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Abstract
The vast majority of convergence rates analysis for stochastic gradient methods in the

literature focus on convergence in expectation, whereas trajectory-wise almost sure con-
vergence is clearly important to ensure that any instantiation of the stochastic algorithms
would converge with probability one. Here we provide a unified almost sure convergence
rates analysis for stochastic gradient descent (SGD), stochastic heavy-ball (SHB), and
stochastic Nesterov’s accelerated gradient (SNAG) methods. We show, for the first time,
that the almost sure convergence rates obtained for these stochastic gradient methods on
strongly convex functions, are arbitrarily close to their optimal convergence rates possi-
ble. For non-convex objective functions, we not only show that a weighted average of
the squared gradient norms converges to zero almost surely, but also the last iterates of
the algorithms. We further provide last-iterate almost sure convergence rates analysis for
stochastic gradient methods on general convex smooth functions, in contrast with most ex-
isting results in the literature that only provide convergence in expectation for a weighted
average of the iterates. The last-iterate almost sure convergence results also enable us to
obtain almost sure avoidance of any strict saddle manifold by stochastic gradient methods
with or without momentum. To the best of our knowledge, this is the first time such results
are obtained for SHB and SNAG methods.
Keywords: stochastic gradient descent; stochastic heavy-ball method; stochastic Nes-
terov’s accelerated gradient; almost sure convergence rate analysis; almost sure saddle
avoidance

1. Introduction

Stochastic gradient methods (Robbins and Monro, 1951) have become the de facto standard
methods for solving large-scale optimization problems in machine learning (Bottou et al.,
2018). For this reason, investigating the fundamental theoretical properties of stochastic
gradient methods is not only of theoretical interest, but also of practical relevance.

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) and stochastic heavy-ball
(SHB) (Polyak, 1964) are among the most popular stochastic gradient methods. SHB adds
a momentum term to the iterations of SGD. This was known to accelerate the convergence
of deterministic gradient descent methods (Polyak, 1964). Nesterov’s accelerated gradient
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(NAG) methods (Nesterov, 1983) have similar but slightly different iterations from that
of the heavy-ball (HB) method. They have been shown to accelerate gradient descent and
achieve optimal convergence rates with appropriately chosen parameters in the deterministic
settings (Nesterov, 2003, Chapter 2.2). In the stochastic settings, while practical gains of
adding a momentum term have been observed (Leen and Orr, 1994; Sutskever et al., 2013),
the convergence rates cannot be further improved due to the proven lower bounds in terms
of oracle complexity (Agarwal et al., 2012). Nonetheless, understanding the convergence
properties of stochastic gradient methods with or without momentum remains a topic of
both theoretical and practical interest.

In this paper, we investigate almost sure convergence properties of stochastic gradi-
ent methods, including SGD, SHB, and stochastic Nesterov’s accelerated gradient (SNAG)
methods, and present a unified analysis of these stochastic gradient methods on smooth
objective functions. In addition to almost sure convergence rates analysis, we also demon-
strate that SGD, SHB, and SNAG almost surely avoid strict saddle manifolds. To the best
of our knowledge, this is the first time such results have been obtained for SHB and SNAG
methods.

1.1 Related work

1.1.1 Convergence rates analysis

The vast majority of the convergence rates analysis results for stochastic gradient methods
in the literature are obtained in terms of the expectation (see, e.g., SGD (Nemirovski et al.,
2009; Moulines and Bach, 2011; Ghadimi and Lan, 2013), SHB (Yang et al., 2016; Orvieto
et al., 2020; Yan et al., 2018; Mai and Johansson, 2020; Zhou et al., 2020), SNAG (Yan et al.,
2018; Assran and Rabbat, 2020; Laborde and Oberman, 2020)). Nonetheless, almost sure
convergence properties are important, because they represent what happen to individual
trajectories of the stochastic iterations, which are instantiations of the stochastic algorithms
actually used in practice.

For this reason, almost sure convergence of stochastic gradient methods is of practical
relevance. In fact, the early analysis of SGD (Robbins and Siegmund, 1971) did provide
almost sure convergence guarantees. More recent work includes Bertsekas and Tsitsiklis
(2000); Bottou (2003); Zhou et al. (2017); Nguyen et al. (2018, 2019); Orabona (2020a);
Mertikopoulos et al. (2020). While deterministic HB and NAG methods are well analyzed
(Ghadimi et al., 2015; Nesterov, 2003; Wilson et al., 2021), almost sure convergence results
for SHB and SNAG are scarce. Gadat et al. (2018) proved almost sure convergence of
SHB to a minimizer for non-convex functions, under a uniformly elliptic condition on the
noise which helps the algorithm to get out of any unstable point. In Sebbouh et al. (2021),
SHB (and SGD) was analyzed for convex (but not strongly convex or non-convex) objective
functions. The authors proved almost sure convergence rates for function values at average
iterates of SGD and last iterates of SHB using the iterate moving-average (IMA) viewpoint.
The established convergence rates are close to optimal (subject to an ε-factor) for general
convex functions (Agarwal et al., 2012). Almost sure convergence rates were analyzed for
SGD under locally strongly convex objectives in Pelletier (1998); Godichon-Baggioni (2019).
To the best knowledge of the authors, the results in Sebbouh et al. (2021) are the only ones
that established almost sure convergence rates for SHB on general convex functions. We
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are not aware of any almost sure convergence rates analysis for SHB and SNAG on strongly
convex or non-convex functions. The results of this paper aim to fill this theoretical gap
and provide a streamlined treatment of almost sure convergence rates analysis for stochastic
gradient methods.

1.1.2 Almost sure saddle avoidance

For deterministic gradient descent methods, Lee et al. (2016, 2019) proved that with a
step size smaller that 1/L, where L is the Lipschitz constant of the gradient, gradient
descent always avoids strict saddles unless initialized on a set of measure zero (i.e., the
stable manifold of the saddles). Various extensions of this result were made, with different
assumptions on the gradient oracle, choice of step sizes, and structure of the saddle manifold.
Readers are referred to Du et al. (2017); Vlatakis-Gkaragkounis et al. (2019); Jin et al. (2017);
Lee et al. (2016, 2019); Panageas and Piliouras (2017); Panageas et al. (2019) and references
therein.

For saddle point avoidance by stochastic gradient methods, early work by Pemantle
(1990) and Brandière and Duflo (1996) in the context of stochastic approximations showed
that standard SGD almost surely avoids hyperbolic saddle points, i.e., points x∗ such that
λmin(∇2f(x∗)) < 0 and det(∇2f(x∗)) 6= 0. The work by Benaïm and Hirsch (1995) proved
almost sure avoidance of hyperbolic linearly unstable cycle by SGD. Later work by Brandière
(1998); Benaïm (1999) extended such results to show that SGD-type algorithms almost
surely avoid more general repelling sets. More recently, using different techniques and under
different assumptions, Ge et al. (2015) showed that SGD avoids strict saddles points sat-
isfying λmin(∇2f(x∗)) < 0 with high probability. More specifically, they showed that with
a constant step size η, SGD produces iterates close to a local minimizer and hence avoids
saddle points, with probability at least 1− ζ, after Θ(log(1/ζ)/η2) iterations. The work of
Daneshmand et al. (2018); Fang et al. (2019) further obtained results on high-probability
avoidance of saddle points and convergence to second-order stationary points, while the more
recent work by Vlaski and Sayed (2022) proved efficient escape from saddle points under
expectation.

The work closest to ours is that of Mertikopoulos et al. (2020), in which the authors
proved that SGD almost surely avoids any strict saddle manifold for a wide spectrum of
vanishing step size choices, following earlier work by Pemantle (1990); Benaïm and Hirsch
(1995); Benaïm (1999). However, in these works, it is always assumed that the noise on
the stochastic gradient is bounded. Moreover, while making an effort to circumvent the
bounded trajectory assumption in prior work, Mertikopoulos et al. (2020) also assumed that
the objective function is G-Lipschitz, which means the gradient is always bounded. We shall
relax these boundedness assumptions in our analysis.

1.2 Contributions

1.2.1 Convergence rates analysis

We summarize the main contributions of the paper in Table 1 relative to existing results in
the literature. We only list results that provided almost sure convergence rates analysis for
SGD, SHB, and SNAG. We emphasize the following results as the main contributions:
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• For smooth and strongly convex functions, we establish almost sure convergence rates
for SGD, SHB and SNAG that are arbitrarily close to the optimal rates possible
implied by information-theoretical lower bounds on oracle complexity of stochastic
convex optimization (Agarwal et al., 2012).

• For smooth but non-convex functions, we establish almost sure convergence rates of
SHB and SNAG for a weighted average (or the minimum) of the squared gradient
norm. We also show almost sure convergence of the last iterates of SHB and SNAG.

• For smooth and general convex functions, we provide almost sure convergence rates of
the last iterates of SGD, SHB, and SNAG.

In view of existing results Pelletier (1998); Godichon-Baggioni (2019), our analysis for
almost sure convergence rates analysis of SGD on strongly convex functions appears to be
more streamlined and unified for SGD, SHB, and SNAG. For analysis of SHB in the general
convex case, our result is complementary to that in Sebbouh et al. (2021) because we allow
β to be an arbitrarily fixed parameter in (0, 1) (cf. the analysis of deterministic HB in
Ghadimi et al. (2015)). This leads to a more unified analysis of SGD, SHB, and SNAG.
For general convex functions, the results in Sebbouh et al. (2021) established almost sure
convergence rate of SGD for the average iterate, whereas Lei et al. (2017) established almost
sure convergence rates of the last iterate for SGD type algorithms in a different context (see
Remark 14). Our analysis (Theorem 12) provides almost sure convergence rates of the last
iterates for SGD, SHB, and SNAG. In addition to the results listed in Table 1, we also
obtained another set of results (Theorem 11) on almost sure convergence of the last iterates
of SHB and SNAG on non-convex functions, which generalize Orabona (2020a) for SGD.

Algorithm strongly convex non-convex general convex

SGD
Pelletier (1998) Sebbouh et al. (2021) Sebbouh et al. (2021)

Godichon-Baggioni (2019) Lei et al. (2017)
Theorem 6 Theorem 6 Theorem 13

SHB Theorem 8 Theorem 8 Sebbouh et al. (2021)
Theorem 13

SNAG Theorem 9 Theorem 9 Theorem 13

Table 1: Summary of the main results relative to existing results on almost sure convergence
rates of stochastic gradient methods.

1.2.2 Almost sure saddle avoidance

To the best of the authors’ knowledge, our paper is the first to show that the SHB and
SNAG methods almost surely avoid saddle points. Our work also sharpens the analysis
for SGD by removing the bounded gradient assumption and relaxing the bounded noise
assumption to a local boundedness assumption, which is always satisfied in empirical risk
minimization problems such as in neural network training. The key ingredient required
to achieve our results was the last-iterate almost sure convergence analysis we achieved in
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this paper, which showed that both SHB and SNAG almost surely produce iterates with
gradients converging to zero, even in the non-convex setting under very weak assumptions
(Khaled and Richtárik, 2020) on the stochastic gradient. This almost sure convergence of
the gradient, combined with the same asymptotic non-flatness assumption on the objective
function as in Mertikopoulos et al. (2020), allowed us to circumvent the bounded gradient
and bounded noise assumptions.

A preliminary version of this paper was published in Liu and Yuan (2022). Compared
to the conference paper, we provide full proofs of the results, streamline the proofs, and
significantly expand the theoretical analysis to include results on almost sure saddle avoid-
ance. Since the publication of Liu and Yuan (2022), other researchers have adopted our
almost sure convergence rates, including Liang et al. (2023); Reddy and Vidyasagar (2023).
In Liang et al. (2023), the authors extended the almost sure rates analysis to non-smooth
objective functions. In Reddy and Vidyasagar (2023), the authors investigated almost sure
convergence rate analysis of heavy-ball methods with batch updating and/or approximate
gradients.

1.3 Notation Summary

We provide a summary of symbols and notation used in the paper for the convenience of
readers.

Symbol Description
ft = o(gt) The little-o notation, which indicates that ft/gt → 0 as t→∞,

where {ft} and {gt} are positive real-valued sequences indexed by t
ft = O(gt) The big-O notation, which indicates that there exists some C > 0

such that ft ≤ Cgt for all t sufficiently large
ft = Θ(gt) The big-Θ notation, which indicates that ft = O(gt) and gt = O(ft)

Rd The d-dimensional Euclidean space
R The set of real numbers
‖·‖ The Euclidean norm
E[·] The mathematical expectation (expected value) of a random variable
P The probability measure of a given probability space

E[X |H] The conditional expectation of a random variable X
with respect to a sub-σ-algebra H

E[X |Y ] The conditional expectation of a random variable X
with respect to (the σ-algebra generated by) the random variable Y

Et A shorthand notation for E[· | xt], where xt is a random variable indexed by t
∇f The gradient of a multivariate real-valued function f
∇2f The Hessian matrix of a multivariate real-valued function f
C(f) The critical set C(f) :=

{
x ∈ Rd : ∇f(x) = 0

}
of f

S A strict saddle manifold (Section 5)
q+ The positive part of a quantity q, given by q+ = max(q, 0)

Table 2: Summary of symbols and notation
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2. Problem Formulation and Preliminaries

2.1 Problem statement and assumptions

We are interested in solving the unconstrained minimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R, using stochastic gradient methods. For example, with a slight abuse of
notation, f may arise from optimizing an expected risk of the form f(x) = E[f(x; ξ)], where
ξ is a source of randomness indicating a sample (or a set of samples), or an empirical risk of
the form f(x) = 1

n

∑n
i=1 fi(x; ξi), where {ξi}ni=1 are realizations of ξ (Bottou et al., 2018).

We make the following assumptions.

Assumption 1 (L-smoothness) The continuously differentiable function f : Rd → R is
bounded from below by f∗ := infx∈Rd f(x) ∈ R and its gradient ∇f is L-Lipschitz, i.e.,
‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ for all x, y ∈ Rd.

A useful consequence of Assumption 1 (see, e.g., Nesterov (2003, Lemma 1.2.3)) is the
following

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 , ∀x, y ∈ Rd. (2)

Assumption 2 (Asymptotic non-flatness) The function f : Rd → R is not asymptoti-
cally flat in the sense that lim inf‖x‖→∞ ‖∇f(x)‖ > 0.

Assumption 2 is used in Section 5 to show that stochastic gradient descent methods can
almost surely avoid strict saddle manifolds. Intuitively, Assumption 2 means that the gradi-
ent will not vanish (or the objective function will not be flat) near infinity. The assumption
is fairly easy to satisfy, as long as one component of the gradient vector ∇f(x) does not
approach zero, as ‖x‖ → ∞, for every x. For example, it is straightforward to verify that
some popular non-convex optimization benchmark functions1 such as the Griewank function

f(x) =
d∑
i=1

x2i
4000

−Πd
i=1 cos

(
xi√
i

)
+ 1,

Rastrigin function

f(x) = 10d+
d∑
i=1

[
x2i − 10 cos(2πxi)

]
,

and the Levy function

f(x) = sin2(πw1) +
d−1∑
i=1

(
(wi − 1)2

(
1 + 10 sin2(πwi + 1)

))
+ (wd − 1)2

(
1 + sin2(2πwd)

)
,

where wi = 1+ xi−1
4 for i = 1, . . . , d, all satisfy Assumption 2, while having many widespread

local minima.
In some settings, we also assume that f is strongly convex.

1. https://www.sfu.ca/~ssurjano/optimization.html
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Assumption 3 (µ-strongly convex) There exists a positive constant µ such that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 , ∀x, y ∈ Rd.

Assumption 3 with µ = 0 will be referred to as general convexity. When f is convex
(strongly or generally), we further assume that f has a minimizer, i.e., x∗ ∈ Rd such that
f∗ = f(x∗). A consequence of f being µ-strongly convex is that (see, e.g., Nesterov (2003,
Theorem 2.1.10))

1

2µ
‖∇f(x)‖2 ≥ f(x)− f∗, ∀x ∈ Rd. (3)

In contrast, if f is generally convex and L-smooth, we have

1

2L
‖∇f(x)‖2 ≤ f(x)− f∗, ∀x ∈ Rd, (4)

which is a special case (by setting y = x∗) of an equivalent condition for f to be generally
convex and L-smooth (see, e.g., (2.1.7) of Nesterov (2003, Theorem 2.1.5)), stated below:

f(y) + 〈∇f(y), x− y〉+
1

2L
‖∇f(x)−∇f(y)‖2 ≤ f(x), ∀x, y ∈ Rd. (5)

Since we are interested in solving (1) using stochastic gradient methods, we assume at
each x ∈ Rd, we have access to an unbiased estimator of the true gradient ∇f(x), denoted
by ∇f(x; ξ).

Assumption 4 (ABC condition) There exist nonnegative constants A, B, and C such
that

E[‖∇f(x; ξ)‖2] ≤ A(f(x)− f∗) +B ‖∇f(x)‖2 + C, ∀x ∈ Rd. (6)

Remark 1 The above assumption was proposed in Khaled and Richtárik (2020) as “the
weakest assumption” for analysis of SGD in the non-convex setting. This assumption clearly
includes the uniform bound

E[‖∇f(x; ξ)‖2] ≤ σ2

and bounded variance condition

E[‖∇f(x; ξ)−∇f(x)‖2] ≤ σ2

as special cases. The latter is because, by unbiasedness of ∇f(x; ξ), bounded variance is
equivalent to

E[‖∇f(x; ξ)‖2] ≤ ‖∇f(x)‖2 + σ2.

Furthermore, in the context of solving stochastic or empirical minimization problems using
SGD, by assuming that each realization or individual loss function is L-smooth and convex
and that the overall objective function f is strongly convex with a unique minimizer x∗, the
following bound can be derived (Nguyen et al., 2019):

E[‖∇f(x; ξ)‖2] ≤ 4L(f(x)− f∗) + σ2,
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where σ2 = E[∇f(x∗; ξ)]. If the convexity condition on individual realization or loss function
was dropped, a similar bound can still be shown (Nguyen et al., 2019) with 4L replaced with
4L2

µ . Both of them are again special cases of the condition in Assumption 4. For these
reasons, we shall use the seemingly most general condition in Assumption 4 throughout this
paper. Note that, if (4) holds 2, the ABC condition (6) can be reduced to

E[‖∇f(x; ξ)‖2] ≤ (A+ 2BL)(f(x)− f∗) + C. (7)

Nonetheless, we maintain the general form of Assumption 4 and refer readers to Khaled and
Richtárik (2020) for discussions on the potential benefits of using (6).

2.2 Lemmas on supermartingale convergence rates

Our almost sure convergence rate analysis relies on the following classical supermartingale
convergence theorem (Robbins and Siegmund, 1971).

Proposition 2 Let {Xt}, {Yt}, and {Zt} be three sequences of random variables that are
adapted to a filtration {Ft}. Let {γt} be a sequence of nonnegative real numbers such that
Π∞t=1(1 + γt) <∞. Suppose that the following conditions hold:

1. Xt, Yt, and Zt are nonnegative for all t ≥ 1.

2. E[Yt+1 | Ft] ≤ (1 + γt)Yt −Xt + Zt for all t ≥ 1.

3.
∑∞

t=1 Zt <∞ holds almost surely.

Then
∑∞

t=1Xt <∞ almost surely and Yt converges almost surely.

The following lemma, as a corollary of Proposition 2, provides concrete estimates of
almost sure convergence rates for sequences of random variables satisfying a supermartingale
property.

Lemma 3 If {Yt} is a sequence of nonnegative random variables satisfying

E[Yt+1 | Ft] ≤ (1− c1αt)Yt + c2α
2
t , (8)

for all t ≥ 1, where {αt} is sequence of positive real numbers such that αt = Θ
(

1
t1−θ

)
for

some θ ∈ (0, 12), and c1 and c2 are positive constants. Then, for any ε ∈ (2θ, 1),

Yt = o

(
1

t1−ε

)
, almost surely.

The proof of Lemma 3 can be found in Appendix A. The following lemma, when used
together with Proposition 2, is useful for almost sure convergence rate analysis in a slightly
different setting than Lemma 3.

2. It is shown in Khaled and Richtárik (2020, Lemma 1) that (4) holds under the conditions of Assumption
1, even without convexity or a global minimizer.
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Lemma 4 Let {Xt} be a sequence of nonnegative real numbers and {αt} be a decreasing
sequence of positive real numbers such that the following holds:

∞∑
t=1

αtXt <∞ and
∞∑
t=2

αt∑t−1
i=1 αi

=∞.

Define wt = 2αt∑t
i=1 αi

, Y1 = X1, and

Yt+1 = (1− wt)Yt + wtXt, t ≥ 1. (9)

Then

Yt = o

(
1∑t−1
i=1 αi

)
and min

1≤i≤t−1
Xi = o

(
1∑t−1
i=1 αi

)
. (10)

Remark 5 A concrete convergence rate o
(

1

t
1
2−ε

)
results from (10) if we choose αt = α

t
1
2+ε

for some α > 0 and ε ∈ (0, 12), because then we have
∑t−1

i=1 αi = Θ(t
1
2
−ε), αt∑t−1

i=1 αi
= Θ(1t ),

and
∑

t
αt∑t−1
i=1 αi

=∞. Note that (10) is an asymptotic statement (see an explanation of the

little-o notation in Table 2 of Section 1.3), and the summation
∑t−1

i=1 αi is non-empty for
t ≥ 2.

Lemma 4 is inspired by part of the analysis in the proof of (Sebbouh et al., 2021, Theorem
8). The proof of Lemma 4 can be found in Appendix B.

3. Almost sure convergence rate analysis for stochastic gradient methods

In this section, we present a unified almost sure convergence rate analysis for SGD, SHB and
SNAG. We primarily focus on two scenarios, namely the strongly convex and non-convex
cases.

3.1 Stochastic gradient descent

The iteration of the SGD method is given by

xt+1 = xt − αtgt, t ≥ 1, (11)

where gt := ∇f(xt; ξt) is the stochastic gradient at xt (with randomness ξt) and αt is the
step size.

We shall prove that, for smooth and strongly convex objective functions, SGD can achieve
o
(

1
t1−ε

)
almost sure convergence rates for any ε ∈ (0, 1). To the best knowledge of the

authors, this is the first result showing the o
(

1
t1−ε

)
almost sure convergence rate for SGD

under the global strong convexity assumption and relaxed assumption on stochastic gradients
(Khaled and Richtárik, 2020). For smooth and non-convex objective functions, the best
iterates of SGD can achieve o

(
1

t
1
2−ε

)
almost sure convergence rates for any ε ∈ (0, 12). This

result was already reported in Sebbouh et al. (2021). For locally strongly convex functions,
similar rates were obtained in Pelletier (1998); Godichon-Baggioni (2019). Here we provide a
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somewhat more streamlined proof of both the strongly convex and non-convex cases, enabled
by Lemmas 3 and 4. These rates match the lower bounds in Agarwal et al. (2012) (see also
Nemirovskij and Yudin (1983)) to an ε-factor.

Theorem 6 Consider the iterates of SGD (11).

1. If Assumptions 1, 3, and 4 hold and αt = Θ
(

1
t1−θ

)
for some θ ∈ (0, 12), then almost

surely

f(xt)− f∗ = o

(
1

t1−ε

)
, ∀ε ∈ (2θ, 1).

2. If Assumptions 1 and 4 hold and {αt} is a decreasing sequence of positive real numbers
satisfying

∑∞
t=1 α

2
t <∞ and

∑∞
t=2

αt∑t−1
i=1 αi

=∞, then almost surely

min
1≤i≤t−1

‖∇f(xi)‖2 = o

(
1∑t−1
i=1 αi

)
. (12)

In particular, if we choose αt = α

t
1
2+ε

with α > 0 and ε ∈ (0, 12), then almost surely

min
1≤i≤t−1

‖∇f(xi)‖2 = o

(
1

t
1
2
−ε

)
. (13)

Proof 1. We first consider the strongly convex case. By smoothness of f and (2), we have

f(xt+1) ≤ f(xt)− αt〈∇f(xt), gt〉+
Lα2

t

2
‖gt‖2 .

Taking conditional expectation w.r.t. xt, denoted by Et[·] := E[·|xt], and using (3) lead to

Et [f(xt+1)− f∗] ≤ f(xt)− f∗ − αt ‖∇f(xt)‖2 +
Lα2

t

2

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
= (1 +

LAα2
t

2
)(f(xt)− f∗)− (αt −

LBα2
t

2
) ‖∇f(xt)‖2 +

LCα2
t

2

≤ (1 +
LAα2

t

2
)(f(xt)− f∗)− 2µ(αt −

LBα2
t

2
)(f(xt)− f∗) +

LCα2
t

2

= (1− 2µαt + (LA/2 + LBµ)α2
t )(f(xt)− f∗) +

LCα2
t

2

≤ (1− µαt)(f(xt)− f∗) +
LCα2

t

2
, (14)

provided that (LA/2 + LBµ)αt ≤ µ. The conclusion follows from Lemma 3.
2. For the non-convex case, by L-smoothness and as in (14), we obtain

Et [f(xt+1)− f∗] ≤ f(xt)− f∗ − αt ‖∇f(xt)‖2 +
Lα2

t

2

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ (1 +

LAα2
t

2
)(f(xt)− f∗)−

(
αt −

LBα2
t

2

)
‖∇f(xt)‖2 +

LCα2
t

2

≤ (1 +
LAα2

t

2
)(f(xt)− f∗)−

1

2
αt ‖∇f(xt)‖2 +

LCα2
t

2
, (15)

10



Almost Sure Convergence Rates Analysis of Stochastic Gradient Methods

provided that LBαt ≤ 1. By Proposition 2,
∑∞

t=1 αt ‖∇f(xt)‖2 < ∞ almost surely. The
conclusions follow from Lemma 4 and Remark 5.

Remark 7 We choose αt = Θ
(

1
t1−θ

)
for θ → 0 to approach the optimal almost sure conver-

gence rate achievable under Lemma 3. In fact, any step size choice satisfying the classical
condition by Robbins and Siegmund (1971):

∑∞
t=1 αt = ∞ and

∑∞
t=1 α

2
t < ∞ will lead to

almost sure convergence under the supermartingale convergence theorem (Proposition 2).
What is new here is the analysis of almost sure convergence rate o

(
1

t1−ε

)
for strongly convex

objective functions using Lemma 3. By choosing θ → 0, we can make ε→ 0. The conditions
(LA/2 + LBµ)αt ≤ µ and LBαt ≤ 1 in the proof can be easily satisfied for all t ≥ 1, if we
scale all αt’s by a constant, or for all t sufficiently large due to the choice of αt. This differ-
ence is insignificant because in the latter case the analysis in the proof holds asymptotically
and the same convergence rate follows.

3.2 Stochastic heavy-ball method

The iteration of the SHB method is given by

xt+1 = xt − αtgt + β(xt − xt−1), t ≥ 1, (16)

where gt := ∇f(xt; ξt) is the stochastic gradient at xt, αt is the step size, and β ∈ [0, 1).
Clearly, if β = 0, SHB reduces to SGD. We take x1 = x0.

Define
zt = xt +

β

1− β
vt, vt = xt − xt−1, t ≥ 1. (17)

The iteration of SHB can be rewritten as
vt+1 = βvt − αtgt,

zt+1 = zt −
αt

1− β
gt.

(18)

Indeed, the above update rules are easily derived from (16) and (17) as

vt+1 = xt+1 − xt = −αtgt + β(xt − xt−1) = βvt − αtgt,

and

zt+1 = xt+1 +
β

1− β
vt+1

= xt − αtgt + β(xt − xt−1) +
β

1− β
(βvt − αtgt)

= xt + [1 +
β

1− β
]βvt − [1 +

β

1− β
]αtgt

= xt +
β

1− β
vt −

1

1− β
αtgt

= zt −
αt

1− β
gt.

To our best knowledge, the following theorem provides the first almost sure convergence
rates for SHB under both strongly convex and non-convex assumptions.

11
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Theorem 8 Consider the iterates of SHB (16).

1. If Assumptions 1, 3, and 4 hold and αt = Θ
(

1
t1−θ

)
for some θ ∈ (0, 12), then almost

surely

f(xt)− f∗ = o

(
1

t1−ε

)
, ∀ε ∈ (2θ, 1).

2. If Assumptions 1 and 4 hold and {αt} is a decreasing sequence of positive real numbers
satisfying

∑∞
t=1 α

2
t <∞ and

∑∞
t=2

αt∑t−1
i=1 αi

=∞, then almost surely

min
1≤i≤t−1

‖∇f(xi)‖2 = o

(
1∑t−1
i=1 αi

)
.

In particular, if we choose αt = α

t
1
2+ε

with α > 0 and ε ∈ (0, 12), then almost surely

min
1≤i≤t−1

‖∇f(xi)‖2 = o

(
1

t
1
2
−ε

)
.

Proof We have

‖vt+1‖2 = β2 ‖vt‖2 − 2βαt〈gt, vt〉+ α2
t ‖gt‖

2 .

Taking conditional expectation w.r.t. xt, denoted by Et[·] := E[·|xt], gives

Et ‖vt+1‖2 = β2 ‖vt‖2 − 2βαt〈∇f(xt), vt〉+ α2
t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ β2 ‖vt‖2 + ε1β

2 ‖vt‖2 +
α2
t

ε1
‖∇f(xt)‖2 + α2

t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
, (19)

where we used the elementary inequality 2〈a, b〉 ≤ ε1 ‖a‖2 + 1
ε1
‖b‖2 with a = −βvt, b =

αt∇f(xt), and an arbitrary ε1 > 0. By L-smoothness of f and (2), we have

f(zt+1) ≤ f(zt)−
αt

1− β
〈∇f(zt), gt〉+

Lα2
t

2(1− β)2
‖gt‖2 .

12
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By Assumption 4, taking conditional expectation w.r.t. xt gives

Et f(zt+1)

≤ f(zt)−
αt

1− β
〈∇f(zt),∇f(xt)〉+

Lα2
t

2(1− β)2

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
= f(zt)−

αt
1− β

‖∇f(zt)‖2 −
αt

1− β
〈∇f(zt),∇f(xt)−∇f(zt)〉

+
Lα2

t

2(1− β)2

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ f(zt)−

αt
1− β

‖∇f(zt)‖2 +
αt

1− β
‖∇f(zt)‖

Lβ

1− β
‖vt‖

+
Lα2

t

2(1− β)2

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ f(zt)−

αt
1− β

‖∇f(zt)‖2 + ε2 ‖vt‖2 +
α2
tL

2β2

4ε2(1− β)4
‖∇f(zt)‖2

+
Lα2

t

2(1− β)2

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
, (20)

where the second last inequality is by L-smoothness of f and the last inequality is by the
use of the elementary inequality 2ab ≤ ε2a2 + 1

ε2
b2 with a = ‖vt‖, b = αtLβ

2(1−β)2 ‖∇f(xt)‖, and
an arbitrary ε2 > 0. By L-smoothness of f again, we have

f(xt)− f∗ ≤ f(zt)− f∗ +
β

1− β
〈∇f(zt), vt〉+

Lβ2

2(1− β)2
‖vt‖2

≤ f(zt)− f∗ +
1

2
‖∇f(zt)‖2 +

β2

2(1− β)2
‖vt‖2 +

Lβ2

2(1− β)2
‖vt‖2 , (21)

and

‖∇f(xt)‖2 = ‖∇f(zt) +∇f(xt)−∇f(zt)‖2 ≤ 2 ‖∇f(zt)‖2 + 2 ‖∇f(xt)−∇f(zt)‖2

≤ 2 ‖∇f(zt)‖2 + 2
L2β2

(1− β)2
‖vt‖2 . (22)

Combining (19)–(22) yields

Et
[
f(zt+1)− f∗ + ‖vt+1‖2

]
≤ (1 + c1α

2
t )[f(zt)− f∗] + (β2 + ε1β

2 + ε2 + c2α
2
t ) ‖vt‖

2

−
(

αt
1− β

− c3α2
t

)
‖∇f(zt)‖2 + c4α

2
t ,

where the constants c1–c4 can be straightforwardly determined from (19)–(22). For any
λ ∈ (β, 1), we can choose ε1 > 0 and ε2 > 0 such that β2 + ε1β

2 + ε2 ≤ λ. For any
c ∈ (0, 1

1−β ), we can choose αt = Θ
(

1
t1−θ

)
, for some θ ∈ (0, 12), sufficiently small (by

changing the constant) such that αt
1−β − c3α

2
t ≥ cαt for all t ≥ 1. The above inequality

becomes

Et
[
f(zt+1)− f∗ + ‖vt+1‖2

]
≤ (1 + c1α

2
t )[f(zt)− f∗] + (λ+ c2α

2
t ) ‖vt‖

2 − cαt ‖∇f(zt)‖2 + c4α
2
t . (23)

13
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We now consider two different cases:
1. If f is µ-strongly convex, we can use ‖∇f(zt)‖2 ≥ 2µ(f(zt)− f∗) to further obtain

Et
[
f(zt+1)− f∗ + ‖vt+1‖2

]
≤ (1− 2cµαt + c1α

2
t )[f(zt)− f∗] + (λ+ c2α

2
t ) ‖vt‖

2 + c4α
2
t .

By choosing αt = Θ
(

1
t1−θ

)
sufficiently small, the inequality leads to

Et
[
f(zt+1)− f∗ + ‖vt+1‖2

]
≤ (1− c5αt)[f(zt)− f∗ + ‖vt‖2] + c4α

2
t ,

for some constant c5 > 0. It follows from Lemma 3 that

f(zt+1)− f∗ + ‖vt+1‖2 = o

(
1

t1−ε

)
for any ε ∈ (2θ, 1). The conclusion follows from (21) and (4).

2. If f is non-convex, by (22), inequality (23) leads to

Et
[
f(zt+1)− f∗ + ‖vt+1‖2

]
≤ (1 + c6α

2
t )[f(zt)− f∗ + ‖vt‖2]−

1

2
cαt ‖∇f(xt)‖2 + c4α

2
t ,

where c6 = max(c1, c2), provided that αt is chosen sufficiently small. By Proposition 2, we
have

∑∞
t=1 αt ‖∇f(xt)‖2 < ∞ almost surely. The conclusions follow from Lemma 4 and

Remark 5.

The almost sure convergence rates achieved by SHB are consistent with the best conver-
gence rates possible for strongly convex and non-convex objective functions using stochastic
gradient methods (Agarwal et al., 2012) (see also Nemirovskij and Yudin (1983)) subject to
an ε-factor.

3.3 Stochastic Nesterov’s accelerated gradient

The iteration of the SNAG method is given by

yt+1 = xt − αtgt,
xt+1 = yt+1 + β(yt+1 − yt), t ≥ 1,

(24)

where gt := ∇f(xt; ξt) is the stochastic gradient at xt, αt is the step size, and β ∈ [0, 1).
Clearly, if β = 0, SNAG also reduces to SGD. We take x1 = y1.

Similar to (17), define

zt = xt +
β

1− β
vt, vt = β(yt − yt−1), t ≥ 1, (25)

where y1 = y0
3.

The iteration of SNAG can be rewritten as

vt+1 = βvt − βαtgt,

zt+1 = zt −
αt

1− β
gt.

(26)

3. This would be consistent with x1 = y1 and the second equation in (24) with t = 0, which is used in (27).

14
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Indeed, similar to how we obtained (18), the above update rules are easily derived from (24)
and (25) as

vt+1 = β(yt+1 − yt)
= β(xt − αtgt)− βyt
= β(yt + β(yt − yt−1)− αtgt)− βyt (27)
= βvt − βαtgt,

and

zt+1 = xt+1 +
β

1− β
vt+1

= yt+1 + β(yt+1 − yt) +
β

1− β
vt+1

= xt − αtgt + vt+1 +
β

1− β
vt+1

= xt − αtgt +
1

1− β
vt+1

= xt − αtgt +
1

1− β
(βvt − βαtgt)

= xt +
β

1− β
vt −

1

1− β
αtgt

= zt −
αt

1− β
gt.

Note that (26) is almost identical to (18) except for the extra β in the first equation for
vt+1.

Theorem 9 Consider the iterates of SNAG (24).

1. If Assumptions 1, 3, and 4 hold and αt = Θ
(

1
t1−θ

)
for some θ ∈ (0, 12), then almost

surely

f(xt)− f∗ = o

(
1

t1−ε

)
, ∀ε ∈ (2θ, 1).

2. If Assumptions 1 and 4 hold and {αt} is a decreasing sequence of positive real numbers
satisfying

∑∞
t=1 α

2
t <∞ and

∑∞
t=2

αt∑t−1
i=1 αi

=∞, then almost surely

min
1≤i≤t−1

‖∇f(xi)‖2 = o

(
1∑t−1
i=1 αi

)
.

In particular, if we choose αt = α

t
1
2+ε

with α > 0 and ε ∈ (0, 12), then almost surely

min
1≤i≤t−1

‖∇f(xi)‖2 = o

(
1

t
1
2
−ε

)
.
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Proof The proof is similar to that for Theorem 8. Instead of (19), we obtain

Et ‖vt+1‖2 ≤ β2
(
‖vt‖2 + ε1 ‖vt‖2 +

α2
t

ε1
‖∇f(xt)‖2 + α2

t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

])
.

(28)

The rest of the proof proceeds in the same way (with slightly different constants). We con-
clude the same convergence rates by Lemmas 3 and 4.

To our best knowledge, the above theorem provides the first result on almost sure con-
vergence rates for SNAG under both strongly convex and non-convex assumptions. It is also
evident from the above proofs that we provide a unified treatment the convergence analysis
for SHB and SNAG.

4. Last-iterate convergence analysis of stochastic gradient methods

In the previous sections, we have established close-to-optimal almost sure convergence
rates for popular stochastic gradient methods. These rates are proved for the last iter-
ate4 f(xt)−f∗. When strong convexity is absent, convergence (rates) analysis for stochastic
gradient methods in terms of the last iterates seems more challenging, even for general
convex objective functions. We shall address these issues in this section. Such results are
practically relevant, because it is the last iterates of gradient descent methods that are being
used in most practical situations.

4.1 Last-iterate convergence analysis of SHB and SNAG for non-convex
functions

In the non-convex setting, the convergence analysis in the previous sections shows that a
weighted average of the squared gradient norm ‖∇f(xi)‖2 converges to zero almost surely,
which also implies that the “best” iterate min1≤i≤t ‖∇f(xi)‖2 converges to zero almost surely
(cf. Lemma 4). It is both theoretically intriguing and practically relevant to know whether
the last-iterate gradient ∇f(xt) converges almost surely. However, it is usually more chal-
lenging to analyze the convergence of the last iterate of SGD. An interesting discussion was
made in Orabona (2020a), where the author simplified the long analysis in earlier work
by Bertsekas and Tsitsiklis (2000) that proved the last-iterate ‖∇f(xt)‖2 converges almost
surely to zero for SGD. In this section, we extend this analysis and prove that the last-iterate
gradients of SHB and SNAG both converge to zero almost surely.

We rely on the following lemma from Orabona (2020a), which can be seen as an extension
of Alber et al. (1998, Proposition 2) and Mairal (2013, Lemma A.5). Here we also extend
the result from p ≥ 1 to p > 0. A proof is included in the Appendix for completeness.

Lemma 10 (Orabona (2020a)) Let {bt} and {αt} be two nonnegative sequences and {wt}
be a sequence of vectors. Assume

∑∞
t=1 αtb

p
t <∞ and

∑∞
t=1 αt =∞, where p > 0. Further-

4. Similar rates can be easily obtained for ‖xt − x∗‖2 and ‖∇f(xt)‖2 using strong convexity.
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more, assume that there exists some L > 0 such that

|bt+τ − bt| ≤ L

(
t+τ−1∑
i=t

αibi +

∥∥∥∥∥
t+τ−1∑
i=t

αiwi

∥∥∥∥∥
)
, ∀τ ≥ 1,

where wt is such that
∑∞

t=1 αtwt converges. Then bt converges to 0.

Theorem 11 Consider the iterates of SHB (16) and SNAG (24), respectively. Let Assump-
tions 1 and 4 hold and the step size {αt} be a sequence of positive real numbers satisfying

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t <∞.

Then we have ∇f(xt)→ 0 almost surely, as t→∞, for both the iterates of SHB and SNAG.

Proof We first prove that the last-iterate gradient of SHB converges. By (23) and Propo-
sition 2, we have

∑∞
t=1 αt ‖∇f(zt)‖2 < ∞ almost surely. Furthermore, by L-smoothness of

f , we have

|‖∇f(zt+τ )‖ − ‖∇f(zt)‖| ≤ ‖∇f(zt+τ )−∇f(zt)‖ ≤ L ‖zt+τ − zt‖ =
L

1− β

∥∥∥∥∥
t+τ−1∑
i=t

αigi

∥∥∥∥∥
=

L

1− β

∥∥∥∥∥
t+τ−1∑
i=t

αi∇f(zi) + αi(gi −∇f(zi))

∥∥∥∥∥
≤ L

1− β

(
t+τ−1∑
i=t

αi ‖∇f(zi)‖+

∥∥∥∥∥
t+τ−1∑
i=t

αiwi

∥∥∥∥∥
)
,

where wi = gi −∇f(zi) . To show that
∑

t≥1 αtwt converges almost surely, we write

αtwt = αt(gt −∇f(xt)) + αt(∇f(xt)−∇f(zt)).

We make the following claims that are proved in Appendix C.
Claim 1: Mt =

∑t
i=1 αi(gi−∇f(xi)) is a martingale bounded in L2 and hence converges

almost surely (Williams, 1991, Theorem 12.1)).
Claim 2: Nt =

∑t
i=1 αi(∇f(xi)−∇f(zi)) converges almost surely.

By Claims 1 and 2,
∑∞

t=1 αtwt converges almost surely. Applying Lemma 10 with
bt = ‖∇f(zt)‖ and p = 2 shows that ∇f(zt) → 0 almost surely. We conclude that
∇f(xt) converges to 0 almost surely in view of (22) and that vt → 0 almost surely (since∑∞

t=1 ‖vt‖
2 <∞ almost surely).

The proof of convergence for SNAG is similar, following (28). We omitted the details
here.

Remark 12 Last-iterate convergence analysis in expectation for SHB and SNAG is investi-
gated in Liu et al. (2023) by expressing SHB and SNAG in a unified form with an additional

17



Liu and Yuan

parameter that interpolates between SHB and SNAG (termed stochastic unified momentum
(SUM); see also Yan et al. (2018)). We expect that the almost sure convergence analysis
presented in the current paper can be easily applied to analyze SUM to obtain both almost
sure convergence rates and last-iterate convergence. Moreover, our analysis of SHB and
SNAG is unified, in the sense that they are written in nearly identical forms (cf. (26) and
(18)), allowing the proof of one to be easily extended to the other.

4.2 Last-iterate convergence rates of SGD, SHB, SNAG for general convex
functions

We primarily focused on strongly convex and non-convex objective functions in the previous
section. For functions that are generally convex, Sebbouh et al. (2021) proved almost sure
convergence rates of SGD for a weighted average of the iterates. A natural question to
ask is whether one can obtain some last-iterate almost sure convergence rates. Indeed,
the vast majority of convergence analysis for stochastic gradient methods under general
convexity assumption yields results in terms of a weighted average of the iterates. There
is an interesting discussion in Orabona (2020b), where the author derived some last-iterate
convergence rates in the context of non-asymptotic analysis for convergence in expectation
(see also earlier work Zhang (2004); Shamir and Zhang (2013) with more restricted domains
or learning rates). In this section, we provide results on almost sure last-iterate convergence
rates for SGD, SHB, and SNAG. Compared with the results in Sebbouh et al. (2021) for
SHB, we show that even without the iterate moving-average (IMA) parameter choices, the
last iterates of SHB still converge to a minimizer, only assuming smoothness and convexity.

The proof of the following result can be found in Appendix D.

Theorem 13 Consider the iterates of SGD (11), SHB (16), and SNAG (24), respectively.
Let Assumptions 1 and 4 hold and Assumption 3 hold with µ = 0. Suppose that we choose
the step size αt = Θ

(
1

t
2
3+ε

)
for any ε ∈ (0, 13). Then we have xt → x∗ for some x∗ such

that f(x∗) = f∗ almost surely and f(xt)− f∗ = O
(

1

t
1
3−ε

)
.

Remark 14 While this appears to the first result on last-iterate almost sure convergence
rates for SHB and SNAG, the rate O

(
1

t
1
3−ε

)
is not close to the lower bound obtained for

convergence in expectation (Agarwal et al., 2012). Note that most convergence rates for
SGD on general convex function are derived for a weighted average of the iterates. An inter-
esting observation was made in Orabona (2020b) and the author derived a non-asymptotic
last-iterate convergence rate of O

(
log(T )√

T

)
in expectation. It is unclear at this point whether

the idea in Orabona (2020b) can be extended to yield a close-to-optimal asymptotic almost
sure convergence rate. It would be interesting to investigate whether the law of the iterated
logarithm for martingales (Stout, 1970; de la Pena et al., 2004; Balsubramani, 2014) can
help determine the sharpest convergence rates in this setting. It is interesting to note that
a similar almost sure convergence rate of O

(
1

t
1
3−ε

)
was derived in Lei et al. (2017) us-

ing totally different techniques for online gradient descent algorithms in reproducing kernel
Hilbert spaces (RKHSs) without regularization. Their proof technique, based on convergence
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rates analysis with high probability and the Borel-Cantelli lemma, is different from ours. It
remains an intriguing question whether sharper rates can be obtained.

5. Almost Sure Avoidance of Strict Saddle Manifold

In this section, we analyze almost sure avoidance of saddle manifold by stochastic gradient
methods. We further make the following local boundedness assumption on the stochastic
gradient.

Assumption 5 (Local boundedness) For each compact set K ∈ Rn, there exists a con-
stant C such that ‖∇f(x; ξ)‖ ≤ C for all x ∈ K almost surely.

Remark 15 The local boundedness assumption is clearly weaker than the assumption of
almost surely bounded noise (Mertikopoulos et al., 2020), i.e., there exists a constant C such
that

‖∇f(x; ξ)−∇f(x)‖ ≤ C

for all x ∈ Rn almost surely. Indeed, since ∇f(x) is assumed to be (Lipschitz) continu-
ous and hence locally bounded, bounded noise and local boundedness of ∇f(x) implies local
boundedness of ∇f(x; ξ). Assumption 5 is readily satisfied for stochastic gradient computed
using a sample drawn from a finite number of samples where each sample gives a gradi-
ent function ∇f(x; ξ) that is locally bounded. For instance, let f(x) = 1

n

∑n
i=1 fi(x), and

suppose that each ∇f(x; ξ) corresponds to uniformly randomly choosing i ∈ {1, . . . , n} and
computing ∇f(x; ξ) = ∇fi(x). If each ∇fi(x) is locally bounded, then Assumption 5 holds.

Finally, we need one more assumption on the stochastic gradient.

Assumption 6 The error between the true gradient and any stochastic gradient is uniformly
exciting in the sense that there exists some constant b > 0 such that

E[〈∇f(x; ξ)−∇f(x), v〉+] ≥ b,

where (·)+ = max(·, 0) denotes the positive part of a quantity, for all x ∈ Rd and all unit
vector v ∈ Rn.

The same assumption was made in prior work (Pemantle, 1990; Benaïm and Hirsch,
1996; Benaïm, 1999; Mertikopoulos et al., 2020). This assumption is naturally satisfied by
noisy gradient dynamics (e.g., as in Ge et al. (2015); see also remarks after Assumption 5
in Mertikopoulos et al. (2020)).

Define the critical set as

C(f) =
{
x ∈ Rd : ∇f(x) = 0

}
. (29)

Definition 16 (Mertikopoulos et al. (2020)) A strict saddle manifold S of f is a smooth
connected component of C(f) satisfying

1. Every x∗ ∈ S is a strict saddle point (Lee et al., 2016, 2019) of f , i.e., λmin(∇2f(x∗)) <
0.
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2. For all x∗ ∈ S, all negative eigenvalues of ∇2f(x∗) are uniformly bounded from above
by a negative constant and all positive eigenvalues of ∇2f(x∗) are uniformly bounded
from below by a positive constant.

The above definition is from Mertikopoulos et al. (2020). As stated in Mertikopoulos
et al. (2020), the requirement that all positive eigenvalues of ∇2f(x∗) are uniformly bounded
from below by a positive number is added for convenience of proof, while the requirement
that all negative eigenvalues of ∇2f(x∗) are uniformly bounded from above by a negative
number is a more stringent requirement for the technical proof (see proof of (Mertikopoulos
et al., 2020, Lemma C.3) and the prerequisite of (Benaïm, 1999, Proposition 9.5) on (Benaïm,
1999, p.48, (iii))). Our proof of Theorem 17 below relies on conclusions of (Benaïm, 1999,
Proposition 9.5).

The main result of this section is stated below.

Theorem 17 Let S be any strict saddle manifold of f , where f is three times continuously
differentiable and satisfies Assumptions 1, 2, 4, 5, 6. Let the step size {αn} be decreasing
and satisfy αn = Θ

(
1
np

)
, where 1

2 < p ≤ 1. Then P(xn → S as n → ∞) = 0 for both SHB
(16) and SNAG (24).

We provide a brief outline for the proof. The detailed proof can be found in Appendix
E.

1. In Section E.1, we summarize preliminary results on the convergence of the sequences
generated by SHB and SNAG (Liu and Yuan, 2022). Combined with Benaïm (1996),
we show that the limit set of these sequences enjoy the same properties of the limit
sets of trajectories of the corresponding gradient flow.

2. In Section E.2, we state previous results by Benaïm and Hirsch (1995); Benaïm (1999)
on the construction of a Lyapunov function around the saddle manifold. This result
will be used later in the proof.

3. The main proof is presented in Section E.3, where the probabilistic estimates by Pe-
mantle (1990, 1992) are combined with the Lyapunov analysis due to Benaïm and
Hirsch (1995); Benaïm (1999) to show both SHB and SNAG almost surely avoid strict
saddle manifolds, without the bounded gradient and noise assumptions, compared with
results on SGD by Mertikopoulos et al. (2020).

Remark 18 We briefly highlight the main challenge in establishing Theorem 17. The pri-
mary technical challenge is to demonstrate that the last iterates of SGD, SHB, and SNAG
converge under relaxed assumptions, a proof presented in Theorem 11 and summarized as
Lemma 21. The key ingredients for this proof include the supermartingale convergence the-
orem, inequality estimates we established for bounding the iterates of SHB and SNAG, and
the technical lemma due to Orabona (2020a). Lemma 21 further ensures that the iterates of
SHB and SNAG will satisfy the technical assumptions necessary for applying previous results
by Benaïm (1996), which characterize the limit sets of stochastic approximations.
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6. Conclusions

In this paper, we have provided a streamlined analysis of almost sure convergence rates
for stochastic gradient methods, including SGD, SHB, and SNAG. The rates obtained for
strongly convex functions are arbitrarily close to their corresponding optimal rates. For non-
convex functions, the rates obtained for the best iterates are close to the optimal convergence
rates in expectation for general convex functions (Agarwal et al., 2012). For general convex
functions, we identified a gap between the last-iterate almost sure convergence rates obtained
and the possible optimal rates. Whether it is possible and how to close this gap can be an
interesting topic for future work.

Furthermore, our study provides evidence for the effectiveness of various stochastic gra-
dient descent methods, including SGD, SHB, and SNAG, in avoiding strict saddle points.
Our analysis expands upon previous work on SGD by removing the requirement for bounded
gradients and noise in the objective function, and instead relying on a more practical local
boundedness assumption on the noisy gradient. The results of our study demonstrate that
even with non-bounded gradients and noise, these methods can still converge to local mini-
mizers. This research contributes to the understanding of the behavior of gradient descent
methods in non-convex optimization and has potential implications for their use in solving
a wide range of machine learning and optimization problems.
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Appendix A. Proof of Lemma 3

Proof By the choice of αt = Θ( 1
t1−θ

), where θ ∈ (0, 12), there exists some η > 0 such that
c1αt ≥ η

t1−θ
for all t ≥ 1. We shall make use of the elementary inequality

(t+ 1)1−ε ≤ t1−ε + (1− ε)t−ε, t > 0, ε ∈ (0, 1), (30)

which can be proved, for instance, as follows. Let g(x) = x1−ε for x > 0. Then g′(x) =
(1− ε)x−ε is decreasing on (0,∞). By the mean value theorem,

(t+ 1)1−ε − t1−ε = g′(ξ) ≤ g′(t) = (1− ε)t−ε,

where ξ ∈ (t, t+ 1), which implies inequality (30). For the convenience of the readers, recall
(8) as

E[Yt+1 | Ft] ≤ (1− c1αt)Yt + c2α
2
t ,

Multiplying both sides with (t+ 1)1−ε and applying inequality (30) and c1αt ≥ η
t1−θ

lead to

E[(t+ 1)1−εYt+1 | Ft] ≤ (t+ 1)1−ε(1− c1αt)Yt + c2(t+ 1)1−εα2
t

≤
[
t1−ε + (1− ε)t−ε

] (
1− η

t1−θ

)
Yt + c2(t+ 1)1−εα2

t

=

(
1 +

1− ε
t

)(
1− η

t1−θ

)
t1−εYt + c2(t+ 1)1−εα2

t

=

[
1 +

1− ε
t
− η

t1−θ
− η(1− ε)

t2−θ

]
t1−εYt + c2(t+ 1)1−εα2

t ,
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where the last two equations are straightforward algebraic rearrangements. Clearly, as
t → ∞, the term 1−ε

t is dominated by η
2t1−θ

. Hence, there exists some T > 1 sufficiently
large such that, for all t ≥ T , 1−ε

t −
η

t1−θ
− η(1−ε)

t2−θ
≤ η

2t1−θ
− η

t1−θ
= − η

2t1−θ
. It follows that

E[(t+ 1)1−εYt+1 | Ft] ≤ t1−εYt −
η

2t1−θ
t1−εYt + c2(t+ 1)1−εα2

t , t ≥ T.

With Ŷt = t1−εYt, Xt = η
2t1−θ

t1−εYt, Zt = c2(t + 1)1−εα2
t = Θ

(
1

t1+ε−2θ

)
, and γt = 0, the

conditions of Proposition 2 are met for all t ≥T with Ŷt in place of Yt. By Proposition 2, we
have t1−εYt converges and

∑∞
t=T Xt < ∞ almost surely. We must have t1−εYt → 0 almost

surely, since
∑∞

t=T
η

2t1−θ
= ∞ and

∑∞
t=T Xt =

∑∞
t=T

η
2t1−θ

t1−εYt < ∞ almost surely. Oth-
erwise, a contradiction would arise by the limit comparison test for convergence of infinite
series. The conclusion follows.

Appendix B. Proof of Lemma 4

Proof Note that w1 = 2 and Y2 = Y1. Since αt is monotonically decreasing, wt ∈ [0, 1]
for t ≥ 2. It follows that, for each t ≥ 2, Yt is a weighted average of all numbers in
{X1, · · · , Xt−1}. Furthermore, by (9) we have

Yt+1

t∑
i=1

αi = Yt

t−1∑
i=1

αi − αtYt + 2αtXt, t ≥ 1. (31)

Let Ŷt = Yt
∑t−1

i=1 αi. Then conditions of Proposition 2 are met with Ŷt in place of Yt, αtYt
in place of Xt, and 2αtXt in place of Zt. It follows from Proposition 2 that Yt+1

∑t
i=1 αi con-

verges5 and
∑∞

t=1 αtYt <∞. Since
∑∞

t=2
αt∑t−1
i=1 αi

=∞,
∑∞

t=1 αtYt <∞, and limt→∞
αtYt
αt∑t−1
i=1

αi

=

limt→∞ Yt
∑t−1

i=1 αi exists, we must this limit equal 0 by the limit comparison test for
series. Hence Yt = o

(
1∑t−1
i=1 αi

)
. The other part of the conclusion follows by noting

min1≤i≤t−1Xi ≤ Yt, because Yt is a weighted average of {X1, · · · , Xt−1}.

Appendix C. Proof of Lemma 10 and Claims in the Proof of Theorem 11

Proof of Lemma 10: Since
∑∞

t=1 αt =∞ and
∑∞

t=1 αtb
p
t <∞, we must have lim inft→∞ bt =

0. For the sake of deriving a contradiction, suppose that lim supt→∞ bt > 0 or lim supt→∞ bt =
∞. Then there exists some ε > 0 such that we have a subsequence {bnk} satisfying bnk ≤ ε

2
for all k ≥ 1 and another subsequence {bmk} satisfying bmk ≥ ε for all k ≥ 1.

Given ε > 0, define a constant Cε = max
(
ε1−p, (ε/2)1−p

)
. Since both

∑∞
t=1 αtb

p
t and∑∞

t=1 αtwt converge, the partial sums of these series are Cauchy sequences. There exists

5. While no random sequences are involved here, Proposition 2 is still applicable with almost sure conver-
gence replaced by convergence. A direct proof is possible using the monotone convergence theorem for
real numbers.
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some N > 0 sufficiently large such that, for all t ≥ N and τ ≥ 0, we have
t+τ∑
i=t

αib
p
i <

ε

4LCε
,

∥∥∥∥∥
t+τ∑
i=t

αiwi

∥∥∥∥∥ < ε

4L
. (32)

We consider the case 0 < p < 1 and p ≥ 1 separately.
1) Assume 0 < p < 1. Pick some nk ≥ N such that bnk ≤ ε

2 . Then pick the first mk̂ > nk
such that bmk̂ ≥ ε, which implies that, for all i with nk ≤ i < mk̂, bi < ε. By the assumption
of the Lemma and (32), we have

∣∣∣bmk̂ − bnk ∣∣∣ ≤ L
mk̂−1∑

i=nk

αibi +

∥∥∥∥∥∥
mk̂−1∑
i=nk

αiwi

∥∥∥∥∥∥


= L

mk̂−1∑
i=nk

αib
p
i b

1−p
i +

∥∥∥∥∥∥
mk̂−1∑
i=nk

αiwi

∥∥∥∥∥∥


≤ L

mk̂−1∑
i=nk

αib
p
i ε

1−p +

∥∥∥∥∥∥
mk̂−1∑
i=nk

αiwi

∥∥∥∥∥∥
 < L(

ε

4LCε
Cε +

ε

4L
) =

ε

2
,

which contradicts that bnk ≤ ε
2 and bmk̂ ≥ ε.

2) Similarly, for p ≥ 1, pick some mk ≥ N such that bmk ≥ ε. Then pick the first
nk̂ > mk such that bnk̂ ≤

ε
2 . We have, for all i with mk ≤ i < nk̂, bi ≥

ε
2 . It follows that∣∣∣bnk̂ − bmk ∣∣∣ ≤ L

nk̂−1∑
i=mk

αibi +

∥∥∥∥∥∥
nk̂−1∑
i=mk

αiwi

∥∥∥∥∥∥


= L

nk̂−1∑
i=mk

αib
p
i b

1−p
i +

∥∥∥∥∥∥
nk̂−1∑
i=mk

αiwi

∥∥∥∥∥∥


≤ L

nk̂−1∑
i=mk

αib
p
i (ε/2)1−p +

∥∥∥∥∥∥
nk̂−1∑
i=mk

αiwi

∥∥∥∥∥∥
 < L(

ε

4LCε
Cε +

ε

4L
) =

ε

2
,

which contradicts that bmk ≥ ε and bnk̂ ≤
ε
2 .

Proof of Claim 1: It is straightforward to verify by definition that it is a martingale.
It is well known (see, e.g., (Williams, 1991, Theorem 12.1)) that Mt is bounded in L2 if and
only if

∞∑
t=1

E[‖Mt −Mt−1‖2] <∞.

The latter is verified by
∞∑
t=1

E[‖Mt −Mt−1‖2] =

∞∑
t=1

α2
t (E ‖gt‖

2 − E ‖∇f(xt)‖2)

≤
∞∑
t=1

α2
t

[
A(E[f(xt)]− f∗) + (B − 1)E ‖∇f(xt)‖2 + C

]
, (33)
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where we used Assumption 4. Following the same argument as in the proof of Theorem 8,
except that we take expectation on all the inequalities involved, we can show that E[f(xt)]−
f∗ converges as t→∞ and

∑∞
t=1 αt E ‖∇f(xt)‖2 <∞. Since

∑∞
t=1 α

2
t <∞, we have αt → 0

as t → 0. By comparing the series on the right-hand side of (33) with convergent series∑∞
t=1 α

2
t and

∑∞
t=1 αt E ‖∇f(xt)‖2, we conclude that

∑∞
t=1 E[‖Mt −Mt−1‖2] <∞.

Proof of Claim 2: By L-smoothness of f , we have

t∑
i=1

‖αi(∇f(xi)−∇f(zi))‖ ≤
t∑
i=1

αiL ‖xi − zi‖ =
Lβ

1− β

t∑
i=1

αi ‖vi‖ (34)

≤ Lβ

1− β

√√√√ t∑
i=1

α2
i

√√√√ t∑
i=1

‖vi‖2. (35)

It follows that Nt converges almost surely, provided that
∑∞

t=1 ‖vt‖
2 <∞ almost surely. To

show the latter, recall (23) as

Et
[
f(zt+1)− f∗ + ‖vt+1‖2

]
≤ (1 + c6α

2
t )[f(zt)− f∗ + ‖vt‖2]− (1− λ) ‖vt‖2

− cαt ‖∇f(zt)‖2 + c4α
2
t , (36)

where c6 = max(c1, c2). Proposition 2 implies that
∑∞

t=1 ‖vt‖
2 <∞ almost surely.

Appendix D. Proof of Theorem 13

Lemma 19 Suppose that Yt is a sequence of nonnegative random variables that are adapted
to a filtration {Ft}. Let {αt} be a sequence chosen as αt = Θ

(
1

t
2
3+ε

)
(for t ≥ 1), where

ε ∈ (0, 13). If

E[Yt+1 | Ft] ≤ (1 + c1α
2
t )Yt + c2α

2
t , (37)

for some constants c1, c2 > 0 and
∑∞

t=1 αtYt <∞ almost surely, then Yt = O
(

1

t
1
3−ε

)
almost

surely.

Proof Suppose that

η1

t
2
3
+ε
≤ αt ≤

η2

t
2
3
+ε
, ∀t ≥ 1,
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with some positive constants η1 and η2. Multiplying both sides of (37) by (1 + t)
1
3
−ε leads

to

Et[(1 + t)
1
3
−εYt+1 | Ft] ≤ (1 + t)

1
3
−ε(1 + c1α

2
t )Yt + c2(1 + t)

1
3
−εα2

t

≤
[
t
1
3
−ε +

(
1

3
− ε
)
t−

2
3
−ε
]

(1 + c1α
2
t )Yt + c2(1 + t)

1
3
−εα2

t

= (1 + c1α
2
t )t

1
3
−εYt +

(
1

3
− ε
)
t−

2
3
−ε(1 + c1α

2
t )Yt + c2(1 + t)

1
3
−εα2

t

≤ (1 + c1α
2
t )t

1
3
−εYt + (c1η

2
2 + 1)

(
1

3
− ε
)
t−

2
3
−εYt +

c2η
2
2

t1+3ε

(1 + t)
1
3
−ε

t
1
3
−ε

≤ (1 + c1α
2
t )t

1
3
−εYt + c3αtYt +

c4
t1+3ε

,

where we can take c3 = (c1η
2
2 +1)

(
1
3 − ε

)
/η1 and c4 = c2η

2
2

3
√

2. Recall that
∑∞

t=1 αtYt <∞.
Applying Proposition 2 with t

1
3
−εYt in place of Yt, Xt = 0, and Zt = c3αtYt + c4

t1+3ε , we have∑∞
t=1 Zt <∞ and t

1
3
−εYt converges almost surely. The conclusion follows.

With this lemma, we are ready to present the proof of Theorem 13.

Proof 1) We show the proof for SGD first. By smoothness of f and (2), we have

f(xt+1) ≤ f(xt)− αt〈∇f(xt), gt〉+
Lα2

t

2
‖gt‖2 .

Taking conditional expectation w.r.t. xt, denoted by Et[·] := E[·|xt], leads to

Et [f(xt+1)− f∗] ≤ f(xt)− f∗ − αt ‖∇f(xt)‖2 +
Lα2

t

2

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ (1 +

LAα2
t

2
)(f(xt)− f∗)−

(
αt −

LBα2
t

2

)
‖∇f(xt)‖2 +

LCα2
t

2

≤ (1 +
LAα2

t

2
)(f(xt)− f∗)−

1

2
αt ‖∇f(xt)‖2 +

LCα2
t

2
, (38)

provided that LBαt ≤ 1.

Let x∗ be a minimizer, i.e., f(x∗) = f∗. We have

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 − 2αt〈gt, xt − x∗〉+ α2
t ‖gt‖

2 .
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Take conditional expectation w.r.t. xt from both side. By convexity and L-smoothness of
f , we obtain

Et
[
‖xt+1 − x∗‖2

]
≤ ‖xt − x∗‖2 − 2αt〈∇f(xt), xt − x∗〉

+ α2
t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ ‖xt − x∗‖2 − 2αt

(
f(xt)− f∗ +

1

2L
‖∇f(xt)‖2

)
+ α2

t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
= ‖xt − x∗‖2 − (2αt −Aα2

t )(f(xt)− f∗)−
(

1

L
αt −Bα2

t

)
‖∇f(xt)‖2

+ α2
tC

≤ ‖xt − x∗‖2 − αt(f(xt)− f∗) + α2
tC, (39)

where the second inequality follows from (5) with y = xt and x = x∗, provided that Aαt ≤ 1,
in addition to LBαt ≤ 1.

By (38) and Proposition 2,
∑∞

t=1 αt ‖∇f(xt)‖2 < ∞ almost surely and f(xt) converges
almost surely. By (39) and Proposition 2,

∑∞
t=1 αt(f(xt) − f∗) < ∞ almost surely and

‖xt+1 − x∗‖ converges almost surely. Since
∑∞

t=1 αt = ∞, the almost sure limit of f(xt)
must be f∗. By almost sure convergence of ‖xt+1 − x∗‖, {xt} almost surely has a convergent
subsequence. The limit of this subsequence, denoted by x(ω) must satisfy f(x(ω)) = f∗.
Hence x(ω) is also a minimizer. Since the choice of minimizer in (39) is arbitrary, we must
have xt converges almost surely to some random variable. It follows that ∇f(xt) exists
almost surely and the limit must be 0 (either by using the fact that the limit of xt is a
minimizer almost surely or that

∑∞
t=1 αt ‖∇f(xt)‖2 <∞ almost surely and

∑∞
t=1 αt =∞).

We now derive a concrete convergence rate for f(xt) − f∗. Let Yt = f(xt) − f∗. By
(38) (and dropping the term −1

2αt ‖∇f(xt)‖2), (37) of Lemma 19 holds with c1 = LA
2 and

c2 = LC
2 . The conclusion follows from that of Lemma 19.

2) We now prove the case for SHB. Recall (23) as

Et
[
f(zt+1)− f∗ + ‖vt+1‖2

]
≤ (1 + c6α

2
t )[f(zt)− f∗ + ‖vt‖2]− (1− λ) ‖vt‖2

− cαt ‖∇f(zt)‖2 + c4α
2
t , (40)

where c6 = max(c1, c2) defined in (23). Proposition 2 implies that
∑∞

t=1 ‖vt‖
2 <∞, f(zt)−

f∗ converges, and
∑∞

t=1 αt ‖∇f(zt)‖2 <∞, almost surely.
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Similar to (39), by convexity of f and iterates of SHB in (18), we obtain

Et
[
‖zt+1 − x∗‖2

]
≤ ‖zt − x∗‖2 −

2αt
1− β

〈∇f(xt), zt − x∗〉

+ α2
t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
= ‖zt − x∗‖2 −

2αt
1− β

〈∇f(zt), zt − x∗〉+
2αt

1− β
〈∇f(zt)− f(xt), zt − x∗〉

+ α2
t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ ‖zt − x∗‖2 −

2αt
1− β

(
f(zt)− f∗ +

1

2L
‖∇f(zt)‖2

)
+

β2L2

(1− β)4
‖vt‖2

+ α2
t ‖zt − x∗‖

2 + α2
t

[
A(f(xt)− f∗) +B ‖∇f(xt)‖2 + C

]
≤ (1 + α2

t ) ‖zt − x∗‖
2 − (

2αt
1− β

− c7α2
t )(f(zt)− f∗)

−
(

1

L(1− β)
αt − c8α2

t

)
‖∇f(zt)‖2 + c9 ‖vt‖2 + α2

tC, (41)

where c7, c8, and c9 are some positive constants. The first inequality above follows from
convexity of f , L-Lipschitzness of ∇f , and the elementary inequality 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2.
The third inequality follows from (21) and (22). By (41), choosing αt sufficiently small leads
to

Et
[
‖zt+1 − x∗‖2

]
≤ (1 + α2

t ) ‖zt − x∗‖
2 − αt

1− β
(f(zt)− f∗ + ‖vt‖2) + c10 ‖vt‖2 + α2

tC,

(42)

where αt
1−β + c9 ≤ c10. Since

∑∞
t=1 ‖vt‖

2 < ∞ almost surely, Proposition 2 implies that∑∞
t=1

αt
1−β (f(zt) − f∗ + ‖vt‖2) < ∞ and ‖zt − x∗‖2 converges almost surely. By a similar

argument as in the proof for SGD, we have zt converges to a minimizer almost surely. To
obtain a concrete convergence rate, let Yt = f(zt) − f∗ + ‖vt‖2. By the choice of αt and
Lemma 19, we have

Yt = f(zt)− f∗ + ‖vt‖2 = O

(
1

t
1
3
−ε

)
, almost surely.

From (21) and the fact that

‖∇f(zt)‖2 ≤ 2L(f(zt)− f∗),

which is from (4), we obtain

f(xt)− f∗ = O

(
1

t
1
3
−ε

)
, almost surely.

3) The case for SNAG is very similar in view of (28) and omitted.
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Appendix E. Proof of Theorem 17

This section is dedicated to the proof of Theorem 17.

E.1 Preliminary convergence results and property of limit sets

Consider the continuous-time gradient flow for the objective function f :

ẋ = −∇f(x). (43)

Let {Φt} denote the flow associated with (43), i.e., Φt maps any initial condition x to the
value of the solution to (43) at time t, Φt(x).

The following lemma is purely deterministic, but can be used to show limit points of the
sequences produced by SHB (16) and SNAG (24) basically enjoy the same properties as the
omega limit sets of the trajectories of the gradient flow (43).

Lemma 20 (Benaïm (1996)) Let {zn}, {un}, and {bn} be sequences in Rd such that

zn+1 = zn + αn(−∇f(zn) + un + bn),

where {αn} is a positive decreasing sequence satisfying
∑∞

n=1 αn =∞ and limn→∞ αn = 0.
Assume:

1. {zn} is bounded;

2. limn→∞ bn = 0; and

3. for each T > 0,

lim
n→∞

sup
{k: 0≤τk−τn≤T}

∥∥∥∥∥
k−1∑
i=n

αiui

∥∥∥∥∥ = 0,

where τn =
∑n

i=1 αi. Then the limit set of {zn} is a nonempty, compact, connected set
which is invariant under the flow {Φt} of (43). Furthermore, the limit set belongs to
the chain recurrent set of (43).

We state another lemma that asserts convergence properties of the sequences produced
by SHB (18) and SNAG (26). While its proof is already included in the proof of Theorem
11 in Appendix C, we state the conclusions separately for clarity.

Lemma 21 Suppose that Assumptions 1 and 4 hold. Furthermore, {αn} satisfies

∞∑
n=1

αn =∞,
∞∑
n=1

α2
n <∞.

Then the following results hold:

1. ∇f(xn)→ 0, ∇f(zn)→ 0, and vn → 0, as n→∞, almost surely;

2.
∑n

i=1 αi(∇f(xn)−gn) is a martingale bounded in L2 and hence converges almost surely.
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Based on these two lemmas, we can prove the following result.

Proposition 22 Suppose that Assumptions 1, 2, and 4 and {αn} is a positive decreasing
sequence that satisfies

∞∑
n=1

αn =∞,
∞∑
n=1

α2
n <∞.

Then the sequence {zn} obtained from SHB (16) and SNAG (24) almost surely satisfies the
assumptions of Lemma 20. Hence its limit set satisfies the conclusion of Lemma 20 almost
surely.

Proof For SHB, write

zn+1 = zn +
αn

1− β
(−∇f(zn) + (∇f(xn)− gn) + (∇f(zn)−∇f(xn))) .

Let un = ∇f(xn)− gn and bn = ∇f(zn)−∇f(xn). Then Lemma 21 implies that bn → 0 as
n→∞ and

∑n
i=1 αiui converges. It follows that

lim
n→∞

sup
k≥n+1

∥∥∥∥∥
k−1∑
i=n

αiui

∥∥∥∥∥ = 0.

Boundedness of {zn} follows from the fact that ∇f(zn) → 0 as n → ∞ (Lemma 21) and
Assumption 2.

Hence the assumptions of Lemma 20 are met and its conclusion follows. The proof for
SNAG (24) is almost identical and therefore omitted.

Remark 23 Since zn = xn − β
1−β vn and vn → 0, the limit sets of {xn} and {zn} coincide

and hence both enjoy the property stated in the conclusion of Lemma 20.

E.2 Lyapunov analysis around strict saddle manifold

The saddle avoidance analysis relies on the construction of a Lyapunov function around the
saddle manifold due to (Benaïm, 1999, Proposition 9.5).

In this section, we assume that f is three times continuously differentiable6. Since S is
a strict saddle manifold, the center manifold theorem (Robinson, 2012; Shub, 1987) implies
that there exists a submanifold M of Rd, namely the center stable manifold of S, that is
locally invariant under the flow {Φt} in the sense that there exists a neighborhood U of S
and a positive time t0 such that Φt(U ∩M) ⊂ M for all |t| ≤ t0. Furthermore, for each
x∗ ∈ S, we have Rd = Tx∗M⊕Eux∗ , where E

u
x∗ is the unstable subspace of R

n for (43) at x∗.
Due to the assumption on the strict saddle manifold, the dimension of Eux∗ is at least one

6. This stringent requirement is to ensure that the vector field of the gradient flow (43) is twice continuously
differentiable, which in turn ensures that V defined in Proposition 24 is twice continuously differentiable
((Benaïm, 1999, Proposition 9.5); cf. (Benaïm and Hirsch, 1995, beginning of Section 3 and proof of
Proposition 3.1) for more clarity on the smoothness requirement of the vector field.)
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and the dimension ofM is at most d− 1. Relying on center manifold theory and geometric
arguments, one can construct a Lyapunov function V based on the following function

ρ(y) = ‖Π(y)− y‖ ,

which maps from a neighborhood U0 of S to R≥0, where Π(y) projects y on M along the
unstable directions of (43). The following result was proved in Benaïm (1999) (see also
Mertikopoulos et al. (2020) for more specific discussions to strict saddle manifold as defined
by Definition 16).

Proposition 24 (Benaïm (1999)) There exists a compact neighborhood US of S and pos-
itive constants τ and c such that the function V : US → R given by

V (x) =

∫ τ

0
ρ (Φ−t(x)) dt,

where {Φt} is the flow generated by (43), satisfies the following properties:

1. V is twice continuously differentiable on US \M. For all x ∈ US∩M, V admits a right
derivative DV (x) : Rd → Rd which is Lipschitz, convex, and positively homogeneous.

2. For all x ∈ US ,
DV (x)[−∇f(x)] ≥ cV (x).

3. There exists a positive constant C such that, for all x ∈ US ,

DV (x)[v] ≥ −C ‖v‖ , (44)

for all v ∈ Rd.

4. There exists a constant γ > 0 and a neighborhood V of the origin of Rd such that for
all x ∈ US and v ∈ V , we have

V (x+ v) ≥ V (x) +DV (x)[v]− γ

2
‖v‖2 . (45)

5. There exists a constant m > 0 such that for all x ∈ US \M,

‖∇V (x)‖ ≥ m,

and for all x ∈ US ∩M and v ∈ Rd,

DV (x)[v] ≥ m ‖v −DΠ(x)v‖ .

For more details on this construction and proof of the above proposition7, readers are
referred to (Benaïm, 1999, Proposition 9.5) (see also (Mertikopoulos et al., 2020, Appendix
C)). For more background information on the topic, we refer the readers to Benaïm and
Hirsch (1995); Benaïm (1999); Lee (2012); Shub (1987); Robinson (2012).

7. Proposition 24(3) was not explicitly stated in Benaïm (1999), but can be easily derived from (35) and
(36) in the proof of (Benaïm, 1999, Proposition 9.5).
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E.3 Almost sure saddle avoidance analysis

In this section, we analyze almost sure avoidance of any strict saddle manifold. The following
lemma due to (Pemantle, 1992, Lemma 5.5) plays an important role in the probabilistic
argument of the proof.

Lemma 25 (Pemantle (1992)) Let {Sn} be a nonnegative stochastic process defined as
Sn = S1 +

∑n
i=2 Zi, where {Zn} is adapted to a filtration {Fn}. Suppose that {αn} satisfies

αn = Θ
(

1
np

)
, where 1

2 < p ≤ 1. Suppose there exist positive constants b1, b2, and b3 such
that the following hold almost surely for all n sufficiently large:

1. ‖Zn+1‖ ≤ b1αn;

2. 1{Sn>b2αn} E[Zn+1 | Fn] ≥ 0;

3. E[S2
n+1 − S2

n | Fn] ≥ b3α2
n.

Then P(limn→∞ Sn = 0) = 0.

The lemma was proved in (Pemantle, 1992, Lemma 5.5) for p = 1, but the proof for
1
2 < p ≤ 1 is the same. The same result was proved and used in (Pemantle, 1990, Theorem
1), but not explicitly stated as a standalone lemma. See (Benaïm, 1999, Lemma 9.6) for a
more general form of this result, with a proof using the same technique as Pemantle (1992).

We need another technical lemma that states when the sequence {xn} is uniformly
bounded, then by Assumption 5, we can obtain a uniform rate of convergence by vn to zero,
at least for {αn} chosen as in Lemma 25.

Lemma 26 Let {xn} and {vn} be obtained from SHB (18) or SNAG (26) with {αn} satis-
fying αn = Θ( 1

np ), where 1
2 < p ≤ 1. Suppose that there exists some constant B0 > 0 such

that ‖xn‖ ≤ B0 for all n ≥ 1. Then ‖vn‖ = O( 1
np ).

Proof For SHB, we have

‖vn+1‖2 = β2 ‖vn‖2 − 2βαn〈gn, vn〉+ α2
n ‖gn‖

2 .

For SNAG, we have

‖vn+1‖2 = β2 ‖vn‖2 − 2β2αn〈gn, vn〉+ β2α2
n ‖gn‖

2 .

In either case, using the elementary inequality that 2〈a, b〉 ≤ ε ‖a‖2+ 1
ε ‖b‖

2, we can find two
constants ε > 0 and C0 > 0, where C0 only depends on β and ε > 0 can be made arbitrarily
small, such that

‖vn+1‖2 ≤ (β2 + ε) ‖vn‖2 + C0α
2
n ‖gn‖

2 .

We can choose ε such that β2 + ε < 1. Let λ = β2 + ε. By Assumption 5, there exists
another constant C1 such that

‖vn+1‖2 ≤ λ ‖vn‖2 + C1α
2
n.
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First, observe that the above implies

‖vn+1‖2 − ‖vn‖2 ≤ C1α
2
n.

Summing both sides from 1 to m shows ‖vm+1‖2 ≤ ‖v1‖2 + C1
∑m

n=1 α
2
n, which shows that{

‖vn‖2
}
is uniformly bounded, provided the uniform bound on {‖xn‖}.

To show a specific rate estimate for {‖vn‖}, we claim that for n sufficiently large, ‖vn‖2 =
O
(

1
n2p

)
, i.e., there exists some constant C2 such that ‖vn‖2 ≤ C2

n2p . Since α2
n = Θ

(
1
n2p

)
,

there exist positive constants A1 and B1 such that

A1

n2p
≤ α2

n ≤
B1

n2p
,

for all n. Fix any µ ∈ (λ, 1). Choose C2 such that C2 ≥ C1B1
µ−λ . By induction, suppose

‖vn‖2 ≤ C2
n2p holds for some n such that n2p

(n+1)2p
≥ µ (which also holds for all subsequent n).

We have

‖vn+1‖2 ≤ λ ‖vn‖2 + C1α
2
n ≤

λC2

n2p
+
C1B1

n2p

=
C2

(n+ 1)2p
− C2

(n+ 1)2p
+
λC2

n2p
+
C1B1

n2p

≤ C2

(n+ 1)2p
− µC2 − λC2 − C1B1

n2p

≤ C2

(n+ 1)2p
,

by the choice of C2. Hence the estimate holds for all n sufficiently large.

With these preliminary results, we are ready to prove Theorem 17.
Proof of Theorem 17

Let US be the neighborhood defined in Proposition 24. Consider the sequences {xn} and
{zn} generated from SHB or SNAG. For each n ≥ 1, let Fn be the σ-algebra generated by
{x1, . . . , xn}. Without loss of generality, assume z1 = x1 ∈ US (the proof for zN ∈ US for
any N is identical). For any k ≥ 1, define the stopping time

T kS = inf {n ≥ 1 : zn 6∈ US or ‖xn‖ > k} ,

which is the first exit time of {zn} from US or {xn} from the k-radius ball. Define two
sequences of random variables {Zn} and {Sn} as follows8:

Zn+1 = (V (zn+1)− V (zn))1{n≤TkS} + αn1{n>TkS}, n ≥ 1, (46)

and

S1 = V (z1), Sn = S1 +

n∑
i=2

Zi, n ≥ 2. (47)

8. Note that we should have a superscript k on {Zn} and {Sn} as they depend on k, but we omit it to
simplify the notation.

37



Liu and Yuan

It follows that {Zn} is adapted to {Fn}. Clearly, if T kS =∞, then Sn = V (zn) for all n ≥ 1
by telescoping.

We verify that {Zn} and {Sn} defined above satisfy the conditions of Lemma 25.
Condition 1: It is clearly satisfied if n > T kS . If n ≤ T kS , since V is locally Lipschitz

and the stochastic gradient is locally bounded (Assumption 5), we have ‖Zn+1‖ ≤ b1αn for
some b1 > 0.

Condition 2: If n > T kS , we have Zn+1 = αn and

1{n>TkS} E[Zn+1 | Fn] ≥ 1{n>TkS}αn ≥ 0. (48)

If n ≤ T kS , we have zn ∈ US and, by Proposition 24,

Zn+1 = V (zn+1)− V (zn) ≥ DV (zn)[− αn
1− β

gn]− γα2
n

2(1− β)2
‖gn‖2

≥ αn
1− β

DV (zn)[−∇f(zn)] +
αn

1− β
DV (zn)[∇f(zn)− gn]− γα2

n

2(1− β)2
‖gn‖2

≥ αnc

1− β
V (zn) +

αn
1− β

DV (zn)[∇f(zn)− gn]− C1α
2
n, (49)

where C1 > 0 is a constant that can be derived from the bound k for {xn} and Assumption
4. Taking the conditional expectation w.r.t. Fn gives

E[Zn+1 | Fn] ≥ αnc

1− β
V (zn) +

αn
1− β

E[DV (zn)[∇f(zn)− gn] | Fn]− C1α
2
n. (50)

Now we can use convexity of the right derivative of V (Proposition 24) and the conditional
Jensen’s inequality to obtain

E[DV (zn)[∇f(zn)− gn] | Fn] ≥ DV (zn)[∇f(zn)− E[gn | Fn]]

≥ DV (zn)[∇f(zn)−∇f(xn)]

≥ −C2 ‖vn‖ ,

where C2 > 0 is a constant that can be derived from Proposition 24, the Lipschitz continuity
of ∇f , and (17). Putting this back to (50) and using Lemma 26, we obtain

E[Zn+1 | Fn] ≥ αnc

1− β
V (zn)− αnC2 ‖vn‖

1− β
− C1α

2
n ≥

αnc

1− β
V (zn)− C3α

2
n, (51)

for some C3 > 0. In other words, we have shown

1{n≤TkS} E[Zn+1 | Fn] ≥ 1{n≤TkS}

(
αnc

1− β
V (zn)− C3α

2
n

)
. (52)

Clearly, if we choose b2 = C3(1−β)
c , then Sn = V (zn) > b2αn implies E[Zn+1 | Fn] ≥ 0.

Condition 2 is verified.
Condition 3: We have

E[S2
n+1 − S2

n | Fn] = E[Z2
n+1 + 2SnZn+1 | Fn]

= E[Z2
n+1 | Fn] + 2Sn E[Zn+1 | Fn].
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If Sn > b2αn, condition 2 implies that E[Zn+1 | Fn] ≥ 0 and hence the right-hand side of
the above equation is non-negative. If Sn ≤ b2αn, it follows from (48) and (52) that

2Sn E[Zn+1 | Fn] ≥ −2b2C3α
3
n.

Hence, to verify condition 3, it suffices to show that there exists a constant b4 > 0 such that

E[Z2
n+1 | Fn] ≥ b4α2

n,

for all n sufficiently large. If n > T kS , this obviously holds. For n ≤ T kS , we investigate
E[Z+

n+1 | Fn]. In view of Jensen’s inequality

E[Z2
n+1 | Fn] ≥ E[Z+

n+1 | Fn]2,

we only need to show E[Z+
n+1 | Fn] = Ω(αn). Consider two cases: (i) zn ∈ M; (ii) zn 6∈ M.

If zn 6∈ M, the right derivative in (49) becomes the gradient and from it we obtain

Zn+1 ≥
αn

1− β
〈∇V (zn), (∇f(zn)−∇f(xn)) + (∇f(xn)− gn)〉 − C1α

2
n

≥ −αnC2

1− β
‖vn‖+

αn
1− β

〈∇V (zn),∇f(xn)− gn〉 − C1α
2
n

≥ αn
1− β

〈∇V (zn),∇f(xn)− gn〉 − C3α
2
n, (53)

where C1, C2, and C3 are as defined above in the proof for condition 2. Taking conditional
expectation on the positive part, we obtain

E[Z+
n+1 | Fn] ≥ αn

1− β
E[〈∇V (zn),∇f(xn)− gn〉+ | Fn]− C3α

2
n

≥ αn
1− β

‖∇V (zn)‖ b− C3α
2
n

≥ αnmb

1− β
− C3α

2
n, (54)

where we used Assumption 6 on the unit vector −∇V (zn)/ ‖∇V (zn)‖ and then Proposition
24. Hence we do have E[Z+

n+1 | Fn] = Ω(αn) in this case.
If zn ∈ M, since the dimension ofM is at most d − 1, we can choose a unit vector un

such that 〈un, y〉 = 0 for all y ∈ TznM. Since DΠ(zn) takes values in TznM (Benaïm, 1999,
p. 51), we have 〈un, DΠ(zn)v〉 = 0 for any v ∈ Rd. In view of (49) and by Proposition 24,
we estimate

DV (zn)[∇f(zn)− gn] ≥ m ‖(∇f(zn)− gn)−DΠ(zn)[∇f(zn)− gn]‖
≥ 〈un, (∇f(zn)− gn)−DΠ(zn)[∇f(zn)− gn]〉
= 〈un,∇f(zn)− gn〉, (55)

where the first inequality is by Proposition 24, the second one is Cauchy-Schwartz, and the
equality is by the choice of un above. Continuing from (55), we obtain

〈un,∇f(zn)− gn〉 = 〈un,∇f(zn)−∇f(xn)〉+ 〈un,∇f(xn)− gn〉

≥ − Lβ

1− β
‖vn‖+ 〈un,∇f(xn)− gn〉, (56)
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where we used Lipschitz continuity of ∇f . Putting (55) and (56) in (49) and using Lemma
26 and Assumption 6, we obtain

E[Z+
n+1 | Fn] ≥ αn

1− β
E[〈un,∇f(xn)− gn〉+ | Fn]− C4α

2
n ≥

αn
1− β

b− C4α
2
n,

for sufficiently large n, where b > 0 is from Assumption 6, and C4 can be derived from
Lemma 26. Hence we have E[Z+

n+1 | Fn] = Ω(αn) in the second case as well.
Since conditions 1–3 of Lemma 25 are verified, we conclude by Lemma 25 that P(Sn →

0 as n → ∞) = 0. Recall the slight abuse of notation (see footnote on page 37), we have
in fact proved P(Skn → 0 as n → ∞) = 0 for each k ≥ 1. We now complete the proof of
P(xn → S as n→∞) = 0 (conclusion of Theorem 17) in a few steps.

1) Let Ω0 denote the event on which the conclusion of Lemma 21 holds. Then P(Ω0) = 1.
Let Bk denote the event {supn ‖xn‖ ≤ k} ∩ Ω0. By Assumption 2, almost every {xn} will
be ultimately bounded, because ∇f(xn) → 0 as n → ∞ and lim inf‖x‖→∞ ‖∇f(x)‖ > 0. It
follows that ∪∞k=1Bk = Ω0.

2) We prove that P(T kS =∞) = 0 for any k. Suppose that there exists some k such that
P(T kS = ∞) > 0. For almost every path in

{
T kS =∞

}
, by Proposition 22, the limit set of

{zn}, denoted by L({zn}) forms an invariant subset of US under the flow {Φt}. Pick any
limit point z ∈ L({zn}) ⊂ US , we have Φt(z) ∈ L({zn}) ⊂ US for all t ≥ 0. By Proposition
24(2), V (Φt(z)) ≥ ectV (z) for all t > 0, where c > 0. By compactness of US , continuity of
V , and the fact that V is nonnegative, we must have V (z) = 0. Recall that, when T kS =∞,
by a telescoping sum, Skn = V (zn) for all n ≥ 1. It follows that Skn = V (zn) → 0. Since
P(Skn → 0 as n → ∞) = 0 for each k, we must have P(T kS = ∞) = 0. It follows that
P(T kS <∞) = 1 for all k.

3) On each Bk, since we have T kS < ∞ almost surely, it follows that {zn} eventually
exits US (in fact infinitely often by repeating the argument in this proof) almost surely. As
a result, zn 6→ S as n→∞ on Bk for each k almost surely, and hence entirely on Ω0. Since
xn = zn− β

1−β vn and vn → 0 almost surely (Lemma 21), we have xn 6→ S as n→∞ on Ω0.
The proof is complete by noticing P(Ω0) = 1. �
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