)
in his presentation of an origami hole-filling algorithm at JMM 2016. Asked
if his algorithm dealt with self-intersection, he said it did not, but that there
are a couple easy initial checks one can perform. “For instance,” he pointed
out, “the border of the paper must map to the unknot.”

This theorem ties together knot theory and origami, and will hopefully
allow us to gain further insight into ways in which foldings of crease patterns
may or may not self-intersect. An introduction to knot theory sufficient for
our purposes can be found in [18].

Theorem 2.5. A crease pattern with a given folding is valid if and only if
every Jordan curve drawn on the unfolded paper gets mapped to the unknot
in the final folded form.

Proof. First we need to show that if a folding is valid, then no Jordan curve
becomes a knot. A folding is valid when the paper has no self-intersection
in R3. Any time we make a fold, changing the positions of the faces of the
paper may introduce crossings into the Jordan curve. However, as long as
the fold does not cause the paper to self-intersect, these crossings can be
undone with Reidermeister moves.

The more interesting direction is showing that if a folding for a crease
pattern is invalid, then there exists a Jordan curve on the unfolded paper
that gets mapped to a non-trivial knot on the final folded form.

If a folding is invalid, that means that the paper intersects itself. This
intersection must occur along a line segment, because the faces of the paper
are flat. Thus, every intersection locally looks like fig. 2.4. Because the
paper is connected, we can draw a path from one end of one plane to the
other, as shown in fig.2.4(a). We can thicken the path into a ribbon of paper
by an ε amount, shown in fig. 2.4(b). If the ribbon intersects itself, there are
two possible cases. The first is that the path intersects itself before being
thickened into a ribbon, as shown in 2.5(a). In this case, we can nudge the
path a little bit so that the path no longer intersects itself. Now we may
find ourselves in the second case, in which the ribbon partially intersects
itself, as in 2.5(b). Take the line segment along the intersection, and let δ be
the length along which the intersection actually occurs. Now we can simply
pick a small enough ε ≤ 1

2δ so that there is no intersection anymore. The
ribbon without intersection at all is in 2.5(c).

Now we have a ribbon connecting the intersecting planes, and we draw
the curve illustrated by 2.6(a) along the ribbon. If the paper does not twist
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...
...
...

...

(a) (b)

Figure 2.4: (a) Finding a path between the intersecting planes. (b) Widening the path
into a ribbon.

(a) (b) (c)

Figure 2.5: (a) The path self intersects, so the ribbons intersect. (b) The path does not
intersect, but the ribbon does. (c) The path no longer intersects
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(a)

(b) (c)

Figure 2.6: (a) The self-intersecting paper with our special jordan curve embedded on it.
(b) The curve shown on a flat paper in the unfolded form. (c) The curve projected as a
knot diagram.
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at all, this produces a trefoil knot. However, depending on how the paper
twists between the two ends of the ribbon, the curve might not actually
produce a nontrivial knot. Look at fig. 2.6(c) for an example of the curve
with twists. Note that consecutive twists in opposite directions cancel each
other out. After using Reidermeister moves to omit consecutive twists in
opposite directions from our diagram, we will end up with a certain number
of over- or under-crossings. We may need to reverse the direction of the
crossings in the determined part of our construction in order for the final
diagram to describe a nontrivial knot. If our construction gets mapped to
the unknot simply reflect fig. 2.6(b) and it will produce a knot.

Because there are many ways to characterize knots (e.g. with polyno-
mials, groups, &c.), this theorem might allow us to adapt some of these to
create a characteristic for crease patterns or foldings. We might be able
to use this to describe the complexity of a crease pattern by finding, for
example, the number of ways it has to self-intersect for a given folding.

3 Flat Foldability

We’ve been looking at questions of general foldability - is there a way to fold
a crease pattern at all? Here, we focus on one of the biggest questions of
origami: when can a crease pattern be folded flat? Intuitively, a flat model
is one that can be pressed between the pages of a book without adding any
new creases.

We know some necessary conditions for flat foldability. Unfortunately,
these conditions are only sufficient in the case of a single vertex.

3.1 Single Vertex Conditions

The two most important tools for determining flat foldability are Kawasaki’s
and Maekawa’s theorems. These deal with the angles between creases and
the mountain-valley assignment of a crease pattern, respectively. We’ll start
with Kawasaki’s theorem, which in the case of a single vertex is a sufficient
condition (as long as we have a valid MV-assignment). Note that the number
of creases around a vertex must be even for Kawasaki’s theorem to apply.
Information on these theorems can be found in [14] and [11].

Theorem 3.1 (Kawasaki’s Theorem). The alternate angles formed by creases
around a vertex must sum to 180◦ in order for the vertex to fold flat.
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Proof. Consider an ant walking around the perimeter of the crease pattern
in Fig. 3.1. The ant first walks a distance a, then turns around and walks a
distance b, continuing in this manner until it comes back to where it starts
at O. So we have

a− b+ c− d+ e− f = 0

or
a+ c+ e = b+ d+ f.

The theorem is proved in an identical manner for a crease pattern with more
edges adjacent to the single central vertex.

Figure 3.1: An ant crawling around the perimeter of a crease pattern.

See fig. 3.2 which shows a crease pattern that is foldable by Kawasaki’s
theorem, and next to it one that is unfoldable.

Figure 3.2: These crease patterns are valid and invalid, respectively.

Now, we have a purely geometric condition. However, Kawasaki’s the-
orem does not include any information about assigned crease patterns. To
take into account this information, we have Maekawa’s theorem.

Theorem 3.2 (Maekawa’s Theorem). Let M be the number of mountain
folds and V be the number of valley folds; if the vertex folds flat, then M −
V = ±2.
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Proof. Consult fig. 3.3. The total number of creases is M+V . Consider the
flat-folded vertex. Without loss of generality, let each valley crease represent
a turn of 180◦ and each mountain crease represent a turn of −180◦. Then
as you walk around the vertex, when you get back to the point where you
started you will have crossed every crease, and will have made a total 360◦

turn. Then

180V − 180M = 360

V −M = 2

See fig. 3.4, which shows a crease pattern with 4 valley folds and 2
mountain folds (valid) and 3 each (invalid).

Figure 3.3: Folding up (a) produces (b). Cutting (b) at the line produces the cross-section
(c).

Figure 3.4: A crease pattern with a valid and invalid mountain-valley assignment.

Definition 3.3 (Local Flat Foldability). A vertex is locally flat foldable
when it satisfies Kawasaki’s Theorem and it has a mountain-valley assign-
ment that satisfies Maekawa’s theorem.
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3.2 Multiple Vertex Crease Patterns

Note that a crease pattern can be locally flat foldable at every vertex but
still be globally unfoldable. A crease pattern is globally flat foldable if it can
actually be folded flat without ripping or causing the paper to self-intersect,
or introducing new creases not in the crease pattern. The crease pattern in
fig. 3.5 has no valid mountain-valley assignment, and so cannot be globally
flat folded, although every vertex in the pattern satisfies Kawasaki’s theorem
and can be given an assignment that satisfies Maekawa’s theorem.

Figure 3.5: An unfoldable crease pattern.

Definition 3.4. A crease pattern is locally flat foldable when every vertex
in the crease pattern is locally flat foldable.

We can sometimes determine if a locally flat foldable crease pattern is not
globally flat foldable by giving it a mountain-valley assignment and seeing if
the assignment has inconsistencies. This is how we should that the pattern
in fig. 3.5 is not flat foldable. Without loss of generally, w assign one of
the central creases to be a mountain fold. Then, we can determine that the
crease clockwise around the triangle must be valley; then the next must be
mountain; and this forces our original crease to be valley. But this is an
inconsistency, and thus the crease pattern cannot be flat folded.

In general, the task of determining flat foldability for patterns with mul-
tiple vertices is very difficult. There are ways to simplify the problem: for
example, we can consider classes of simple crease patterns, such as those
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with only evenly spaced horizontal and vertical creases. This type of pat-
tern, known as a map, will be discussed below.

4 Computational Folding Questions: An Overview

4.1 Basics of Algorithmic Analysis

We will now turn our attention to computational questions relating to origami.
One could ask, for example, whether or not it is possible to write an algo-
rithm to determine whether a specific assigned crease pattern is flat-foldable.
If such an algorithm exists, what is the fastest such algorithm? Before we are
able to answer these questions, we must first briefly cover relevant concepts
from theoretical computer science.

The most important concept in theoretical computer science is that of
an algorithm. An algorithm is a set of instructions that can be followed to
accomplish a task. Suppose, for example, that we are given a finite set S of
integers and a target integer k, and told to determine whether or not there
exists a subset R ⊆ S such that the sum of all the members of R is equal to
k. (This is known as the Subset-Sum problem.) One possible algorithm to
solve this problem is as follows: “For every possible subset R of S, compute
the sum of the members of R. If this sum is equal to k, return true. After
we’ve checked every subset, return false.”

Observe first that this algorithm will always return the correct answer.
If some subset R of S has the sum of its members equal to k, then we will
find it since we check every subset of S. Therefore if such a subset exists,
we return true. If no subset of S has the sum of its members equal to k,
then we will never return true, and thus after we’ve checked every subset,
we will return false. Therefore if such a subset does not exist, we will
return false. This means we return true if and only if some subset of S
has the sum of its members equal to k. This means our algorithm indeed
tests exactly what we hoped it would, and always returns the correct answer!

Since we know that our algorithm will always find the right answer, we
might wonder how long it will take to do so. This question requires us
to develop some formal way of discussing the time an algorithm takes to
run. In computer science, we measure the running time of an algorithm in
terms of the number of “operations” it must perform in the worst case. The
precise definition of an operation is beyond the scope of this paper, but for
our purposes we will consider most basic arithmetic to be single operations
(addition, subtraction, multiplication, checking equality, etc.)
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Note that we are interested in the worst case running time of an algo-
rithm because it provides an upper bound for the running time. Every time
we run the algorithm, it must perform at most as many operations as in the
worst case. Therefore worst-case analysis of an algorithm allows us to have
a guarantee of the speed of our algorithm.

We can compute the exact number of operations our algorithm will per-
form in the worst case. Note that we look at 2n total subsets of S in the
worst case, where we must look at every one, and each subset has at most
n elements. It takes n − 1 additions to find the sum of n numbers, and
one comparison to test if this sum is equal to k. Therefore we are doing at
most n operations for each of the 2n subset of S, and thus we are doing at
most n ∗ 2n operations in total. Therefore the worst-case running time of
our algorithm is n ∗ 2n operations.

Computer scientists use “big-O notation” to discuss the asymptotic run-
ning time of algorithms. We wish to know what happens to the running
time of an algorithm as the size of the input gets very large. Big-O notation
basically encodes the answer to the question “what is the size of the most
significant term of our running time?” Rather than give the formal defini-
tion of big-O notation, we give a table of example functions f(n) and their
corresponding big-O notation representation O(f(n)), where k is a constant.

f(n) O(f(n)) Polynomial time?

n O(n) Yes

3n O(n) Yes

n+ 2 O(n) Yes

5n− 3 O(n) Yes

3n+ 4n2 O(n2) Yes

2n4 − 3n2 +
√

6n O(n4) Yes

akn
k + · · ·+ a1n+ a0 O(nk) Yes

2n + nk O(2n) No

n ∗ 2n + 2n O(n ∗ 2n) No

nn O(nn) No (!)

n! + 2n O(n!) No

k O(1) Yes

An algorithm is said to run in time O(f(n)) if its worst-case performance
on an input of size n takes O(f(n)) operations. Recall that in the worst case
our algorithm for the Subset-Sum problem performed n ∗ 2n operations.
This means our algorithm runs in time O(n ∗ 2n). There may be particular
instances of this problem which our algorithm finishes in O(2n) operations
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or even in O(n) operations. However, we now have a guarantee that our
algorithm will always finish in fewer than O(n ∗ 2n) operations.

An algorithm is said to run in constant time it its worst-case running
time is O(1). An algorithm is said to run in linear time it its worst-case
running time is O(n). An algorithm is said to run in polynomial time if
its worst-case running time is O(nk) for some constant k. An algorithm
is considered efficient (for our purposes) if it runs in polynomial time (or
better).

Note that our algorithm for the Subset-Sum problem was not a poly-
nomial time algorithm. One might wonder whether or not there exists a
polynomial time algorithm which solves the Subset-Sum problem. This
question lies at the core of computational complexity theory, and will be
addressed in the next section.

4.2 Introduction to Computational Complexity Theory

We will now develop a cumbersome framework for discussing the difficulty
of problems, in order to make meaningful statements about the difficulty of
various origami-related problems. We will borrow techniques from computa-
tional complexity theory, which attempts to classify problems into different
classes based on their relative difficulty.

One important complexity class is P, the class of all problems which can
be solved in polynomial time. For example, consider the Subset problem,
where we are given the task of determining whether a finite set S of size n
contains a finite set R as a subset. This problem can be solved in polynomial
time by the following algorithm: “For each member r of R, check if r ∈ S
by checking if r = s for each s ∈ S. If some r ∈ R is not in S, return false.
After we check every member of R, return true.”

We can also ask whether the solution to a particular problem can be
verified as correct in polynomial time. Given an instance p of a particular
problem, and a proposed solution s, we can ask what the complexity of
determining the correctness of our solution is. For example, a proposed
solution to the Subset-Sum problem would consist of the subset that sums
to k. Given this subset, we can determine whether or not it is indeed a
subset in polynomial time (as above), and whether its members indeed sum
to k in |R| < |S| = n operations. Therefore we can determine the correctness
of a solution to Subset-Sum in polynomial time. The class of all problems
whose solutions can be verified in polynomial time is called NP. Perhaps
surprisingly, not every problem is in NP (examples are beyond the scope of
this paper).
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Clearly every problem in P is also in NP. Suppose we have a problem in
P and a proposed solution to the problem. We can just solve the problem
in polynomial time (since it’s in P), and compare the solution to the one
we were trying to verify. If we got the same answer, then our given solution
was correct. If we get a different answer, then our given solution was wrong.
Note that this still works if there were multiple possible valid solutions to
the problem, but requires a definition detail which is beyond the scope of
this paper.

The most important open problem in computer science is the problem of
determining whether or not P=NP. This problem is one of the Millennium
Prize Problems (along with the Poincare Conjecture and the Riemann Hy-
pothesis), meaning there is a $1 million prize for the person who solves it.
There has been a lot of study surrounding this problem which has led to the
development of various subfields of computer science.

How would one go about determining whether or not P=NP? Since we
already know P ⊆ NP, determining whether P=NP reduces to determining
whether NP ⊆ P. This is equivalent to determining whether every problem
in NP can be solved in polynomial time. Intuitively, this would mean that
solving a problem is as difficult as verifying a solution to the problem.

Now, how would one go about determining whether NP ⊆ P? If we
could find a problem harder than any problem in NP that can be solved by
a polynomial time algorithm, then we would know that every problem in NP
can be solved by a polynomial time algorithm. A problem that is at least
as hard as every problem in NP is creatively called NP-hard. On the other
hand, if we want to show that P ⊂ NP, we would need to find a problem
in NP and prove that there is no polynomial time algorithm that solves it.
An NP-hard problem that is in NP is called NP-complete. An NP-complete
problem has a polynomial time solution if and only if P=NP.

At the end of the previous section, we posed the question of whether
or not there exists a polynomial time algorithm for solving the Subset-
Sum problem. A well-known result of complexity theory is that Subset-
Sum is NP-complete. This means that determining whether or not there
exists a polynomial time algorithm for Subset-Sum is exactly the $1 million
problem of determining whether P=NP.

4.3 Computational Complexity of Flat Foldability

Now that we have laboriously laid the foundations of complexity theory, we
can return to the world of origami. We will state two known complexity
results given by [5] without proof, since detialing a proof of NP-hardness is
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far beyond the scope of this paper.
General Flat Foldability is the problem of determining, for a par-

ticular unassigned crease pattern, whether or not there exists an assignment
for which the crease pattern is flat foldable. General Flat Foldability
is NP-hard.

Assigned Flat Foldability is the problem of determining, for a par-
ticular assigned crease pattern, whether or not the crease pattern is flat
foldable. Assigned Flat Foldability is NP-hard.

In the next section, we will look at a simplified version of the above
problems whose complexity is currently unknown.

5 Map Folding: A Computational Problem

5.1 Introduction to Maps

In the previous section, we proved that the question of determining assigned
flat foldability is difficult in general. In the general case, our crease pattern
could take any form. However, what if we restrict the problem to determin-
ing which crease patterns of a specific form are flat foldable?

For example, consider the Stamp Flat Foldability problem. Suppose
we know that our crease pattern consists of n unit square faces in a single
row. (We call this crease pattern a stamp of length n.) We would like to find
an algorithm which determines whether or not a particular mountain-valley
assignment of a stamp of length n is flat-foldable. It turns out that every
assignment is flat foldable, and therefore the constant time algorithm “Yes,
it is flat foldable” suffices for this case.

Claim 5.1. Every assignment of a stamp of length n is flat foldable.

Proof. We proceed by induction on n, the length of the stamp. For n = 1,
we start with a flat folded form. For n = 2 there is only one crease, and
therefore there are two possible assignments. If the crease is a mountain,
then we can fold the right face under the left face. If the crease is a valley,
then we can fold the right face over the left face. In either case, we have
flat folded the stamp. Consider the general case of a stamp of length n.
As in the n = 2 case, the right-most face f will either fold above or below
(depending on the assignment of the crease) the face to the left of it, e.
Once it has been folded, whenever we move e, we can move f since they lie
on top of one another with nothing between them. We can treat our new
map as if f doesn’t exist. Therefore by folding f , we have created a stamp
of length n− 1. By the inductive hypothesis, we can flat fold any stamp of
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length n − 1, and thus we can flat fold this stamp. Therefore every stamp
of length n is flat foldable.

This problem is certainly easier than the general case of the assigned flat
foldability problem, since it has a constant time algorithm. In this section,
we will explore an open question about the complexity of a slightly more
complicated crease pattern called a map.

An m× n map is a crease pattern, along with a mountain-valley assign-
ment, whose faces are all squares of unit side length which form an m by
n grid (Note that a stamp is just a 1 × n map.) Map Flat Foldability
is the problem of determining whether a given m × n map is flat foldable.
The computational complexity of Map Flat Foldability is currently an
open problem.

Figure 5.1: An example of a m× n map.

Not only do we know exactly where our creases are, but we also know
what our flat-folded form will look like for any assignment. Consider the
flat-folded form of a stamp of size n. We will prove that the projection of
this flat-folded form onto the plane is always the same, and is exactly the
unit square.

Claim 5.2. The projection of every flat-folded stamp of length n onto the
plane is the unit square.

We can make an identical claim about the flat-folded form of a map.
In proving the next claim, we will also prove the claim for stamps since a
stamp is just a 1× n map.
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Claim 5.3. The projection of every flat-folded m×n map onto the plane is
the unit square.

Proof. Suppose for the sake of contradiction that the projection of the flat-
folded form onto the plane is not the unit square. Then there must be some
face which does not lie completely inside the unit square. No face can lie
partially inside the unit square, since all of our creases are orthogonal and all
of our faces are unit squares. This means some face lies completely outside
of the unit square. Therefore somewhere in our flat-folded form we have two
adjacent faces on the same plane. But these faces have a crease between
them that hasn’t been folded, and therefore this is not a flat-folded form as
we supposed.

According to the above claim, the flat-folded form of a map is always
just a linear stack of the faces. This means that the ordering of these faces
uniquely determines the flat-folded form. A linear ordering of the faces of an
m× n map M is valid if it is the linear ordering of some flat folding of M.
Note that each map may have many different linear orderings corresponding
to different ways to flat-fold the map. For example, all of the possible linear
orderings of the faces of a stamp are valid. If there are no valid linear
orderings of the faces of map, the map is not flat foldable. The question of
determining whether or not a mapM is flat foldable is equivalent to asking
whether or not there exists a valid linear ordering of the faces of M. We
must therefore develop a method for testing whether or not a given linear
ordering is valid.

5.2 Testing the Validity of a Linear Ordering

In this section, we will follow the work of Nishat and Whitesides in [19] to
construct a linear time algorithm for determining whether or not a given
linear ordering of faces is valid for a particular map.

Suppose the paper is colored dark on one side and light on the other.
We can ask for a particular m × n map M, whether a particular face is
light-side or dark-side up in a particular linear ordering L. (Suppose the
top-left-most face is light-side up.) The checkerboard pattern of a map M
is the unique assignment of the faces of M to the set {light, dark} such
that the top-left-most face ofM is light and adjacent squares have differing
assignments.

For every pair of adjacent faces in a map, we can use our knowledge of
the checkerboard pattern and the map’s assignment to determine which face
in the pair is earlier in any linear ordering of the faces. For adjacent faces u
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Figure 5.2: An example of a checkerboard
pattern for a 4 map.

and v in a map M, we say u precedes v if (i) u is light, v is dark, and the
crease between u and v is a mountain or (ii) u is dark, v is light, and the
crease between u and v is a valley.

Figure 5.3: The precede relation we learn
from a mountain fold. Figure 5.4: Folded mountain crease.

Lemma 5.4. If u precedes v, then u comes before v in the linear ordering
of every valid flat folding of M.

Proof. Suppose the crease between u and v is a mountain. Then as seen in
fig. 5.3, the light-side up face comes before the dark-side up face, meaning
u comes before v if the u is light-side up, v is dark-side up, and the crease
between them is a mountain. This proves case (i).

Suppose the crease between u and v is a valley. Then as seen in fig. 5.5,
the dark-side up face comes before the light-side up face, meaning u comes
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Figure 5.5: The precede relation we learn
from a valley fold. Figure 5.6: Folded valley crease.

before v if the u is dark-side up, v is light-side up, and the crease between
them is a valley. This proves case (ii).

We can induce a partial ordering P on the faces of M by saying that
u < v if u precedes v. This partial ordering must be satisfied in any valid
linear ordering of faces.

Lemma 5.5. Every valid linear ordering satisfies the partial ordering P.

Proof. Consider a pair of adjacent faces u and v in P such that u < v. We
constructed P such that u < v if u precedes v, which by Lemma means that
u comes before v in every valid linear ordering. Therefore for all u < v in
P, u comes before v in every valid linear ordering. This means the linear
ordering satisfied P.

We will now introduce a concept which will be pivotal to our discussion
of valid linear ordering. A butterfly B in a map M is a pair of adjacent
faces u and v, where u precedes v, together with their common edge e. We
denote this butterfly by B = (u, v, e). We call u and v the wings of B and
e the hinge of B. Two butterflies B1 and B2 are said to be twin butterflies
in a particular flat folding of M if their hinges lie above the same edge of
the unit square in some flat folding of M.

Lemma 5.6. “B1 and B2 are twin butterflies” is an equivalence relation on
the set of butterflies with four equivalence classes.

Proof. Clearly “B1 and B2 are twin butterflies” partitions the set of butter-
flies, since the edge of each butterfly must lie above some edge of the unit
square, and can lie above only one such edge. Since there are four edges of
the unit square, there are four possible equivalence classes.
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Figure 5.7: A 3 × 3 map with three butter-
flies highlighted.

Figure 5.8: A subsection of the flat folded
form of the map on the left. The orange and
purple butterflies are twins, the blue butter-
fly is twins with neither of them.

We now explore the ways in which twin butterflies interact in a flat
folded form. Suppose we have twin butterflies B1 = (u1, v1, e1) and B2 =
(u2, v2, e2) We say that B1 and B2 stack in a particular linear ordering of
faces if either (i) u1 < v1 < u2 < v2 or (ii) u2 < v2 < u1 < v1. We say
that B1 and B2 nest in a particular linear ordering of faces if either (i)
u1 < u2 < v2 < v1 or (ii) u2 < u1 < v1 < v2.

Figure 5.9: A pair of butter-
flies nesting.

Figure 5.10: A pair of but-
terflies stacking. Figure 5.11: An example of

an unallowed configuration
of butterflies.

We say a linear ordering L of faces of an m × n map M satisfies the
butterfly condition if every pair of twin butterflies inM either nest or stack
in L. It turns out that every linear ordering must satisfy this condition in
order to be flat-foldable.
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Lemma 5.7. Every valid linear ordering satisfies the butterfly condition.

Proof. Suppose for the sake of contradiction that we have a valid linear
ordering L for which butterfly condition is not satisfied. Then there exists
some pair of twin butterflies B1 = (u1, v1, e1) and B2 = (u2, v2, e2) which
does not either stack or nest in L. Then the order of the faces of these
butterflies must be either u1 < u2 < v1 < v2 or u2 < u1 < v2 < v1. In order
for the faces to not intersect (in either case), the edges of butterflies must
overlap. See fig. 5.11.

Taken together, the two conditions presented in Lemmas 5.5 and 5.7 are
sufficient for determining whether a linear ordering is valid.

Theorem 5.8. A linear ordering L is valid if and only if (i) L satisfies the
partial ordering P and (ii) L satisfies the butterfly condition.

Proof. Suppose L is valid. Then we know by Lemma 5.5 that our valid L
satisfies (i) the partial ordering P. We also know by by Lemma 5.7, that
our valid L satisfies the butterfly condition.

Suppose we have a linear ordering L of faces which satisfy (i) and (ii).
Consider stacking the faces of the map on top of the unit square in the order
determined by L where a face is dark-side up in our stack if it is dark-side
up in the checkerboard pattern, and light-side up otherwise.

Consider some pair of faces in our stack which are adjacent in our map,
and therefore are the wings of some butterfly. We can these faces together
along the edge e of the butterfly. Since by (i) our linear ordering L satisfies
the partial ordering P, we know that the crease type made at e is the
assignment of crease between u and v in our map, and not the opposite. (If
L did not satisfy the partial ordering, we might have u before v or v before
u, and thus the crease might be either a mountain or a valley.)

We can use this method to fuse together every pair of adjacent faces in
our map. This will not create intersections between twin butterflies by (ii),
since by the butterfly condition every pair of butterflies stacks or nests in L,
and stacking or nesting butterflies obviously do not intersect one another.
Additionally, if a pair of butterflies are not twins, then they cannot possibly
intersect. Therefore we have fused together every pair of adjacent faces
in our map without creating any intersections. Since we have fused our
map back together this is a folded form of the map, and since we have no
intersections it is a flat-folded form. L is the linear ordering of the faces of
this flat-folded form, and is therefore valid.
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We now use this result to develop an efficient algorithm for determining
the validity of a given linear ordering of faces.

Corollary 5.9. The validity of a linear ordering of the faces of a map M
can be tested in polynomial time.

Proof. There are O(m2n2) pairs of faces, therefore fewer than O(m2n2)
pairs of adjacent faces, meaning there are O(m2n2) butterflies. (Note: if
f(n) < g(n), then f(n) is in O(g(n)).) Therefore there are at most O(m4n4)
possible pairs of butteflies. For each butterfly B, we must check that the
faces satisfy the partial order P. This can be done in constant time for
each of the O(m2n2) butterflies. We must also check, for every twin of B,
whether they stack or nest. This can also be tested in constant time for each
of the O(m4n4) possible pairs of butterflies. Therefore this algorithm runs
in O(m2n2) + O(m4n4) = O(m4n4) time, which is O((mn)4). Since mn is
the size of our input, this is polynomial in the size of our input.

5.3 Complexity of Map Folding

In this section, we will discuss some results related to the open problem of
determining the complexity of Map Flat Foldability. There has been
some work done on easier versions of the problem, where one of the dimen-
sions of the map is fixed. As discussed in Section 5.1, the 1× n Map Flat
Foldability problem is equivalent to the Stamp Flat Foldability prob-
lem, which can be solved in constant time. In [6], Demaine, Liu, and Morgan
develop a O(n9) algorithm for the 2× n Map Flat Foldability.

We will now present an original theorem on the complexity of Map Flat
Foldability based on the results of the previous section.

Theorem 5.10. Map Flat Foldability ∈ NP

Proof. In order to prove that a problem is in NP, we must show that any
proposed solution to a particular instance of the problem can have its cor-
rectness verified in polynomial time. A solution to Map Flat Foldability
consists of a linear ordering of the faces of the map. By Lemma 5.9 we can
determine whether a linear ordering is valid in polynomial time. Recall that
a linear ordering is valid if and only if the map is flat-folded. This means
that we can determine whether the linear ordering corresponds to a flat fold-
ing of the map in polynomial time, and therefore Map Flat Foldability
∈ NP.

We will now develop an alternative way to represent maps as graphs
that encodes information from both the partial order P and the concept
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of twin butterflies. The induced graph of a map M is a digraph G with
a node for every face in M and a directed edge (u, v) from face u to face
v if and only if u precedes v, along with a coloring of the edges such that
two edges e1 = (u1, v1) and e2 = (u2, v2) have the same color if and only
if their corresponding butterflies B1 = (u1, v1, e1) and B2 = (u2, v2, e2)
are twins. (We say a colored digraph G is inducible if there exists some
m × n map M with induced graph G.) We will prove that the question
of Map Flat Foldability is equivalent to asking whether this graph can
be embedded in a particular way. Before we do so, we must discuss a few
concepts from graph theory.

We will be considering various embeddings of graphs in order to develop
the terminology we need to discuss map folding as a graph theory problem.
A planar embedding of a graph G is an embedding of the vertices and edges of
G in the plane such that no edges of G cross. The complexity of determining
whether or not a graph has a planar embedding is linear in the number of
vertices of the graph [20].

We can also impose additional restrictions on our embedding if we want
to. An upwards planar embedding of a directed graph G is a planar em-
bedding of G where every edge is a curve with increasing y coordinates
[20]. The problem of determining whether a graph G has an upwards planar
embedding is NP-complete [9].

We now consider a particular 3-dimensional embedding of a graph that
will be essential to stating the question we wish to ask about inducible
graphs. A k-page book embedding of a graph G is an embedding of G in k
half-planes (called pages) that meet at a single line (called the spine) such
that all of the vertices lie on the spine, every edge is completely contained
in exactly one page, and each page in planar. Yannakakis, in [24], proved
that every graph has a 4-page book embedding.

In a k-page book embedding, we are generally allowed to put our edges
in whichever page we would like. This next type of embedding restricts us to
putting each edge in a particular page. A k-page partitioned book embedding
of a colored graph G is a k-page book embedding of G such that each
page contains edges of exactly one color. Determining whether a graph has
a 2-page partitioned book embedding takes linear time [10]. Determining
whether a graph has k-page partitioned book embedding is NP-complete [3].
Sadly, both proofs are far beyond the scope of this paper.

We can also put restrictions on the structure of the embeddings in each
page. A k-page upwards book embedding of a directed graph G is a k-page
book embedding where every page is upwards planar. There has been almost
no work done on the topic of k-page upwards book embeddings.
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Now that we have a way of talking about these embeddings, we finally
have the structure we need, and we can make our claim about map folding
being equivalent to determining whether or not the induced graph has a
particular type of embedding. (Both this claim and the “proof” are original
work.)

Lemma 5.11. A map M is flat foldable if and only if the butterfly coloring
of the induced graph G has a 4-page upwards partitioned book embedding with
page assignments given by coloring of G.

Proof. A rigorous proof of this claim is beyond the scope of this paper, but
we will give the proof idea here. The linear ordering of faces corresponds
with the vetices/spine of the book, and the butterflies correspond to the
edges. There are 4 pages, one for each of the equivalence classes of twin
butterflies. A page is planar if and only if the butterflies correspondings
to that equivalence class all stack or nest in the linear ordering. A page
is upwards if and only if the partial ordering P is satisfied by our linear
ordering. These two taken together say that all pages are upwards planar if
and only if the linear ordering satisfies the butterfly condition and the partial
ordering P, which was exactly the condition for being a valid linear ordering
according to Theorem 5.8. Therefore our linear ordering is valid if and only
if our embedding is a 4-page upwards book embedding. But a valid linear
ordering means a flat folded form, so we have a 4-page upwards partitioned
book embedding (with page assignments given by the butterfly coloring of
G) if and only if our form is flat folded. This means that a flat folding ofM
is possible if and only if the butterfly coloring of the induced graph G has
a 4-page upwards partitioned book embedding with page assignments given
by coloring of G.

This connection will allows us to use future results about 4-page up-
wards partitioned book embeddings to help determine the complexity of
Map Flat Foldability. If we can find a polynomial time algorithm for
determining if a graph has a 4-page upwards partitioned book embedding,
then Map Flat Foldability is in P. Similarly, if we can prove that de-
termining if an inducible graph has a 4-page upwards partitioned book em-
bedding is NP-hard (as opposed to proving it for a general graph), then we
would know that Map Flat Foldability is NP-complete. As it is, we
have put down the mortar for future research to lay its bricks upon.
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...

...

→

Figure 6.1: A star crease pattern with a sample flat folding.

6 The Combinatorics of Flat Folding

There are a number of countings problems we might ask vis-a-vis maps:

• How many folded forms are there for an m× n map?

• How many m× n map crease patterns admit flat foldings?

Both of these problems are very difficult; in fact so far they’ve been found
intractible. Attempts at simplification have also yielded very few results:
restricting the first question to the case of 1× n maps still produces a very
difficult problem, and doing so to the second question yields a trivial answer:
all 1× n crease patterns can be folded [4]. The question of how many 2× n
map crease patterns admit flat foldings is again intractible.

Thus we look to another class of crease patterns for a manageable count-
ing problem. As pictured in fig. 6.1, suppose P is an unassigned crease
pattern on a circular paper with one vertex in the center and 2n creases
space equiangularly about the vertex. We call P an star crease pattern. If
we use Mn to denote the set of all possible flat-folded forms of this crease
pattern, what is |Mn|?

Perhaps unsurprisingly, the answer to this question is that no one is re-
ally sure. However, we do have a name for these objects: they are closed
meanders. Indeed, as the canonical combinatorial folding problem, the
single-vertex crease pattern question is one statement of a combinatorial
class whose enumeration has escaped mathematicians for quite some time.
Closed meander enumeration is a member of a group of problems in com-
binatorics that are what we might call ‘elementary but hard’—no special
mathematics is required to understand the statement of the problem, but
solutions are still hard-won.

We begin with a formal definition of the problem.
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(a)

(b)

Figure 6.2: (a) An example of a closed meander of order 5, and (b) a pair of arch systems
that is not a meander.

6.1 Definition

Definition 6.1 (Arch System). An arch system of order n is a collection of
nested semicircles placed along a line such that no two arches intersect and
the arch ‘feet’ are equidistant.

Definition 6.2 (Closed Meander). A closed meander of order n is a pair
of arch systems of order n (A,B) such that when B is reflected and placed
on the same line and upside-down relative to A, the two arch systems form
a single closed curve.

As with many of definitions that follow, closed meanders are best under-
stood pictorally; see fig. 6.2 for an example. We will use ‘meander curve’
to refer to the closed curve created by A and B, and ‘meander line’ to refer
to the horizontal line in the (A,B). Mn will denote the set of meanders of
order n and Mn = |Mn| will denote the number of meanders of order n.
Hence we seek an efficient enumeration method for Mn.

A couple notes are in order: first, by a straightforward construction
provided in [15], given an arch system A we can always find an arch system
B such that (A,B) is a meander. After a little thought we realize that the
set of arch systems of order n is in bijection with parenthesis sequences: just
“shave off” the top portions of each arch to obtain a pair of parentheses.
Because parenthesis sequences are counted by the Catalan numbers Cn, this
gives us a lower bound on Mn:

Mn ≥ Cn =
1

n+ 1

(
2n

n

)
.

Secondly (and critically) not every pair of arch systems (A,B) yields a
meander. This is because when A and B are placed opposite to each other,
they might create multiple closed curves (see fig. 6.2(b)). Thus C2

n, the
number of pairs of arch systems of order n, is only a loose upper bound for
Mn. In summary we have Cn ≤Mn ≤ C2

n; and referring to Table 6.3 for the
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n Cn Mn C2
n

1 1 1 1
2 2 2 4
3 5 8 25
4 14 42 196
5 42 262 17,64
6 132 1,828 17,424
7 429 13,820 184,041
8 1,430 110,954 2,044,900
9 4,862 933,458 23,639,044

10 16,796 8,152,860 282,105,616

Figure 6.3: The first 10 terms of Mn and its Catalan number bounds.

beginning of each sequence, we see these bounds are (at least initially) very
loose.

It is in this second fact that the difficulty of meander enumeration lies:
how do we determine when a pair of arch systems produces a single closed
curve? The naive answer is an O(n) algorithm—hardly conducive to the
development of a closed form enumeration or recursive definition. Most ex-
tant work circumvents this problem by defining and studying a larger class
of meandric systems Mk

n where k is the number of closed curves that the
two arch systems produce. In this conception, enumerating closed meanders
becomes determining M1

n. While existing work has not solved the closed me-
ander problem, the investigation of closed meanders within this larger set of
objects has led to the discovery of many connections with other well-studied
objects. One such connection is a natural bijection between meandric sys-
tems and reduced members of the Temperley-Lieb algebra, an algebra from
statistical mechanics used to study knots and the braid group [8].

In what follows we take a different (and to the best of our knowledge,
original) approach. We do not consider Mk

n; instead we develop a recursive
generation method for Mn while demanding, at each step, that we are work-
ing with a single closed curve. While we do not solve the closed meander
problem, we will see that this recursive generation technique allows us to
count an important subclass of meanders, in the end allowing us to reduce
the general closed meander problem to a sensible subproblem.

To this end, we begin by defining a word-like structure on meanders
that has the property of ‘single-curve-connectness’ built in. We then define
raising “insertion” and lowering “deletion” operators on this structure to

40



The Mathematics of Origami
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L

R

R
L
R

R

RLRRLRLLRRπ(mn) = = π(m'n)  

mn = m'n = 

Figure 6.4: On the left we determine the winding sequence for the meander used in fig.
6.2. Notice that this π is the same as for the meander m′n on the right.

organize meanders into a graded poset.

6.2 Winding Sequences

Definition 6.3 (Winding Sequence). The winding sequence π(mn) for a
meander mn = (A,B) of order n is a 2n-symbol word obtained from the
alphabet {R, L} in the following way:

1. Assign an orientation to the meander curve created such that the left-
most arch in A is oriented clockwise.

2. Beginning at the leftmost intersection with the line, append an R to π
if the curve bends to the right relative to the orientation, and an L if
the curve bends left.

3. Move along the curve in the direction of the assigned orientation until
another intersection is reached. Repeat step 2.

4. Repeat this until we reach the beginning of the meander.

In this description we understand each arch ai as either an L arch or an
R arch, writing ai = L or ai = R, depending on what the ith symbol is in
the meander’s winding sequence. For example, see fig. 6.4.

The image of π (the set of winding sequences that have an associated
meander) are actually simple to describe: π(mn) = one R followed by an
equal number of Ls and Rs and then a final R. We save the proof of this fact
for the end of this section, by which point we will have developed sufficient
machinery. Note that π(mn) does not uniquely determine mn: while by the
constructive nature of the definition every meander has a winding sequence,
it is often the case that a given π is the winding sequence for multiple
meanders, as demonstrated by fig. 6.4.

Given some meander mn, one systematic way to obtain a new meander
m′n with the same winding sequence as mn is by “shuffling” arches in the
following way:
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Definition 6.4 (Arch Exchange). For this definition we represent arches in
an arch system as ordered pairs of ‘arch feet’ a = (a1, a2) where ai is equal
to the index along the meander line of that given foot. Now suppose in a
meander (A,B) we have two arches a = (a1, a2) ∈ A and b = (b1, b2) ∈ B
where b1 = a2 + 1. Then map the index of each arch foot ci in each arch
c ∈ A ∪B, by

ci →


ci − b1 + a1 b1 ≤ ci ≤ b2
b2 − b1 + ci a1 ≤ ci ≤ a2
ci otherwise.

Informally an arch exchange swaps two arches by sliding them past each
other while keeping the rest of the meander the same. See fig. 6.5 for an
example. We appeal to this physical intuition to justify two facts: first, that
arch exchange does not produce any arch crossings and thus yields a valid
meander, and second, that if a meander mn undergoes an arch exchange
to become a different meander m′n, its winding sequence is unchanged. In
symbols, π(m) = π(m′).

We are now prepared introduce the fundamental “unit” of our meander
generation process.

Definition 6.5 (Arch Pair). An arch pair is a pair of consecutive arches
aiai+1 ∈ a2 · · · a2n−1 in a winding sequence with ai 6= ai+1.

Lemma 6.6. Every meander of order 2 or greater contains an arch pair.

Proof. Suppose it does not. Then either all ai ∈ a2 · · · a2n−1 are R or all
ai ∈ a2 · · · a2n−1 are L. This is false.

The constant presence of arch pairs in (≥ 2)-meanders suggests that
a consistent process for arch pair deletion would provide a good method

(a) (c)(b)

→ →

Figure 6.5: An intuitive representation of the arch exchange process. We exchange the
bolded arches in the pictured meander by “stretching” the groups of arches around each
other.
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→ → →

Figure 6.6: Arch pair deletion. We delete the dashed arch pair by swapping arches out of
the right arch of the arch pair, swapping arches out of the left arch of the arch pair, then
finally removing the arch pair. Note of course that (b) is a not a legitimate meander.

to obtain meanders of order n − 1 from those of order n. Arch exchange
provides us with just such a method.

Definition 6.7 (Arch Pair Deletion). If aiai+1 is an arch pair in mn, the
deletion operator D(mn, i) removes it in the following way.

1. Exchange the arch within ai+1 that is closest to the arch ai with ai.
Repeat this process until there are no arches within ai+1.

2. Exchange the arch within ai that is closest to the arch ai+1 with arch
ai+1. Repeat this process until there are no arches within ai+1.

3. Delete arches ai and ai+1 and connect ai−1 to ai+2. (Or, equivalently,
shrink aiai+1 down to a point.)

The deletion operator removes one arch from each arch system and keeps
the meandric curve closed, so D maps meanders of order n to those of
order n − 1. Further, because arch exchange preserves winding sequence,
deletion also preserves the portion of the winding sequence not deleted: i.e.,
if π(mn) = a1 · · · a2n, then π(D(mn, i)) = a1 · · · ai−1ai+2 · · · a2n. See fig. 6.6
for an example. Because every meander of order n ≥ 2 contains an arch
pair, we may repeatedly remove arch pairs from an mn to eventually obtain
the 1-meander (with winding sequence RR).

This means we can use this arch pair deletion operator as a covering
relation to obtain a poset of meanders: we say m covers m′ if we can delete
an arch pair in m to obtain m′. Further, if we use the order of the meander
as a rank function, this poset is graded: if m > m′, then there is a series
of deletions taking us from m to m′ and so the order of m must be greater
than m′; also, because deletion reduces order by one, then m covering m′

implies the rank of m is 1 greater than the rank of m′.
However, if we want to generate M =

⋃∞
n=1Mn recursively, we need to

be able to move up the poset rather than down. By extension of the deletion
(lowering) operator, we might expect the existence of inverse operation (a
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raising operator) that inserts an arch pair to build a meander of order n
from one of order n− 1:

Definition 6.8 (Arch Pair Insertion). The insertion (or ‘splicing’) operator
S(mn, p, i, j, k) inserts an arch pair p = apa

′
p ∈ {RL, LR} between arches ai

and ai+1, i ∈ {1, · · · , 2n− 1} in meander mn ∈Mn in the following way.

1. Locally insert apa
′
p between arches ai and ai+1.

2. Exchange the j arches closest to ap with ap so that they now lie within
a′p.

3. Exchange the k arches closest to a′p with a′p so that they now lie within
ap.

It should be noted immediately that S is not very well behaved. In
particular S is not defined over all of Mn × {LR,RL} × N3: the number of
arches available for exchanging with ap and a′p depend on the particular mn

receiving the insertion. However, note that we can of course always perform
S(mn, p, i, 0, 0) on a given meander for suitable i. This last observation
allows us to prove the form of winding sequences of meanders:

Theorem 6.9. The set of winding sequences of meanders of order n is

Wn =
{
RxR : x is a permutation of n− 1 Rs and n− 1 Ls

}
.

Proof. Let π = a1 · · · a2n be a winding sequence for a meander mn. Then π
contains an arch pair aiai+1. Delete it, yielding a meander mn−1 with the
winding sequence π′ = a1 · · · ai−1ai+2 · · · a2n. Because every meander has
an arch pair, we can repeat this process to eventually obtain the 1-meander
with π1 = RR. Because we removed Ls and Rs in pairs, there were an equal
number of them to start with in the substring a2 · · · a2n−1.

Given a winding sequence π of the form above, we now construct a
meander mn with π(mn) = π. To do this, create a list of winding sequences
πn, πn−1, . . . , π2, π1 = RR by deleting an arch pair from πk to create πk−1.
Now construct a meander with winding sequence π by starting with the
1-meander and applying S(mk, pk, i, 0, 0) on the kth meander, where pk ∈
{RL, LR} is the arch pair removed at index k at the (n − k)th step in our
sequence list.

As mentioned before, the available insertions at a particular point in a
given meander is highly unpredictable: if we have some unknown meander
mn and wish to insert an arch pair into position i, it is unclear how many
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(a) (b)

Figure 6.7: Some arch insertions may allow no arch exchanges (a) or an arbitrary number
(b), depending on the meander receiving the insertion.

arch exchanges we are allowed to do, if any. Indeed, there may be insertions
where there are no arches available for exchanging (fig. 6.7(a), because
exchanging the first arch would change the winding sequence) or insertions
where we there is an arbitrary number of exchanges possible (fig. 6.7(b)).

Fortunately, the following theorem partially alleviates our concern by
greatly decreasing the number of arch exchanges we must consider during
arch insertion. In particular, it states that we can generate any meander
from RR by repeated insertions where we make one or zero arch exchanges
at each insertion step.

Intuitively, h(ai) is the number of arches you would see if you stood on
the edge of (ai) and looked inside. For instance, in fig. 6.2, the first arch in
the winding sequence has height 2.

Theorem 6.10 (At Most One Exchange). All meanders can be generated
from m1 = RR with repeated insertions S(mn, p, i, j, k), where p ∈ {LR,RL},
i ∈ {2, 3, · · · , 2n− 1} and 0 ≤ j + k ≤ 1.

Before we present a proof we require one final definition. Its importance
in the proofs of many of the results that follow makes it deserving of its own
label.

Definition 6.11 (Arch Height). Given an arch ai in mn, we say its arch
height h(ai) is the number of arches directly inside ai.

Now the proof.

Proof. The theorem is vacuously true for n = 1, so let mn ∈Mn with n ≥ 2.
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Using exponents on Ls and Rs to denote arch height, we will prove this
result by demonstrating that every meander contains an arch pair in this
set:

P = {R0L0, L0R0, R1L0, R0L1, L1R0, L0R1}.
This will prove our result because each arch exchange in the insertion process
increases the arch height by one.

Now define the total height of mn to be

H(mn) =
∑
a∈mn

h(a).

The proof proceeds in two parts. The first establishes a (sharp) upper bound
on H(mn). The second demonstrates that a meander containing none of the
arch pairs in our generating set P violates this upper bound.

To bound H(mn), we first transform mn into a pair of arch systems (not
necessarily a meander) that is easier to count but preserves total height.
This chaining transformation C : Mn → M∗

n is defined by the following
algorithm: if there is an arch a ∈ mn with at least two child arches b, c,
expand b to encompass c. Repeat. Note that at each step the algorithm
does not change H(mn) because arch a loses a child arch but arch b gains
one. Hence H(mn) = H(C(mn)). This process is demonstrated in fig. 6.8.

Now define an outer arch in mn to be any arch which is not the descen-
dant of any other arch. Let N(mn) be the number of outer arches in mn

and note that N(mn) = N(C(mn)) because only arches contained within
other arches are modified by the chaining algorithm. We are now prepared
to count H(mn). Observe that C(mn) is composed of ‘chains’ of nested
arches, each with height 1 except for the last arch on the chain that has no
children and thus height 0. There are 2n arches in total and one outer arch
for each arch of height 0, so we have

H(C(mn)) = 1 · (2n−N(C(mn))) + 0 ·N(C(mn)),

thus H(mn) = 2n−N(mn).

It is clear that every mn has at least two outer arches, but if N(mn) has
exactly two outer arches then they must be connected in a circle, implying
that n = 1. Hence for n ≥ 2, N(mn) ≥ 3, so

H(mn) ≤ 2n− 3.

While not required for the proof, it is interesting to note that this bound is
sharp because a ‘spiral meander’ of order n has three outer arches (see fig.
6.8(c) for an example of a spiral meander of order 4).
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(a) (c)(b)

Figure 6.8: An example of the chaining operation. This meander requires two chaining
steps, first on the two bolded arches in the upper arch system (a), and then on the two
bolded arches in the lower arch system (b). The fully chained meander is pictured in (c).

Now suppose there exists an mn that does not contain any arch pairs
from P . We determine a lower bound on H(mn) by examining arches of
height 0. If some 0-arch a0 is in an arch pair, the other arch in the pair a′

must have height h(a′) ≥ 2 because otherwise we would have an arch pair
from P . Note that each arch a0 must be in at least one arch pair because
otherwise we would be forced to set mn = R0R0 to avoid overlaps, and this
is not allowed because we have assumed n ≥ 2.

The following algorithm builds an injective function φ from the set of
0-arches A0 in mn to the set of arches a ∈ mn with height h(a) ≥ 2, denoted
A2, by greedily associating arches along the winding sequence.

1. Move along the winding sequence until a 0-arch a0i is found. As noted
earlier, ai−1 or ai+1 forms an arch pair with a0i .

(a) If ai−1 does not form an arch pair with a0i , ai+1 does. Set φ(ai) =
ai+1.

(b) If ai−1 forms an arch pair with a0i and is unassociated, set φ(ai) =
ai−1.

(c) If ai−1 is already associated, then ai+1 forms an arch pair with
a0i by Lemma 6.12 below. Set φ(ai) = ai+1.

2. Repeat step 1 until φ is defined for all 0-arches.

Let k be the number of arches in A0 and let ` the number of arches in
A2. Because the above algorithm demonstrates an injection from 0-arches
to ≥ 2-arches, ` > k. All other 2n− k− ` arches in mn must be height ≥ 1,
so we have

H(mn) ≥ 0k + 2`+ 1(2n− k − `)
≥ 0k + 2k + 2n− k − k
= 2n,
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...R0 R0 R0

L>2 L>2 L>2

? ?
Rj–1 Ri+1

Figure 6.9: The impossible situation described in Lemma 6.12.

contradicts the upper bound found previously.

Lemma 6.12. In the association algorithm step 1(c), if ai−1 is already
associated, then ai+1 forms an insertable arch pair with ai.

Proof. Suppose not. Then ak = ak+1. Because ai−1 is already associated,
somewhere to the left in the sequence there is a 0-arch a0j that fits condition
(a). Hence we have a subsequence (up to direction)

· · ·Rj−1R0
jLj+1R

0
j+2 · · · Li−1R0

iRi+1 · · · .

Graphically, this situation looks like fig. 6.9. The outer ends of both
Rj−1 and Ri+1 may not land within any of the Rj ,Rj+2, · · · ,Ri because that
would violate the fact that Rj ,Rj+2, · · · ,Ri are 0-arches. Nor can they both
land outside of the portion of the meander created by the subsequence, for
that would create a crossing. Hence Rj−1 and Ri+1 must connect to each
other; i.e., the subsequence is the entire meander. But then there would be
no arches under each L in the subsequence, contradicting the assumption
that their height is ≥ 2.

This theorem implies that if we restrict our covering relation to deletions
that only require a single arch exchange, our poset will remain connected.
For the remainder of this note we will concern ourselves with the subproblem
of counting the meanders of order n that may be generated without any
exchanges. We will call these simple meanders.

6.3 Enumerating Simple Meanders

To provide a formal definition of simple meanders, we will begin by providing
a description of a path up the poset.
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Definition 6.13 (Insertion Sequence). An insertion sequence σ of order n
is a sequence of of n − 1 ordered pairs (p1, i1), . . . , (pn−1, in−1) where pk ∈
{LR,RL} and 1 ≤ ik ≤ 2k − 1. We denote the set of all insertion sequences
Sn.

Intuitively an insertion sequence σ is a “blueprint” for constructing a
meander. Using our definition of insertion from before, we can define a way
to produce a meander from σ.

Definition 6.14 (Meander Derivation). If σ = (p1, i1), (p2, i2), . . . , (pn−1, in−1)
is an insertion sequence, we write µ(σ) to denote

S(S(· · ·S(S(m1, p1, i1, 0, 0)p2, i2, 0, 0) · · · )pn−2, in−2, 0, 0)pn−1, in−1, 0, 0).

We are now prepared to formally state the definition of simple meanders.

Definition 6.15 (Simple Meander). A meander mn ∈Mn is simple if there
exists an insertion sequence σ such that µ(σ) = mn. We denote the set of
simple meanders of order n as Ms

n and write M s
n = |Ms

n|.

While the definition of Ms
n suggests it might be only a small subclass of

Mn, we argue that Ms
n is by some measures fairly important: we will see at

the end of this paper that the structure it provides may reduce the entire
meander enumeration problem to that of counting meanders in which every
arch pair had to include an exchange at insertion. In other words, we may
avoid having to count directly those meanders which only require some arch
exchanges.

With that motivation in mind, we now engage fully with the problem of
counting M s

n. As defined each member mn ∈ Ms
n is the output of compo-

sitions of n− 1 functions S(· · · ). In this notation the structure of meander
derivation is very difficult to discern, so we now develop an alternative de-
scription of insertion sequences.

Definition 6.16 (Insertion Tree). An insertion tree of order n is an ordered
(plane) tree where

• All internal nodes have degree three

• There are n− 1 internal nodes

• All internal nodes have a label from {LR,RL}

• All other nodes are labeled •.
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We will use Tn to denote the set of all insertion trees of order n.

Because all internal nodes have three children, we will call these children
the left child, middle child, and right child respectively (orienting the tree
with its root at the bottom). We will also abuse tree terminology and use
“leaves” to denote nodes that have only • children and use “rails” to denote •
nodes. This naming convention has a graphical motivation that will become
evident shortly.

Definition 6.17 (Insertion Tree Diagram). An insertion tree diagram of
order n is an ordered pair (T, γ) where T is an insertion tree of order n and
γ is a linear ordering on the LR and RL nodes in T that satisfies the partial
ordering perscribed by T . We denote the set of insertion tree diagrams of
order n as Dn

Insertion diagrams are drawn with all rails at at the top of the diagram
(we can do this because they by definition have no children) and the linear
ordering is read from bottom to top. See the left side of fig. 6.10 for an
example of an insertion tree diagram.

Observe that insertion tree diagrams “are” insertion sequences: in anal-
ogy to insertion of arch pairs in meander, we can build the tree diagram cor-
responding to an insertion sequence σ = (p1, i1), · · · (pk, ik), · · · (pn−1, in−1)
by attaching a node labeled pk at the ik

th rail in the extant tree diagram
for all k. Conversely we can obtain the insertion sequence associated with
an insertion tree diagram by starting at the bottom of the diagram and ap-
pending the ordered pair (p, i) with p being the label of the current node
and i being one more than the number of labels to the left of the current
node in T . See fig. 6.10 for an example.

Hence just as we defined µ : Sn → Ms
n, we may analogously define

µ : Dn → Ms
n. This allows us to interpret a insertion tree diagram D fur-

ther. Intuitively, as we move up the diagram, the rails represent the ‘spaces’
between arches in the winding sequence of µ(D), or, equivalently, the inter-
sections of the meander curve with the meander line. Hence the placement
of a node on a rail is equivalent to the insertion of an arch pair between
the two corresponding symbols in the winding sequence. This observation
allows us to read the winding sequence of µ(D) directly off the diagram as
pictured in fig. 6.11: starting at the top of the diagram, begin with the first
R that comes from our initial m1, then for each arch that follows, follow the
spaces between the rails down to the node that created them and record the
corresponding arch direction. Finally, add the last R that comes from m1.

It turns out that for any given T ∈ Tn, µ(T, γ) = µ(T, γ′) for all linear
extensions γ, γ′. In other words, linear extensions of T don’t matter—the
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LR

RL

RL

LR

LR

RL

RL

LR

(RL, 1)

(LR, 1),

(RL, 5),

(LR, 7),

→→
→→

Figure 6.10: An example of the equivalence of insertion tree diagrams and insertion
sequences for the sequence σ = (RL, 1), (LR, 1), (RL, 5), (LR, 7).

L R

R   L

R     L

L R

R L R R L R L L R R

D =

π(μ(D)) = ( ) ( )

Figure 6.11: Reading the winding sequence from an insertion tree diagram D.
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meander associated with an tree diagram depends only on the tree involved.
We will not prove this fact for space reasons (indeed it will not be used
in our counting argument), but it does motivate the search for a bijection
between Ms

n and some subset of Tn, rather than some subset of Dn.
It is exactly this sort of bijection that we will prove. We begin by defining

our subset of Tn, showing a bijection between this subset and a subset of
Sn, and finally proving a bijection between this subset of Sn and the whole
set Ms

n.

Definition 6.18 (Left-greedy Insertion Trees). A left-greedy insertion tree
of order n is an insertion tree of order n where for each node v,

– if v = RL, then the middle child of v is RL or • and the right child of
v is LR or •,

– if v = LR, then the middle child of v is LR or • and the right child of
v is RL or •.

We denote the set of these objects T ∗n .

This subset of insertion trees is in bijection with simple meanders. To
show this, we first put T ∗n in bijection with a subset of Sn by way of the
following invertible function:

Definition 6.19. Define ξ : T ∗n → Sn as follows. Given a T ∈ T ∗n , assign
a linear ording γ to its LR and RL nodes by starting with the empty linear
ordering γ = · and then while T is nonempty, remove the leftmost leaf v
from T , prepend it to γ, and repeat. We now have a insertion tree diagram
(T, γ) from which we can write down the insertion sequence σ. This process
is fully determined and we set ξ(p) = σ.

It is clear ξ maps into Sn because our construction of γ obeys the par-
tial ordering perscribed by T . Now define the set of left-greedy insertion
sequences as S∗n = im ξ ⊆ Sn. We proceed by showing T ∗n is in bijection
with S∗n.

Lemma 6.20. ξ : T ∗n → S∗n is a bijection.

Proof. By definition ξ restricted as ξ : T ∗n → S∗n = im ξ is onto. We now
show that ξ is also 1-to-1 over this range. Suppose we have some T1, T2 ∈ T ∗n
such that ξ(T1) = ξ(T2) = σ. Now consider the insertion tree diagram D
corresponding to σ. There is only one D = (T, γ) by arguments made above.
Hence ξ(T1) and ξ(T2) have the same tree diagram so T1 = T = T2.
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So now we have |T ∗n | = |S∗n|. It remains to show |S∗n| = |M s
n|. To do this

we will use the “meander production” function µ defined earlier as well as a
new function δ that maps simple meanders back to elements of S∗n. In order
to define δ we first need a special name for arch pairs that can be deleted
without shuffling: For any mn ∈ Ms

n, call an arch pair in mn deletable if
both arches involved have height 0.

Definition 6.21. We define δ : Ms
n → Sn as follows. Begin with an empty

insertion sequence σ = ·. Given a simple meander mn, read along the me-
ander in the order of its winding sequence until the first deletable arch pair
aiai+1 is encountered. Prepend (aiai+1, i) to σ and delete the arch pair from
mn to get a new meander of order mn−1. Now repeat this process with the
smaller meander and continue until m1 = RR is reached. The resulting σ is
the value of δ(mn).

The proof of this final bijection is lengthy, requiring multiple stages of
induction arguments. We therefore split it into two lemmas, each of which
is rather involved.

Lemma 6.22.
im δ ⊆ S∗n.

Proof. We show that given an mn ∈ Ms
n, δ constructs an insertion tree

diagram D that obeys the definition left-greedy trees, and it does so with a
linear extension ordering that is left-greedy. We do this by describing the
production of D step by step. Suppose pn−1 = aiai+1 is the first arch pair
removed by δ from mn, where i is the index of the pair in π(mn). We can
begin drawing D by placing i− 1 rails to the left of a node labeled with the
value of pn−1. We do not yet know what is below or to the right of pn−1.

Now consider the next arch pair pn−2 = ajaj−1 that δ removes from mn.
If j > i then pn−2 is not a parent of any node already in D and its placement
does not violate the definition of T ∗. If j ≤ i, then either pn−2 is the parent
of rails (not a violation) or the parent of pn−1. Now we much check that if
pn−2 a parent of pn−1, it is a valid node as perscribed by the definition T ∗.
Anything is allowed if pn−1 is the left child of pn−2, so we address the other
possibilities.

Suppose pn−1 is the middle child of pn−2. For the sake of explicitness
we declare pn−2 = RL; because the definition of T ∗ is fully symmetric the
argument will go through identically for pn−2 = LR. By the definition of T ∗

and because we’re assuming pn−2 = RL we therefore do not have a violation
if pn−1 = RL. Might it be the case that pn−1 = LR? This would mean we
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L
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R L R L

{

δ would have chosen
this pair first.

→

aiai+1 = 

akak+1 =
ak ai  ai+1ak+1

R

L

L

R

R L R L

{

→

aiai+1 = 

akak+1 =
ak ak+1aiai+1

δ would have chosen
this pair first.

(a) (b)

Figure 6.12: The two cases of contradiction involved in Lemma 6.22.

had in our original meander the subsequence akaiai+1ak+1 = RLRL. The
middle LR = aiai+1 was deleted first, so h(ai) = h(ai+1) = 0 in the original
meander, and the outer RL = akak+1 was deleted second, so at that point
h(ak) = h(ak+1) = 0 as well. But if we rewind this process we notice that
inserting LR = aiai+1 in the middle of RL = akak+1 does not increase the
height of ak or ak+1. (See fig. 6.12(a)). Hence in the final meander we have
akaiai+1ak+1 = R0L0R0L0. This is a contradiction, because by the definition
of δ, it would have deleted akai first instead. Hence there is no violation.

Now suppose pn−1 is the right child of pn−2 = RL. If pn−1 is LR we’re
ok, so suppose instead that pn−1 = RL. We are in a similar situation to
the above, except we have akak+1anan+1 = RLRL. But, as pictured in fig.
6.12(b), inserting an RL pair directly after an RL pair does not increase the
height of the first pair of arches, so we have a substring in our insertion
sequence that looks like R0L0R0L0. This is a contradiction, because by the
definition of δ, it would have deleted akak+1 first instead.

Hence there are no violations of the definition of a left-greedy insertion
tree when we add pn−2 to our growing insertion tree diagram. The arguments
above easily generalize to the rest of the arch pair insertions, and so at the
end we are left with an insertion tree diagram (T, γ) where T ∈ T ∗. It
remains to check γ is a left-greedy linear extension of T ∗. But this is clear
from the way δ works.

We are almost prepared to show now prepared to show prove our bijec-
tion. We just need one more fact about the structure of elements of S∗n.

Lemma 6.23. If σ ∈ S∗n, the last element in σ corresponds to the first
deletable arch pair in π(µ(σ)).

Proof. Suppose the last element in σ is (pn−1, in−1). Then the winding
sequence for µ(σ) is Ra1a2 . . . aiai+1 . . . a2n−2R where aiai+1 = pn−1. It
suffices to show there is no deletable arch pair in a1a2 . . . ai−1. Consider
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LR
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LR

RL
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LR

LR

LR
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RL
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R0L1 R1L0 L1 L0 R0
{pn−1

→

(a) (b)

pn−1

Figure 6.13: An example of the arch height bounding processed using in 6.23. In (a) we
remove nodes that are not in the path from the root to pn−1. In (b) we label the arches
a1 . . . ai−1 with lower bounds on their arch heights.
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Figure 6.14: An illustration for the cases in Lemma 6.23: inserting arch pair pj+1 in pj
will increase the heights of arches in pj as desired regardless of the type of pj+1.

the insertion tree diagram D = (T, γ) corresponding to σ. What nodes
contribute an arch to the substring a1 . . . ai−1, and what is the height of
each of these arches?

Because of the definition of ξ, pn−1 = aiai−1 is certainly the leftmost leaf
in T . Thus the nodes in T that contribute at least one arch to the substring
in question are in the path from the root to pn−1. We will examine this
path separately, so define a new insertion tree diagram (T ′, γ′) where T ′ is
the path from the root of T to pi and γ′ is the subsequence of γ including
the relevant nodes. For example, in fig. 6.13(a) we have an original T with
the irrelevant nodes marked with dashes. They are then removed in T ′ as
shown in fig. 6.13(b).

First note that the arch heights for a1 . . . ai−1 in π(µ(T ′, γ′)) are lower
bounds for those in π(µ(T, γ))—the extra insertions in T (in comparison
to T ′) certainly will not decrease the heights of a1 . . . ai−1. We now show
that at least all the arches with odd index or all the arches with even index
in a1 . . . ai−1 have height greater than or equal to 1, implying there is no
deletable arch pair in this sequence.

We begin at the root of T ′ and move up, showing that the rightmost
arch of each node’s contribution to a1 . . . ai−1 has height 1 or greater. For
this purpose we will call the root node p1 and index the path p1, p2, . . . , pk =
pn−1, proceeding by induction on pj , j = 1, 2, . . . k−1. We will use a1a2 . . . a`
to keep track of the growing sequence of arches that are before aiai+1 in the
final arch sequence. Before we begin ` = 0 and we have no deletable arch
pairs in a1 . . . a`. Now assume there are no deletable arch pairs in a1 . . . a`
and consider the next node pj in the path.

• If pj+1 is the left child of pj , then pj it does not add arches to a1 . . . a`
so it certainly does not create a deletable arch pair.
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• If pj+1 is the middle child of pj , then pj and pj+1 are either both RL
or LR. As shown in fig. 6.14(a), this means inserting pj+1 into pj
increases the height of both arches in pj by one. Because pj has a
middle child, the left arch of pj is added to a1 . . . a` and because it has
height greater than or equal to one it does not create a deletable arch
pair.

• If pj+1 is the right child of pj , then p1 and pj+1 are opposite arch
pairs (one is RL and the other is LR.). As shown in fig. 6.14(b), this
means inserting pj+1 to the right of pj increases the second arch in pj
by one. In arch height superscript notation, this means pj appends
R0L≥1 or L0R≥1 to a1 . . . a`. This will only create a deletable arch pair
if the previous arch in a1 . . . a` has height 0. But by this case and the
previous case the rightmost arch in the sequence a1 . . . a` always has
height one. So the addition of pj does not create a deletable arch pair.

Hence we do not create a deletable arch pair until the addition of pn−1
as desired.

Theorem 6.24.
|T ∗n | = M s

n

Proof. Lemma 6.20 tells us that |T ∗n | = |S∗n|. It remains to show |S∗n| = M s
n.

First we claim function µ restricted as µ : S∗n → Ms
n is onto. Suppose

mn ∈ Ms
n. Then clearly the insertion sequence δ(mn) = σ yields mn when

operated on by µ. By Lemma 6.22 σ ∈ S∗n and so we have an element σ
in the domain of µ such that µ(σ) = mn. Because µ is onto we now have
|S∗n| ≥M s

n.
We now show δ is onto, implying |S∗n| ≤ M s

n and thereby completing
the proof. Suppose σ = (p1, i1), . . . , (pn−1, in−1) ∈ S∗n. Then we claim
δ(µ(σ) = σ. We will prove this by induction on j = n−1, n−2, . . . 2, 1 as an
index for elements in σ. By Lemma 6.23, the last element in σ corresponds
to the first deletable arch pair in µ(σ), so this is exactly the first arch pair
that δ prepends to µ(σ). The rest follows from induction on σ by repeatedly
removing the last element in the sequence and applying Lemma 6.23 to show
that this is exactly the next element δ prepends to δ(µ(σ)).

It now remains to count |T ∗n | = M s
n.

Theorem 6.25.

M s
n =

{
1 if n = 1

2H(n− 1) for n ≥ 2
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where H(n) = 1 for n = 0, 1 and for n ≥ 2 H(n) is given by

H(n) = 2
n−2∑
i=0

n−i−2∑
j=0

H(i+ 1)H(j)H(n− 2− i− j)

+

n−1∑
i=0

H(i)H(n− 1− i).

Proof. We count all the trees with n nodes (in T ∗n+1) with RL as a root and
then mulitply by two. Thinking about constructing such a T from the root
up in recursive fashion, consider having just laid a node v (i.e., it is already
set as LR or RL) with the promise to lay n − 1 more nodes on v’s subtree.
We count by cases depending on the possible children of v.

If v has a left child that is not a rail, then the subtree of v’s left child
could have an RL root or an LR root. Because we understand v to be set, this
means we must multiply by two in our recurrence to address the multiplicity
in this case. However, the roots of the subtrees on the the middle and right
children of v are predetermined by definition. Hence, for the case that v has
a non-rail left child, the recurrence relation is twice the sum over of ways
to distribute n− 1 nodes among the subtrees of v’s left child, middle child,
and right child. Each summand is the product of the number of possible
subtrees for each child because these are independent decisions. This is the
first term in H(n).

If v has a rail as a left child, we do not need to address multiplicity
because the labels on the middle and right children of v are predetermined.
Hence in this case the recurrence relation is the sum over of ways to dis-
tribute n− 1 nodes among the subtrees of v’s middle child and right child.
Each summand is the product of the number of possible subtrees for these
two children because these are independent decisions. This is the second
term in H(n).

This completes our result for the enumeration of M s
n. Table 6.15 displays

this first 10 terms of the sequence in comparison to Mn. We see that the
sequences are identical until n = 5; it is at this point that the first non-simple
meander appears.

6.4 Further Study

The clear next step is to determine a closed form for M s
n. Initial exploration

into the OEIS using Table 6.15 suggests that M s
n is exactly twice the se-

quence A003168, the “number of blobs with 2n+ 1 edges.” Many formulae
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n M s
n Mn

1 1 1
2 2 2
3 8 8
4 42 42
5 252 262
6 1,636 1,828
7 11,188 13,820
8 79,386 110,954
9 579,020 933,458

10 4,314,300 8,152,860

Figure 6.15: The first 10 terms of Ms
n versus Mn.

and generating functions are known for this sequence ([1]), including the
elegant

n∑
k=1

1

n

(
n

k

)(
2n+ k

k − 1

)
.

Beyond determining a direct solution to the recurrence relation for M s
n, it

may be fruitful to pursue bijective proofs with objects that have already
been shown to be counted by sequence A003168.

How might we evaluate the determination of M s
n as progress towards

the enumeration of closed meanders? Perhaps predictably, we argue it is
an important step in the right direction. Insertion trees provide a rich
framework within which to study meanders; indeed we can place an algebra-
like structure on T =

⋃∞
n=1 Tn by defining a way to add insertion trees

onto rails of other insertion trees (in analogy to concatenating insertion
sequences). We may also define commutation relations on T that give rise
to equivalence classes of trees that yield the same meander.

However, the true power of insertion trees may lie in our ability to extend
the set of allowable nodes to include irreducible meanders M i

n, or meanders
whose production requires a swap at every step. This would work by taking
an irreducible meander, removing the first and last arch in its winding se-
quence, and inserting the entire object in whichever index the insertion tree
specifies. These nodes would not commute with other parts of the diagram
and would thus add little complexity to the task of counting Tn, provided
we could count M i

n.
On a different note, we observe that winding sequences partition Mn into
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subsets of non-uniform sizes. We can then define a random variable Xn on
these subsets where P (Xn = π) = # meanders with winding sequence π

Mn
. We can

then ask, what is the entropy of Xn? The exact answer to this question of
course awaits an enumeration of Mn, but even partial results using extant
approximations may be of interest.
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