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Abstract

A fundamental question in machine learning is: “What are the chances that a statistically
significant result will replicate?” The standard framework of null hypothesis significance
testing, however, cannot answer this question directly. In this work, we derive formulas for
estimating the replication probability that are applicable in two of the most widely used
experimental designs in machine learning: the comparison of two classifiers over multiple
benchmark datasets and the comparison of two classifiers in k-fold cross-validation. Using
simulation studies, we show that p-values just below the common significance threshold of
0.05 are insufficient to warrant a high confidence in the replicability of significant results, as
such p-values are barely more informative than the flip of a coin. If a replication probability
of around 0.95 is desired, then the significance threshold should be lowered to at least 0.003.
This observation might explain, at least in part, why many published research findings fail
to replicate.
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1. Introduction

Machine learning is, to a large extent, an experimental science where much of the progress is
due to empirical evidence (Langley, 1988; Pineau et al., 2021; Gundersen et al., 2022). For
example, benchmark experiments are widely used to compare the performance of supervised
learning algorithms (Drummond and Japkowicz, 2010; Benavoli et al., 2017; Berrar, 2022;
Wainer, 2023). To evaluate a new classifier, it has become common practice to compare
it with established classifiers and to assess the differences in performance with a statistical
significance test (Drummond and Japkowicz, 2010; Henderson et al., 2018; Cockburn et al.,
2020; Berrar, 2022; Stapor et al., 2021).

Why is significance testing nowadays so widely used in machine learning? One rea-
son might be that the reviewer guidelines of some of the top-tier journals and conferences
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explicitly request that reviewers check whether a significance test was carried out. Signifi-
cance tests are also often recommended in machine learning tutorials (Lones, 2024). Clear
“wins,” ideally supported by a significance test, of a novel algorithm over established ones
are typically required for a research paper to be accepted at a top venue (Sculley et al.,
2018). There is also certainly a genuine desire by researchers to underpin their interpre-
tations with a statistical test as a, presumably, objective and rigorous method providing
reassurance about the validity of the conclusions drawn (Demšar, 2006).

Yet what exactly does it mean when a result is “statistically significant?” Commonly,
a result or effect is considered significant if the p-value from a null hypothesis significance
test (NHST) is below 0.05. This p-value is defined as the probability of (potential) results
that are as extreme as, or even more extreme than, the actually observed result, given that
the null hypothesis is true and given the investigator’s stopping and testing intentions. Let
the null hypothesis be H0 : X ∼ f(x, θ), where X denotes data, and f(x, θ) is a probability
density with parameter θ (Berger and Delampady, 1987; Bayarri and Berger, 2000). Then

p-value = P(T ≥ t(xobs) | H0, I) (1)

where the observed data is xobs, and T = t(X) is a test statistic to investigate the compat-
ibility of the null hypothesis with the data. Here, t is a statistical function, for example,
the mean. I denotes the stopping and testing intentions.

The p-value is truly an intricate measure, as it takes into account hypothetically ob-
servable, but actually unobserved results. A little known fact about the p-value is that it
also depends on how the investigator thought about the experiment and that even unreal-
ized intentions influence its calculation. Although this might seem bizarre, it is a logical
consequence of the definition of the p-value (for an instructive example, see, e.g., (Berrar,
2022), Section 3.2. Note that the notion of statistical significance depends on a dichotomous
interpretation of the p-value: if the p-value is smaller than a threshold (typically, 0.05), the
result is significant; if not, not. It is preferable, however, to interpret the p-value as a con-
tinuous measure that quantifies the degree of compatibility of the observed data with the
null hypothesis. Nonetheless, p < 0.05 is often one of the decisive factors for the acceptance
of a paper (McShane et al., 2019; Drummond and Japkowicz, 2010) and widely adopted in
many disciplines, including computer science (Cockburn et al., 2020).

Statistical significance is also widely understood to imply that a result is “real” or
“unlikely to be due to chance,” despite the numerous warnings (e.g., by Schmidt and Hunter
(2016); Goodman (2008, 1999); Greenland et al. (2016); Stapor et al. (2021)) against this
misinterpretation that has become known as the fallacy of the transposed conditional or
prosecutor’s fallacy.

Another interpretation of “significance” is related to the concept of replication, which
is at the core of the scientific enterprise. An effect or result is generally regarded as having
been replicated successfully if the effect (or result) is statistically significant in the same
direction in both the initial study and the follow-up study (Miller, 2009). For example, a
better treatment effect due to the administration of a drug A (compared to another drug
B) is regarded as having been replicated if the initial study shows that A is significantly
better than B, and if also the follow-up study shows that A is significantly better than B.

In Section 2, we will provide a formal definition and detailed analysis of the replication
probability, which is a central concept of this study. The replication probability can be un-
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derstood in two different ways, which Miller (2009) calls the “individual” and “aggregate”
replication probability. The aggregate replication probability refers to the proportion of
significant results in the pool of all follow-up experiments from different researchers in a
given domain who test different null hypotheses. By contrast, the individual replication
probability is defined as “the long-run proportion of significant results within exact repli-
cations of a particular initial study.” (Miller, 2009)[p.618]. For example, when we observe
that two classifiers perform significantly differently on a number of benchmark datasets, we
are interested in the individual replication probability, that is, whether we would obtain
again a significant result in the same direction if we were to repeat the study. Here, a
significant result “in the same direction” means that classifier A is significantly better than
B in the replication, provided that A was also significantly better than B in the initial
experiment. We will focus on the individual replication probability, as we believe that it
is of primary interest in the context of machine learning. Clearly, once a researcher has
obtained a significant finding, it is natural to ask about the chances that this finding will
replicate if the same experiment is repeated. By “replication,” we mean that the replication
(or follow-up) experiment is carried out like the initial experiment, that is, using the same
learning algorithms, the same sizes of training and test sets, data resampling protocol (e.g.,
10-fold cross-validation), performance metrics, statistical test, implementation, seeding of
the random number generator, etc. We assume that there are two important differences
between the initial experiment and the replication, though. First, the replication might be
carried out by an independent, different investigator. Second, the data in the replication
are new random samples from the same population as in the initial experiment.

Let us now consider the following example, which describes a typical benchmark study
in machine learning:

“Two classifiers, A and B, are compared on 44 different benchmark datasets
from the UCI repository. The difference in performance (for example, accuracy)
is assessed based on a suitable significance test. Suppose that A performed
significantly better than B, with a p-value of 0.01. What can we now say about
the probability that A will again significantly outperform B in a follow-up study
of the same design, that is, in an exact replication study?”

We would like to invite the reader to briefly ponder this question—what is the most accu-
rate answer?

1. The replication probability is about 0.50.
2. The replication probability is about 0.99.
3. The replication probability is about 0.75.
4. The replication probability is at least 0.90.
5. The replication probability is at most 0.10.
6. The p-value is uninformative about the replication probability.

As we will see later, the best answer is (3). Answer (6) is not correct because the p-value does
provide some information about the replication probability, but it does so only indirectly
and under some assumptions. The p-value of 0.01 from the initial study would generally
be interpreted as “highly significant” (Nuzzo, 2014; McShane et al., 2019) and therefore,
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presumably, indicate that the null hypothesis of equal performance is most certainly not
true. Consequently, there should be a very high chance (perhaps 1 − 0.01 = 0.99?) of
replicating the significant result. This reasoning, however, amalgamates the prosecutor’s
fallacy and the replication fallacy (Carver, 1978) and is not correct. Remarkably, even
answer (4) is incorrect.

Oakes (1986) posed a conceptually similar problem to 70 academic psychologists, and
60% of them thought that an initial p-value of 0.01 implies that the chances are 99%
that a replication would yield again a significant result. Another study confirmed that
this misconception is widely held among academic psychologists (Gigerenzer, 2018). It is
tempting to speculate that this misconception is not much less prevalent in other scientific
disciplines. Nuzzo (2014) notes that most researchers would misinterpret p = 0.01 as a
99% chance of a successful replication. Another study by Lai et al. (2012) showed that
researchers in psychology, medicine, and even statistics tend to severely underestimate the
variability of the p-value in replication experiments.

The upshot of these studies is that significant p-values are widely misinterpreted as
being indicative of a high chance of replication. In fact, p-values do not directly quantify
the replication probability. Under some assumptions, however, it is possible to estimate the
replication probability based on p-values. The replication probability gives a direct answer
to a central question that the p-value cannot provide:“Given that I obtained a significant
result, what are the chances that I will obtain it again in a replication study?” This question
is the fundamental motivation for the present work.

1.1 Novel Contributions

Our novel contributions can be summarized as follows. First, we derived formulas for the
replication probability for two of the most common experimental designs in supervised
learning: (i) the comparison of two classifiers over multiple different benchmark datasets,
(ii) and the comparison of two classifiers in k-fold cross-validation. We carried out a number
of experiments to empirically validate these formulas.

Second, our research contributes to the ongoing debate on the reproducibility crisis
and the appropriate threshold for the p-value. Previously, it was suggested to lower the
significance threshold from 0.05 to 0.005 for claims of novel discoveries (Benjamin et al.,
2018; Ioannidis, 2018). Our results, however, provide a rationale for an even lower threshold
of approximately 0.003.

Third, we show that barely significant results, i.e., with p-values in the range [0.01, 0.05),
fail to replicate with high probability. Remarkably, a p-value just below the common signifi-
cance threshold of 0.05 is not much more informative than the flip of coin. This observation
has potentially far-reaching implications for empirical research in machine learning and
editorial guidelines for authors.

1.2 Related Work

At the heart of the scientific enterprise is the process of stating a hypothesis, specifying
a research protocol, carrying out experiments, collecting data, analyzing the data, inter-
preting the findings, and drawing conclusions. Clearly, it is of paramount importance that
the experiments are repeatable, so that the observations and conclusions can be consid-

4



Estimating the replication probability of significant benchmark experiments

ered valid. The notions of “replicability” and “reproducibility” therefore play a pivotal
role. In the machine learning literature, however, there is currently no clear consensus on
these notions (Plesser, 2018; Bouthillier et al., 2019; Gundersen, 2021; Sonnenburg et al.,
2007); sometimes, they are used interchangeably. Gundersen et al. (2022) defines repro-
ducibility as “[...] the ability of independent investigators to draw the same conclusions
from an experiment by following the documentation shared by the original investigators,
and a reproducibility experiment is the experiment conducted by independent researchers
to confirm research findings.” By stating that “[r]eproducibility requires changes; replica-
bility avoids them,” Drummond (2009) draws a clear distinction between these two notions:
reproducibility means that the initial results can be corroborated via different methods or
experiments, whereas replicability means that the same experiments can be carried out
with the same methods. Drummond’s understanding of reproducibility is similar to what
Bouthillier et al. (2019)[p.727] call inferential reproducibility (i.e., “a finding or a conclusion
is reproducible if one can draw it from a different experimental setup.” [p.727]). They state
that this type of reproducibility is partly based on statistical significance. Bouthillier et al.
(2019) further distinguish between methods reproducibility (a method is reproducible if by
reusing the original code, we can obtain the same results) and results reproducibility (i.e.,
a result is reproducible if a reimplementated method leads to statistically similar values).
Bouthillier et al. (2019) speculate that in machine learning, reproducibility mostly refers to
methods reproducibility, for which code sharing is the commonly proposed solution. The
Association for Computing Machinery (2020) distinguishes between repeatability (the same
researchers can reliably repeat their own experiments), replicability (different researchers
can obtain the same results using the same experiments and data that another team used),
and reproducibility (different researchers use different experiments and data to reach the
same conclusions). Pineau et al. (2021) distinguish between reproducible and replicable
research as follows: an experiment is reproducible if the same data, the same analytical
tools, and the same experimental designs are used to reach the same conclusion, whereas
different data (but sampled from similar distributions) are used in replicable work. This
notion of replicability is practically identical to the definition that we adopt in this article.

Over recent years, replicability and reproducibility have been of particular concern in
many scientific disciplines, specifically psychological (Klein et al., 2018) and biomedical
research (Eisner, 2018). Alarmingly, a survey by the journal Nature reported that more than
70% of researchers have tried—and failed—to reproduce another scientist’s experiments
(Baker and Penny, 2016). The reproducibility crisis also affects AI (Hutson, 2018) and
machine learning (Semmelrock et al., 2023). To address this crisis, various changes to the
academic practice have been proposed, such as sharing of code and data, as well as study
pre-registration (Nosek et al., 2018). Pre-registration has also been suggested in machine
learning (Berrar and Dubitzky, 2019; Cockburn et al., 2020).

One might assume that replicability and reproducibility are less of a problem in ma-
chine learning than in other disciplines, given that in general, in silico experiments can be
more easily re-run than wet lab experiments. Furthermore, sharing of data, code, and even
workflows has long been common practice in machine learning (Sonnenburg et al., 2007; Van-
schoren et al., 2013). There are also initiatives like the Machine Learning Reproducibility
Challenge that invite the research community to reproduce the computational experiments
in accepted papers. However, Gundersen et al. (2022) reported that many results pub-
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lished at the top venues in machine learning were not reproducible. They described various
factors relating to study design, algorithms, implementation, observation, evaluation, and
documentation that contribute to this irreproducibility. Pineau et al. (2021) identified three
main challenges that stand in the way of proper replicability in machine learning. First,
new methods are often not better than established ones when a more exhaustive hyperpa-
rameter search is performed (Melis et al., 2018) or when a different random initialization
is chosen (Bouthillier et al., 2019). Second, the experimental protocols often lack sufficient
details to reproduce the results. Third, proper statistical analysis is not always conducted
to corroborate the experimental findings. Similarly, Henderson et al. (2018) emphasize the
need for proper significance testing and tighter standardization of experimental reporting.

Whereas these studies make a case in favor of significance testing for bolstering repro-
ducibility, there have also been opposing viewpoints, arguing that the current practice of
significance testing is in fact a key contributing factor to the reproducibility crisis (Nuzzo,
2014; Gibson, 2020), including in machine learning (Berrar and Dubitzky, 2019). Null hy-
pothesis significance testing (NHST) has indeed caused many heated debates in the statistics
community for more than six decades, and there is still no consensus on the proper role of
the p-value in research practice (Wasserstein et al., 2019), with a spectrum of viewpoints
ranging from praising NHST (Hagen, 1997) to calling for the abandonment of significance
testing (McShane et al., 2019). Numerous articles have reported that the p-value is widely
misinterpreted (Stang et al., 2010; Goodman, 2008), for instance, as a Bayesian posterior
probability (Senn, 2002). Still, there is also the argument that the p-value can be a mean-
ingful measure, provided that it is used properly and sensibly (Mulaik et al., 2016; Lakens,
2021; Colquhoun, 2017; Harrington et al., 2019).

In this work, we are concerned with the chances of replicating a significant result. Good-
man (1992) addressed the same problem, but only for the case that the observed difference
has a normal distribution and under the strong assumption that the standard errors of the
observed effect under the null and the alternative hypothesis are equal. In our study, we
do not make these assumptions. Goodman’s analysis was not underpinned by experimental
results, but it convincingly demonstrated that the replication probability can be substan-
tially lower than expected. Miller (2009), too, investigated the probability of replicating a
significant effect; however, Miller (2009) concluded that neither the individual nor the ag-
gregate replication probability could be determined reliably and therefore advised against
their use. Colquhoun (2017) investigated the connection between the p-value and the repro-
ducibility by deriving a formula for the probability that the null hypothesis is true despite a
significant p-value, which is referred to as the false positive risk (FPR). Although this is an
interesting probability that adds to the interpretation of the p-value, it does not tell us the
probability that a replication experiment will again give a significant result. Sackrowitz and
Samuel-Cahn (1999) and Cumming (2006, 2008) investigated the probability of obtaining
a p-value for a given population effect and reported a large variation of replicated p-values;
thus, it is quite likely that the p-value from a replication is different from the p-value of the
initial experiment. Cumming (2006) warns that researchers should therefore not place too
much weight on any single p-value.
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2. Theoretical Analysis of Replication Probability

In Fisherian significance testing, there is only one hypothesis, the null hypothesis H0,
whereas in Neyman-Pearsonian hypotheses testing, there are two hypotheses, the null hy-
pothesis H0 and the alternative hypothesis H1. In the context of significance testing, we
may nonetheless talk about “the alternative hypothesis” when we refer to “not H0.”

The probability of obtaining a significant result, given that there really is a difference
in performance (i.e., the null hypothesis of equal performance is false), is the same as the
power of the experiment, power = P(H0 rejected | H1 true). The type I error is a pre-
experimentally fixed error rate, α = P(H0 rejected | H0 true). The type II error rate is
β = P(H0 not rejected | H1 true), so power = 1 − β. The p-value and power belong to
two different schools of thought: the former belongs to the Fisherian significance testing,
whereas the latter belongs to the Neyman-Pearsonian hypothesis testing (Berrar, 2017).
But the true, unknown effect size has an influence on both of them. Note that the p-value
is not an error probability, unlike α (Hubbard and Bayarri, 2003).

Power depends on three factors (Fraley and Marks, 2007; Schmidt and Hunter, 2016).
First, the larger the type I error, α, the smaller the type II error, β, and therefore the larger
the power, everything else being equal. Second, the larger the population effect size (in our
context, the true difference in performance between A and B), the larger the power. Third,
the larger the sample size n, the higher the precision with which we measure the effect size,
and hence the power is larger. In an exact replication, n and α are the same as in the initial
experiment. The true effect size is also fixed, as it is a population parameter. Therefore,
the power in the replication is exactly the same as in the initial experiment. In other words,
the probability of obtaining a significant result in the replication is exactly the same as the
probability of obtaining a significant result in the initial experiment. One can think of the
initial and follow-up experiment as two independent realizations from the infinite pool of
possible replications; the order in which they are carried out is irrelevant. In fact, the initial
experiment could be regarded as a replication of the follow-up experiment.

But doesn’t the p-value reveal something about the chances of successfully replicating
the initial experiment? For example, before we run the experiment comparing classifiers A
and B, we are agnostic about the outcome—A could be better than B, or B could be better
than A, or their performance could be the same. Once we carry out the experiment and
observe that A significantly outperforms B with, say, p = 0.01, the aggregate replication
probability indeed changes because each new outcome changes the total number of all results
that enter its calculation (Miller, 2009). However, the individual replication probability—
which is of interest here—depends only on the power and is therefore constant. Whatever
the p-value from the initial experiment is, it does not change that probability. But the
p-value does inform us about what that probability might be (see also (Miller, 2009)).

As we will see later, to calculate the replication probability analytically, it is necessary to
know the true effect size, i.e., the amount or magnitude of something of interest (Cumming,
2012), for example, the true difference in performance between two classifiers, or the true
probability that one classifiers performs better than the other. In practice, the true effect
size is virtually always unknown. The standard approach then is to use the observed
effect size as the best estimate for the true effect size (Goodman, 1992; Miller, 2009). The
effect size can be defined in different meaningful ways; for example, when we test the null
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hypothesis H0 : θ = 0.5 (i.e., the probability that one classifier performs better than the
other one is 0.5), the effect size can be stated as δ = |θ − 0.5|, and it is estimated as
δ̂ = |θ̂ − 0.5|, where θ̂ is the observed success rate (i.e., how often A was better than B,
divided by the number of comparisons). Another meaningful effect size is the true difference
δ in performance in the population of datasets over which the classifiers were compared.

If the null hypothesis of equal performance is true, then the probability of a significant
result in the initial experiment is α. With a two-tailed test, the probability of a significant
result in the follow-up experiment is α/2, since half of the significant results go in the wrong
direction. In keeping with common practice, we consider p < 0.05 a significant result. We
define the true replication probability of a significant result as follows.

Definition 1. True replication probability of a significant result.
Let M denote a suitable statistical model to assess the statistical significance of the
results of an initial experiment E1. The true replication probability under the model
M is the conditional probability that a replication of an initial experiment, E1s, with
a significant result gives again a significant result in the same direction. Let E1 denote
the initial experiment and E2 denote its replication. Then

PM = P(E2s | E1s) (2)

where the index s indicates significance in the same direction. E2 is an exact replication
of E1, except that different data from the same population were used.

In this definition, the term “suitable statistical model” refers to a statistical significance test
that is appropriate for the problem at hand. For example, to assess the significance of the
differences in performance between two classifiers in k-fold cross-validation, the resampled
variance-corrected t-test is a suitable model, whereas the standard t-test is not (Nadeau
and Bengio, 2003).

The replication probability depends on the statistical model because there often exist
different statistical tests that are suitable, usually with different power or different assump-
tions. In the real world, the true replication probability is unknown, but it can be estimated
empirically by using the relative frequency of all those replications that turn out to be signif-
icant. In the remainder of this article, we refer to this probability as the empirical replication
probability of a significant result, which we define as follows.

Definition 2. Empirical replication probability of a significant result.
Let M denote a suitable statistical model to assess the statistical significance of the
results of an initial experiment E1. The empirical replication probability under the
model M is defined as

FM =
|E2s|
|E2|

(3)
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where E2s denotes the set of all replications that are significant in the same direction
as E1s, and E2 is the set of all replications (significant or not), and | · | denotes the
number of elements in a set.

Equation 3 is conceptually equivalent to what Miller (2009)[p.618] called the “individual
replication probability.”

In practice, however, we usually have only one study at hand, that is, the benchmark
study that we carried out. If we obtain a significant result, it is reasonable to ask about the
chances that we observe again a significant result in a follow-up study. Clearly, replicating
the initial study multiple times with different datasets from the same population would be
ideal, but this is of course generally not feasible. The challenge, therefore, is to estimate
the replication probability analytically based on only the information from the initial study
and under some model assumptions. This leads to the following definition.

Definition 3. Estimated replication probability of a significant result.
Let M denote a suitable statistical model to assess the statistical significance of the
results of an initial experiment E1. The estimated replication probability under the
modelM is the conditional probability that a replication of an initial experiment, E1s,
with a significant result gives again a significant result in the same direction. Let E1

denote the initial study and E2 denote its replication. Then

P̂M = P(E2s | E1s,A) (4)

where A denotes the assumptions regarding the effect size and the distribution under
the alternative hypothesis; the index s indicates significance in the same direction. E2

is an exact replication of E1, except that different data from the same population were
used.

Next, we derive formulas for the replication probability that are applicable in two of the
most widely used study designs in machine learning: (i) the comparison of two classifiers
over multiple datasets, and (ii) the comparison of two classifiers in cross-validation.

2.1 Comparison of Two Classifiers Over Multiple Datasets

For the comparison of two classifiers over multiple datasets, we consider three different
statistical models: a binomial model, a Bayesian model, and a model based on the Wilcoxon
signed rank test (short, Wilcoxon model). We consider the binomial and the Bayesian model
mainly for introductory purposes, as these models assume only wins and losses and ignore
ranks; they are therefore of limited practical use. In practice, the Wilcoxon signed rank test
is preferable (Benavoli et al., 2017).

2.1.1 Replication probability under a binomial model

Let A and B be two classifiers whose performance is compared over N different benchmark
datasets. In the simplest scenario, the statistical model assumes that no equal performance
of A and B on the same dataset is observable; hence, there is a clear “winner” for each
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dataset. Assuming a binomial model, we can now derive a point estimate for the replication
probability and the limits of an approximate prediction interval.

Lemma 1. Estimated replication probability based on the binomial model.
Let θ̂ = x

N denote the observed success rate for the comparison of two classifiers, A
and B, over N benchmark datasets, where x is the number of datasets for which A
performed better than B (i.e., a success or win). It is assumed that θ̂ is the best
estimate for θ. The point estimate of the replication probability based on the binomial
model is then

P̂b =
N∑
i=s

Bin(i;N, θ̂) (5)

where s is the smallest number of successes for a significant result in the same direction
under the null hypothesis, and Bin is the binomial mass function.

An approximate (1 − c)100% prediction interval for the replication probability is
given by

[
N∑
i=s

Bin(i;N, θ̂low),

N∑
i=s

Bin(i;N, θ̂high)

]
(6)

where θ̂low and θ̂high are the lower and upper limits, respectively, of the (1 − c)100%
Clopper-Pearson confidence interval for θ.

Proof. The null hypothesis is stated as H0 : θ = 0.5, where θ denotes the true probability
that one classifier performs better than the other on the population of datasets from which
the N benchmark datasets are a random sample. Under the assumed statistical model,
the number i of successes (or wins) of A follows a binomial distribution, with probability
mass function Bin(i;N, θ) =

(
N
i

)
θi(1− θ)N−i. The test is two-sided, since a priori A could

be better than B or vice versa.1 Without loss of generality, it is assumed that in the
initial experiment, A significantly outperformed B. To obtain again a significant result in
the same direction as in the initial experiment, at least s wins of A must be observed in
the replication. Assuming that the observed success rate θ̂ is the best estimate for θ, the
probability of observing at least s successes is that shown in Equation 5.

Let p̂ = r
n denote a proportion estimated from a sample of size n. An exact (1− c)100%

Clopper-Pearson confidence interval for the population proportion p is then given by

[
r

r + (n− r + 1)F1− 1
2
c;2(n−r+1),2r

,
(r + 1)F1− 1

2
c;2(r+1),2(n−r)

(n− r) + (r + 1)F1− 1
2
c;2(r+1),2(n−r)

]
(7)

where F1− 1
2
c;ν1,ν2

is the quantile function of the F -distribution with ν1 and ν2 degrees of

freedom (Clopper and Pearson, 1934). A (1− c)100% Clopper-Pearson confidence interval

1. All tests in the present work are two-sided.
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for θ has the limits θ̂low and θ̂high, so the success rate could plausibly be as low as θ̂low or

as high as θ̂high, which leads to Equation 6.

Example 1. Let us assume that an experiment involves 44 benchmark datasets. Suppose
that A performs better than B on exactly 29 out of 44 datasets (Figure 1). The two-tailed
p-value is 2

∑44
i=29 Bin(i; 44, 0.5) = 0.0488, which is a significant result, assuming that the

common threshold of 0.05 is used. Now, what is the probability of observing a significant
win of A over B in an exact replication? With 29 successes in 44 trials in the initial exper-
iment, the success probability is estimated as θ̂ = 29

44 = 0.66. To obtain again a significant
result that goes in the same direction, we need to observe at least 29 successes in the repli-
cation experiment. Assuming that the success probability is 0.66 (or, equivalently, that the
effect size is 0.16), the probability of observing 29 or more successes in the replication is
therefore

∑44
i=29 Bin(i; 44, 0.66) = 0.5746. This is already quite a remarkable result: despite

the significant p-value of 0.048 from the initial experiment, the chances that the results
replicate are only about 57%. Thus, the predictive value of the p-value of 0.048 is not much
higher than that of a coin toss.

Figure 1: Binomial distribution of successes for A under the null hypothesis H0 of no difference
(white bars) and the alternative hypothesis H1 with an estimated success probability

of θ̂ = 29
44 . For H0 : θ = 0.5 and α = 0.05, significant outcomes are {0...15} and

{29...44} (red bars). For the success rate of 29
44 = 0.66, the replication probability is∑44

i=29 Bin(i; 44, 0.66) = 0.57 (green bars).

For 29 successes in 44 trials, the exact 95%-confidence interval for the true success prob-
ability is [0.501, 0.795]. So in the worst case, the replication probability could be as
low as

∑44
i=29 Bin(i; 44, 0.501) = 0.0250, and in the best case, it could be as high as∑44

i=29 Bin(i; 44, 0.795) = 0.9890. This interval is certainly too wide to be of any practi-
cal use.
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2.1.2 Replication probability under a Bayesian model

The estimated replication probability based on a Bayesian model is a simple extension of
Lemma 1.

Lemma 2. Estimated replication probability based on a Bayesian model.
Let θ̂ = x

N denote the observed success rate for the comparison of two classifiers, A
and B, over N benchmark datasets, where x is the number of datasets for which A
performed better than B (i.e., a success). It is assumed that θ̂ is the best estimate for
θ. Assuming a uniform prior distribution for the success probability, the point estimate
of the replication probability based on a Bayesian model is

P̂B =
N∑
i=s

Bin(i;N, θ̂m) (8)

where s is the smallest number of successes for another significant result in the same
direction under the null hypothesis, and θ̂m = 1+x

2+N .
An approximate (1 − c)100% prediction interval for the replication probability is

given by

[
N∑
i=s

Bin(i;N, θ̂mlow),

N∑
i=s

Bin(i;N, θ̂mhigh)

]
(9)

where θ̂mlow and θ̂mhigh are the lower and upper limits, respectively, of the (1− c)100%
highest density interval (HDI) of the posterior distribution of the success probability.

Proof. Assuming a uniform prior distribution for the success probability, θ, of Betaprior(α =
1, β = 1), the posterior distribution is Betapost(α = 1 + x, β = 1 +N − x) after observing x

successes or wins of A out of N comparisons. This posterior has the mean θ̂m = α
α+β = 1+x

2+N .
For another significant result in the same direction as in the initial experiment, at least s
wins of A need to be observed. This leads to Equation 8.

The interval of the most credible values for the success probability is the Bayesian pos-
terior highest density interval (HDI). A 95%-HDI covers 95% of the posterior distribution,
and any value inside the interval has a higher credibility than any value outside of the
interval (Kruschke, 2018). Using the limits of the (1 − c)100% HDI as the worst-case and
best-case estimates for θ, respectively, we obtain the limits as show in Equation 9.

Example 2. For 29 successes (i.e., “wins” of A) and 15 failures (i.e., “wins” of B), the
posterior distribution is Betapost(α = 1 + 29, β = 1 + 15), assuming a uniform prior. The
probability that A performs better than B on a new, randomly selected dataset is the
mean of the posterior beta distribution, α

α+β = 30
46 = 0.652. The point estimate for the

replication probability is therefore
∑44

i=29 Bin(i; 44, 0.652) = 0.5311. We obtain a 95%-HDI
of [0.515, 0.785] for θ. This means that the success rate could be as low as 0.515 or as high as
0.785; consequently, the replication probability could be as low as

∑44
i=29 Bin(i; 44, 0.515) =

12
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0.0384 or as high as
∑44

i=29 Bin(i; 44, 0.785) = 0.983. Like before, this interval is too wide
to be of any practical use.

Figure 2 shows the point estimates for the replication probabilities based on the binomial
model and simple Bayesian model, together with their upper and lower limits, for all 16
possible significant p-values from the comparison of two classifiers over 44 datasets where
A is better than B (assuming that only clear wins and losses are possible).

Binomial

Bayesian

Figure 2: Estimated replication probability as a function of all significant p-values for the com-
parison of two classifiers over N = 44 benchmark datasets. The point estimates (black
squares) are based on a binomial test. The Bayesian point estimates (blue squares)
assume a uniform prior. Vertical lines represent 95% prediction intervals.

There are three important observations. First, the point estimates based on the Bayesian
model are slightly lower than the estimates based on the binomial model, and with slightly
narrower intervals. Second, for the p-value of 0.0488 (corresponding to 29 successes), both
estimates for the replication probability are quite close to 0.5. This indicates that a p-
value just below the significance threshold of 0.05 does not give much confidence that the
initial significant result replicates—it may or may not, and the chances are just above 50%.
Third, for p-values of 0.000388 or larger, the intervals of plausible values for the replication
probability are too wide to be of any practical use. Note that these intervals include 0.5.
Even for the p-value of 0.00366, the replication probability based on the binomial model
could be as low as 0.155. Only for extremely small p-values ≤ 0.000106, corresponding to
35 or more wins for A, the lower limit is above 0.5.

What if the difference between A and B is not significant in the initial experiment? For
example, let us assume that A outperforms B on exactly 24 out of 44 datasets. It seems that
A performs slightly better than B, but the result is not significant with a p-value of 0.6516.
Could the replication reveal that A is in fact significantly better? With the point estimate
for the success probability of θ̂ = 24

44 = 0.5455, the probability of seeing a significantly

better performance of A in the replication is
∑44

i=29 Bin(i; 44, 0.5455) = 0.0856. But the
upper limit of the 95%-CI for θ is 0.6961, so the replication probability might be as high as
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0.7606. For the Bayesian upper limit, the probability that A performs significantly better
than B is 0.7057. Although the results from the initial experiment (24 wins for A) are in
quite good agreement with the null hypothesis, the chances that we will see a significantly
better performance of A in the replication could be as high as about 71-76%.

2.1.3 Replication probability under the Wilcoxon model

Both the binomial and the Bayesian model are arguably too simple, as they consider only
binary outcomes (win and loss) and do not take into account the differences in performances
across different datasets. The Wilcoxon signed rank test (Wilcoxon, 1945; Sheskin, 2007)
is a widely used alternative (Benavoli et al., 2016). Briefly, the test first calculates the
difference in performance per dataset. Those datasets for which both classifiers achieve the
same performance are discarded from further analysis. The differences are then ranked from
smallest to largest, and each difference obtains a signed rank. The null hypothesis is stated
as follows: the median of the differences in scores, δ, is 0; that is, H0 : δ = 0. If the null
hypothesis is true, then the sum of the absolute ranks of the positive scores, W+, should
be the same as the sum of the absolute scores of the negative ranks, W−. If, however,
the null hypothesis is not true, then these sums should be different. This corresponds to
a two-tailed test. The Wilcoxon statistic is a discrete random variable, and by considering
its probability distribution, an exact p-value can be calculated, provided that there are no
tied ranks. Assuming that ne is sufficiently large, the Wilcoxon statistic is approximately
normally distributed and is standardized as shown in Equation 10,

Zw =
WL − 1

4ne(ne + 1)− 1
2√

ne(ne+1)(2ne+1)
24 −

∑
t3−

∑
t

48

∼ N (0, 1) (10)

where ne is the effective sample size, that is, ne = N−d, where N is the number of datasets
and d is the number of datasets for which A and B performed the same. The term −1

2 in
the numerator is a continuity correction term. The term 1

48(
∑
t3−

∑
t) in the denominator

is a correction term for ties; here, t indicates the number of tied ranks (Sheskin, 2007, p.233).

Using the Wilcoxon statistic and following the same logic as in Lemma 1 and 2, we can
now derive an estimate of the replication probability under the Wilcoxon model.

Proposition 1. Estimated replication probability for the comparison of two
classifiers over multiple datasets.
Let Zw denote the test statistic of the Wilcoxon signed rank test (Equation 10) for the
comparison of two classifiers, A and B, over N benchmark datasets. It is assumed that
the observed value of Zw is a good estimate of the true effect. The point estimate of
the replication probability is then
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P̂w = 1− F
(
z1− 1

2
α, Zw, ŝ

∗
)

= 1−
∫ 1− 1

2
α

−∞

1√
2πŝ∗

exp

{
−1

2

(
z − Zw
ŝ∗

)2
}
dz (11)

where F is the cumulative distribution function of the normal distribution with mean
Zw; ŝ∗ is the bootstrapped standard deviation of the sampling distribution of Zw;
z1− 1

2
α is a quantile of the standard normal distribution; α is the significance level. For

example, for the conventional level of 5%, z0.975 = 1.96.
The limits of an approximate (1− c)100% prediction interval for P̂w are

[
1− F

(
z1− 1

2α
, Zw − z1− 1

2 c
· ŝ∗, ŝ∗

)
, 1− F

(
z1− 1

2 c
, Zw + z1− 1

2 c
· ŝ∗, ŝ∗

)]
(12)

Proof. Assuming that the observed value of Zw is a good estimate of the true effect, the
estimated mean of the distribution under the alternative hypothesis is Zw. As the signif-
icance test in the initial experiment was two-sided, a test statistic larger than or equal to
z1− 1

2
α is required in the replication experiment. As the standard deviation of Zw under

the alternative hypothesis is unknown, it is estimated via bootstrapping. This leads to the
formulation of Equation 11. As Zw could be plausibly as low as Zw − z1− 1

2
c · ŝ∗ or as high

as Zw + z1− 1
2
c · ŝ∗, the limits of an approximate (1 − c)100% prediction interval for the

replication probability are as shown in Equation 12.

Example 3. Suppose that we observe Zw = 1.96 in the initial experiment, which corre-
sponds to a two-sided p-value of 0.05 (red area in Figure 3a). For simplicity, we assume
that the distribution under the alternative hypothesis is normal with the same standard
deviation as that under the null hypothesis, i.e., s = 1. If the distribution under the al-
ternative hypothesis is indeed centered at Zw = 1.96, then the probability is 0.5 that we
observe a test statistic of at least 1.96 in the replication study (Figure 3a, blue area), with
a 95%-confidence interval of [0, 3.92]. So at best, the replication probability is 0.975, and
at worst, it is 0.025 (Figure 3b).

However, there is no reason to assume that the standard deviation under the alternative
hypothesis is the same as that under the null; in fact, it most likely isn’t. Suppose that we
observe Zw in a benchmark experiment of N datasets. Then we create b bootstrap samples
for each dataset by random sampling with replacement, train and apply the classifier to
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Figure 3: (a) Distribution of the test statistic Zw under the null hypothesis H0 of no difference
(black bell-shaped curve) and the alternative hypothesis H1 (blue bell-shaped curve).
The mean of the distribution under H1 is estimated as µz = 1.96. Each red area is 0.025,
and the blue area is 0.5. (b) Assumed distribution of Zw under the alternative hypothesis,
with estimated worst case (Zw = 0) and best case (Zw = 3.92). For illustrative purposes,
the same standard deviation is assumed for both distributions.

the corresponding test sets, and then calculate the bootstrapped estimate of the standard
deviation of Zw (Algorithm 1).

Algorithm 1: Bootstrapped estimate of the standard deviation of Zw.

1 N ← number of benchmark datasets
2 bmax ← 300 // Initialize max number of bootstrap samples per dataset.

3 for b in 1 to bmax do
4 for i in 1 to N do

5 create bth pair of bootstrap samples (Tb, Wb) from ith pair of training set Ti and test set
Wi by random sampling with replacement

6 train A and B on Tb

7 apply A and B to Wb and record performance

8 calculate Zbw (Equation 10)

9 ŝ∗ ← standard deviation of Zbw

2.2 Comparison of Two Classifiers in k-fold Cross-validation

Two classifiers, A and B, are compared in k-fold cross-validation, and A significantly out-
performs B. The replication probability can then be estimated as follows.
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Proposition 2. Estimated replication probability in k-fold cross-validation.
Let T denote the observed t-value from the variance-corrected resampled t-test (Nadeau
and Bengio, 2003) for the comparison of two classifiers, A and B, in k-fold cross-
validation, where A performs significantly better than B. It is assumed that T is a
good estimate for the mean of the distribution under the alternative distribution. The
point estimate of the replication probability is then given by

P̂t = 1−
∫ tν,1−α/2

−∞
fa(t, µ) dt (13)

where fa(t, µ) is the probability density function under the alternative hypothesis for
the non-central t-distribution with ν = k − 1 degrees of freedom and non-centrality
parameter µ = T , and tν,1− 1

2
α is the quantile of Student’s t-distribution for probability

of 1− 1
2α.

Let q 1
2
c and q1− 1

2
c denote the 1

2c and 1− 1
2c quantiles of the non-central t-distribution

under the alternative hypothesis, respectively. A (1−c)100% prediction interval for the
replication probability is then given by

[
1−

∫ t
ν,1− 1

2 c

−∞
fa(t, q 1

2
c) dt, 1−

∫ t
ν,1− 1

2 c

−∞
fa(t, q1− 1

2
c) dt

]
(14)

Proof. The variance-corrected t-statistic (Nadeau and Bengio, 2003) is calculated as

T =
1
k

∑k
i=1(ai − bi)√(
1
k + |V|

|T|

)
s2

∼ tk−1 (15)

where k denotes the number of cross-validation folds; ai and bi are the observed perfor-
mance values (e.g., accuracy) of A and B on the ith validation set; |V| and |T| are the sizes
of the validation and training sets, respectively; and s2 is the variance of the performance
differences. Under the alternative hypothesis, T follows a non-central t-distribution with
ν = k−1 degrees of freedom, where k is the number of cross-validation folds. Assuming that
the distribution under the alternative hypothesis has mean T , the probability of observing
again a significant result in the same direction as in the initial experiment is the area under
the alternative distribution from tν,1− 1

2
α to infinity, which leads to Equation 13. The mean

under the alternative hypothesis could plausibly be as low as q 1
2
c or as high as q1− 1

2
c, which

leads to Equation 14.

Example 4. Let us assume that in 10-fold cross-validation, we observe a variance-corrected
t-statistic of 2.262, which corresponds to a two-sided p-value of 0.05. With µ = 2.262 as
the non-centrality parameter for the distribution under the alternative hypothesis and with
ν = k − 1 = 9 degrees of freedom, the point estimate of the probability of observing again
a significant result is
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P̂t = 1−
∫ 2.262

−∞
fa(t, µ = 2.262) dt = 0.5235

The 2.5% and 97.5% quantiles of the non-centrality t-distribution with µ = 2.262 are
0.305 and 5.489, respectively. The 95% prediction interval for the replication probability is
therefore [0.046, 0.998]. Figure 4 shows the estimated replication probability as a function
of the p-value.

Figure 4: Point estimate P̂t of the replication probability (black solid line) as a function of the
p-value based on t-statistics with ν = 9 degrees of freedom (Equation 13). Approximate
95% prediction intervals are marked by green lines (Equation 14). For the p-value of
0.00281, the point estimate of the replication probability is 0.95, with a 95%-prediction
interval of [0.417, 1.000]. The p-value axis is in log-scale.

Figure 4 suggests that if a replication probability of at least 0.95 is desired, then the p-value
should be 0.00281 at most.

3. Empirical Analysis of Replication Probability

The goal of the empirical analysis is to validate the theoretical findings; specifically, we
are interested in the following two questions: (i) Are the point estimates of the replication
probability and the empirical results in relatively good agreement? (ii) For which p-value
is the replication probability (both theoretical and empirical) close to 0.95?

The main challenge is to create a large number of experiments with varying effect sizes
that are associated with smaller and smaller p-values. Each significant experiment can then
be repeated multiple times to generate the empirical distributions of p-values, which allows
a comparison between the estimated and empirical replication probabilities. We can also
find out how small a p-value should be so that the chances of replication are 95%. As this
necessitates a repeated sampling from known populations, we used synthetic datasets with
known parameters, which we describe below in detail.
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Figure 5: Template of the general study design comprising i = 1...a groups of experiments. Each
group i consists of n experiments Eij , j = 1...n. Within each group, the experiments
are replications of each other. The groups are generated by making small incremental
changes to the datasets so that from group i to i + 1, smaller and smaller p-values can
be observed.

The key idea for the design of our studies is schematically represented by Figure 5.
Group 1 comprises n experiments E11 to E1n, and each of these experiments can be regarded
as a replication of any other experiment from that same group. Then, the idiosyncrasies of
the data (e.g., the number of predictive features) were slightly changed so that the p-values
decreased. The resulting experiments are contained in group 2. This procedure continued
up to group a, which comprises the “most significant” experiments. So here, by “study”
we mean a collection of experiments. One experiment is a comparison of two classifiers on
datasets with specific characteristics.

The rationale for this somehow unusual design is the following. In a trial-and-error
approach, we compared the classifiers on various synthetic datasets with different proper-
ties, such as their dimensions (i.e., number of cases and number of features), mean and
standard deviations of positive and negative cases, etc. We observed that by modifying
these properties, we could create combinations of datasets and learning algorithms that
led to increasingly larger performance differences, ranging from non-significant to highly
significant.

We carried out four studies. Studies #1 and #2 compare the performance of two classi-
fiers over multiple datasets. Studies #2 and #3 compare the performance of two classifiers
in k-fold cross-validation. These studies will be described in the following subsections; for
details, see Algorithms 2, 3, and 4 in the Appendices A, B, and C.

As learning algorithms, we used the naive Bayes (NB) algorithm and the support vector
machine (SVM), both implemented with the R library e1071 (Meyer et al., 2022), and
random forests (RF), implemented with the R library randomForest (Liaw and Wiener,
2002). The concrete algorithms, however, are irrelevant for the analysis. What matters is
that we can create groups of experiments with results that range from non-significant to
highly significant. The default hyperparameters were used, and no further optimization was
performed. All models and experiments were implemented on a standard PC (Intel Core
i7-7700T CPU, 2.90GHz × 8, 32GB RAM).
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3.1 Comparison of Two Classifiers Over Multiple Datasets

3.1.1 Study #1: Comparison of NB and SVM over 20 datasets

In the first study, we compared NB (classifier A) and SVM (classifier B) in a = 21 ex-
perimental groups. Each group comprises n = 1000 experiments. In each consecutive
experimental group, the composition of the datasets was changed in such a way that the
performance difference between the classifiers became slightly larger, on average. This
means that smaller and smaller p-values could be observed in higher groups (Figure 6).
In each group, each experiment involved N = 20 synthetic datasets. Figure 7a shows the
different sizes of these datasets per experimental group.

Figure 6: Overview of study #1 comprising 21 experimental groups, each with 1000 experiments.
The experiments within the same group are replications of each other. Small changes
to the datasets make the experiments in subsequent groups “more significant” than the
experiments in the preceding groups, from non-significant (group 1) to highly significant
(group 21).

We now describe the incremental changes from group to group (for details, see Algorithm 1,
Appendix A). In the first experiment of the first group, E11, the first training set consists of
n1 = 290+10 ·1 = 300 cases, the second training set consist of n2 = 290+10 ·2 = 310 cases,
and so on; the 20th training set consists of 490 cases (line 10, Algorithm 2, Appendix A). The
number of features is di = i+ 10, that is, 11 for the first training set, d = 12 for the second
training set, and so on; the 20th and last training set has 30 features. Half of the cases in
each training set are positive, the other half are negative. The feature values of the positive
cases were sampled from a normal distribution N (µi, σ

2
i ), with µi = 0.3+ 1

200(N+1− i) and
σi = 1+ 1

50(N+1−i). So for example, the mean and standard deviation for the first training
set are µ1 = 0.3+ 1

200(20+1−1) = 0.4 and σ1 = 1+ 1
50(20+1−1) = 1.4, respectively; for the

second training set, µ2 = 0.3 + 1
200(20 + 1− 2) = 0.395 and σ2 = 1 + 1

50(20 + 1− 2) = 1.38,
and so on (lines 12, 13, and 16, Algorithm 2, Appendix A). The feature values for the
negative cases were randomly sampled from a standard normal distribution N (0, 1) (line
22, Algorithm 2, Appendix A). For each training set, a corresponding test set was generated
by random sampling from the same distributions. The classifiers were trained on the same
training sets and then evaluated on the same test sets (line 28, Algorithm 2, Appendix A).
For the performance differences, the success rate and a p-value were then calculated. Here,
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Figure 7: (a) Study #1 consists of 21 experimental groups, each comprising 1000 experiments.
The experiments within the same group are replications of each other. Each experiment
includes 20 datasets of different sizes, which are shown in the top table; for example, the
second dataset of each experiment in group 3 contains 410 cases. (b) This table shows
the result from one randomly selected experiment from group 3. The data refer to the
classification accuracies on the test sets. NB achieved a higher accuracy than SVM on
14 out of 20 datasets. The observed success rate is therefore θ̂ = 0.7 (for this particular
experiment). The binomial p-value is 0.115, and the Wilcoxon p-value is 0.064 (for this
particular experiment). (c) In each group, each experiment is executed 1000 times, with
different sampled training and test sets. The boxplots show the observed success rates,
θ̂, the binomial p-values, the Wilcoxon statistic Zw, and the Wilcoxon p-values for the
experiments in group 3.
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by “success” we mean that NB performed better than SVM on one of the 20 test sets. This
procedure was then repeated 1000 times (line 5, Algorithm 2, Appendix A) to generate 1000
replications of the first experiment, leading to 1000 p-values in group 1.

The experiments in the second group were carried out in exactly the same way, except
that we slightly increased the size of all datasets: the first dataset had 350 cases, the
second dataset had 360 cases, and so on; the 20th dataset had 540 cases. Each experiment
was repeated 1000 times. We proceeded analogously for all 21 groups (Figure 7a). The
experiments are described in Algorithm 2, Appendix A.

Figure 8 shows the training and test sets of one experiment from group 3 in detail.

We will illustrate the calculation of the replication probabilities using the experiments

from group 3 (cf. Figure 7). Here, we observe, on average, N
¯̂
θ = 20 · 0.7522 ≈ 15 “wins” of

NB out of 20 trials. Under the null hypothesis of equal performance, 15 successes out of 20
trials is just significant, with p = 2

∑N=20
i=15 Bin(i,N, θ = 0.5) = 0.0414.

What can we say about the population of experiments from which group 3 is one sample?
Note that this population does not include the experiments from the other groups shown in
Figure 7a. Instead, the population comprises the infinite set of experiments that are like the
experiments from group 3, but with different randomly sampled cases per training and test
set. The 1000 experiments in group 3 represent one random sample from this population for
which NB happens to perform slightly better than SVM, on average: the p-value is 0.0414,
a marginally significant result.

In a real-world benchmark study, only one experiment would be carried out and eval-
uated based on a significance test (e.g., a comparison of NB and SVM over 20 benchmark
datasets from the UCI repository). If the result is significant, then the question is what
are the chances of replicating this result. So suppose now that we have at hand one such
experiment. Let this experiment be from the pool of k = 1000 experiments from group
3, and we observe 15 successes in 20 trials (θ̂ = 15/20 = 0.75, p = 0.0414). What are
the chances of obtaining again a significant result in an exact replication? This probability
can be estimated by the relative frequency of those experiments in which NB outperformed
SVM significantly (i.e., at least 15 times in 20 benchmark datasets). Here, we can simply
count these successes. Following Definition 2, we can calculate the empirical replication
probability as follows: in 1000 experiments from group 3, NB outperformed SVM signifi-
cantly sba = 537 times (under the binomial or Bayesian model). Therefore, the observed
empirical replication probability for the experiments in group a = 3 is

Fa=3 =
sba − 1

kmax − 1
=

537− 1

1000− 1
≈ 0.5365.

Assuming the binomial model, the point estimate of the replication probability (Equation 5)
is

P̂b,a=3 =

N=20∑
i=15

Bin(i,N, θ̂ = 0.75) = 0.6172

With the Bayesian model assuming a uniform prior, the estimate of the success rate is θ̂ =
(15 + 1)/(20 + 2) ≈ 0.7273, so the point estimate of the replication probability (Equation 8)
is
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Figure 8: Setup of an experiment from group 3: Comparison of NB and SVM over N = 20 different
benchmark datasets, ranging from n1 = 400 cases to n20 = 590 cases (with 50% positives
and 50% negatives). The number of features ranges from 11 to 30. The feature values
of all negative cases are randomly sampled from a standard normal distribution. The
feature values of the positive training cases, t+j , and positive test cases, w+

j , are randomly

sampled from N (0.4, (1.4)2) in the first dataset; from N (0.395, (1.38)2) in the second
dataset; and from N (0.305, (1.02)2) in the last dataset. Both models are trained on
the training data, applied to the same test data, and then evaluated. This process is
repeated 1000 times, leading to 1000 experiments E3i, with i = 1..1000. For details, see
Algorithm 2, Appendix A.
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P̂B,a=3 =
N=20∑
i=15

Bin(i,N, θ̂ = 0.7273) = 0.5246

The estimated replication probability under the Bayesian model is remarkably close to the
empirical replication probability. Note that these probabilities are only marginally larger
than 0.5.

We proceeded analogously for all remaining groups. Figure 9 shows the replication
probabilities (with approximate intervals) based on the binomial and the Bayesian model
as a function of the p-value for 15, 16, 17, and 18 (rounded) “wins” of NB over SVM in 20
datasets.

Binomial Bayesian Empirical

Figure 9: Replication probability as a function of the binomial p-value for benchmark studies with
N = 20 datasets. The empirical replication probability is marked by the red ×. The point
estimate of the replication probability under the binomial model, P̂b, is marked by the
solid black square. The point estimate of the replication probability under the Bayesian
model, P̂B , is marked by the solid blue square. Vertical lines indicate 95% prediction
intervals. The groups that produced these p-values are 3, 6, 10, and 16 (Figure 7a, marked
by *). The p-value axis is in log-scale.

As Figure 9 shows, the replication probabilities under the binomial model slightly overesti-
mate the empirical replication probabilities, whereas the replication probabilities under the
Bayesian model slightly underestimate them.

Under the Wilcoxon model, the empirical replication probability is calculated as

Fwa =
swa − 1

kmax − 1
(16)

where swa is the number of significant values of Zw (with positive sign for significance in
the same direction) in group a. For the results shown in Figure 7b, we obtain a p-value of
p = 0.064. But when we repeat the experiment 1000 times (Figure 7c), we see far more
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significant results than with the binomial model. This is not surprising, given that the
Wilcoxon test is more powerful. Consequently, the empirical replication probability (under
the Wilcoxon model) is much higher. For the experiments in group a = 3, we observed
swa = 778 times a significant result. Therefore, the empirical replication probability (under
the Wilcoxon model) is

Fw,a=3 =
778− 1

1000− 1
≈ 0.778.

Assuming the Wilcoxon model, the point estimate of the replication probability is derived
according to Equation 11, with the average of Z̄w = 2.437 and the bootstrapped estimate
of the standard deviation, ŝ∗ = 0.779, as

P̂w,a=3 = 1− F (z0.975, Z̄w, ŝ
∗) = 0.730.

We proceeded again analogously for the remaining groups. Figure 10 shows the replication
probability as a function of the Wilcoxon p-value for all 21 groups. For p = 0.00274 (green),
the empirical replication probability is Fw,a=7 = 0.9570, and the estimated replication

probability is P̂w,a=7 = 0.9665. The mean absolute deviance between the empirical and
analytical probabilities is 0.009792 (range of 3.907 · 10−13 to 0.04810). For comparison,
without bootstrapping (and assuming a standard deviation of 1 for Zw under the alternative
hypothesis), the mean absolute deviance is 0.07318 (range of 0.02496 to 0.10708).

Theoretical Empirical

Figure 10: Replication probability as a function of the Wilcoxon p-value for the 21 experimental
groups with N = 20 datasets each. The empirical replication probability is marked
by the red ×. The point estimate of the replication probability is marked by a solid
square. Vertical lines indicate approximate 95%-prediction intervals. The p-value axis
is in log-scale.

In summary, the replication probability based on the Wilcoxon model estimates the em-
pirical replication relatively well, and the agreement becomes better for smaller p-values.
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Binomial Bayesian Empirical

Figure 11: Replication probability as a function of the binomial p-value for experiments with N =
44 datasets. Empirical replication probabilities Fwa are marked by red ×. The point
estimate of the replication probability under the binomial model, P̂b, is marked by the
solid black square. The point estimate of the replication probability under the Bayesian
model, P̂B , is marked by the solid blue square. The p-values (from largest to smallest)
result from the experiments in groups 2, 3, 4, 7, 8, and 9 (cf. Table 2, Appendix D).
Vertical lines are approximate 95% prediction intervals. The p-value axis is in log-scale.

Significant results with p-values just below the common threshold of 0.05 replicate only
with chances of around 50%. If a replication probability of more than 0.95 is desired, then
the p-value should be no larger than 0.00274.

3.1.2 Study #2: Comparison of NB and SVM over 44 datasets

In study #2, we considered a = 10 similar groups of experiments as before, except that we
increased the number of datasets per experiment to N = 44 and changed the sizes of the
datasets as shown in Table 2, Appendix D. The remaining procedure was essentially the
same as that for study #1 (Algorithm 2, Appendix A).

Figure 11 shows the replication probability under the binomial and the Bayesian model.
Figure 12 shows the replication probability under the Wilcoxon model. Here, for p = 0.0016
(green), the empirical replication probability is Fw,a=7 = 0.94394. The estimated replication

probability is P̂w,a=7 = 0.96742. The mean absolute deviance between the empirical and
analytical probabilities is 0.0162 (range of 0.00022 to 0.04494).

3.2 Comparison of Two Classifiers in Cross-validation

3.2.1 Study #3: Two identical models, but one has access to an oracle

In study #3, the learning set consists of 1000 cases of two classes (500 positive and 500
negative cases) and 20 numeric features. The feature values of the negative cases were

26



Estimating the replication probability of significant benchmark experiments

Theoretical Empirical

Figure 12: Replication probability as a function of the Wilcoxon p-value for experiments with
N = 44 datasets. The empirical replication probability is marked by the red ×. The
point estimate of the replication probability under the Wilcoxon model, P̂w, is marked
by the solid square. Vertical lines indicate approximate 95%-prediction intervals. The
p-value axis is in log-scale.

randomly sampled from N (0, 1), and the values of the positive cases were randomly sampled
from N (0.3, 1).

We compared two support vector machines, SVMo (classifier A) and SVM (classifier
B), in 10-fold stratified cross-validation. First, SVMo is an identical copy of SVM. Then,
SVMo was given access to an oracle that revealed the true class labels of a small percentage
q of the validation cases, thereby giving an advantage to SVMo over SVM. This procedure
was repeated 1000 times, each time with a newly sampled learning set from the same
distribution. Then, we slightly incremented the percentage of class labels that were revealed
to SVMo and repeated the experiments. These percentages were 1%, 2%, 3%, and so on,
up to 20%. For example, for q = 3, the oracle revealed the true class labels of 3% of the
cases in each of the 10 validation sets. Since each validation set had exactly 100 cases,
the class labels of three randomly selected cases were revealed per validation set for q = 3.
Loosely speaking, q acts like a “tuner knob” that controls the significance of the difference
in performance: by increasing q, SVMo is expected to perform better than SVM, so the
difference becomes “more significant.”

In Study #3, there are q = 1...20 groups, each consisting of 1000 experiments. Algo-
rithm 3, Appendix B, describes the experiments in detail.

For q = 1 and q = 2, the oracle had no significant effect on the performance of SVMo. In
the first experiment with q = 3, we observed a variance-corrected t-statistic of T31 = 2.308,
with an associated p-value of p31 = 0.046. Over 1000 repetitions, each time with newly
sampled datasets, the mean t-statistic was T̄3 = 2.493, with the corresponding p-value of
0.0343. Among the 1000 p-values, only 496 were smaller than 0.05, which means that the
empirical replication probability for the experiment with q = 3 is
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Fq =
496− 1

1000− 1
≈ 0.495

where we use the subscript q to indicate the experimental group. Using the mean t-value
of 2.493 as the point estimate for the effect caused by the oracle, the point estimate for the
replication probability for the experiment from group q = 3 is P̂q = 0.604.

Figure 13 shows the point estimates, P̂t (Equation 13), of the replication probabilities
for q ∈ {3, 4, ..., 20}, with the estimated upper and lower limits.

Theoretical Empirical

Figure 13: Replication probability of experiments from group q ∈ {3, 4, ..., 20} with 95%-prediction
intervals for the comparison of SVM and SVMo in 10-fold stratified cross-validation.
Empirical replication probabilities Fq are marked by red ×. Estimated replication

probabilities, P̂t, are marked by black squares. The p-value axis is in log-scale.

For q = 4, the p-value is 0.0205. The point-estimated replication probability is P̂t,q=4 =
0.7054 and relatively close the empirical replication probability of Fq = 0.6967. For smaller
p-values, the point-estimated replication probabilities are slightly lower than the empirical
probabilities. If q = 7% of the class labels are revealed by the oracle (p = 0.00427, high-
lighted in green in Figure 13), then the empirical replication probability is Fq=7 = 0.96597,

and the estimated replication probability is P̂q=7 = 0.91996.

3.2.2 Study #4: Two different models and an increasing feature space

In study #4, we compared a support vector machine (SVM, classifier A) with random
forests (RF, classifier B) in 10-fold stratified cross-validation. The learning set consists
of 1000 cases of two classes (500 positive and 500 negative cases) and a variable number
of numeric features, ranging from 4 to 30. The feature values of the negative cases were
randomly sampled from N (0, 1), and the values of the positive cases were randomly sampled
from N (0.3, 1). First, the number of features was d = 4. We repeated the 10-fold cross-
validation 1000 times and obtained 1000 p-values for the difference in performance between
SVM and RF. These experiments are in group d = 4.
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Next, the number of features was incremented by 1, and the process repeated, to create
the groups of experiments with d = 5, 6, ..., 20. Algorithm 4, Appendix C, describes the
experiments.

For d < 11, there was no difference in performance. Figure 14 shows the point estimates
with prediction intervals and the empirical replication probabilities for experiments with
d ∈ {11, 12, ..., 30}.

Theoretical Empirical

Figure 14: Point estimates (black squares) of the replication probability (Equation 13) for exper-
iments with d ∈ {11, 12, ..., 30}, with 95%-prediction intervals (Equation 14), for the
comparison of SVM and RF in 10-fold stratified cross-validation. Empirical replication
probabilities Fd are marked by red ×. For p = 0.00253 (highlighted in green), the empir-
ical replication probability is Fd=24 = 0.95896 and the estimated replication probability
is P̂d=24 = 0.95612. The p-value axis is in log-scale.

Support vector machines are known to perform well for high-dimensional datasets, and we
therefore expected that more predictive features would give an advantage to SVM. This
was indeed the case: for increasingly larger d, we observed larger and larger mean t-values.
So here, the number of features, d, acts like a “tuner knob” controlling the significance.

For d = 11, the mean t-value was 2.2619, with a p-value of 0.050 (see the largest p-value
in Figure 14). The point-estimated replication probability is P̂d=11 = 0.5235. Among 1000
replications, a significant p-value was observed 449 times; hence, the empirical replication
probability is only Fd=11 = (449−1) / (1000−1) = 0.4484. Here, the theoretical replication
probability overestimates the empirical replication probability.

Of particular interest is the replication probability of 0.95. Our theoretical analysis has
revealed that for a p-value smaller than 0.00281, the replication probability is larger than
0.95 (Figure 4). In the experiments of study #4, the closest observed p-value is 0.00253
(highlighted in green in Figure 14), for d = 24. For this p-value, the estimated replication
probability is P̂d=24 = 0.95612, and the empirical replication probability is Fd=24 = 0.95896.
Here, the empirical and estimated results are in relatively good agreement.
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4. Discussion

The p-value gives an answer to the following question: “Assuming that the null hypothesis
is true, and given the experimenter’s testing and stopping intentions, what are the chances
of obtaining a result as extreme as the actually observed result, or an even more extreme
result?” By contrast, the replication probability gives an answer to a different question:
“What are the chances that a statistically significant result will replicate?” We speculate
that this is a fundamental question that many researchers have in mind when they employ
a significance test. To address this question, we considered two of the most commonly
used designs in supervised learning, that is, the comparison of two classifiers over multiple
datasets and the comparison of two classifiers in k-fold cross-validation. For these exper-
imental designs, we derived formulas for the replication probability and evaluated them
empirically in four studies, as summarized in Table 1.

Table 1: Summary of the four studies. In studies #1 and #2, the p-values are based on the Wilcoxon
test. In studies #2 and #3, the p-values are based on the variance-corrected resampled
t-test. In each study, the empirical replication probability closest to 0.95 is shown. P̂ is
the estimated replication probability, F is the empirical replication probability.

# Study Experimental group p-value P̂ F P̂ − F

1 NB vs. SVM, 20 datasets a = 7 0.00274 0.96645 0.95696 0.00949

2 NB vs. SVM, 44 datasets a = 7 0.00160 0.96742 0.94394 0.02348

3 SVM vs. SVMo, 10-fold CV q = 7 0.00427 0.91996 0.96597 −0.04601

4 SVM vs. RF, 10-fold CV d = 24 0.00253 0.95612 0.95896 −0.00284

Average 0.00279 0.95249 0.95646 −0.00397

Taken together, the four studies suggest that for a p-value between 0.00160 and 0.00427,
the empirical replication probability F is around 0.95 and close to the corresponding esti-
mated replication probability, P̂. We assume that this replication probability is of particular
interest in practice, as it provides a relatively strong reassurance that the results will repli-
cate. These results suggest that a p-value should preferably be around 0.003 to bestow
a relatively high trust in the replicability of the experiments. This value is close to the
significance threshold of 0.005 that was previously proposed for claims of new discoveries
(Benjamin et al., 2018). Both the theoretical and empirical analyses have shown that p-
values just below the common threshold of 0.05 are insufficient to raise high hopes in the
replicability of the experiments. Although we focused on the replicability of classification
benchmark experiments, we believe that this finding is generalizable to other applications of
NHST and might explain, at least in part, why many studies fail to be replicable (Gundersen
et al., 2022).

Unless the p-values are extremely small, the prediction intervals for the replication
probability are very wide, indicating that there is a high uncertainty. This is due to the fact
that the effect size cannot be estimated with a high precision based on a single experiment.
Because of the lack of precision, Miller (2009) advises against reporting the replication
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probability. The width of the prediction intervals and the uncertainty are clearly a concern;
currently, we do not see how to solve this problem when using only the data from a single
study.

A different approach was adopted by Killeen (2005) who proposed an expression for
the replication probability, prep, that does not involve the estimate of the population effect
size, δ. The proposed prep is the average of the replication probability over all values of
δ, weighted by the likelihood that each value would have given the observed effect size d.
This is an interesting idea, but the expression for the replication probability then becomes
more complicated. Also, the weighted averaging has been criticized as lacking sufficient
theoretical underpinning (Cumming, 2005, 2006) and as being a quasi-power coefficient
rather than a proper probability (Maraun and Gabriel, 2010).

Our studies have several limitations. The controlled experiments reflect an ideal sce-
nario, since the only source of random variation is the random sampling in the replications.
In practice, we would expect further sources of variation; for example, when a researcher
tries to replicate the experiments of another researcher, it is unlikely that the follow-up ex-
periment would be carried out in really exactly the same way as the initial experiment. For
example, when classifiers are compared over multiple datasets, different researchers might
select the benchmark datasets based on different criteria. Also, seemingly minor imple-
mentation issues, such as the seeding of the random number generator, can also influence
the results. Many machine learning models, such as neural networks, use randomization
processes (Zhuang et al., 2022). Deep learning algorithms use nondeterminism to improve
the training efficiency, which means that different training runs lead to different models
with different accuracies (Pham et al., 2020).

When we calculate the replication probability, we make the assumption that the initial
experiment is a representative example from the pool of all similar experiments. For exam-
ple, consider again the randomly selected experiment from group 3 of study #1 (Figure 7,

highlighted). The mean success rate for this pool of experiments is
¯̂
θ = 0.752, or about 15

successes in 20 trials, with a binomial p-value of 0.0414. But what if, just by chance, we got
lucky in our initial experiment and observed 18 successes? In 90 out of 1000 replications in
group 3, we observed 18 successes indeed. Now the observed success rate of θ̂ = 18

20 = 0.90,
with a p-value of 0.0004, would drastically overestimate the empirical replication probabil-
ity. When we calculate the replication probability, we therefore need to assume that were
are dealing with a typical, representative experiment from the pool of similar experiments.

In this work, we were primarily interested in the question of estimating the probability
of replicating a significant result. A related question is: “What is the probability that the
replication experiment is significant, although the initial experiment is not?” It is indeed
instructive to consider the replication probability of non-significant results. For example,
in study #3, when the oracle revealed 2% of the validation cases to SVMo, the mean t-
value from 1000 repetitions was 1.9364, with a p-value of 0.0848. Assuming the common
significance threshold of 0.05, this is a non-significant result. But in 1000 replications,
exactly 200 experiments turned out to be significant (each with p < 0.05). Hence, the
probability that the follow-up experiment is significant is 200

999 ≈ 0.20. So despite the non-
significant result from the initial study, there is an about 20% chance that the replication
will give a significant result.
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How should the findings of the present study be used by the machine learning commu-
nity? The major insight is that barely significant p-values do not imply high chances of
replicability. There are indeed many problems with significance testing; for an overview,
see for example (Berrar, 2022). There have even been suggestions of abandoning NHST al-
together (Amrhein and Greenland, 2018; Berrar and Dubitzky, 2019); however, given that
NHST is so widely used, this seems unrealistic. If replication is of primary interest—and
we argue that it should be—then authors of scientific articles reporting new discoveries
should therefore aim for much smaller p-values, i.e., around 0.003, not just below 0.05. In
particle physics, claims of important novel discoveries commonly need to meet the so-called
5σ-criterion, which is equivalent to a p-value of 3 · 10−7 (Lyons, 2013). In their guidelines
for authors, journal editors and conference organizers should place greater emphasis on
replication and not on statistical significance.

5. Conclusions

The replication probability, together with its prediction interval, can help with the inter-
pretation of the p-value, as it directly answers a central question:“Now that we have a
significant finding, what are the chances that it will replicate?” However, the replication
probability should not replace the p-value, but instead complement it, as this probabil-
ity can be estimated with reasonably high precision only for extremely small p-values. We
showed both theoretically and empirically that a p-value just below the common significance
threshold of 0.05 is clearly insufficient to warrant a high confidence that a significant result
will replicate. For a reasonably high chance of replicability of around 95%, the significance
threshold should be around 0.003. Unless the p-value is extremely small, there is a high
uncertainty about the replication probability, as reflected by the width of the prediction
intervals.

Code and Data Availability

The R code is available at the project website at https://osf.io/7vqfn/.
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Appendix A

Algorithm 2: Comparison of NB and SVM over multiple datasets
1 N ← 20 // Initialize number of benchmark datasets. 20 in study #1, 44 in #2.

2 A ← {190, 240, 290..., 1290} // Initialize start sizes of datasets (shown for study #1).

3 kmax ← 1000 // Initialize maximum number of replications.

4 for a in A do
5 sba ← 0 // number of significant results under binomial model in experiment with a.
6 swa ← 0 // number of significant results under Wilcoxon model in experiment with a.
7 for k from 1 to kmax do
8 for i from 1 to N do
9 Ti ← [ ], Wi ← [ ] // Initialize training and test set.

10 t+ ← [ ], w+ ← [ ] // Row vectors of positive cases.

11 t− ← [ ], w− ← [ ] // Row vectors of negative cases.

12 ni ← a+ 10 · i // Number of cases in training and test set.

13 di ← i+ 10 // Number of features or dimension of t and w.

14 µi ← 0.3 + 1
200

(N + 1− i)
15 σi ← 1 + 1

50
(N + 1− i)

16 for j from 1 to 1
2
ni // Half of the cases are positive.

17 do

18 sample each of the di elements in t+j from N (µi, σ
2
i )

19 sample each the di elements in w+
j from N (µi, σ

2
i )

20 append t+j to Ti

21 append w+
j to Wi

22 for j from ( 1
2
ni + 1) to ni // Half of the cases are negative.

23 do

24 sample each of the di elements in t−j from N (0, 1)

25 sample each of the di elements in w−
j from N (0, 1)

26 append t−j to Ti

27 append w−
j to Wi

28 train NB and SVM on Ti
29 test NB and SVM on Wi

30 compare performance of NB and SVM over N test sets

31 calculate success rate θ̂ak
32 calculate binomial p-value pb,ak

33 if pb,ak < 0.05 and θ̂ak ≥ 15
20

then
34 sba ← sba + 1

35 calculate Zw,ak // Equation 10

36 calculate Wilcoxon p-value pw,ak
37 if pw,ak < 0.05 and sign{Zw,ak} = + then
38 swa ← swa + 1

39
¯̂
θa ← 1

kmax

∑
θ̂ak // mean success rate for experiment with a.

40 Fba ← (sba − 1) / (kmax − 1) // empirical replication probability under binomial model for

experiment with a.

41 Z̄wa ← 1
kmax

∑
Zw,ak // mean Zw for experiment with a.

42 Fwa ← (swa − 1) / (kmax − 1) // empirical replication probability under Wilcoxon model for

experiment with a.
43 calculate the estimated replication probabilities (and their limits) for the experiment with a according

to Equation 5, Equation 8, and Equation 11.
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Appendix B

Algorithm 3: Comparison of SVM and SVMo in cross-validation.

1 Q ← {1, 2, 3..., 20} // percentages of revealed class labels.

2 kmax ← 1000 // maximum number of replications.

3 n ← 1000 // number of cases in learning set.

4 d ← 20 // number of features in learning set.

5 fmax ← 10 // maximum number of cross-validation folds.

6 for q in Q do
7 sq ← 0 // number of significant results in experiment with q.
8 for k from 1 to kmax do
9 Lk ← [ ] // learning set.

10 l+ ← [ ] // row vector of positive cases.

11 l− ← [ ] // row vectors of negative cases.

12 for j from 1 to 1
2
n // half of the cases are positive.

13 do
14 sample each of the di elements in l+j from N (0.3, 1)

15 append l+j to Lk

16 for j from ( 1
2
n+ 1) to n // Half of the cases are negative.

17 do
18 sample each of the di elements in l−j from N (0, 1)

19 append l−j to Lk

20 for i from 1 to fmax do
21 stratified random sampling to generate fmax validation sets V1 to Vfmax

22 generate training set Ti ← Lk \Vi

23 train SVM on Ti

24 SVMo ← SVM // SVMo is identical to SVM.

25 apply SVM to Vi // predict the validation cases with SVM.

26 calculate accuracy of SVM of the ith validation set, acc(SVM, Vi)
27 apply SVMo to Vi // predict the validation cases with SVMo.

28 randomly select q% of cases from Vi and replace the predicted class labels from SVMo

by the real class labels. // access oracle.

29 calculate accuracy of SVMo of the ith validation set, acc(SVMo, Vi)
30 δi ← acc(SVMo,Vi)− acc(SVM,Vi) // difference in accuracy.

31 δ̄qk ← 1
fmax

∑
δi // mean difference in accuracy.

32 Tqk ← δ̄qk/
√

(1/f + |V|/|T|) var(δ) // t-value.
33 derive p-value pqk from Tqk with f − 1 degrees of freedom.
34 if pqk < 0.05 and sign{Tqk} = + then
35 sq ← sq + 1

36 Fq ← (sq − 1) / (kmax − 1) // empirical repl. prob. for experiment with q.
37 T̄q ← 1

kmax

∑
Tqk // mean t-value for experiment with q.

38 calculate the point estimate (and limits) of the replication probability P̂q for experiment with
q according to Equation 13.
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Appendix C

Algorithm 4: Comparison of SVM and RF in cross-validation.

1 D ← {4, 5, ..., 30} // number of predictive features in learning set.

2 kmax ← 1000 // maximum number of replications.

3 n ← 1000 // number of cases in learning set.

4 fmax ← 10 // maximum number of cross-validation folds.

5 for d in D do
6 sd ← 0 // number of significant results in experiment with d.
7 for k from 1 to kmax do
8 Lk ← [ ] // learning set.

9 l+ ← [ ] // row vector of positive cases.

10 l− ← [ ] // row vectors of negative cases.

11 for j from 1 to 1
2
n // half of the cases are positive.

12 do
13 sample each of the di elements in l+j from N (0.3, 1)

14 append l+j to Lk

15 for j from ( 1
2
n+ 1) to n // Half of the cases are negative.

16 do
17 sample each of the di elements in l−j from N (0, 1)

18 append l−j to Lk

19 for i from 1 to fmax do
20 stratified random sampling to generate f validation sets V1 to Vf

21 generate training set Ti = Lk \Vi

22 train SVM on Ti

23 train RF on Ti

24 apply SVM to Vi // predict the validation cases with SVM.

25 apply RF to Vi // predict the validation cases with RF.

26 calculate accuracy of SVM for the ith validation set, acc(SVM, Vi)

27 calculate accuracy of RF for the ith validation set, acc(RF, Vi)
28 δi = acc(SVM, Vi) − acc(RF, Vi) // difference in accuracy.

29 δ̄dk = 1
fmax

∑
δi // mean difference in accuracy.

30 Tdk ← δ̄dk/
√

(1/f + |V|/|T|) var(δ) // variance-corrected t-value.
31 derive p-value pdk from Tdk with f − 1 degrees of freedom.
32 if pdk < 0.05 and sign{Tdk} = + then
33 sd ← sd + 1

34 Fd ← (sd − 1) / (kmax − 1) // empirical rep. prob. for experiment with d.
35 T̄d ← 1

kmax

∑
Tdk // mean t-value for experiment with d.

36 calculate the point estimate (and limits) of the replication probability P̂d for experiment with
d according to Equation 13.
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Appendix D

Table 2: Number of cases per dataset in study #2, comparing NB and SVM on 44 benchmark
datasets (rows). Each column represents one experimental group. For example, the third
dataset in the second group contains 130 cases.

1 2 3 4 5 6 7 8 9 10
1 80 110 150 200 210 250 270 370 470 570
2 90 120 160 210 220 260 280 380 480 580
3 100 130 170 220 230 270 290 390 490 590
4 110 140 180 230 240 280 300 400 500 600
5 120 150 190 240 250 290 310 410 510 610
6 130 160 200 250 260 300 320 420 520 620
7 140 170 210 260 270 310 330 430 530 630
8 150 180 220 270 280 320 340 440 540 640
9 160 190 230 280 290 330 350 450 550 650
10 170 200 240 290 300 340 360 460 560 660
11 180 210 250 300 310 350 370 470 570 670
12 190 220 260 310 320 360 380 480 580 680
13 200 230 270 320 330 370 390 490 590 690
14 210 240 280 330 340 380 400 500 600 700
15 220 250 290 340 350 390 410 510 610 710
16 230 260 300 350 360 400 420 520 620 720
17 240 270 310 360 370 410 430 530 630 730
18 250 280 320 370 380 420 440 540 640 740
19 260 290 330 380 390 430 450 550 650 750
20 270 300 340 390 400 440 460 560 660 760
21 280 310 350 400 410 450 470 570 670 770
22 290 320 360 410 420 460 480 580 680 780
23 300 330 370 420 430 470 490 590 690 790
24 310 340 380 430 440 480 500 600 700 800
25 320 350 390 440 450 490 510 610 710 810
26 330 360 400 450 460 500 520 620 720 820
27 340 370 410 460 470 510 530 630 730 830
28 350 380 420 470 480 520 540 640 740 840
29 360 390 430 480 490 530 550 650 750 850
30 370 400 440 490 500 540 560 660 760 860
31 380 410 450 500 510 550 570 670 770 870
32 390 420 460 510 520 560 580 680 780 880
33 400 430 470 520 530 570 590 690 790 890
34 410 440 480 530 540 580 600 700 800 900
35 420 450 490 540 550 590 610 710 810 910
36 430 460 500 550 560 600 620 720 820 920
37 440 470 510 560 570 610 630 730 830 930
38 450 480 520 570 580 620 640 740 840 940
39 460 490 530 580 590 630 650 750 850 950
40 470 500 540 590 600 640 660 760 860 960
41 480 510 550 600 610 650 670 770 870 970
42 490 520 560 610 620 660 680 780 880 980
43 500 530 570 620 630 670 690 790 890 990
44 510 540 580 630 640 680 700 800 900 1000
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