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Abstract

We present a novel approach for embedding general metrimanchetric spaces into low-
dimensional Euclidean spaces. As opposed to traditiondtidimaensional scaling techniques,
which minimize the distortion of pairwise distances, oubeiding algorithm seeks a low-dimensional
representation of the data that preserves the structuoen@fey) of the original data. The algorithm
uses a hybrid criterion function that combines the pairvdistortion with what we call the geo-
metric distortion. To assess the geometric distortion, wm@oge functions that reflect geometric
properties. Our approach is different from the Isomap anél Algorithms in that the discrepancy in
distributional information is used to guide the embeddWg. use clustering algorithms in conjunc-
tion with our embedding algorithm to direct the embeddingcess and improve its convergence
properties.

We test our method on metric and nonmetric data sets, and prédsence of noise. We demon-
strate that our method preserves the structural propetiembedded data better than traditional
MDS, and that its performance is robust with respect to ehirsg errors in the original data. Other
results of the paper include accelerated algorithms fanmiping the standard MDS objective func-
tions, and two methods for finding the most appropriate dsiwanin which to embed a given set
of data.

Keywords: Embedding, multidimensional scaling, PCA, earth-movdis$ance

1. Introduction

Embedding is concerned with mapping a given space into another spaceizatlidean, in order to
study the properties of the original space. This can be especially efferckien the original space
is a set of abstract objects (e.g., strings, trees, graphs) related hhpooxjmity data, as a low-
dimensional embedding can help in visualizing the abstract space. Embedditadso be applied
when the objects are points in a vector space whose dimensionality is toodarthe fpplication

of data analysis algorithms, such as clustering. In such cases, embeddibg used to lower the
dimensionality of the space.
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1.1 Background

In general, embedding techniques fall into two categories: linear and eanlitClassicalinear
embedding as embodied by principal component analysis (PCA), reduces dimelisidry pro-
jecting high-dimensional data onto a low-dimensional subspace. The oggidiedensional sub-
space is selected by rotating the coordinate axes to coincide with the eitggaveicthe sample
covariance matrix, and keeping tpeaxes along which the sample has the largest variance. Princi-
pal component analysis directly applies to data that already resides ihreoresed space. It can
also be applied to proximity data that has been appropriately preprocesskat certain spectral
conditions on the matrix of pairwise distances (Cox and Cox, 2001).

Nonlinear embeddingtechniques, also referred to as multidimensional scaling (MDS) tech-
niques, apply to a broad set of data types. Generally speaking, thefgd®S is to construct a
low-dimensional map in which the distance between any two objects cordsponheir degree
of dissimilarity. The method maps a given set of samples into a space of ddsimedsion and
norm. A random mapping (or projection by PCA) can serve as the initial edmgd A stress
function that compares proximity values with distances between points in thepase (usually
a sum-of-squared-errors function) is used to measure the quality ofrthedeling, and a gradient
descent procedure is applied to improve the embedding until a local minimura sfréss function
is reached. Like PCA, MDS attempts to preserve all pairwise distanceslleasvip®ssible; but the
restriction to linear projections is removed, and arbitrary embeddings as&eved. Many variants
of this general approach are reported in the literature; a broad oweo¥ighe field is given by Cox
and Cox (2001).

The MDS method was traditionally used to visualize high-dimensional data in tihoes di-
mensions. It has long been employed for data analysis in the social ssievitere the generated
maps tend to have only a few hundred data points, and computational effiéenot a factor
(Sammon, 1969). Practically, such procedures are not effectivadoe than few thousand sample
points. More recently, MDS has been turned toward the visualization &f l@gjogical and chem-
ical data sets, with thousands or even millions of points (Yona, 1999; ApastbSzpankowski,
1999). Applying traditional MDS to very large data sets is prohibitively sleading several au-
thors to propose approximations and workarounds. Linial et al. (1p8s5ented a randomized
approach that attempts to bound the distortion. However, the bound is np@tighin practice this
approach can introduce large distortions, as no objective function Iilypoptimized. A dif-
ferent randomized approach, based on iteratively adjusting the lenfgtiisdmmly selected edges,
was proposed by Agrafiotis and Xu (2002). This method has linear time coitypbd is therefore
well-suited to extremely large data sets. Basalaj (1999) proposed amixatal method for large-
scale MDS. It consists of embedding a small subset of objects carefidly,using this skeleton
embedding to determine the positions of the remaining objects.

Recently, a new class of non-linear embedding techniques has emengesaritiold learning
algorithms, which comprise an active area of research. These algoriterdesigned to discover
the structure of high-dimensional data that lies on or near a low-dimensiwar@fold. There are
several approaches. The Isomap algorithm (Tenenbaum et al., @88€)geodesic distances be
tween points instead of simply taking Euclidean distances, thus “encodingfidahéold structure
of the input space into the distances. The geodesic distances are colmpuatatstructing a sparse
graph in which each node is connected only to its closest neighbors. éduegjc distance be-
tween each pair of nodes is taken to be the length of the shortest path irafftethat connects
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them. These approximate geodesic distances are then used as inputitaldidds. The LLE al-
gorithm (Roweis and Saul, 2000; Saul and Roweis, 2003) uses a collettiocal neighborhoods
to guide the embedding. The assumption is that if the neighborhoods are smlGath be ap-
proximated as linear manifolds, and the position of each point can be taactesl as a weighted
linear combination of itk nearest neighbors. The positions of the points in the lower-dimensional
space are determined by minimizing the reconstruction error in this low-dimehspace (with
fixed weights that were determined in the original high-dimensional spahé)is done by solving
an eigenvector problem, as in PCA. Another approach is the eigenmapsdméthe goal of this
type of method is to minimize a quadratic form (either the squared Hessian oqubesd gradi-
ent) over all functions mapping the manifold into the embedding space (DamthGrimes, 2003;
Belkin and Niyogi, 2002). When the continuous function is approximated lmear operator on
the neighbor graph, the maximization problem becomes a sparse matrix digeprablem and is
readily solved.

The manifold learning methods form a powerful generalization of PCA. Brii€A, which is
useful only when the data lies near a low-dimensigtahe these methods are effective for a large
variety of manifolds. By using a collection of local neighborhoods, or xpla@ting the spectral
properties of the adjacency graph, they extract information about toaalfolds from which the
global geometry of the manifold can be reconstructed. In practice, rpiegehese local mani-
folds results in non-linear embeddings. The underlying principles of tmetlkeods are similar, and
their power stems from the fact that they practically employ alternative septations for the data
points. PCA seeks correlation between features and represents theedhata a sum-of-squared-
errors sense. However, it implicitly assumes the Euclidean metric. On thehathdy the manifold
learning algorithms explore the properties of the adjacency graph to folewaepresentation, in-
ducing a new metric. For example, the geodesic distance in essence saragjesitietry of the
input manifold, and it is that definition to which one can attribute the greatesgoof the Isomap
algorithm. Similarly, the spectral approaches use the proximity data to deeveeth representa-
tion that reflects collective properties. This is related to other studies thatstthat encoding data
through collective or transitive relations can be very effective for dgpaesentation (e.g., embed-
ding) as well as for clustering (Smith, 1993; Wu and Leahy, 1993; ShMalik, 1997; Blatt et al.,
1997; Gdalyahu et al., 1999; Dubnov et al., 2002).

The different types of embedding methods are inherently suited to diffgqees of problems.
PCA identifies significant coordinates and linear correlations in the oridiigdi;dimensional data.
It is therefore appropriate for finding a simple, linear, globally applicablie for extracting infor-
mation fromnewdata points. It is unsuitable when the correlations are nonlinear or wheimipde
rule exists. General multidimensional scaling techniques are appropri&ie tivd data is highly
nonmetric and/or sparse. However, MDS is iterative, does not guaraptamality or unigueness
of its output, does not generate a rule for interpreting new data, and ialiypjcite slow compared
with other methods. These deficiencies are only tolerable when weighiedtibe greater general-
ity and simpler formulation of multidimensional scaling. Finally, manifold-learninhnégues are
appropriate when a strong nonlinear relation exists in the original datachmaases, the methods
described can make use of powerful, noniterative methods, with guadagligbal optimality. They
are less suitable when not enough data is available, or when the data peimsarsistent with a
manifold topology (for instance, lying on a structure with branches ands)oop when the data is
intrinsically nonmetric.
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1.2 Method

The algorithm presented in this paper is in the class of nonlinear embeddimggees. However,
unlike the manifold learning methods, our focus is on the higher-ordertsteuof the data. The
aforementioned approaches optimize an objective function that is a furdtibe individual pair-
wise distances or their derivatives. However, collective aspects @fiiedding are not explicitly
considered, even when local neighborhoods are used. This prabbaidressed in this paper.

In a recent study by Roth et al. (2002), the authors point out thatdiiiglensional PCA, applied
to dissimilarity data that has been shifted by an additive constant, automaticadlgrpes some
clustering properties of the original data. Specifically, they show that fgkienal partition of the
original data points intd clusters (using a particular cost function, which they define) is identical
to the optimal partition of the embedded data points, using the stahkeaehns cost function.
However, a subsequent reduction in the embedding dimension is oftealddlesand the clustering
properties are not preserved (or even considered) in this secae sta

Our interest in embedding algorithms emerges from our even strongersintestudying high-
order organization in complex spaces. In a typical application one is itédrasexploratory data
analysis, discovering patterns and “functional” meaningful clusters idatee Embedding is often
used to visualize complex data in a low-dimensional space, in the hope that hendhsier to
discover structure or statistical regularities in the reduced data. Thtisjay@mbedding should
consider not only the distortion in pairwise distances that is introduced gntibedding, but also
the geometric distortion, i.e., the disagreement on the intrinsic structure of the data. Finding the
optimal embedding thus becomes a problem of optimizing a complex criterion forib seeks
to jointly improve both aspects of an embedding. Our approach tackles théeprdrom this
perspective and attempts to preserve these patterns by implicitly encodirlgdtes structure into
the cost function. Here we present for the first time such a criteriortibmand describe the means
to optimize it.

Another new element of our paper is a method to deduce the right dimensidhefalata.
Existing methods for dimensionality reduction are looking for elbows in thewasidiriance graph
to determine the right dimensionality, however, the exact definition is sulgeatid qualitative.
Here we introduce two quantitative methods to deduce the right dimension.

The paper is organized as follows. We first describe the two commontyM&ES objective
functions, theSAMMON andSSTRESS functions, and present improved algorithms for optimiz-
ing them. Next, we present a hierarchical method for efficiently embedditeysts that consist
of many subsets or clusters of related objects. We then present the maimetdrttés paper, a
new type of MDS calledlistributional scaling, which directly addresses the problem of structure
preservation during the embedding process. Distributional scalingstauwamaintain thelistribu-
tion of dissimilarities, as well as the individual dissimilarities themselves, thereby isgher-
order information to create a more informative map. Next, we describe twodistiethods for
ascertaining the best dimension in which to embed a given data set. Finallyswbeeoerfor-
mance of distributional MDS on a large number of synthetic data sets. By tiegéhgew form of
scaling, we demonstrate that we are able to remove undesirable artifastsrfroeddings produced
by traditional MDS.
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2. Theory

We start with some basic definitions and a review of classical metric and noorivddS. We
then introduce hierarchical MDS and Distributional MDS, and discuss tlasuones that we use to
evaluate similarity between probability distributions. We conclude this section witletaod to
choose the embedding dimension.

2.1 Definition and Mathematical Preliminaries

Throughout this paper we will be interested in optimizing embeddings of setgexts in Euclidean
space. An embedding afobjects inp-dimensional Euclidean space is a set of image pair¢s® P,
wherei = 1,...,n. We takeS} to be the set of all such embeddings.

We primarily will be interested not in the image points themselves, but in the disthebteeen
them. LetQ, be the set of symmetrin x n matrices with zeros along the diagonal. For each
embeddingX of n objects, we can define the distance mabiX) € Q,, with matrix elements
Di; = ||xi —Xj||. Since the interpoint distances are invariant under Euclidean transfonsiaf
the entire configuration of points (that is, translations, rotations, andtiefis),D is many-to-one.
We denote byDf the image ofS; under the mappin®. This is the space of all possible distance
matrices arising fronp-dimensional embeddings ofpoints.

Formally, the optimization problem is defined as follow: we are given a sebbjects and their
dissimilarities. Denote bg; the dissimilarity of objectsandj. The goal is to find a configuration
of image pointsxg, Xy, ...,Xn such that then(n— 1)/2 distanced;; between image points are as
close as possible to the corresponding original dissimilatigs

2.2 Metric MDS

The simplest case imetric MDS, where the dissimilarity data is quantitative. We are given
objects, together with a target dissimilarity mathix Q. The goal is to find an embeddiixgsuch
that the distance matri®(X) matchesA as closely as possible. This is formulated as a weighted
least-squares optimization problem: givelW) € Qn x Qn, whereW = (w;j) is a symmetric
matrix of weights, minimize

#(x) = 3wy (1(0500) ~ o(as)) ®

i<j

over allX € §. The functionsf andg determine exactly how errors are penalized. Two common
choices for these functions are considered here. The streS&{MMON, objective function is
defined byf (x) = g(x) = x. The squared stress, 88 TRESS, function is defined byf (x) = g(x) =

X2,

2
SAMMON: H(X) = Swi(Dij—2Ai) ,
( ) iZj 'J( 1 'J)

SSTRESS: #H(X) = ZWij(Dﬁ-—Aﬁ-)z

i<]

TheSAMMON andSSTRESS objective functions have somewhat different advantages. While the
former seems more natural, being the square of the Euclidean meftj; and may produce more
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aesthetically pleasing embeddings, the latter is more tractable from a computsiimugpoint, and
seemingly less plagued by nonglobal minima (Malone and Trosset, 2000).

The weights contained in the weight matkiX are arbitrary. They can be used to exclude
missing proximity data, or to account for data with varying confidence lelrelstactice, however,
the weights are often defined in termsffThree choices of this type are:

Vvii'l = Z g(Amn)z 9
m<n
Wi_'1 = 9(4jj) Z 9(Amn) ,
m<n

wil = %n(n —Dg(nyj)> .

All three choices normalize the metric stress function, in the senseHli@t= 1. We refer to the
first one as global weighting, the second as intermediate (or semilocal)timeighnd the third as
local weighting. Unless otherwise specified, the global weighting schensedkin this paper.

The numerical optimization of the metric stress function is not entirely trivial. ddterminis-
tic algorithms (gradient descent) that are typically applied to solve this probbewerge to local
minima, which may not be globally optimal. It is possible to use stochastic technigeesimu-
lated annealing (Klein and Dubes, 1989), to reduce or eliminate the probaibibging trapped in
a nonglobal minimum, albeit at the cost of increased computation time. Receluitk &d Buh-
mann (1997) have demonstrated that so-callegtrministic annealingan be used to avoid poor
minima without sacrificing too much efficiency, thus combining the merits of the astichand
deterministic approaches. Such globalization strategies are outside tleeasdbp present study.
Instead, we have developed an efficient method for findthegl minima that takes advantage of
special features of tHe&STRESS andSAMMON objective functions. This algorithm is described in
detail in Appendix A.

2.3 Nonmetric MDS

A generalization of the metric problemm®nmetric MDS, which is appropriate when the dissim-
ilarity data is not quantitative, but merely ordered. In this case, we minimizéjacatoe function
like Eqg. (1) overX, while also allowingg to vary over all increasing functions. As with metric
MDS, the Euclidean distances will be transformed by a known fundtiai which we will restrict
to bex or X2, in theSAMMON andSSTRESS cases respectively.

Note that, if we were to use Eq. (1) with fixed weights, the objective functioulavbe trivially
minimized by takingg to zero and shrinking the configuratiohto a single point. Instead we use
global weighting, as described above. This sets the overall weight tppaogiate functional o,
producing a scale-invariant objective function:

_ I (f(Dij(X))—g(Aij))2

Fhm(X.9) Yi<jo(hij)?

(2)

Our algorithm for optimizing metric MDS can be extended to cover the nonmetsie aa well.
Appendix B discusses the necessary modifications.
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2.4 Hierarchical MDS

In many cases the data is naturally organized in classes that have sebcthas are composed of
subsubclasses, and so on. Such a hierarchical classification chiebeed either externally or by
applying data analysis techniques, such as clustering.

When the points to be embedded are pre-grouped into clusters, it is natuesdt the measured
dissimilaritiesbetweerclusters differently from thoseithin a particular cluster. The task of finding
a good global embedding splits into two subtagks:finding a good embedding for each individual
cluster, andb) ensuring that these embedded clusters are well-placed with respechtotbac
For a cluster that can be further divided into subclusters, (gtepan be performed recursively. For
clusters that cannot be further divided, st@p is carried out with ordinary metric or nonmetric
MDS, or with the distributional scaling technique we will introduce in a subsetjgection. We
refer to this procedure dserarchical MDS.

It remains to specify the details of stélp), the placement of embedded clusters with respect to
each other. This is done by searching for a transformation that will minimizevitrall stress, now
considering all intercluster distances, as well as the intracluster disthratese already optimized.
Clearly, clusters should be allowed to undergo arbitrary Euclidean tnanafions, as these do not
increase their internal stress. The Euclidean transformatioR$ affe parametrized by@vectorX
and an orthogongl x p matrixM, and act on an arbitrary poigtasEx m(y) = M-y +X. We choose
to allow, more generally, all affine transformations. The affine transfoomsare parametrized in
the same way, except thit need not be orthogonal. The space of affine transformations is a
linear subspace of the full search space, thus simplifying the searcfeoMt, the space of affine
transformations isonnectedunlike the space of Euclidean transformations.

Formally, we are given a partitioning of the target points iKtolusters, and an initial embed-
ding that was carried out for each cluster individually. Kgt} be the initial coordinates of the
points in clusterA. We stipulate that the final coordinatés } are generated bgffinetransforma-
tions of these single-cluster embeddings, where each cluster is trandfordependently. That is,
the final coordinates of poimtc A are given by

Xj = Xa+Ma-yi

for some affine transformatiofXa,Ma). Our final embedding is generated by minimizing the
overall metric stress, allowing only th&, M) pairs to vary, while the base coordinatgsre held
fixed. That is, individual clusters can be rotated and translated witrece$p each other, and
stretched in a small number of ways; but they cannot be split into two oneiteefundamentally
reshaped.

Restricting the allowed configurations in this way reduces the number oéetegf freedom
enormously. For instance, an arbitrary two-dimensional embedding ofpalis requires 200
parameters for its description, while an arbitrary affine transformatiorkaba/ntwo-dimensional
embedding requires only 6. This reduction helps us in two ways. First, optionzaithin a
subspace usually converges much faster simply because the seaxelssaaller. Second, we may
be able to streamline the evaluation of the objective functioance we have fixed the coordinates
yi. ForSSTRESS, this can be done exactly, by rewriting the stress function in terms of ghend
Ma variables. Specifically, when the final coordinatesre restricted to affine images of a known
base embedding, theSSTRESS function becomes

Ho= Y w (|- xl[2-a3)°
I’J
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2
- EB AZ wij (I[Xa—Xg+Ma-yi —Mg-yj|[*— A3)
icA, jeB
2
B éz g Wi <<MXMA)GB(Yi)u(Yi)B+...+HXA_XBHZ_AiZj)
a,BieA, jeB
- é GBy5 MAMA)GB(MAMA)y5+ —I-W( ) (3)
a,B,y,0

where many terms are omitted for brevity. Partial sums dydrave been performed wherever
possible, leading to parameters that can be computed in advance, such as

AB
g = RUIOMIORINDS
eATe
WAB Wij A”,
ieA JeB

and so on. The rewrittesSTRESS function is a complicated expression, but it contains a relatively
small number of terms. Specifically, for an embedding problenp dimensions, involvingk
clusters withN points each, the new expression is a sum @g¢2p*) terms, while the original
metric stress function ha®(K2N?) terms. The upshot is that for large clusters, With> p? points
apiece, using Eq. (3) can save computational labor.

Most importantly, hierarchical MDS proved most effective for highlystrated data, or when
embedding high dimensional data in low dimension. In such cases direct dmypefithe complete
data set tends to diminish any high-order structure that exists in the data,hidrdechical MDS
preserves more of the structure.

2.5 Introducing Distributional MDS

Metric MDS, as defined in the previous sections, works well in many c&gben the metric stress
of an embedding is sufficiently low, one knows that all embedded edgedame to their target
lengths, and hence the input data is well-represented by the final mapeveiQveases arise in
which no embedding has an acceptably low level of stfefis such cases, the precigaantitative
structure of the input data is impossible to maintain, and the metric stress alanealagstinguish
between qualitatively good and bad maps.

An illustrative example, which will serve as our motivation for introducing a thygve of multi-
dimensional scaling, is shown in Figure 1. It depicts an embedding of GaGpo two dimensions,
generated by applying meti&§ TRESS to synthetic, random proximity dafaThe points were orig-
inally sampled from three clusters, such that the distances between ctesigts be greater than
those within clusters, as described in the figure caption. However, asrstie figure, the process
of embedding splits the central cluster into two well-separated subclusteisisTpurely an arti-
fact of the metric scaling process, as there is no inherent differenteede the points in the two
subclusters. Moreover, the partitioning into subclusters is not robustitiers from run to run

1. The amount of acceptable stress will vary from application to applicatiohalso depends on the demands of the
user.

2. Note that this data is nonmetric, since the triangle inequality does not haldthat it is represented only by its
proximity matrix. This kind of data arises naturally in cases where the obeetabstract or difficult to map to a
vector space (e.g., strings, graphs, biological macromolecule&,dbd protein sequences).
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Figure 1: Structural artifact generated by metric SSTRESS. Three 200-point clusterg\( B, and
C) were embedded in two dimensions using metric MDS and a synthetic dissimilarity
matrix A. The central clusterA) has been split into two apparent subclusters by the
embedding process. To generateeach target dissimilaritfy; was drawn from one of
three chi distributions. If and j are in the same clustely; ~ X,(1.0). If ij connects
clusterA to clusterB or C, thenA;j; ~ X,(1.5). Finally, if ij connects clusterB andC,
thend;; ~ x,(2.0).

when random starting configurations are used. Similar results can beebtaith theSAMMON
criterion function, and with nonmetric MDS. This is a dramatic type of artifaciciwkve would
like to automatically diagnose and avoid.

Our goal is to produce embeddings that preserve some notion of strogrrthe input space.
The concept of geometry might not be clearly defined for the input spadesince the data set may
be non-Euclidean or even nonmetric, it is hard to speak in general teions thie structure of the
data. In our study we focus on the clustering properties of the data.ld$teicstructure reflects the
existence of inherent order and the presence of groups and siisgiat usually can be mapped to
specific subcategories of the data (for example, functional, topologrcdémographic, depending
on the data set). It is this notion of order that we would like to preserve s,Tinuour case, the
definition of similar structures relies on the clustering profile of the data.
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One way to characterize the underlying cluster structure of data is byistuthe distribution
of distances between and within clustéralthough similar distributions do not guarantee that the
embedding will have the same clustering profile, it reduces the searah gpambeddings that are
more likely to have the same structure. The simple example of Figure 1 demaonstiatpoint.
Figure 2 shows histograms of the set of interpoint distances, both befidrafter the embedding
process. From these graphs it is clear that the embedding has qualitatteegd the information
present: although the target distances form a unimodal distribution, titeepdedding curve is
distinctly bimodal. There is evidence that this kind of artifact is also prevatergal applications
of metric MDS (Yona, 1999).

T T T T

2 r targét a
distributional MDS ===~

Figure 2: Distribution of interpoint distances within a split cluster. The three curves represent
the distributions of the target distancig (see the caption to Figure 1), the embedded
distanced;; from metricSSTRESS, and the embedded distand&g from our proposed
distributional scaling. The two-dimensional embeddings from metric and distital
MDS are shown in Figure 1 and Figure 3, respectively.

To correct for artifacts of this type, and more generally to preservetthetgral information
we have just discussed, we propose a modified objective function thalizes discrepancies like
that shown in Figure 2. This new objective function can be used wheopkser assignments are
known, or can be estimated. For each pair of clust@ndB, we defingp,g to be the (weighted,
normalized) distribution of embedded distances between the points in dusier those in cluster
B:

Oag(X) = ZieAz.jeBWi.j 5(X”— Dij) ' @)
YicAD jeBWij
Here d(x) is the Dirac delta function, which describes a point mass of weight 1 locadizéue
origin. Similarly, we denote bf,g the distribution of theA-B target distances (the elements/9f
Our proposed new objective function has the general form

Hy(X) = (1—-a)H(X) +a zEWABD[pABa Pasl 5)
A<

3. Preserving just the cluster assignments, as is done by Roth et a2),(20i@ht miss higher order structure over
clusters. Moreover, the method proposed by Roth is algorithm-depe(tdiéored to the k-means algorithm).
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whereD [p,q] is some measure of the dissimilarity between two distributionsWieare relative
weights of the target distributions, anddetermines the balance between the original metric com-
ponent of the stress and this new, distribution-related, component. Wieaptimization of this
type of objective functiomistributional MDS .

One could use any number of other measures to represent the datarsteunziuits geometry.
For example, cluster diameters, or the first and second moments of the sangderpeach cluster,
could be used in addition to the distributions of pairwise distances. The ofgidatiction could
be modified to include these (or other, data-specific) order parametatherRhan attempting
to include all possible choices, we chose the single-parameter forfy gfiven above. For the
dissimilarity measur®, we will use the earth-mover’'s distance, a metric which is motivated and
described in Section 2.6.

The weight3\ag are assigned based on the information content of the distributions. Spkgific
we use the entropy

She = Sipac] = — [ OxBas() 10, Paa()

as a measure for the information content of the target distribution, andtWése- 2-%8, Thus, the

lower the entropy of a distribution, the more significant the contribution oftérat to the objective
function. Our motivation for this choice of weights is heuristic: high-entrdigjyributions are more
likely to arise by chance, while low-entropy distributions are more likely to cefietrue pattern
in the data. With robustness to classification errors in mind (see below), tightimg scheme
attempts to minimize the sensitivity of the model to noise by emphasizing the low-enamt

distributions.

It is important to note that the availability of cluster information is by no means dléuar
a limiting factor of this algorithm. One can use any sensible clustering algorittgn Kemeans),
applied to the original data or to its metric embedding, to suggest a preliminasyficason. If the
data is sufficiently ordered, this clustering profile can provide a roughsot of the geometry, the
quality of which depends on the clustering algorithm and the dath $his clustering profile can
then be used to guide the embedding process, even if it is not completehateccsince the distri-
butions between all pairs of clusters are considered, the algorithm asmibleddings that grossly
distort the cluster structure, even when the higher-order structure otia is misrepresented (e.g.,
when a real cluster is split into two by a clustering algorithm).

To demonstrate, we return to the previous example, supposing now thatéheldster as-
signments are unknown. Applyingmeans clustering (with botk = 4 andk = 3) to the metric
embedding (Figure 1) produces the tentative classifications shown ireFlgiihek-means results
exhibit bothoverclassification where a single true cluster is broken into two classesnaisdlas-
sification, where parts of two true clusters are combined in a single class. Applyitrfpdional
scaling to the original dissimilarities, using thentativecluster assignments rather than the true
ones, produces the improved embeddings shown in Figure 5. Both restamleimbedding in Fig-
ure 3, which was generated using the true assignments. This is a satigfgutg since it indicates
that our algorithm is robust with respect to at least some classificatiorsetrogeneral, the prob-

4. Given the choice between a conservative clustering and a morespamnone (e.g., hierarchical clustering with
different thresholds), one might prefer the conservative algorithate that here we ignore issues of generalization
and model validity of the clustering profile, as they are irrelevant at thistp@pting for structure-preserving em-
beddings, smaller and more compact clusters can be consideretitias efihigh confidence and are more amenable
to undergo this process successfully.
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Figure 3: Improved map from distributional scaling. Starting from the metric embedding, the
objective function defined by Eq. (5) (with = 0.1) was numerically optimized. The
artifact seen in Figure 1 is largely corrected: clugterow appears as a single cluster, as
it should.

lem of overclassification is well-corrected by our algorithm. The problemis€lassification is not
addressed as well; but in cases like the example, where intercluster auduster distances have
substantially different distributions, distributional MDS gives a more religideure of the actual
data than metric MDS alone.

2.6 The Earth-Mover’s Distance Between Probability Distributions

There are several common measures to assess the statistical similarity afifitypdistributions,
among which are the Manhattan distance (thaorm) and the KL divergence (Kullback, 1959).
Our first choice was the information-theoretic Jensen-Shannon diveegmeasure (Lin, 1991),
which is a symmetric and bounded variant of the KL divergence. Formadgngwo (empirical)
probability distributiong andgq, for every 0< A < 1, theA-JS divergenceis defined as

D3S[p||a] = AD*“[p||r]+ (1—A)D¥[q]|r] ,

whereDKL[p||q] = 5; pilog,(pi/gi) is the KL divergence, and= Ap+ (1—A)q can be considered
as the most likely common source distribution of both distributipaadq, with A as a prior weight.
The parametex reflects thea priori information and is set by default to 0.5.
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Figure 4: Naive cluster assignmentgienerated by the application kfmeans clusteringk(= 4,
left; k = 3, right) to the points in Figure 1. Note that the true cluster assignments were
never used. Th& = 4 example showsverclassification where a single true cluster is
broken into two classes. The= 3 example showmisclassification where parts of two
true clusters are combined in a single class.

Despite its attractive properties as a measure of statistical simitasigylearned quite early on
that this measure is inappropriate when attempting to preserve the ovepalahtaie distribution.
Specifically, this measure was found to be difficult to optimize through a lezakch. Since the
Jensen-Shannon distance is a purely local measure of the differetweedn two distributions, a
JS-based algorithm is easily trapped in poor local minima.

A more effective measure of dissimilarity between two distributions is the eartlersalis-
tance (EMD) (Rubner et al., 1998). As shown in Figure 6, the EMD is tamltially easier to
minimize than the Jensen-Shannon divergence. Given two probability diginb p andq over
the interval[0, K] (which can be thought of as distributions of “earth” and “holes” retipely), the
EMD betweenp andg can be defined by means of the following transport or bipartite-graph flow
problem. Letf(x,y) be the amount of earth (flow) carried froxe [0,K] to y € [0,K], such that
every hole is filled and no new holes are dug. In other wofds,y) is a flow function that should
satisfy

f(xy) >
p(x)

0,
K
/0 dyf(x,y),

5. Besides being bounded and symmetric, it has been shown that thetfedce measure is proportional to minus the
logarithm of the probability that the two empirical distributions represenpsesrdrawn from the same (“common”)
source distribution (El-Yaniv et al., 1998).
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Figure 5: Distributional scaling with naive cluster assignments. The figure was generated in
the same way as Figure 3, except that khmeans cluster assignments (from Figure 4)
were used in place of the true ones. In both examples, the process rierg®s central
groups of points, while keeping them separate from the remaining two giroup

ay) = /Odef(x,y) :

Let dist(x,y) be the “ground distance” betwearandy. (In our casedist(x,y) = |[x—Yy|.) Then the
EMD is theminimumtotal distance traveled by the earth,

EMD|[p,q] = mfin/dx/dydist(x,y)f(x,y) ,

subject to the given constraints énintuitively, the EMD can be considered as the minimal amount
of work required to matckp with g. It can be shown that the EMD between normalized one-
dimensional distributions is the same as lthalistance between thesumulativedistribution func-
tions (Levina and Bickel, 2001). That is, the earth-mover’s distancedmatwlistributiong andq

is just

K
EMD [p,q] :/0 dx

[ ator) -]

The result follows from the fact that there is a greedy algorithm for figidlire minimal flow in one
dimension (only): fill the leftmost unfilled hole with the leftmost available dirt urtihales are
filled. This expression is essential for our algorithm, since it makes the EMPIe& to calculate
and differentiate, rendering it suitable for inclusion in the stress function.
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Figure 6: Comparison of EMD-based algorithm with Jensen-Shannon algorithm The ele-
ments of a 20 200 dissimilarity matrix were drawn from a bimodal distribution (“Tar-
get”). Downhill search was used to find a two-dimensional embedding withpiite
distance distribution closest to the target distribution, under the EMD and aSunes.
The JS-based algorithm became trapped in a local minimum: shifting weight tigkte r
does not immediately decrease the Jensen-Shannon distance betweegethanich JS
curves. The EMD-based algorithm, on the other hand, reproducedrtfes thstribution
accurately.

2.6.1 IMPLEMENTATION ISSUES

The naive implementation of the algorithm is impractical for large data setsyubedailding and
storing the exact, discrete distribution defined by Eq. (4) takes a largerambspaceQ(n?), and
calculating the EMD between two such distributions ta®¢s?logn) time® Moreover, the earth-
mover’s distance between two such distributions has many nondifferenpiaibls along any given
line, which is problematic for our (gradient-based) optimization strategy. dleeas both these
issues by using an approximate distribution in place of the exact one.

Our approximate distributions are piecewise constant, consisting of a efyasimall number
of disjoint bins. We associate theth bin with the intervalxy, x1]. To build the necessary dis-
tribution, each delta-function in Eq. (4) is first broadened into a finite-wstiépe with the correct
total weight. That isad(x — b) — ah(x—b), whereh is a smooth function. The weight is then
distributed among the relevant bins: #h bin is incremented bafx’;k“ h(x—b)dx (see Figure 7).
The result is a histogram whose bin contents are differentiable functfdhe aistance®;;. We
use this histogram in our calculation of the earth-mover’s distance; usinch#ie rule, the EMD
is then differentiable as wefl.

6. The rate-limiting step is the sorting of the valiigg, which is needed to find the cumulative distribution function.
7. More precisely, the EMD still has nondifferentiable points, but theyspagse enough that there are none on a typical
ray in the search space.
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Figure 7: Histogram construction. To construct a histogram from a discrete distribution (top), we
first broaden each point by a smooth window function (middle). The integraeights
are then used as the bin counts for the histogram (bottom).

2.7 Choosing the Initial Embedding

Since our optimization method is iterative, beginning with a low-stress embeddingave time
and, potentially, improve the final result. We suggest two inexpensive t@ayenerate a reasonably
good initial configuration.

The first method is principal component analysis (PCA). Principal compmanalysis is well
known as the basis for classical scaling (Young and HouseholdeB; G#fver, 1966); given a data
set with a low-stress embedding, PCA can be used to find a good cotifiguvary quickly. To
find the principal components we first form the auxiliary maiixwith matrix elements

1 1 1

To generate an embeddingprdimensions we compute thpdargest eigenvalues M, together with
their associated eigenvectods, @nduy). Finally, we form an initial configuration with coordinate
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Components
(Xi)a= \/)\_a(ua)i

fora=1,...p. If Ais, in fact, a distance matriR(X) with X € S, thenM will have only p nonzero
eigenvalues, and this initial configuration will have zero stres&.idfa higher-dimensional distance
matrix, this configuration will represent an optimal linear projection imttimensions.

This analysis could be carried out by fully diagonalizMgbut this is extremely wasteful when
only p < n principal eigenvectors are wanted. Instead, we use a simple iterativedrizked on
Hotelling’s power method (Hotelling, 1933). Start with a random orthonosaabfp vectorse,.
Multiply each by the matrisM, then orthonormalize the set using the Gram-Schmidt algorithm. As
this step is repeated, the vectegsapproach the largest eigenvectofs The eigenvalues are then
given by, = €l -M - e,. Exact diagonalization is known to tak¥n?) time; this method cuts the
time down toO(pr?).

The second method we use for finding a good initial embedding isttehastic embedding
algorithm proposed by Agrafiotis and Xu (2002). This method is also viemple and fast, and
seems to work well when the data is sufficiently compatible with the embedding.sfde al-
gorithm begins with a random configuration. A random etgis selected, and the poirts and
Xj, currently separated by a distargg are moved along the line connecting them so their separa-
tion becomesiAj + (1 —a)d;j. This basic step is repeated many times, while the learningorate
decreases according to a specified schedule.

2.8 Choosing the Embedding Dimension

One of the major problems with embedding algorithms is determining the intrinsic dimeiligio

of the data. When the dimension of the host space is increased, the optimalstiess will always
decreaseas the search space is enlarged. One would like to know when the emipdadension is
sufficiently large, i.e., when any additional improvement is insignificant. Rrahcomponent anal-
ysis can sometimes suggest the appropriate embedding dimension, basechomber of “large”
eigenvalues of the PCA matrM (Eq. (6)). However, in many cases the distribution of eigenvalues
is relatively flat and uninformative and the subtlety then lies in setting thectaigenvalue thresh-
old. To our knowledge, this has not been addressed in a statistical sé¥torgover, as a linear
embedding technique, PCA explores only a small subset of all possibladdinbs.

We propose two complementary approaches to this question. The first methaged on a
geometric analysis of the optimization problem in the space of distance matncefranulates
the problem in probabilistic terms. It can be used to decide whether a dimahgicnease is
statistically significant. This method is tailored to the case of unweightdd MON with small
distortions. The second method, on the other hand, is information-theoratture, and compares
embeddings based on the principle of minimum description length (MDL). Thisadéthmore
heuristic than the first, and consequently more widely applicable. In the rderaidhthis section,
we discuss both proposed methods in detail.

2.8.1 EOMETRICAPPROACH

In practice, one often seeks the correct embedding dimension by anvieemadthod: successive
embeddings with decreasing metric stress are constructed, in higher dmed digensions, until

8. Because the result will be further refined in any case, full comrarg is not required.
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the decrease in stress becomes negligible. We can place this iterative metadufro statistical
footing by specifying precisely what is meant by “negligible”. We do this bfirdng a statistical
null model for the decrease in stress associated with an increase in @ntpeddension. For
any p-dimensional embedding of a dissimilarity matdxwith (locally) minimum stress, our null
model proposes that the remaining discrepancies between the targeteifiaand the embedded
distances arandependenandidentically distributedGaussian random variables. By comparing the
measured stress in a dimensign- p to the stress predicted under the null model, we can assign
statistical significance to the decrease in stress. When the statistical sigpefisacomes too low,
we conclude that we may well be “fitting noise,” and terminate the iterative mefrioel details of
this calculation comprise the remainder of this section.

Given a set ofi points, we denote the set of all possible embeddingsdimensions bys,. The
corresponding distance matrices form the manifi= D(S}) ¢ Q,. This manifold is enlarged
with increasingp until p=n—1; that is,

DicD?c.--cDil=DrcQ,.

Sincen points always lie in a singlen— 1)-plane, larger values qfare never necessary. The dimen-
sion of D, is the dimension oS}, minus the dimension of the group of Euclidean transformations
of R P (i.e., the transformations<, M) under whichD is invariant):
. . 1
dimDf = dim§—p-— Ep(p— 1)

1
= n-p—3p(p+1)

1
= Ep(Zn—p—l).
Equivalently, the codimension aff is
ch = dimQp—dimD}
= 1n(n 1) ! (2n 1)

1
= 5(-p)(n-p-1),

which is equal to zero whep=n— 1, as expected.

Suppose we have found an optimal embeddrg S, in p dimensions, with metric stress equal
to s(p). In the case of unweighté®IAMMON, the stress function is simply the squared Euclidean
distance betweef and the distance matr@(X) within the encompassing space:

s(p) = [ID(X) - 4[>

If X is ap-dimensional stress minimizer, th&{X) is (locally) the closest point ta in Df, and the
error vector Ep(X) = A— D(X) is perpendicular t®f at that point. In other word&,(X) lives in
a space with dimensiot, (the codimension obf).

Assume now that we look for g-dimensional stress minimizeq - p). Starting atX, the
search manifold is extended Bf,, adding dinD — dimD} = cf — ¢ new directions. fEy(X) is
small, then aj-dimensional minimizer can be found by moviBgX) so these (now unconstrained)
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components oEp(X) become zero. This will lead to a new error vedig(X) with a lower stress
values(q). Note thais(q) = 3, E? < 5 Ej2 = 5(p), where the second sum is over@llcomponents
of E(X), while the first sum is over a particular subsettomponents.

At this point we ask whether the reduction in the error is significant, i.e.jgrézan expected
by chance alone. Our null hypothesis is that the error vect@mdomlyoriented within the space
perpendicular t®f atD(X). That is, we hypothesize thEp(X) is given by

R _ (ene . 6p)

Ep(X) = —=——
o JEre&+.&

where theg are normally distributed with zero mean and unit variance. Setting theficsbrdinate
axes in this space to be those thatals® perpendicular t®7, the projection of this random vector
onto the subspace whelgg(X) resides is

. . (ene,..,63,0,0,.0)

Eq(X) = s(p) .
VETE+
Therandom stress ratiois therefore

s@) _ IIE00ll _ 5
P IEBXI - %, e

Vs(p),

F= <1.

This can be rewritten as A

A+B’

whereA = Z € andB = Z <—:~,2 Note thatA andB are two independent chi-squared random
variables, W|tha andb degrees of freedom, where

£

1
a=cq = s(-g-g-1),
1
b=cf-c = S(@-p(n-p-a-1).

Given an observed stress ratiofof= 1/(1+€), we are interested in the probability thak F,
or (equivalently) thatA— B < 0. Since the distributions & andB are known, the significance can
be calculate@xactly However, whem,q < n, as is often the case, it is useful to approximate the
significance in terms of the normal distribution, so that tabulated Z-scorebenased. Specifically,
asa andb become largeA andB approach normal variableg ~ N(a, v/2a) andB ~ N(b,/2b).
Therefore, the differenceA — B is distributed as

x=¢A—B ~ N(ea ev2a)—N(b,v2b)
~ N(ga—b,v2\/e2a+b)
= N(Mx,Ox) -

With the scalingz = (x— p)/0x, the distribution is transformed to a standard normal distribution,

and b
€a—
PEA—B<0)=P(z> ——— |,
( ) < V2v€e2a+ b>
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wherez~ N(0,1). The probability is 2 whene = b/a. For the probability to be significant (say,
three standard deviations away from the mean, or smalleRf@x 3)), we need to have greater
than(b+3v/2b) /a.

In summary, we have derived the significanpevélue) of a given stress ratio, based on a pos-
tulated background distribution. Thsvalue can be calculated exactly, or approximated in terms
of the normal distribution. If thep-value associated with an increase in embedding dimension is
sufficiently low, then the decrease in stress is significant, and the highendgional embedding
describes the data&] significantly better than the lower-dimensional one. In this framework, the
optimal embedding dimension has been found when an increase in dimensida gsificantly
decrease the metric stress.

2.8.2 INFORMATION-THEORETICAPPROACH

An alternative method for model selection is the minimum description length (Mpjcach. The
description length of a givemodel (hypothesis) and datas defined as the description length of
the model plus the description length of ttdata given the model In our case, we are trying to
represent proximity data\j in terms of the pairwise distances fronpadimensional embedding.
The model is a specific embeddiXge . Given the model, the data can be reconstructed from the
pairwise distortions: for concreteness, we will use the relative distortions
Dij (X) — Aj

Aij '
According to the MDL principle, we should select the model that minimizes the detsdription
length. This heuristic favors low-dimensional models (short model desmr)ghat are capable of
providing a fairly accurate description of the data (short descriptioneofémaining errors, given
the model).

The model is a specific embedding with the set of positians,, ..., X, in Euclidean spac& ?,
for a total ofn- p independent coordinates. Since the coordinates are not explicitly statistivs
data (we do not have an explicit mapping frdnio X, but rather determin® implicitly, through
optimization), it is difficult to specify the uncertainty in each coordinate, whmhld be used to de-
fine the description length. However, indirectly, they do summarize somelghfbanmation about
the data and in that sense they can be perceived as statistics. One castithate the uncertainty
from the gradient curve in the vicinity of the point, or from the overall digborin pairwise dis-
tances associated with it. For simplicity we assume a constant uncertaintydooadinates, so the
description length of the model is proportionalrtop.

The description of the data given the model depends on the s@iefl) /2 pairwise distortions.
Because this represents a large number of samples, the description lengémple will approach
the information-theoretic lower bound, which is related to the entropy of tHenlying distribution.
For a continuous probability distributiqu(x), the entropy iS/p] = — [dx p(x) log, p(x). According
to Shannon’s theorem, to encode a stream of samples from this distributiomrwaite bounded by
€/2 (which must be small), one needdog, € + S p| bits per sample. In our case, we must estimate
the underlying distribution from the empirically measured distortignswhich can be done along
the lines of Section 2.6.1.

Combining the two terms, we suggest a scoring function of the form

Eij =

an- p+ 3n(n- D (7)
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where & is the entropy of the error distribution, and the scaling parantetepresents the de-
scription length per coordinate of the model. We have dropped the cotetaminvolving— log, €:
since this term is independent pandX, it plays no role when comparing different models.

Initially, we intended to train the parameterto optimize the scoring function’s performance;
for instance, one might seek tlethat most often assigns noisy data to its original dimension.
However, upon reflection it is clear that the MDL method should not, in factderced into this
behavior. The purpose of the method is to find the shortest encoding diathe and often this
will not coincide with the data’s original dimensionality. For noisy and high-dimenbkiaia in
particular, the error distribution will never become very narrow, so treerigion length of the
conditional data cannot become arbitrarily short, while each additionaticte costs the same
amount. Unlessa is unreasonably small (say, less than 2 bits per coordinate), the MDlIstiewill
select a lower dimension than it would for the denoised data. This behadocéptable and even
informative. Therefore, we selected a somewhat arbitrary valwe-6f10 for use in Section 3.2,
corresponding to a relative precision 0001, with the understanding that values anywhere from 5
to 50 would also be reasonable.

3. Test Data and Results

To test our algorithm we ran several tests. The first set of experimestegitthe robustness and
performance of different metric objective functions. The second sttdeur method for determin-
ing the embedding dimension. Next we evaluate structural preservatiamwelireg our algorithm
compared to MDS. Lastly, we test and compare the performance of ouithigan handwriting
data.

3.1 Comparison of Metric Objective Functions

We created sixteen random configurations of 1200 points in two and thmesions (8 sets in
2d, 8 sets in 3d). Each configuration consisted of twelve gaussian slw$t&00 points each, with
principal standard deviations between 0.2 and 1.0, and with interclusteatiepa between 1.0 and
8.0. A test distance matrix was generated from each configuration.

Our first experiment tested the robustness of metric MDS in the presemmesef to see how
frequently the algorithm failed to converge to the global minimum. Using our igtgofor metric
SSTRESS with intermediate weighting, we embedded the test matrices 100 times each (from ra
dom initial configurations), both without noise and with multiplicative noise argjth 0.02, 0.1,
or 0.5. The data sets were embedded in their original dimensions.

For the 2d-2d tests, the algorithm converged to the global minimum 100% of the time, for
each test matrix and for each level of noise. For the»3d tests, the algorithm found the global
minimum 100% of the time for seven of the eight test matrices. On the eighth test rnttadrgdobal
minimum was found 70-80% of the time, depending on the noise; in the remainilsg &risingle
nonglobal minimizing configuration, with a low stress od0-002, was found.

Our second experiment compared the performance of the various @éjietctions, and used
the same test matrices, but truncated to 400 points. We embedded the distdricesnfiamm
3d—3d, 100 times each (from random initial configurations), with no noisegus$i RESS with
intermediate and global weighting aSAMMON with intermediate and global weighting. The
number of times each objective function converged to the global minimum isrsincliable 1. The
results suggest th&AMMON is more liable to converge to a nonglobal minimizer t8&T RESS,
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as noted by other authors. They also indicate that global weighting, whphasizes the impor-
tance of large target distances over small ones, is more successflhtianediate weighting at
recovering the original configuration.

ID | SSTRESS-i SSTRESS-g SAMMON-i SAMMON-g
1 100 100 71 100
2 100 100 100 100
3 53 100 35 34
4 87 99 25 52
5 47 100 12 13
6 49 100 38 54
7 18 82 16 25
8 100 100 39 100

Table 1: Percentage of successful trials for-8H embedding, for eight 400-point test sets and
four different objective functions.

3.2 Dimensionality Selection

We created twenty random configurations of 250 points in 2, 3, 5, 105@uémensions. (Four for
each dimensionality: a single gaussian cluster, a closely spaced pairtefs|aswidely spaced pair
of clusters, and a set of eight scattered clusters.) We then generatédsBimilarity matrices from
each of these configurations, using five different metrics, for a totahefhundred test matrices.
The metrics we used were:

1. Euc = Euclidean metri@(x,y) = v/¥i(% —¥i)?,

2. EucW = Euclidean metric plus weak multiplicative noise,
3. EucS = Euclidean metric plus strong multiplicative noise,
4. Mink = Minkowski metric,p(x,y) = (5 [x — ¥i[¥/?)?/3,

5. Manh = Manhattan metrig(x,y) = 5; [% — il.

In this set of tests, we embedded each test matrix 10 times each (from ramilahconfigurations)
in 2, 3, 4, 5, and 10 dimensions, usifngMMON with global weighting. We took the lowest stress
from each set of 10 trials, and retained the corresponding embedding.

From the stresses, we calculated the statistical significance of the dimdmisioséions 2— 3,
3—4,4— 5, and 5— 10, as described in Section 2.8.1 (geometric approach). These sigeéfican
were used to determine the best embedding dimension for each data setregsin dimension
was considered justified if it improved the stress at thdeel (P < 0.0025, approximately). From
the final embeddings, we calculated the entropy of the distribution of efiwpoesach embedding
dimension, as described in Section 2.8.2 (information-theoretic appro&ding the measured
entropies, we selected the dimensionality that minimized the MDL-based scoration given by

Eq. (7).
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Figure 8: Embedding a non-Euclidean spaceThe dissimilarity matrix was created by applying
a Minkowskian metric to a two-dimensional gaussian distribution of points. Adtsric
embedding in 3d, the points appear to form a two-dimensional surface wggtive
curvature, i.e., a saddle.

Tables 2 and 3 summarize the geometric and information-theoretic results.eSiles rwere
fairly consistent across the four types of test configuration (gaugséan etc.). On the other hand,
they depended strongly on the dimensionality of the original configuratidrarnhe way in which
dissimilarities were obtained, as seen in the Tables. Moreover, the geometriafarmation-
theoretic approaches can lead to very different results when appligisipar nonmetric data.

Applying the geometric approach, our algorithm selected the original dimalgio of the
data set in the Euclidean cases, both with and without noise, and indicatdurer-dimensional
embeddings were significantly better at describing the Minkowski- and Bttariymetric test sets.
The results for the noisy data are not surprising; indeed, the methodgmndddo select the correct
dimensionality for data with additive gaussian noise. For the non-Euclidsasdts, the results
suggest that when a Minkowskian metric is imposed on a low-dimensional geints, the points
tend to “curl up” into a higher dimension. Visual inspection of test embeddiagds to support
this idea: for instance, Figure 8 shows a28d example using the Minkowski metric in which the
embedded points have formed a saddle-shaped surface.

The information-theoretic approach often proposdalveer embedding dimension than the ge-
ometric approach. This can best be understood by comparing the gdlaéstafo approaches with
respect to residual errors. The geometric method tries to increase thedintdimension until
the residual errors are effectivealgndom and as much information as possible has been packed into
the model. On the other hand, the MDL-based method will increase the emgetiiciension until
a balance is struck between the residual errors and the model, suchetbatidtdescription length
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| Euc EucW EucS Mink Manh

d=2 2 2 2 3-4 3-4
d=3 3 3 3 5 5
d=5 5 5 5 10 10

d=10| 10 10 10 10 10

Table 2:Best embedding dimension: geometric approach.

| Euc EucW EucS Mink Manh

d=2 2 2 2 3 3
d=3 3 3 3 3-4 3-4
d=5 5 5 3-4 5 5
d=10| 10 5 3 10 10

Table 3:Best embedding dimension: information-theoretic approach.

is minimized. This compromise will often leave significant information in the residualrs; in
any such case, the geometric approach will propose a higher dimensidoathe data.

3.3 Structural Preservation

To assess the efficacy of our distributional scaling method in presenérgtrilncture of input data,
we used the distributional method to re-embed the 100 test matrices from theugresection,

in each case starting from the optimal metric embedding. For each test matrogleudated six
different measures of structural fidelity, before and after the re-ddibg. The first measure was
the metricSSTRESS, which was expected to increase. The remaining measures were of ite for
S a<s WaeD [pag, Pag], WhereD [p, q] was one of the following:

1. EMD = Earth-mover’s distance,

N

JS = Jensen-Shannon distance,

w

mean = squared difference between the meapsaoidq,
4. max = squared difference between the maxima,
5. variance = squared difference between the variances.

Table 4 shows the percent change in each of these measures, dvevag¢he 100 test sets, for
various embedding dimensions.

These results pertain to low-stress (Me8RTRESS < 0.05) embeddings, where the agreement
between distributions is rather good even without the improvements from dbocheWhen em-
bedded with the distributional scaling method we observe a modest increastria stress. How-
ever, this is compensated on average by substantial improvements in theetdsires. Moreover,
while we explicitly optimize only the EMD, the changes in the other measures eedated.

For highly frustrated data, like the motivating example of Section 2.5 (showiginmé-1, with
metric SSTRESS ~ 0.5), the numbers are more dramatic. The bottom row of Table 4 shows the
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Dim. | stress EMD JS mean max variance
2 +29% -45% -50% -34% -17% +22%
3 +27% -59% -61% -44% -24% -24%
4 +23% -70% -69% -48% -37% -60%
5 +20% -76% -74% -47% -45% -83%

10 +19% -87% -86% -81% -46% -81%
2* +1.7% -49% -60% -79% -17% -22%

Table 4: Change in six measures of structural fidelity when distributional saling is applied.
The last data set {2is the one from Figure 1.

changes in the same six measures during that example’s re-embedding !1 Here, the im-
provements in structural fidelity cause only a very small increase in metrgsst@ur method is
perhaps best suited to this type of example, where no low-stress embedditsy In such cases,
distributional MDS distinguishes among many candidate embeddings where M&8acannot,
and selects a candidate that is faithful to the structure of the original data.

3.4 Handwriting Data

Finally, to test our algorithms on real-world data, we applied both metric andbditmal SSTRESS
to a subset of the MNIST database of handwritten diyjisach digit is represented by a 288
grayscale image, where each pixel’s brightness is between 0 and 23&eddhe Euclidean dis-
tances between these 784-dimensional data points as input to our embaiddirigyms. Figure 9
shows the two-dimensional embeddings that were generated using eachlm&erestrict this ex-
ample to three digits, because we expect to need more than two dimensions tbahide digits
(Saul and Roweis, 2003), making the results harder to interpret.

The general layout is similar with both methods: the digit 2 is most readily cedfudth the
other two digits, and digits 0 and 1 are most easily distinguished from oneeandtbwever, the
application of distributional scaling (right) clearly improves the embedding,anhttie overlap be-
tween clusters is greatly reduced. This result suggests thdidtndutionsof intercluster distances
provide additional information distinguishing the handwritten digits from orothaar.

4. Discussion

In this paper we presented a method for structure-preserving embedsngpposed to classical
multidimensional scaling methods that are concerned only with the pairwise aistapur algo-
rithm also monitors any higher-order structure that might exist in the datattempts to preserve
it as well.

There are many ways to characterize the structure of the data. If theedamtagin a real normed
space one can talk about its geometry. However, embedding is more intgnebém the data is
given as proximity data, where it may or may not be metric. The notion of gepineinese cases
is elusive. Here we decided to focus on the clustering profile that is implictthdoylata. The

9. The MNIST data is available attp://yann.lecun.org/exdb/mnist.
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Figure 9: Maps of handwritten digits using metric MDS (left) and distributional MDS (right).
The embeddings are of 628 examples of digits 0, 1, and 2, usirgShRESS objective
function with local weighting.

cluster structure is a strong indicator of self organization of the data anblecased to describe the
structure of a variety of data types. Note that since the relative positiofiiclgsiers with respect

to each other is important in order to recover the structure, the clustenas=igs alone are not
sufficient.

To create embeddings that preserve the structure we defined a netwelfjecction that con-
siders the geometric distortion as well as the pairwise distortion. Rather thaitdedng the error
in each edge independently (as in traditional MDS techniques), we optrfbeddings that preserve
the overall structure of the information contained in the makiiand specifically, the distributions
of distances between and within clusters. The cluster assignments ndedkmatwn in advance, as
demonstrated in Section 2.5. One can apply traditional MDS techniques tatgaereliminary
embedding and use simple clustering algorithms in the host space to genestde &signments.
Even when these assignments are imperfect, the distributional informatiorecaver the true
structure. We explored variants on this objective function, consideiffereht functional forms,
normalizations and types of dissimilarity data. Our method can be applied to proxiatéas well
as to high-dimensional feature vector data.

Finally, we addressed the problem of finding the “right” embedding dimensinrclassical
MDS techniques, the embedding dimension must be set by the user, andmabibgrovided on
the expected distortion of the embedding. In this paper we proposed twodsdtia@omputing the
expected distortion and estimating the right dimensionality of the data: a loaalegeo approach,
and a global heuristic based on the MDL principle.

Future directions include the study of globalization methods, other methodsse$sing the
structure of the data and their incorporation in the objective function, anapbplication of this
method to real data sets.
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Appendix A. Metric Optimization

There are numerous methods described in the literature for the numetiicaizagion of both the
SAMMON andSSTRESS objective functions. The metric stress function is globally well-behaved:
itis smooth, bounded from below, and has compact level sets. Beclths® d is easy to guarantee
convergence to a local minimum. Differing strategies are distinguished ribeliyrobustness, but
by their running times, rates of convergence, and space requirementarde data sets, evaluation
of }[takesO(nz) operations, as does the evaluation of either the gradiett,or the entire Hessian
matrix, J2#. As shown by Kearsley et al. (1998), linearly convergent methodstHigeGuttman
transform originally proposed by Sammon (1969)$&MMON, tend to stop prematurely. On the
other hand, the multidimensional Newton-Raphson method, with quadratierggmce to a local
minimum, can be applied with good success. Newton’s method take’s operations per iteration,
most of which are spent inverting the Hessian matrix, and spaoérg to hold the Hessian matrix,
which is not sparse. Because the latter space requirement may be pvehdnitil because we may
want to check partially-converged results more frequently, we do moNesvton’s method. Instead
we choose a quasi-Newton minimization strategnjugate gradient descentas an alternative.
Conjugate gradient descent shares the quadratic convergencgauctbel running time of New-
ton’s method; but it has more modest storage requirements, and it psoouigrit at shorter inter-
vals. The theoretical basis for the method is described in many place$osEstanceNumerical
Recipes in Gand its references (Press et al., 1993). We use the following verstbe afgorithm:

1. Set the iteration couktto 0, and choose an initial embeddiKg
2. Calculate the current downhill gradie@i 1 = —OH (Xy).

3. Find new search direction, as a linear combination of the previoushsdaection and the
gradient:
(Gky1—Gx) - Gky1
Gk - Gk

Yir1 = Gryar+ Yic -

(For the first iteration, sef; = G1.)

4. Minimize H (X + aYi1) with respect to the step size Update the embedding$ 1 =
Xi+ 0 Vg1

5. Terminate ifa, ||Gkt1||, or H(Xk+1) is small enough, or ik is large enough. Otherwise,
incrementk and return to step 2.

Because the conjugate gradient method is easy to implement and requiréissbilgrivatives, we
used it for the optimization of all the objective functions mentioned in the papduding distri-
butional scaling. As indicated above, it is as efficient as Newton's methddere convenient in
several ways. In addition, we were able to substantially accelerate thegetergradient optimiza-
tion of theSSTRESS andSAMMON functions by speeding up the line minimization step, which is
the bottleneck. We describe how this can be done in the following two sections.
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A.1 Optimizing Metric SSTRESS

When applied to metric MDS, the conjugate gradient algorithm spends mosttoh@sn step 4,
performing line minimizations: at each iteration it calculates

argqrggﬂ (X+aY),

where the starting poinX and the search direction are known. In general, pinning down each
minimizing a (to sixteen digits of precision, say) will require 20—40 evaluationg/oét different
points along the ra)X +aY. For metricSSTRESS, however, this slow process can be circumvented.
Our key observation is that becaug&X) is polynomial in the coordinate;),, its restriction to

a line is also polynomial, and can be minimized in constant time once the coefficierka@wvn.
Specifically, for fixedX andY, # (X +aY) is a quartic polynomial i, with coefficients that can
be found inO(n?) operations. In practice, it takes only a few times longer to find these deetfic
than it does to evaluat® itself. As a result, by using a specialized subroutine for polynomial line
minimization, we accelerate the optimization of meS&TRESS by a factor of ten.

A.2 Optimizing Metric SAMMON

In theSAMMON case, the restriction off to a line is not polynomial, so we cannot avail ourselves
directly of the trick that works foBSTRESS. However, it is possible to define an auxiliary function
thatis polynomial, which can be used in place #f in the line minimizations. We will require
the auxiliary function to be aajorizing function for #{; this guarantees convergence to a local
minimum by ensuring that steps that decrease the auxiliary function alseedegf.

Formally, a functiong(x,y) is called a majorizing function fof (x) if Vyxyg(x,y) > f(x) and
Ywa(y,y) = f(y). That is, for each fixed value of (called the “point of support”), the values of
f(x) andg(x,y) coincide atx =y, andg(x,y) is never less thari(x). If f andg are smooth, then
clearlyd, g(y,y) = f'(y) andazg(y,y) > f”(y) for all y as well. Majorizing functions are of interest
in minimization problems, as they give rise to the following algorithm for finding allagnimizer
of f. Start at anyxp. Considerg(x,X%p) as a function ofx, and look for a value ok such that
gd(X,X0) < 9(Xo0,Xo). If there is none, terminateg is a (local) minimizer off. If there is one, call it
X1. Thenf(x1) < g(x1,%) < g(Xo, %) = f(X0), SO we have decreased the valuef oRepeat. The
potential advantage is thgtcan have special properties tHallacks, making it easier to minimize.

We want to find a majorizing function foir(x; ) = (x— 8)? that has the additional property of
being polynomial inx%. The simplest such function is the quartic

30 0
ga(x,y;8) = 8+ <1——> X4 —=xt,
(X,y;3) y ¥
At the point of suppory, only the first derivatives of and f coincide. Usingg instead off in the
conjugate gradient algorithm gives a method with first-order conveegeho maintain quadratic
convergenceg needs to better approximaftefor small step sizes, i.e., more derivatives need to
coincide. With this constraint, the next-simplest choice is the eighth-ordenqaiial

350 35 215 50
g(X,y;8) = &+ <1— —) X x-S =8
This function matches in its first three derivatives at the point of support. For fast minimization
of metricSAMMON, we use the functiogsg in place off for each line minimization.

420f



DISTRIBUTIONAL SCALING

Appendix B. Nonmetric Optimization

Nonmetric scaling is often performed by alternating between two types of: stepse that im-
prove the configuratioiX, and those that improve the transformatgrSuch algorithms are at best
linearly convergent, since they make no use of the coupling betXesmrdg in the objective func-
tion. Drawing on knowledge of the metric problem, we expect the nonmetrldgmroalso to be
fairly well-behaved and amenable to higher-order methods thatXreatdg on the same footing.
We again choose to apply conjugate gradient descent, and expecatiiadnvergence to a local
minimum.
In order to incorporate the functiapinto the set of minimization variables, we first select a

parametric representation of it. For a given input matvix (4;j), we fix M + 1 pointsty, such that

to<ty < - <ty

and
to < Mindjj < maxaij <t .
ij i

Thety are chosen so that the matrix elementé@ire distributed uniformly among thé intervals
(t,tk+1). Now the functiong is taken to satisfyg(tx) = 6k for eachk, and is linearly interpolated
within each interval. The requirement tigabe monotonic becomes a constraint on the parameters
0:

Bp<B1<--<BOy. (8)

We now minimize Eq. (2) over the range ©f,0) admissible under the constraint (8).

Constrained minimization can be carried out in (at least) two ways consistinbur overall
methodology. The first way is to employ a “simplex”-type method, analogousatated in linear
programming. Here we maintain a list of which of theconstraintg 6y < 6y, 1) are satisfied as
equalities, and take conjugate-gradient steps within that subspace.eVéhenline minimization
step saturates a new inequality, we add it to the list. Whenever the downliiegta-[1# points
away from a surfac®y = 6,1, we remove it from the list. The second way is to add a barrier
function to the original objective functio#/ (X, 8). Specifically, we might minimize

H*(X,8;1) = H(X,0)— Iog(ekJrl )

pE=
for a sequence of barrier heightsending to zero. This barrier function, lik¥ itself, is chosen to
be scale-invariant.

Whichever method we use to enforce the constraints, we can still taketadeanf efficient line
minimization in the case GSTRESS. Because of our parametrizationgfeachg(4) is a linear
function of ©; so the numerator and the denominator of Eq. (2) are polynomial in theinated
xi u and the parameteBk. The restriction of# to aray is

Pi(a
P(a) ’

where P, and P, are polynomials (quartic and quadratic, in this case) with coefficients we can
calculate relatively quickly. As long as the number of interddls small compared to?, evaluating

the barrier function for multiple values of will not contribute substantially to the time. However,

we do not have a corresponding shortcut for nonm&aAMMON. Therefore, our implementation
of nonmetricSSTRESS is from five to ten times faster per iteration than nonmeAMMON.

~—

H(X+aY,0+al) =
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