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Abstract

This article presents a novel method for causal discovery with generalized structural equation models
suited for analyzing diverse types of outcomes, including discrete, continuous, and mixed data.
Causal discovery often faces challenges due to unmeasured confounders that hinder the identification
of causal relationships. The proposed approach addresses this issue by developing two peeling
algorithms (bottom-up and top-down) to ascertain causal relationships and valid instruments. This
approach first reconstructs a super-graph to represent ancestral relationships between variables, using
a peeling algorithm based on nodewise GLM regressions that exploit relationships between primary
and instrumental variables. Then, it estimates parent-child effects from the ancestral relationships
using another peeling algorithm while deconfounding a child’s model with information borrowed from
its parents’ models. The article offers a theoretical analysis of the proposed approach, establishing
conditions for model identifiability and providing statistical guarantees for accurately discovering
parent-child relationships via the peeling algorithms. Furthermore, the article presents numerical
experiments showcasing the effectiveness of our approach in comparison to state-of-the-art structure
learning methods without confounders. Lastly, it demonstrates an application to Alzheimer’s disease
(AD), highlighting the method’s utility in constructing gene-to-gene and gene-to-disease regulatory
networks involving Single Nucleotide Polymorphisms (SNPs) for healthy and AD subjects.

Keywords: Generalized linear models, large directed acyclic graphs, hierarchy, nonconvex mini-
mization, mixed graphical models

1. Introduction

Discovering causal relationships among variables is crucial for scientific inquiries in various fields,
including genetics, artificial intelligence, and social science. For instance, in genetics, biologists
aim to uncover gene-gene regulatory relationships, while neuroscientists focus on causal influences
between different regions of interest in a patient’s brain. However, unmeasured confounders can arise
when randomized experiments are unethical or infeasible, which distort the discovery process and
obscure the relationship between exposures and the outcome variable, leading to false discoveries.
Consider our motivating case study on inferring regulatory networks from the Alzheimer’s disease
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gene expression data. We study a subset of genes while other genes are not included and removed by
the prescreening procedure, which introduces unmeasured confounders. Meanwhile, in neuroscience,
existing technologies can only record from a small subset of neurons in the brain at once, also leading
to confounders. This article proposes a novel approach to causal discovery using instrumental
variables to correct confounding effects, yielding accurate causal discovery, particularly for discrete
outcomes such as binary, count-valued, and multinomial.

Causal discovery necessitates estimating parent-child relationships, or equivalently, the graph
structure of a directed acyclic graph (DAG). DAGs are an effective tool for describing directional
effects in causal discovery, but reconstructing a DAG structure poses computational challenges due
to the acyclicity constraint. Two popular approaches for reconstructing a Gaussian DAG structure
without confounders are the sequential conditional independence tests, such as the PC algorithm
(Spirtes et al. 2000), and the likelihood-based methods subject to the acyclicity constraint (Zheng
et al. 2018; Yuan et al. 2019). Recently, Li et al. (2023) proposed a linear causal discovery method
without confounders through interventions. Going beyond, for non-Gaussian outcomes, Zheng et al.
(2020) extended the algebraic characterization of DAGs by Zheng et al. (2018) to nonparametric
and semiparametric models including GLMs; Shi et al. (2023) proposed a new hypothesis testing
method for nonlinear DAG models. However, despite recent work, causal discovery for discrete
outcome data, particularly in the presence of confounders, has received limited attention, and
unique challenges arise when handling such data. One challenge is the non-identifiability of the
logistic DAG model, even without confounders (Park and Raskutti 2018). Moreover, in the presence
of confounders, unmeasured confounders can distort causal effect estimation, making structural
equation models non-identifiable. Another challenge is the typically intractable form of the marginal
likelihood, despite an interpretable conditional likelihood and data-specific noise or variance. It
also remains unclear how to separate confounders from causal effects in the discovery process.
Some recent proposals focus on simple situations, such as the two-stage least squares (Theil 1992),
an instrumental variable (IV) regression of continuous outcomes given a known causal order, the
two-stage predictor substitution (2SPS, Cai et al. (2011)) and two-stage residual inclusion (2SRI,
Hausman (1978); Terza et al. (2008)) for general nonlinear outcomes, including discrete outcome
data. However, none of these approaches apply to causal discovery with an unknown causal order
and multiple primary variables.

This article proposes a new approach called GAMPI (Generalized Linear Models with Peeling
and Instruments) for causal discovery of multiple primary variables from various data types. GAMPI
involves a two-step process. First, we propose a fidelity model as a simple surrogate for the original
intractable marginal model, which retains intervention characteristics. Then, we design a bottom-
up peeling algorithm to reconstruct the super-graph consisting of ancestral relationships while
identifying valid instrumental variables (IVs) for each primary variable by exploiting the connections
between the primary and instrumental variables to determine the causal order. For each primary
variable, a constrained generalized linear model (GLM, Nelder and Wedderburn (1972)) subject to
the truncated `1-penalty constraint (TLP, Shen et al. (2012)) is fit on the instrumental variables
to identify nonzero-coefficient IVs, followed by a difference-of-convex (DC) algorithm to solve
the corresponding nonconvex minimization. In the second step, given the identified super-graph,
we develop a top-down peeling algorithm to estimate the direct causal effects of each primary
variable while identifying its parents from ancestors. In this peeling process, we propose a novel
deconfounding approach using the estimated confounders from the parents’ equation models to
correct the confounding effects of a child’s equation model. This approach fits a TLP-constrained
GLM to each primary variable on its ancestors and residuals from its ancestors’ models to identify
parents and estimate the direct causal effect of each parent-child relationship.
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This article contributes to causal discovery. It introduces a comprehensive approach capable of
handling diverse data types with unobserved confounders, ensuring the identification of parent-child
relationships through valid instruments for each primary variable. This involves generalized linear
models, addressing both discrete and mixed (continuous and discrete) outcomes while considering
confounders beyond Gaussian data without confounders by Li et al. (2023). In particular,

(1) It establishes the identifiability of generalized structural equation models with confounders
and instruments, valid and invalid. This result does not require additional assumptions for
each primary variable with a nonlinear link, unlike the Gaussian case which requires valid
instrumental variables to be the majority of the instrumental variables (Kang et al. 2016;
Windmeijer et al. 2019).

(2) It introduces a fidelity model to handle intractable likelihoods and eliminate the confounding
effects for identifying ancestral relationships.

(3) It designs a projection-based difference-convex (DC) algorithm to solve nonconvex minimization
for a constrained generalized linear model regression. This algorithm delivers a global minimizer
with high probability and a computational complexity of q2 max(q, n) logK0, where q, n, and
K0 are the numbers of regressors, the sample size, and the nonzero regression coefficients.

(4) It develops bottom-up and top-down peeling algorithms to estimate the causal order and the
causal effects for primary variables. These algorithms require solving at most p generalized
linear model regressions subject to the truncated `1-penalty constraint, where p is the number
of primary variables.

(5) It shows that GAMPI yields the correct discovery of all parent-child relationships, providing
statistical guarantees for GAMPI.

(6) It demonstrates the superior performance of GAMPI for logistic and Poisson models over state-
of-the-art methods, NOTEARS (Zheng et al. 2018, 2020) and a faster version of NOTEARS,
called DAGMA (Bello et al. 2022), especially in the presence of confounders. It suggests that
GAMPI corrects the confounding effects without imposing additional noise variance structures
to reconstruct a causal graph.

The rest of the article is structured as follows. Section 2 introduces generalized structural
equation models with confounders and instruments. Section 3 introduces the fidelity model and
three algorithms, one DC and two peeling algorithms, for identifying the ancestral and then parent-
child relationships. Section 4 investigates the statistical properties of the proposed approach. Section
5 performs simulation studies, followed by Section 6 with an application to Alzheimer’s disease to
reconstruct a gene-to-gene and gene-to-disease regulatory network. Section 7 concludes the article.
The Appendix contains illustrative examples, technical proofs, and additional simulations.

2. Generalized Structural Mean Models

2.1 Directed Acyclic Graphs, Confounders, and Interventions

Given a vector of primary variables of interest Y = (Y1, . . . , Yp)
>, the joint probability of a

generalized structural equation model (SEM, Pearl (2000)) with confounders h = (h1, . . . , hp)
> and

instrumental variables X = (X1, . . . , Xq)
> can be factorized as:

P (Y |X,h) =

p∏
j=1

P
(
Yj |Y pa(j),X, hj

)
, (1)
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where P
(
Yj |Y pa(j),X, hj

)
denotes the conditional probability of Yj given Y pa(j),X, hj , which

follows an exponential family distribution. Here, unmeasured confounders refer to variables that are
not included in the model, but nonetheless affect the primary variables of interest. Confounders hj
and hj′ can be correlated among equations for j 6= j′. An instrumental variable (IV) is a variable
that affects the primary variables of interest, but not vice versa, i.e., the primary variable should
not have an impact on the IVs. In practice, one may choose candidate IV sets based on scientific
knowledge, as in Section 6. Note that (1) characterizes a DAG under the acyclicity constraint.
Moreover, the conditional distribution of Yj is characterized by a generalized linear model:

ψj(E
[
Yj |Y pa(j),X, hj

]
) = U>pa(j),jY pa(j) +W>

in(j),jX in(j) + hj , j = 1, . . . , p, (2)

where ψj(·) is a monotone link function for a GLM chosen to be appropriate for the data type of Yj
(cf. Table 1), pa(j) ≡ {k : ukj 6= 0} = {k : Yk → Yj} denotes a set of parent variables of Yj , defined
by the parent-child relationship Yk → Yj , in(j) ≡ {l : wlj 6= 0} = {l : Xl → Yj} denotes a set of
the associated instrumental variables of Yj , defined by an intervention from Xl to Yj : Xl → Yj ,
and Y A = (Y k1 , · · · ,Y kM )>, km ∈ A, is a sub-vector of Y indexed by A. Here, U = (ukj) and
W = (wlj) are the p × p adjacency and q × p intervention matrices, and Upa(j),j = (ukj)k∈pa(j)

and W in(j),j = (wlj)l∈in(j) are sub-vectors of the jth column vector of U , U•j = (ukj) and the jth

column vector of W , W •j = (wlj).
> denotes the transpose. Note that the p structural equations

can possess different ψjs, depending on the data type of Yj , reminiscent of the mixed graphical
models framework (Yang et al. 2014). We refer the reader to Section 6 for an illustrative example.

The adjacency matrix U specifies a directed acyclic graph (DAG) with each primary variable
as a node, and its non-zero elements represent directed edges between nodes. To prevent directed
cycles, U is subject to the acyclicity constraint (Zheng et al. 2018; Yuan et al. 2019).

Table 1: Examples of distributions in generalized linear models
Distribution Support Link Density

Bernoulli, Bern(µ) Integer: {0, 1} ψj(µ) = ln( µ
1−µ ) µy(1− µ)1−y

Binomial, Bin(N,µ) Integer: 0, . . . , N ψj(µ) = ln( µ
1−µ )

(
N
y

)
µy(1− µ)N−y

Gaussian, N(µ, σ2) Real: (−∞,∞) ψj(µ) = µ 1√
2πσ2

exp(− (y−µ)2
2σ2 )

Poisson, Poisson(µ) Integer: 0, 1, . . . ψj(µ) = lnµ µy exp(−µ)
y!

Multinomial, Multi(µ1, . . . , µK) K-vector of integer: [0, . . . , N ] ψj(µ) = ln( µ
1−µ )

n!
y1!...yK !

∏K
k=1 µ

yk
k

2.2 Identifiability

Model (2) encodes a DAG model describing multiple parent-child relationships, which, however, is
generally not identifiable in the presence of unmeasured confounders h. Note that (2) may not be
identifiable even in the absence of confounders h, for instance, a logistic model without instrumental
variables and confounders (Park and Raskutti 2018). However, as suggested by Proposition 1, with
suitable instruments, (2) is identifiable.

To proceed, we first categorize instrumental variables (IVs) into valid IVs and non-valid IVs
(covariates). A valid instrument Xl for primary variable Yj satisfies:

(i) Relevance: it intervenes on Yj ;
(ii) Exclusion: it does not intervene on other primary variables.
Otherwise, it is a non-valid IV that intervenes on none or multiple primary variables. Let in∗(j)

denote a set of valid IV of Yj . Next, we make some assumptions on instruments for model (2).

Assumption 1 Assume that for j = 1, . . . , p, model (2) satisfies:
(A) (Local faithfulness) Cov(Yj , Xl|X{1,··· ,q}\{l}) 6= 0 when Xl intervenes on an immediate parent

of Yj, where Cov denotes the covariance.
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(B) (Instrumental sufficiency) Each primary variable is intervened by at least one valid IV. If
ψj is linear, then the number of valid IVs for Yj is required to exceed 50% of its total number of IVs,
known as the majority rule. Otherwise, the majority rule is not required for a specific nonlinear ψj.

(C) (Validity) Confounders h = (h1, . . . , hp)
> and valid instruments X in∗ = (Xin∗(1), . . . , Xin∗(p))

>

are independent. That is, for each pair of {(l, j), l ∈ ∪pj=1in∗(j)}, Xl and hj are independent.

Assumption 1(A) guarantees that other interventions don’t offset an intervention from Xl to
Yj , while Assumption 1(B) ensures that each primary variable has at least one valid IV. Both are
necessary for the identifiability of a Gaussian structural model (Li et al. 2023). The second condition
in Assumption 1(B) requires the majority rule for a linear link, which amounts to the so-called
majority requirement for Gaussian data (Kang et al. 2016; Windmeijer et al. 2019). However, such a
majority condition is not required for a nonlinear link function. We provide an illustrative example
of the majority rule in Appendix A.2. Note Assumption 1(B) considers a GLM with the canonical
link as well as the non-canonical link, defined by model (2). Assumption 1(C) is also required by
the two-stage least squares and residual inclusion methods for the IVs (Lousdal 2018; Terza et al.
2008), known as the instrumental validity assumption. Further, the instrumental variables X and
confounders are independent by parameterization, i.e., projecting hj onto the space spanned by the
non-valid IVs. Given Assumption 1, Proposition 1 suggests the identifiability of model (2).

Proposition 1 (Identifiability) Under Assumption 1, model (2) is identifiable for model param-
eters (U ,W ).

Proposition 1 suggests that a nonlinear link function permits the identification of the parents of
a primary variable, which is unlike the linear link for Gaussian data. This new result highlights the
importance of a link function concerning the model identifiability of causal effects.

3. Method

This section estimates (U ,W ) to identify parent-child relationships and the corresponding inter-
ventions in (2). Due to the model identifiability issue of (2), direct estimation of U is impossible
without the help of instrumental variables X. To estimate parent sets pa(j), j = 1, . . . , p, and thus
U , we first need to determine the causal order, which amounts to determining ancestral relationships,
including all parent-child relationships. Here, Yk is an ancestor of Yj , or Yj is an offspring of Yk,
denoted by Yk  Yj , if there exists a directed pathway Yk → Yk1 → . . . → Ykm → Yj , where
Yk → Yk1 is a parent-child relationship defined by U . Subsequently, an(j) denotes a set of ancestors
of Yj . Once an(j) is identified, we then pinpoint pa(j) via a deconfounding approach in Section 3.3.

3.1 Fidelity Models

This subsection introduces a working model termed as the “fidelity model”, to identify all ancestral
relationships. The term “fidelity model” is named as it yields the same support as the marginal
distribution of the original model. Towards this end, we exploit the connections between a primary
variable and the associated instrumental variables, described by the conditional distribution of
Yj given X from (2), P(Yj |X), to identify the causal orders among primary variables. However,
P(Yj |X) is generally intractable even given an analytic expression of P(Yj |Y pa(j),X, hj) in (2). To
overcome this difficulty, we introduce the fidelity model that is also a GLM:

ψj(E(Yj |X)) = V >•jX, j = 1, · · · , p, (3)

where ψj is set to be the same as in (2). Here, V •j = (V1j , . . . , Vqj) is the jth column vector of a q×p
matrix V = (V •1, . . . ,V •p). This model (3) is motivated by the observation that the conditional
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distribution of Yj given X, denoted by P∗(Yj |X) and defined by (3), satisfies
∂P∗(Yj |X)
∂Xm

6= 0 if and

only if
∂P(Yj |X)
∂Xm

6= 0 based on (2) due to the properties of GLMs, as shown in Proposition 2, where
∂

∂Xm
denotes the partial derivative with respect to Xm.

The conditional distribution P∗(Yj | X) defined by the fidelity model (3) not only provides a
simple form to work with, but also has the same support as the intractable marginal distribution
P(Yj |X) under (2), although with different intervention magnitudes. In particular, a nonzero l-th
element of V •j indicates that Yk is an ancestor of Yj if Xl is a valid IV of Yk. This property permits
the identification of the super-graph characterizing all the ancestral relationships, as shown in
Proposition 3.

We define the index set of X1, · · · , Xq with nonzero coefficients in the fidelity model (3) and in

the true model P (Yj |X) marginalized from (2) as Sj = {m : Vmj 6= 0} and S̃j = {m :
∂P(Yj |X)
∂Xm

6= 0},
respectively, for j = 1, . . . , p. The following Proposition 2 establishes the connections between the
fidelity model and the marginal distribution of the true model P (Yj |X).

Proposition 2 (Support preservation) Assume that Assumption 1 is satisfied and the link
function ψjs in (2) are differentiable. Then, P∗(Yj |X) defined by the fidelity model (3) has the same

support as P (Yj |X) under the full model (2), that is, Sj = S̃j, j = 1, . . . , p.

Proposition 2 suggests that the fidelity model (3) retains the intervention structure of P(Yj |X)
in the original model concerning the presence or absence of a specific intervention. It is worth
mentioning that the fidelity model (3) eliminates the confounding effects when identifying the
support of P(Yj | X) and hence the ancestral relationships or the causal order among Y1, . . . , Yp.
This property is due to Assumption 1(C) that X are independent of confounders h. Consequently,
the confounders are marginalized for X and thus have no impact on the support of P(Yj |X).

To illustrate the fidelity model and Proposition 2, we here include a motivating example. Consider
a generalized structural equation model for binary outcomes with p = q = 5:

ψ(E[Y1|X1, h1]) = 2X1 + h1, ψ(E[Y2|Y1, X2, h2]) = 1.5Y1 + 2X2 + h2,

ψ(E[Y3|Y2, X3, h3]) = 1.5Y2 + 2X3 + h3, ψ(E[Y4|Y3, Y1, X4, h4]) = −1.5Y1 + 1.5Y3 + 2X4 + h4,

ψ(E[Y5|X5, h5]) = 2X5 + h5, (4)

where ψ1 = · · · = ψ5 = ψ is the logit link function. Here, (4) defines a DAG shown in Figure 1. Note
that marginalizing each equation in (4) over Y −j does not lead to closed-form expressions for Yj |X.

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

h1 h2 h3 h4 h5

Figure 1: Example DAG defined by model (4).

The proposed fidelity model that has the same support as the marginal model of (4) is:

ψ(E[Y1|X1]) = V11X1, ψ(E[Y3|X1, X2, X3]) = V13X1 + V23X2 + V33X3,

ψ(E[Y2|X1, X2]) = V12X1 + V22X2, ψ(E[Y4|X1, X2, X3, X4]) = V14X1 + V24X2 + V34X3 + V44X4,

ψ(E[Y5|X5]) = V55X5.
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Note that the fidelity model has the same support as the true marginal model and in the next
section, we show that ancestral relationships can be identified via V .

3.2 Identifying Ancestral Relationships

This subsection proposes a novel structure learning method to identify the ancestral relationships.
To start with, we introduce a proposition demonstrating the connections between the primary
variables and instrumental variables via V in the fidelity model.

Proposition 3 (Identification of ancestral relationships via V ) Assume that Assumption 1
is met. Then,

(a) For a valid instrument Xl, if Vlj 6= 0, then Xl intervenes on Yj or an ancestor of Yj.
(b) Yj is a leaf variable with no children if and only if there exists a valid instrument Xl such

that Vlj 6= 0 and ‖Vl•‖0 = 1.
(c) If Vlj 6= 0 and Xl is a valid instrument for Yk, then Yk is an ancestor of Yj, that is, Yk  Yj.

Proposition 3 suggests that the topological order of a DAG can be reconstructed by recursively
identifying and removing (“peeling off”) leaf variables in the graph, as long as the non-zero elements
of V are obtained. We define Yj as a leaf variable if it has no children. Next, we first introduce
a nodewise constrained GLM-based approach to estimate the non-zero elements of V and then
propose a peeling algorithm to identify the ancestral relationships from V based on Proposition 3.

3.2.1 Nodewise constrained GLM regressions

This subsection proposes nodewise constrained GLM regressions subject to the `0-constraint based
on the fidelity model to estimate nonzero elements of V in (3).

Consider the data matrix (Xn×q,Y n×p) where Xi• and Y i• refer to the ith row of X
and Y . Given independent observations (Xi•,Y i•)

n
i=1, let L(V •j) = n−1

∑n
i=1 `(Yij ,V

>
•jXi•)

denote the negative log-likelihood for a GLM, where `(Yij ,V
>
•jXi•) is the negative log-

likelihood for Yij given Xi•; refer to Table 1 and (12) for details. For example,
`(Yij ,V

>
•jXi•) =

(
−Yij

(
V >•jXi•

)
+ log(1 + exp(V >•jXi•))

)
for a logistic model.

For j = 1, . . . , p, the nodewise constrained GLM regression solves the following minimization
with a nonconvex constraint:

V̂ •j = arg min
V •j

L(V •j) subject to

q∑
l=1

I (Vlj 6= 0) ≤ Kj , (5)

where 1 ≤ Kj ≤ q is an integer-valued tuning parameter. Note that Kj ≥ 1 ensures that each
variable Yj receives at least one valid IV, as required by Assumption 1(B). Here, we impose the
`0-constraint to obtain the exact number of non-zeros as opposed to the `1 version. Note many
other penalty functions in the literature induce sparsity such as the `1-penalty (Tibshirani 1996)
and the minimax concave penalty (MCP, Zhang (2010)). However, these penalty functions do not
yield the exact number of non-zero coefficients to ensure that each variable Yj receives at least one
valid IV, i.e., Kj ≥ 1, required by Assumption 1(B).

To solve the nonconvex minimization (5), we propose a projection-based difference-convex (DC)
algorithm for efficient computation. The constrained problem is equivalent to solving a penalized
version of (5) by adding a penalty term to the objective function. Specifically, we minimize
L(V •j) + λj

∑q
l=1 I (Vlj 6= 0), where λj > 0 is a computational parameter corresponding to the

constrained parameter Kj in (5). Next, we replace the `0-indicator function with its computational
surrogate, the truncated `1-function (TLP) denoted by Jτ (·), where Jτ (z) = min(|z|/τ, 1), as
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suggested by Shen et al. (2012). We decompose Jτ into a difference of two convex functions:
Jτ (z) = S1(z)− S2(z) ≡ |z|/τ −max(|z|/τ − 1, 0), to construct an upper approximation of the cost
function iteratively. At the t-th iteration, we approximate Jτ by S1(z)−S2(z[t−1])−∇S2(z[t−1])>(z−
z[t−1]) = |z|

τ · I
(
|z[t−1]| ≤ τ

)
+ 1− I

(
|z[t−1]| ≤ τ

)
based on the DC decomposition. Then, we solve

the unconstrained minimization problem:

Ṽ
[t]

•j = arg min
Vlj

L(V •j) + γjτj

q∑
l=1

I
(∣∣∣Ṽ [t−1]

lj

∣∣∣ ≤ τj) |Vlj | , (6)

where γj = λj/τ
2
j . The DC algorithm iterates until a stopping criterion is met. In particular,

let f̄(·) denote the objective function in (6). The DC algorithm terminates at iteration T when

|f̄(Ṽ
[T ]

•j )− f̄(Ṽ
[T−1]

•j )| ≤ εtol, where εtol is the tolerance level. Finally, the estimated solution V̂ •j
is computed by projecting the penalized solution onto the constraint set

{
‖V •j‖0 ≤ Kj

}
. In this

paper, ‖ · ‖q denotes the `q-norm of a vector and ‖x‖0 =
∑

j I(xj 6= 0). In practice, we use either
5-fold cross-validation or the extended Bayesian information criterion (EBIC, Chen and Chen (2008))
to choose (τj ,Kj). We recommend EBIC due to its computational efficiency and strong empirical
performance. Algorithm 1 summarizes the DC algorithm for solving nonconvex minimization (5).

Algorithm 1: DC algorithm for nonconvex minimization (5)

1. (Initialization) Specify tuning parameters (τj ,Kj). Initialize ‖Ṽ
[0]

•j ‖0 ≤ Kj , and choose a
sequence of γj so that |Cj | ≥ Kj in Step 4.

2. (Relaxation) Compute the penalized solution Ṽ
[t]

•j of (6).

3. (Termination) Repeat Step 2 until a termination criterion is met. Compute Ṽ :

Ṽ •j = argminV•j L(V •j) with V •j ∈
(
Ṽ

[t]

•j

)T
t=1

, where T is the iteration index at termination.

4. (Projection) Let Cj = {l : |Ṽlj | > |Ṽ•j |(Kj+1)}, where |Ṽ•j |(Kj+1) is the (Kj + 1)th largest

absolute value of the coefficients. Set V̂ •j = argminV •j L(V •j) subject to Vlj = 0 for l /∈ Cj .

Remark: Computing V̂ = (V̂ •1, . . . , V̂ •p) amounts to applying Algorithm 1 p times. The
computational complexity of Algorithm 1 to solve one `0-constrained regression in (5) is the number
of DC iterations multiplied by that of solving a weighted Lasso regression for a GLM, which is
q2 max(q, n) logK0

j (Efron et al. 2004).

3.2.2 Identifying Ancestral Relationships via Peeling

Given the nonzero elements of V̂ obtained by Algorithm 1, we now introduce a bottom-up peeling
algorithm to estimate ancestral relationships through the nonzero elements of V̂ using Proposition 3.
This algorithm constructs a hierarchy of different layers of primary variables, defined by the causal
ordering of the variables. The algorithm begins with leaf variables at the bottom, and proceeds by
recursively identifying and peeling off one leaf layer of primary variables along with the associated
instrumental variables in the graph. Specifically, at iteration h, based on Proposition 3 (b), the

algorithm first identifies all leaf nodes Yk in the subgraph with V̂
[h]
lk 6= 0 and instrumental variables

Xl such that ‖V̂ [h]
l• ‖0 = 1. In practice, the condition ‖V̂ [h]

l• ‖0 = 1 may not hold due to estimation

error. To address this issue, we identify the rows of V̂
[h]

with the smallest positive `0-norm, that

is,
{
l∗ : l∗ = arg minql=1 ‖V̂

[h]
l• ‖0, s.t ‖V̂ [h]

l• ‖0 ≥ 1
}

, followed by identifying the largest absolute value

element index k∗ = arg maxpk=1

∣∣∣V̂ [h]
l∗k

∣∣∣ of the l∗th row for each l∗. By Proposition 3 (b), Xl∗ → Yk∗ .

8
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Moreover, the algorithm identifies the ancestral relationship Yk∗  Yj if an instrument Xl∗ for the

primary variable Yk∗ also satisfies V̂l∗j 6= 0 for a previously peeled off Yj , according to Proposition 3
(c). The algorithm continues by peeling off all the current leaf-instrument Xl → Yk pairs (i.e.,

removing the lth row and kth column from the current V̂
[h]

) to focus on the subgraph. This peeling
process repeats until all primary variables are removed. The super-graph Ŝ contains all the ancestral
relationships identified during this process. Lastly, the algorithm computes the causal ordering
from the super-graph Ŝ, which is defined as a linear ordering of the nodes where each node appears
before all nodes to which it has edges.

Algorithm 2: Peeling algorithm for identifying all ancestral relationships

1. (Initialization) V̂
[1]

= V̂ and Ŝ = ∅.
Begin iteration h = 1, · · · : at iteration h,
2. (Leaf-IV pairs)

(a) Identify rows of V̂
[h]

with the smallest positive `0-norm. Store indices of all IVs associated

with leaf variables in A[h] =
{
l∗ : l∗ = arg min ‖V̂ [h]

l• ‖0
}

.

(b) Identify the largest absolute value element index of the l∗th row for each l∗ ∈ A[h]:

B
[h]
l∗ =

{
k∗ : k∗ = arg max

∣∣∣V̂ [h]
l∗k

∣∣∣}. Identify all leaf-IV pairs: Xl∗ → Yk∗ . Let

B[h] =
⋃
l∗ B

[h]
l∗ .

3. (Ancestral relationships) Identify ancestral relationships Yk∗  Yj if i) Xl∗ → Yk∗ for

l∗ ∈ A[h] and ii) V̂l∗j 6= 0 where Yj has been previously removed. Update Ŝ = Ŝ ∪ {(k∗, j)}.
4. (Peeling) Remove leaf variables and associated IVs. Let V̂

[h+1]
= V̂

[h]

\(A[h],B[h]) where

V̂
[h]

\(A[h],B[h]) is a submatrix by removing the rows and columns indexed by A[h] and B[h] from

V̂
[h]

.
5. (Termination) Let h→ h+ 1 and repeat steps 2-4 until all Yj ’s are removed. Update
Ŝ = Ŝ ∪ {(k, j) : Yk → · · · → Yj in Ŝ}. Compute the causal ordering π̂ = (π̂1, · · · , π̂p) from Ŝ.
Return the ancestors and IVs identified for each Yj , (an(j), in(j)).

Algorithm 2 summarizes the peeling process for identifying all ancestral relationships or the
causal order among primary variables. We include an illustrative example of the peeling algorithm in
Appendix A.1. In Step 3, the peeling algorithm identifies all ancestral relationships via Proposition 3,
reconstructing a superset that includes all parent-child relationships. Given the superset, we propose
a deconfounding approach to identify parent-child relationships.

3.3 Identifying Parent-Child Relationships via Deconfounding

This subsection identifies parent-child relationships given the estimated ancestral relationships from
Algorithm 2.

3.3.1 Deconfounding

Given estimated ancestral relationships from the first stage, we develop a novel deconfounding
approach based on residual inclusion, called DRI, to estimate parent-child relationships in the

9
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presence of confounders. From (2),

ψj
(
E(Yj |Y pa(j),X, hj)

)
= U>pa(j),jY pa(j) +W>

in(j),jX in(j) + hj , j = 1, · · · , p, (7)

where h1, . . . , hp may be correlated. When there is no confounder, we could identify parents by
fitting a constrained GLM regression of Yj on its ancestors Y an(j) and instruments X in(j). However,
in the presence of confounders, unobserved confounders hj and hpa(j) can be correlated. Thus Yj ’s
parent variables Y pa(j) depend on hj through hpa(j), which biases the estimation of Upa(j),j as hj
is one resource of the model error for the regression of Yj .

To address the confounding issue, we propose a novel deconfounding approach, DRI, to correct the
confounding effects in the child structural equations by treating the residuals from its parent GLM
regression as predictors. In this way, this approach utilizes the connections between confounders in
a parent and its child equations. To facilitate DRI, we make the practically sensible assumption
that the confounders h1, · · · , hp are jointly normal. Assumption 2 simplifies the implementation of
DRI and makes it computationally efficient.

Assumption 2 The confounders h1, · · · , hp are jointly normal with an unknown mean and an
unknown covariance.

Remark: Assumption 2 can be relaxed to the assumption that each confounder can be represented
as a linear function of other confounders along with an independent error, hj =

∑
k βkjhk + εj . In

the literature, most assume one common underlying confounding (i.e., one h across all equations)
while we here consider a more general case of h1, · · · , hp. For complex problems, Assumption 2 is
sensible as the confounder is in fact an ensemble of many confounding effects. Under the dense
confounding setting in Figure 3, the confounder for each variable hj is added up by many independent
confounding effects from unobserved variables. Therefore, asymptotics holds and the confounders
are jointly normal by the central limit theorem. In practice, many variables are unobserved and
each is associated with many primary variables of interest, satisfying the dense confounding setting.

To implement DRI, we estimate the confounding effect hj using the parent equations for
each Yj based on Assumption 2, that is, hj |{hk, k ∈ an(j)} ∼ N(

∑
k∈an(j) αkjhk, σ

2), or hj =∑
k∈an(j) αkjhk +ej , where ej ∼ N(0, σ2) is the unobserved error orthogonal to the projection space

spanned by {hk : k ∈ an(j)}, and uncorrelated with and thus independent of {hk : k ∈ an(j)} and
Y pa(j). By Assumption 1(C) and reparameterization (projecting ej onto the space spanned by the
non-valid IVs), ej is also independent of X. Then,

ψj(E
[
Yj |Y pa(j),X, hj

]
) = U>pa(j),jY pa(j) +W>

in(j),jX in(j) +
∑

k∈an(j)

αkjhk + ej , (8)

where DRI replaces hk with the residuals ĥk estimated from the parent equations of Yj . As a result,
ej is independent of Y pa(j),X in(j),

∑
k∈an(j) αkjhk in (8), resolving the dependence issue of Y pa(j)

on hj in (7) due to confounding.
We propose a top-down algorithm to estimate parent-child relationships through deconfounding,

given the causal ordering of the primary variables π̂, and (an(j), in(j)), j = 1, . . . , p, identified by
Algorithm 2. Note that the causal ordering represents the direction of edges in a DAG in that for
every directed edge (k, j), i.e., Yk → Yj , k appears before j in the ordering. The algorithm proceeds
from the top to the bottom of a hierarchy defined by the causal order while identifying the parents
for each primary variable and iterates this process until the last element of the ordering.

The algorithm starts from a root variable Yk that has no parents. First, a GLM regression of Yk
is fit on its valid IVs X in(k) via the model: ψk(E [Yk|X]) = W>

in(k),k
X in(k). Then, we compute the

10
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residuals Yik−ϕk(Ŵ
>
in(k),kXi,in(k)) to estimate the confounding effect hik, where ϕk(·) is the inverse

link function for the k-th GLM model. It is important to note that the confounders do not bias the
estimation of residuals in root equations by the independence assumption of the IVs and confounders.
Our simulations and theory suggest that this approach works well, as in the IV regression (Johnston
et al. 2008). Alternatively, we can also fit a generalized linear mixed-effects model for root equations
when the data has repeated measurements. Details are given in Algorithm 5 of the Appendix.

The algorithm then moves to a non-root variable Yj and considers the GLM regression on its

ancestors Y an(j), its IVs X in(j), and the estimated confounder ĥk from the ancestor equations via

the model: ψj(E
[
Yj |Y pa(j),X, hj

]
) = U>an(j),jY an(j) +W>

in(j),j
X in(j) +

∑
k∈an(j) αkj ĥk + ej , where

(pa(j), hk) in (8) is replaced by (an(j), ĥk). Specifically, it fits TLP-constrained GLM regressions:

(Ŵ in(j),j , Ûan(j),j , α̂an(j),j)

= argmin
W in(j),j ,Uan(j),j ,αan(j),j

L(W in(j),j ,Uan(j),j ,αan(j),j |X in(j),Y an(j), ĥan(j))

subject to
∑

k∈an(j)

I(Ukj 6= 0) ≤ Kj ,
∑

k∈an(j)

I(αkj 6= 0) ≤ K ′j , j = 1, . . . , p, (9)

where 0 ≤ Kj ≤ |an(j)| and 0 ≤ K ′j ≤ |an(j)| can be tuned as in (5), with | · | denoting
the size of a set; W in(j),j is unconstrained so that Assumption (1)(B) continues to satisfy;

L(W in(j),j ,Uan(j),j ,αan(j),j |X in(j),Y an(j), ĥan(j)) = n−1
∑n

i=1 `(Yij ,W
>
in(j),j

Xi,in(j)+U
>
an(j),jY i,an(j)+

α>an(j),jĥi,an(j)); hi,an(j) denotes a column vector consisting of {hik : k ∈ an(j)} and α>an(j),jĥi,an(j) =∑
k∈ân(j) α̂kj ĥik. From (9), we obtain the estimated set p̂a(j) = {k ∈ an(j) : Ûkj 6= 0} ⊂ an(j), and

în(j) = in(j). Finally, we compute the residuals

ĥij = Yij − ϕj(Û
>
p̂a(j),jY i,p̂a(j) + Ŵ

>
în(j),jXi,în(j) +

∑
k∈ân(j)

α̂kj ĥik). (10)

Algorithm 3 summarizes the peeling process for identifying parent-child relationships using the
proposed deconfounders.

Algorithm 3: Peeling algorithm for estimating parent-child relationships via DRI

1. Input (an(j), in(j))pj=1 and π̂ from Algorithm 2. Input data matrix
(Yij , Xij)n×(p+q) = (Y i•,Xi•)

n
i=1 of primary variables Y n×p and instruments Xn×q.

Begin Iteration: for d = 1 · · · , p,
2. (Estimating the confounding effects via IV regression) If π̂d is a root variable indexed

by Yk, compute Ŵ in(k),k by fitting a GLM regression of Yk on X: E[Yk|X] = ϕk(W>
in(k),k

X in(k)).

Compute the residuals: ĥik = Yik − ϕk(Ŵ
>
in(k),kXi,in(k)).

3. (Deconfounding) If π̂d is a non-root variable indexed by Yj , compute

(Ŵ in(j),j , Ûan(j),j , α̂an(j),j) by fitting a TLP-constrained GLM regression of Yj in (9). Compute

the residuals ĥij in (10).

Remark: The computational complexity of Algorithm 3 amounts to solving at most p TLP-
constrained regressions in (5) of size |in(j)| + 2|an(j)| via Algorithm 1, which is of order p(p +
q)2 max(n, (p+ q)) logK0

j .
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3.3.2 Connections with 2SRI and 2SPS

DRI is reminiscent of, but fundamentally different from the two-stage predictor substitution (2SPS,
(Cai et al. 2011)) and two-stage residual inclusion (2SRI, (Hausman 1978; Terza et al. 2008)), both
of which require a known causal order between two primary variables. Similar to 2SRI, our DRI
uses estimated residuals as additional predictors in subsequent GLM regressions to deconfound.
In 2SRI, the residuals obtained at the first stage serve as an additional predictor as opposed to
replacing the endogenous variables with their predicted values in 2SPS, which is also known as
two-stage least squares for Gaussian data. However, neither applies to our situation of multiple
primary variables with an unknown causal order and different confounders among equations.

For our problem, we also include a version of predictor substitution, referred to as DPS, to
compare with DRI in the Appendix. In practice, we recommend DRI for causal discovery due to
its superior performance and theoretical guarantees, and therefore integrate it with our top-down
peeling algorithm for implementation. DRI explores the connection between parent and child
equations to eliminate the confounding effect in a child equation through the residuals, whereas
DPS cannot capture this aspect. This recommendation is consistent with the observation of Terza
et al. (2008) and Ying et al. (2019) that 2SRI suits more than 2SPS for general nonlinear outcomes,
including binary or discrete outcomes in our case. Moreover, in Algorithm 3, we use the residuals
from a GLM to estimate the unmeasured confounders. Yet, one may employ different models
to estimate the confounders based on their distribution. In Appendix B, we present a general
framework of the deconfounding algorithm and then propose a generalized linear mixed model
(GLMM) to estimate the confounders when the data has repeated measurements.

4. Theory

This section presents a novel theoretical analysis of the proposed approach, offering theoretical
guarantees even in the presence of confounders. First, we demonstrate in Theorem 4 that the
proposed DC algorithm, Algorithm 1, successfully recovers the true support of V 0, terminates within
a finite number of steps, and achieves a global minimizer for the nonconvex minimization (5), with
probability approaching one. Based on this, our bottom-up peeling algorithm, Algorithm 2, retrieves
the true super-graph S. Secondly, we prove in Theorem 5 that our top-down peeling algorithm,
Algorithm 3, accurately reconstructs the true causal graph, thereby identifying all parent-child
relationships.

Consider a generalized linear model with the canonical link, where the negative log-likelihood of
Yij given Xi• based on independent observations (Yij ,Xi•)

n
i=1 can be expressed as:

`(Yij , θ(Xi•)) = −Yijθ(Xi•) +Aj(θ(Xi•)), i = 1, . . . , n. (11)

Here, Aj(θ) represents the cumulant function of an exponential family distribution, with θ denoting
the regression function. For instance, in the case of the logistic regression, Aj(θ) = log(1 + exp(θ)).
Given the canonical link, A

′
j(θ) = E(Yj |·) = ψ−1

j (θ) = ϕj(θ)|θ=V >•jXi•
. Hence, the log-likelihood of

Yij given Xi• for the fidelity model (3) can be written as:

`(Yij ,V
>
•jXi•) = −Yij

(
V >•jXi•

)
+Aj(V

>
•jXi•), i = 1, . . . , n. (12)

Subsequently, we denote 0 as the true parameter; for example, V 0 means the true parameter
values of V . Denote S0

j = {l : V 0
lj 6= 0}. Let K0

j = ‖V 0
•j‖0 = |S0

j | and K0
max = max1≤j≤pK

0
j . The

following technical conditions are assumed for the fidelity model (3).
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Assumption 3 (GLM residuals) Assume there exists an interval [K1,K2] such that V 0
•j
>
Xi• ∈

[K1,K2]. Further, assume that for any θ ∈ [K1 − ε,K2 + ε] with some constant ε > 0, there exist
some positive constants L1 and L2, such that |A′′j (θ)| ≤ L1, |A′′′j (θ)| ≤ L2, j = 1, . . . , p, where

′′

and
′′′

denote the second and third derivatives. Moreover, {ξij}ni=1 with ξij = Yij − E[Yij | · ] is
sub-exponential with mean zero, so that for any real t > 0,

P
(∣∣n−1

n∑
i=1

ξij
∣∣ ≥ t) ≤ 2 exp

(
−min

( t2

2M2
,
t

2M

)
n
)
, j = 1, . . . , p.

Note for the fidelity model, E[Yij |X] = ϕj(V
0
•j
>
Xi•). Similar conditions have been suggested in

Assumption E.1 of Ning and Liu (2017). Assumption 3 includes a wide range of exponential family
distributions such as Poisson, and holds for a large class of GLMs including the Poisson regression.
In particular, Ning and Liu (2017) and Yang et al. (2015) computed the exact value and thus
showed the existence of L1 and L2 for specific GLMs including the logistic, exponential, and Poisson
regressions. For linear and logistic models, Assumption 3 can be relaxed to sub-Gaussian residuals
as all sub-Gaussian and bounded variables are sub-exponential (Maurer and Pontil 2021).

Assumption 4 (Restricted strong convexity) For a constant m > 0,

Λmin = min
A:|A|≤2K0

max

min
{(∆,V •j):‖∆Ac‖1≤3‖∆A‖1,V •j∈(V 0

•j−∆,V 0
•j+∆)}

∆>∇2L(V •j)∆

‖∆‖22
≥ m. (13)

Note that (13) is the restricted strong convexity (eigenvalue) condition and requires the log-likelihood
L(V •j) to be strongly convex in a neighborhood of V 0

•j , where ∇2L(V 0
•j) = X>M jX and M j is a

diagonal matrix with M j
ii = A′′j (V

0
•j
>
Xi•) depending on X and V 0 only. This condition has been

commonly used for the analysis of the error bound of parameter estimation and the convergence
analysis of optimization algorithms (Lee et al. 2015; Negahban et al. 2012; Hastie et al. 2015; Zhang
2017). Note that Assumption 4 permits correlated designs X and is a weaker condition than the
irrepresentable condition required by the Lasso (van de Geer and Bühlmann 2009).

Assumption 5 (Bounded domain for interventions) For some constants c0-c2 and C1 > 0,

‖X‖∞ ≤ c1, ‖V 0
•j‖2 ≤ C1, ‖(X>S0

j
M jXS0

j
/n)−1X>S0

j
‖∞ ≤ c2, Ωmax(X>S0

j
XS0

j
/n) ≤ c0,

where Ωmax(·) refers to the maximum eigenvalue of a matrix.

Assumption 6 (Minimum signal strength)

min
V 0
lj 6=0
|V 0
lj | ≥ 100Mc2

√
log q + log n

n
.

Assumption 6 specifies the minimal signal strength over candidate interventions. Such an assumption
has been widely used for establishing selection consistency in high-dimensional variable selection
(Zhao et al. 2018; Fan and Lv 2011).

Theorem 4 (Reconstruction of super-graph via Algorithm 1) Under Assumptions 3-6, for
j = 1, . . . , p, if the tuning parameters (τj ,Kj) of Algorithm 1 satisfy:

(1) (Computation) γj ∈ [8τ−1
j ·Mc1

√
(log q + log n)/n,m/6],
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(2) (Tuning parameters) 8Mc2

√
log q+logn

n ≤ τj ≤ 0.4 minV 0
lj 6=0 |V 0

lj |, Kj = K0
j ,

then Algorithm 1 terminates in at most 1 +
⌈
log(2K0

j )/ log 4
⌉

iterations for (5), where d·e is the

ceiling function. Moreover, for 1 ≤ j ≤ p,

P
(
Ṽ •j is not a global minimizer of (5)

)
≤ 8q exp(−2(log(q) + log(n))) = 8q−1n−2.

As a result, Algorithm 1 yields a global minimizer of (5), Ṽ •j, with probability tending to 1 as
n → ∞. Importantly, Algorithm 1, together with Algorithm 2, recovers the true super-graph S0

containing ancestral relations with probability

P(Ŝ 6= S0) ≤ 8pq−1n−2,

where Ŝ is obtained from Algorithm 2 and S0 ≡ {(k, j) : k ∈ an(j)}. Under Assumption 1(C) (i.e.,
p ≤ q), with probability tending to one, Ŝ correctly reconstructs the true super-graph S0 and thus
the causal order of Y1, . . . , Yp as n→∞.

Theorem 4 ensures the consistent reconstruction of the super-graph S0 by Algorithm 1 and Algo-
rithm 2, which characterizes ancestral relationships and determines the causal order of primary
variables. Also, it says that Algorithm 1 (DC algorithm) attains a global minimizer almost surely
as n→∞ under the data generating distribution. This result is in contrast to the strong hardness
result of Chen et al. (2019) that there does not exist a polynomial-time algorithm achieving the
globality of the `0-constrained optimization (5) in the worst-case scenario. We here show that with
probability tending to one, this problem can be solved. In other words, the probability of the
worst-case scenario tends to zero. Note that Algorithm 1 is indeed a polynomial-time algorithm
with time complexity O(q2 max(q, n) logK0

j ) for solving one `0-constrained regression in (5). In

addition, since Kj is discrete, the assumption Kj = K0
j corresponds to the requirement that the

optimal parameter λ for the Lasso has to be within a range of values for consistency. In practice,
K0
j is unknown and Kj is tuned via parameter selection methods.

Next, we establish causal graph selection consistency of the estimated causal graph based
on the estimates Û•j by Algorithm 3. On this ground, we ensure that all parent-child re-

lationships are correctly identified. Let Kj
0

= ‖U0
•j‖0, K ′j

0
= |an(j)|, s = max1≤j≤p |an(j)|,

s̃ = max1≤j≤p ‖W 0
•j‖0, and Z̃ = [X in(j),Y pa(j), ĥan(j)]. Under Assumption 5 with Z̃, ‖Z̃

>
‖∞ ≤ b1,

‖(Z̃
>
MZ̃/n)−1Z̃

>
‖∞ ≤ b2, and Ωmax(Z̃

>
Z̃/n) ≤ b0.

Theorem 5 (Reconstruction of causal graph via Algorithm 3) Under Assumptions 3-5 with
Z̃ = [X in(j),Y pa(j), ĥan(j)] in the GLM regression (9), if tuning parameters of Algorithm 3 satisfy:

(1) (Computation) γj ∈ [τ−1
j · 8Mb1

√
(log(2s+ s̃) + log p)/n,m/6],

(2) (Tuning parameters) C

√
log(2s+s̃)+log p

n ≤ τj ≤ 0.4 minU0
kj 6=0 |U0

kj |, Kj = Kj
0
, K ′j = K ′j

0
,

where C is a constant depending on b1, b2 and b0, then, Algorithm 3 reconstructs the causal graph
consistently with probability tending to one, or

P (Ê = E0)→ 1, as n→∞,

where Ê = {(k, j) : Ûkj 6= 0} and E0 = {(k, j) : U0
kj 6= 0}.
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Theorem 5 suggests that Algorithm 3 recovers the true causal graph and thus causal relationships
with probability tending to one as the sample size is sufficiently large. In Appendix D.5, we prove this
by establishing error bounds of the estimates Û•j , Ŵ •j for estimating U and W by Algorithm 3.

Remark: By Theorem 4 and 5, our proposed GAMPI using Algorithm 1-3 reconstructs the
causal graph consistently with probability at least 1− 8pq−1n−2 − 8(2s+ s̃)−1p−1. For fixed p case,
the log p term in γj and τj of Theorem 5 can be modified to log(np) respectively and the probability
is then 1− 8pq−1n−2 − 8(2s+ s̃)−1n−2p−1, similar to the remarks of Ravikumar et al. (2010).

5. Simulations

This section investigates the empirical performance of the proposed method. We assess the
performance of GAMPI and compare it against the structure learning method NOTEARS (Zheng
et al. 2018, 2020), under various graph structures (hub, chain, and random graphs) and types of
outcome variables. Further, we compare GAMPI with a recently proposed structure learning method
DAGMA (Bello et al. 2022) based on a log-det constraint. For NOTEARS and DAGMA, we use
the loss type that is appropriate for the data type of the outcome variables. Note that DAGMA is
designed exclusively for Gaussian and logistic outcomes.

5.1 Simulation Setting

The data simulation process is as follows. Firstly, we generate an adjacency matrix U based on the
graph structure and construct an intervention matrix W with Wjj = 1, for j = 1, · · · , p and Wlj = 0,
for 1 ≤ l 6= j ≤ q. For the hub graph, U1j = 1, j = 2, · · · , p, and 0 otherwise. The random graph
is simulated similarly as Li et al. (2023). Secondly, we generate Gaussian instrumental variables
X = (X1, . . . ,Xq) ∼ N(0, 1). We also investigate the case when the instrumental variables X are
correlated in Appendix C.7. For the confounders, we simulate h ∼ N(0,Σ), where ρij = 0.95. In
Appendix C.1, we explore the simulation setup where the data is generated without confounders,
i.e., h = 0. Given X,U ,W , and h, we generate random samples Y according to (2). In this section,
we consider two data types for the outcome variable Y : binary and count outcomes. In the binary

case, Yj is generated from the Bernoulli distribution with P (Yj = 1) equal to
exp(α0w>j Xin(j)+hj)

1+exp(α0w>j Xin(j)+hj)

if Yj is a root variable, and
exp(β1u>j Ypa(j)+α1w>j Xin(j)+hj)

1+exp(β1u>j Ypa(j)+α1w>j Xin(j)+hj)
otherwise. For the hub graph, we set

α0 = 5, β1 = 2.5, and α1 = 2. For the chain graph, we set α0 = 5, β1 = 2.5, and α1 = 3. For the
random graph, we set α0 = 5, β1 = 3, and α1 = 3.

For the count outcome, to avoid extreme values, we employ standard copula transforms to
simulate Y , as described by Yang et al. (2015) and Nelsen (2007). Specifically, we first generate data
using Ỹj = β1u

>
j Y pa(j) + α1w

>
j X in(j) + hj + εj , where εj are i.i.d. Gaussian errors. We then use a

standard copula transform to ensure that the marginals of the generated data Yj are approximately
Poisson. For the hub graph, we set α0 = 5, β1 = 0.5, and α1 = 2. For the chain graph, we set
α0 = 5, β1 = 0.5, and α1 = 3. For the random graph, we set α0 = 4, β1 = 1, and α1 = 2. We
consider three different graph structures: the hub, chain (of length 4), and random graphs. In
addition, we fix the sample size n = 500 while varying the number of variables from 100 to 300.

To evaluate the accuracy of estimating the directed edges of a graph, we consider five evaluation
metrics: the false positive rate (FPR), the false discovery rate (FDR), the F-score, the Matthews cor-
relation coefficient (MCC), and the structural Hamming distance (SHD). The Matthews correlation
coefficient is a binary classification metric defined as

TP× TN− FP× FN

{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}1/2
,
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where TP, FP, TN and FN denote the true positive, false positive, true negative, and false negative
rates for edge selection. A large MCC value close to 1 indicates that the estimated edge set is close
to the true edge set. In addition, the structural Hamming distance measures edge directionality
between two directed graphs, which is the number of edge insertions, deletions, or flips needed to
transform one graph to another graph (Tsamardinos et al. 2006). A small structural Hamming
distance between two graphs of the same size indicates their closeness.

5.2 Results

This subsection reports the simulation results in a situation where we simulate the data in the
presence of confounders. Table 2 suggests that GAMPI outperforms NOTEARS across all setups
in terms of causal graph recovery, as measured by five metrics: FPR, FDR, F-score, MCC, and
SHD. Table 2 shows that NOTEARS can yield an empty graph with no edges selected when “NA”
occurs. Table 6 in Appendix C.4 suggests that GAMPI outperforms DAGMA significantly in most
scenarios, except for the simple case of the hub graph, where both methods perform equally well.
Further, note that unlike GAMPI, NOTEARS and DAGMA do not guarantee acyclicity or estimate
the parameters of causal effects. To conclude, our simulation results demonstrate the advantage of
the proposed method for causal graph recovery in the presence of confounders.

Binary

Graph (p, q, n)
FPR FDR F-score MCC SHD

No-tears GAMPI No-tears GAMPI No-tears GAMPI No-tears GAMPI No-tears GAMPI

Hub (100,100,500) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.05 (0.01) 0.16 (0.01) 0.96 (0.01) 0.29 (0.01) 0.96 (0.01) 90.30 (0.78) 8.10 (1.46)
(200,200,500) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.04 (0.01) 0.13 (0.02) 0.95 (0.01) 0.25 (0.03) 0.95 (0.01) 184.90 (2.37) 20.40 (3.95)
(300,300,500) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.04 (0.01) 0.21 (0.02) 0.95 (0.01) 0.34 (0.02) 0.95 (0.01) 263.50 (3.87) 28.20 (7.61)

Chain (100,100,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.16 (0.02) NA (NA) 0.87 (0.01) 0.00 (0.00) 0.87 (0.01) 75.00 (0.00) 21.00 (2.72)
(200,200,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.21 (0.01) NA (NA) 0.84 (0.01) 0.02 (0.01) 0.84 (0.01) 149.80 (0.13) 52.30 (2.31)
(300,300,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.22 (0.01) NA (NA) 0.83 (0.01) 0.01 (0.01) 0.83 (0.01) 224.80 (0.13) 84.30 (5.17)

Random (100,100,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.14 (0.01) NA (NA) 0.74 (0.02) 0.08 (0.02) 0.74 (0.02) 73.00 (1.56) 33.90 (1.98)
(200,200,500) 0.00 (0.00) 0.00 (0.00) 0.52 (0.08) 0.17 (0.01) 0.03 (0.01) 0.69 (0.01) 0.09 (0.01) 0.70 (0.01) 147.90 (5.32) 78.40 (3.25)
(300,300,500) 0.00 (0.00) 0.00 (0.00) 0.61 (0.04) 0.26 (0.01) 0.03 (0.00) 0.64 (0.00) 0.07 (0.01) 0.65 (0.00) 224.30 (6.86) 144.00 (3.69)

Count

Graph (p, q, n)
FPR FDR F-score MCC SHD

No-tears GAMPI No-tears GAMPI No-tears GAMPI No-tears GAMPI No-tears GAMPI

Hub (100,100,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 99.00 (0.00) 0.30 (0.30)
(200,200,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 199.00 (0.00) 1.40 (1.19)
(300,300,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 299.00 (0.00) 2.50 (0.79)

Chain (100,100,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 0.95 (0.00) 0.00 (0.00) 0.95 (0.00) 75.00 (0.00) 7.30 (0.58)
(200,200,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 0.94 (0.01) 0.00 (0.00) 0.94 (0.01) 150.00 (0.00) 17.80 (1.58)
(300,300,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 0.92 (0.00) 0.00 (0.00) 0.92 (0.00) 225.00 (0.00) 32.60 (1.45)

Random (100,100,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 0.92 (0.01) 0.00 (0.00) 0.92 (0.01) 73.00 (2.93) 11.10 (1.28)
(200,200,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.01 (0.00) NA (NA) 0.89 (0.01) 0.00 (0.00) 0.89 (0.01) 154.60 (3.88) 31.40 (2.79)
(300,300,500) 0.00 (0.00) 0.00 (0.00) NA (NA) 0.00 (0.00) NA (NA) 0.88 (0.01) 0.00 (0.00) 0.89 (0.01) 228.60 (2.93) 49.20 (2.45)

Table 2: Comparison of causal graph reconstruction accuracy of GAMPI and NOTEARS in the
presence of confounders, with GAMPI employing EBIC for tuning parameter selection and
NOTEARS applying the default value of 0.1. Metrics include FPR, FDR, F-score, MCC,
and SHD. NA indicates that the method returns an empty graph with no edges selected.

In Appendix C.2, we further compare our deconfounding approach via DRI with employing
the standard GLM in Algorithm 3 for binary outcomes. For the chain graph, the standard logistic
regression without adjusting for confounders does not perform well in terms of causal discovery.
This is because the unobserved confounders induce false positive edges between the node and
its ancestors. By contrast, the deconfounding approach corrects the bias of the confounders and
recovers the true graph structure. For the hub graph, though both two approaches recover the
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true causal graph, the confounding approach still outperforms the standard logistic regression in
terms of parameter estimation. Note that our peeling algorithm in the first stage identifies the
correct ancestral relationships (super-graph) as the confounders are independent of the instrumental
variables by assumption.

In addition, in Appendix C.1, we consider the special case when the data is simulated without
confounders. The result suggests that our deconfounding approach performs well even when the
data is simulated without confounders. Last, we consider the simulation setup where the data has
repeated measurements. Still, our deconfounding approach using a mixed-effects model outperforms
the standard GLM approach. To summarize, our deconfounding approach demonstrates strong
empirical performance and outperforms the existing methods in most cases.

6. Mixed DAG Networks: Direct Effect to AD

This section applies GAMPI to a publicly available Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. Our goal is to estimate a regulatory gene expression network of a subset of genes
related to Alzheimer’s disease (AD) and identify which of the genes have a direct causal effect on
AD through gene-to-gene and gene-to-AD regulatory networks.

First, we download the raw data from the ANDI website (https://adni.loni.usc.edu),
containing gene expression, DNA sequencing, and phenotypic data. Then, for preprocessing, we
clean and merge these data to obtain 712 subjects with complete records. In addition, from
the KEGG database (Kanehisa et al. 2002), we extract the AD reference pathway (hsa05010,
https://www.genome.jp/pathway/hsa05010) and therefore obtain 146 genes from the ANDI data.
Meanwhile, the subjects are categorized into four groups: Cognitive Normal (CN), Early Mild
Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer’s Disease
(AD). We treat the 247 CN individuals as the control group and the remaining 465 AD and MCI
individuals as the case group. We then include the disease status, a binary outcome with 0/1
indicating normal/AD, as an additional variable (node) to identify which genes are directly related
to AD. Moreover, we use SNPs as instrumental variables in this case study as it is known that
biologically SNPs may have an impact on the genes, but not the other way around, therefore
satisfying the IV requirement.

To perform data analysis, we first regress the gene expressions on the additional covariates,
including age, gender, education, handedness, and intracranial volume. Next, for each SNP from
a gene, we perform significance tests with the gene and disease status marginally and select the
genes which have at least one SNP whose i) significance level with the gene is less than 0.05 and
ii) significance level with the disease status is less than 0.02, rendering p = 39 primary variables.
For these genes, we extract their two most correlated SNPs with the disease status based on
the p-values given the significance level with the gene less than 0.05, yielding q = 39 × 2 = 78
instrumental variables. Removing duplicate SNPs and the gene that has the same SNPs as other
genes results in p = 38 and q = 76. To summarize, we use the gene expressions along with the
disease status as primary variables and SNPs as instrumental variables to reconstruct a causal
network for gene-to-gene and gene-to-disease regulatory relationships.

As shown in Figure 2, GAMPI identifies a direct causal effect of gene ATF6 on the AD status. In
the literature, ATF6 is a transcription factor that acts during endoplasmic reticulum (ER) stress by
activating UPR target genes, and ER stress is known to be closely associated with AD. Furthermore,
Du et al. (2020) suggested that ATF6 could be a potential hub for targeting the treatment of AD,
which protects the retention of spatial memory in AD model mice. Zhang et al. (2022) found that
the expression of both ATF6 and CTH are decreased in AD patients and ATF6 positively regulates
the expression of CTH so that the addition of CTH reduces the loss of spatial learning and memory
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Figure 2: Reconstructed gene-to-gene and gene-to-AD regulatory network. “AD status” is a binary
outcome with 0/1 indicating normal/AD. Directed edges indicate causal relationships
identified by the proposed GAMPI (left) and existing method NOTEARS (right).

ability in mice caused by ATF6 reduction. In addition, GAMPI uncovers some known regulatory
relationships related to AD in the literature for both the AD and control groups. For example,
for the directed connection MAPK1 → CASP8, it has been shown that phosphorylation of p38
MAPK induced by oxidative stress is associated with the activation of caspase-8-mediated apoptotic
pathways in dopaminergic neurons (Choi et al. 2004). The connection ATF6 → CDK5R1 is in
the AD KEGG pathway https://www.genome.jp/pathway/hsa05010. Furthermore, the approach
also identifies some potential gene regulatory relationships for future biological investigations. For
example, the two genes in the connection RYR3 → LPL are among the 13 genes directly associated
with AD in the DEX DFC geneset analysis (Sharma et al. 2021), while the two genes in the
connection GSK3B → COX5A are in the same AD-related protein association network in AD-iPS5
neurons (Hossini et al. 2015). Further, we compare our proposed method GAMPI with the existing
method NOTEARS. Both find common gene-to-gene causal relationship NDUFA9 → CDK5R1.
Moreover, our proposed method identifies the meaningful gene-to-disease regulatory relationship
validated biologically in the literature.

7. Discussion

The article introduces a new causal discovery approach, GAMPI, which reconstructs a directed
acyclic graph using instruments in the presence of unmeasured confounders. GAMPI involves
generalized structural equation models that are identifiable with the help of instruments under
certain conditions. GAMPI involves two steps. First, we proposed a fidelity model that is also a
generalized linear model, having the same support as the marginal model regarding instrumental
interventions. On this ground, we designed a bottom-up peeling algorithm to identify ancestral
relationships and valid instruments by exploiting the connection between primary and instrumental
variables. In the second step, we proposed a deconfounding approach to further select parent-child
relationships from the identified ancestral relationships. This approach estimates the confounding
effects from the parent’s equations and uses them in subsequent child equations to correct the
confounding effects. The theoretical properties of GAMPI are also analyzed, including the globality
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of the DC solution for nonconvex minimization, estimation accuracy, and causal graph selection
consistency. A series of simulation results demonstrate causal graph selection consistency and the
practical advantages of GAMPI for handling unmeasured confounders and non-Gaussian outcomes.

Overall, GAMPI provides a promising approach to causal discovery, with potential applications
in various fields beyond Alzheimer’s disease. For instance, the method can be used to explore causal
relationships in complex systems with unmeasured confounders, such as in economics or public
health. Furthermore, GAMPI’s flexibility to adapt to different distributions of confounders and
link functions makes it suitable for a wide range of scenarios. For instance, it can handle directed
graphical models with mixed variables (Chowdhury et al. 2022). In conclusion, GAMPI offers a
valuable contribution to causal inference by providing a practical method for identifying causal
relationships under challenging situations.

The R implementation is available at https://github.com/minjie-wang/GAMPI.
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Appendix A. Illustrative Examples

In this section, we delve into detailed examples that elucidate the peeling algorithm, the majority
rule for a linear link as outlined in Assumption 1(B), and the dense confounding setting justifying
Assumption 2.

A.1 Peeling Algorithm

We illustrate the peeling algorithm (Algorithm 2) with the motivating example in (4). From (4), we
generate the data of sample size n = 500 and compute V̂ using Algorithm 1. The estimated V̂ is:

V̂ q×p =


2.06 0.35 0.00 −0.35 0.00
0.00 1.84 0.46 0.00 0.00
0.00 0.00 1.77 0.39 0.00
0.00 0.00 0.00 1.76 0.00
0.00 0.00 0.00 0.00 1.96

 .

Algorithm 2 proceeds as follows.

• Iteration 1: X4 is identified as an instrument of leaf node Y4 (X4 → Y4) as row 4 has the
smallest row-wise `0-norm and V̂44 is the only nonzero item in row 4.

X5 is identified as an instrument of leaf node Y5 (X5 → Y5) as row 5 has the smallest row-wise
`0-norm and V̂55 is the only nonzero item in row 5.

Y4, Y5, X4, and X5 are removed.

• Iteration 2: X3 is identified as an instrument of leaf node Y3 (X3 → Y3) in the subgraph for
Y1, Y2 and Y3 as row 3 has the smallest row-wise `0-norm of the submatrix for Y1, Y2 and Y3,
with V̂33 the only nonzero item in row 3. Moreover, since V̂34 6= 0 and Y4 is removed in the
previous iteration, Y3  Y4.
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Y3 and X3 are removed.

• Iteration 3: Similarly, X2 is identified as an instrument of leaf node Y2 (X2 → Y2) in the
subgraph for Y1, Y2. Moreover, since V̂23 6= 0 and Y3 is removed in the previous iteration,
Y2  Y3.

Y2 and X2 are removed.

• Iteration 4: Similarly, X1 is identified as an instrument of leaf node Y1 (X1 → Y1). Moreover,
since V̂12, V̂14 6= 0 and Y2, Y4 are removed in the previous iterations, Y1  Y2 and Y1  Y4.

Y1 and X1 are removed and the peeling process is terminated.

Finally, step 5 adds ancestral relations: Y1  Y3 and Y2  Y4. To conclude, Algorithm 2
identifies ancestral relationships: Y1  Y2, Y1  Y3, Y1  Y4, Y2  Y3, Y2  Y4 and Y3  Y4.

A.2 Majority Rule

Consider the following example of a generalized structural equation model:

ψ1(E[Y1|X1, X2, X3, h1]) = W11X1 +W21X2 +W31X3 + h1,

ψ2(E[Y2|Y1, X2, X3, X4, h2]) = U12Y1 +W22X2 +W32X3 +W42X4 + h2, (14)

where X1 is an valid IV of Y1, X4 is an valid IV of Y2, and X2, X3 are invalid IVs. Note if ψ1 is
linear, then (14) is not identifiable as the majority rule is not satisfied (Kang et al. 2016; Windmeijer
et al. 2019). If ψ1 is non-linear, then the linear effect of the instruments in the first equation
cannot be represented by the one in the second equation. Hence, identifiability is achieved through
non-linearity and the majority rule is not required (details are given in the proof of Proposition 1).

A.3 Dense Confounding Setting

This section illustrates the dense confounding setting justifying Assumption 2, where the confounder
for each variable hj is added up by many independent confounding effects from unobserved variables.
Therefore, asymptotics holds and the confounders are jointly normal by the central limit theorem.

Y1 Y2 Y3

g2 g3 g4g1 g5

X1 X2 X3

Figure 3: Dense confounding setting, where the confounder for each variable hj is added up by many
independent confounding effects from unobserved variables. For example, in this case, the
confounders can be re-parameterized as: h1 = a11g1 + a21g2 + a31g3 + a41g4 + a51g5, etc.

Appendix B. General Form of Deconfounding Algorithm

Algorithm 4 serves as a general version of Algorithm 3 in the main paper for estimating parent-child
relationships in the presence of confounders. In Algorithm 3 of the main paper, we utilize residuals
from a GLM to impute confounders. The underlying intuition of this deconfounding approach is to
achieve accurate parameter estimates and construct a consistent estimate of unmeasured confounders
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via residuals through the root equations. In this regard, different models can be employed to estimate
confounding effects in the root equations, as described in Algorithm 4. For instance, the marginal
likelihood that integrates the confounding effect hk from the complete likelihood can be applied, in
addition to the Markov Chain Monte Carlo approach (Knudson et al. 2021).

Algorithm 4: General peeling algorithm for estimating parent-child relationships via DRI

1. Input (an(j), in(j))pj=1 and π̂ from Algorithm 2. Input data matrix
(Yij , Xij)n×(p+q) = (Y i•,Xi•)

n
i=1 of primary variables Y n×p and instruments Xn×q.

Begin Iteration: for d = 1 · · · , p,
2. (Estimation of confounding effects) If π̂d is a root variable indexed by Yk, obtain an
estimate of the confounding effect ĥik.
3. (Deconfounding) If π̂d is a non-root variable indexed by Yj , compute

(Ŵ in(j),j , Ûan(j),j , α̂an(j),j) by fitting a TLP-constrained GLM regression of Yj in (9). Compute

the residuals ĥij in (10).

Specifically, when the data has repeated measurements, we propose to use a generalized linear
mixed model (GLMM) to estimate the unmeasured confounders in the root equations in Algorithm 5
as an alternative to Algorithm 3 in the main paper. Consider the structural equation model:

ψj(E
(
Y ij |Y i,pa(j),Xi•, hij

)
) = Y i,pa(j)Upa(j),j +Xi,in(j)W in(j),j + hij1ni , j = 1, · · · , p. (15)

Here, i = 1, · · · , N represents a group index with ni observations within a group. For each group,
we observe an ni× 1 vector of responses, Y ij and hence an ni× p matrix, Y i•. Let Xi• be an ni× q
fixed-effects design matrix, W in(j),j an |in(j)| × 1, and Upa(j),j a |pa(j)| × 1 column vector of fixed
regression coefficients. Further, hij denotes a group-specific vector of random intercepts.

Similarly, we adopt a two-stage deconfounding procedure to estimate parent-child relationships,
with a GLMM in the root equation for improved confounder estimation. Specifically, we fit a GLMM
on variable Yk using instrumental variables X in(k) and estimate confounding effects {ĥik}Ni=1 via the
estimated random effects. In the child equation, we impute unmeasured confounders using estimated
values from the parent equation and fit a TLP-constrained GLM, similar to the previous approach.

Algorithm 5: Peeling algorithm for estimating parent-child relationships in the presence
of confounders using GLMM and DRI

1. Input (an(j), in(j))pj=1 and π̂ from Algorithm 2. Input (Y ij ,Xij)n×(p+q) = (Y i•,Xi•)
N
i=1 of

primary variables Y n×p and instruments Xn×q. Here, Y i• is an ni × p matrix and Xi• is an

ni × q matrix. Input the grouping of subjects with n =
∑N

i=1 ni.
Begin Iteration: for d = 1 · · · , p,
2. (Estimation of confounding effects using GLMM for root equations) If π̂d is a root
variable indexed by Yk, estimate the confounding effects {hik}Ni=1 by fitting a GLMM on Y •k:

E[Y ik|Xi,in(k), hik] = ϕk(Xi,in(k)W in(k),k + hik1ni),

where hik denotes the random effect for ith group. Obtain estimated confounding effects {ĥik}.
3. (Deconfounding) If π̂d is a non-root variable indexed by Yj , compute

(Ŵ in(j),j , Ûan(j),j , α̂an(j),j) by fitting a TLP-constrained GLM regression of Yj in (9). Compute

the residuals {ĥi′j}ni′=1 in (10).
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Besides the residual inclusion approach proposed in the main paper for deconfounding, we
also include a version of incorporating predictor substitution approach in GAMPI, referred to as
DPS, in Algorithm 6. Here, L(W in(j),j ,Uan(j),j |X in(j), Ŷ an(j)) = n−1

∑n
i=1 `(Yij ,W

>
in(j),j

Xi,in(j) +

U>an(j),jŶ i,an(j)), which indicates the endogenous variables are replaced by their predicted values.

Algorithm 6: Peeling algorithm for estimating parent-child relationships via DPS

1. Input (an(j), in(j))pj=1 and π̂ from Algorithm 2. Input data matrix
(Yij , Xij)n×(p+q) = (Y i•,Xi•)

n
i=1 of primary variables Y n×p and instruments Xn×q.

Begin Iteration: for d = 1 · · · , p,
2. (Predictor substitution for root equation) If π̂d is a root variable indexed by Yk,

compute Ŵ in(k),k by fitting a GLM regression of Yk on X: E[Yk|X] = ϕk(X in(k)W in(k),k).

Impute the predictor: Ŷk = ϕk(X in(k)Ŵ in(k),k).

3. (Predictor substitution for child equation) If π̂d is a non-root variable indexed by Yj ,

compute (Ŵ in(j),j , Ûan(j),j) by fitting a TLP-constrained GLM regression of Yj :

(Ŵ in(j),j , Ûan(j),j) = argmin
W in(j),j ,Uan(j),j

L(W in(j),j ,Uan(j),j |X in(j), Ŷ an(j))

subject to
∑

k∈an(j)

I(Ukj 6= 0) ≤ Kj , j = 1, . . . , p.

Impute the predictor: Ŷj = ϕj(Y p̂a(j)Û p̂a(j),j +X în(j)Ŵ în(j),j).

Appendix C. Additional Simulations

This section provides additional simulations in the paper to demonstrate the necessity of decon-
founding in GAMPI.

Ideally, one might suggest estimating the causal relationships directly using the nodewise GLM
regression subject to the `0-constraint in Algorithm 3 of the main paper, without employing the
deconfounding approach or adjusting for confounders. That is,

(Ŵ in(j),j , Ûan(j),j) = argmin
W in(j),j ,Uan(j),j

L(W in(j),j ,Uan(j),j |X in(j),Y an(j))

subject to
∑

k∈an(j)

I(Ukj 6= 0) ≤ Kj , j = 1, . . . , p. (16)

Similarly, to select parent-child relationships from the ancestral relationships identified in the first
stage, we penalize the number of nonzero elements of U . That is, if Ûkj 6= 0, then Yk is a parent of
Yj , or Yk → Yj .

We show in Section C.1 and C.2 that GAMPI adjusting for confounders, performs as well as
the above approach (16) when the data is simulated without confounders and outperforms it in the
presence of confounders.

C.1 Absence of Confounders

This subsection considers the special case when the data is simulated without confounders for binary
outcomes. Recall that the binary data is simulated from the Bernoulli distribution in Section 5.1 of
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the main paper with h = 0. Table 3 suggests that our deconfounding approach, GAMPI, performs
well even when the data is simulated without confounders.

Graph (p, q, n)
FPR FDR F-score MCC SHD

GAMPI-no deconf GAMPI GAMPI-no deconf GAMPI GAMPI-no deconf GAMPI GAMPI-no deconf GAMPI GAMPI-no deconf GAMPI

Hub (100,100,300) 0.00 (0.00) 0.00 (0.00) 0.03 (0.00) 0.04 (0.01) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00) 3.70 (0.52) 4.80 (0.71)
(100,100,400) 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.02 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 2.20 (0.55) 2.30 (0.52)
(100,100,500) 0.00 (0.00) 0.00 (0.00) 0.02 (0.00) 0.02 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 2.10 (0.38) 1.80 (0.29)

Chain (100,100,300) 0.00 (0.00) 0.00 (0.00) 0.08 (0.01) 0.07 (0.01) 0.82 (0.01) 0.82 (0.01) 0.83 (0.01) 0.83 (0.01) 23.90 (1.45) 23.80 (1.23)
(100,100,400) 0.00 (0.00) 0.00 (0.00) 0.06 (0.00) 0.06 (0.00) 0.91 (0.01) 0.91 (0.01) 0.91 (0.01) 0.91 (0.01) 13.50 (0.95) 13.20 (0.95)
(100,100,500) 0.00 (0.00) 0.00 (0.00) 0.05 (0.01) 0.04 (0.01) 0.94 (0.00) 0.95 (0.00) 0.94 (0.00) 0.95 (0.00) 8.30 (0.40) 7.70 (0.45)

Random (100,100,300) 0.00 (0.00) 0.00 (0.00) 0.10 (0.01) 0.09 (0.01) 0.85 (0.01) 0.85 (0.01) 0.85 (0.01) 0.85 (0.01) 20.10 (1.75) 20.10 (1.67)
(100,100,400) 0.00 (0.00) 0.00 (0.00) 0.07 (0.01) 0.07 (0.01) 0.93 (0.01) 0.93 (0.01) 0.93 (0.01) 0.93 (0.01) 10.80 (1.75) 10.60 (1.61)
(100,100,500) 0.00 (0.00) 0.00 (0.00) 0.04 (0.01) 0.04 (0.00) 0.97 (0.00) 0.97 (0.01) 0.97 (0.00) 0.97 (0.01) 4.80 (0.59) 4.50 (0.64)

Table 3: Evaluating GAMPI’s reconstruction accuracy for binary outcomes without confounders,
utilizing the extended BIC (EBIC) for tuning parameter selection. Evaluation metrics
include false positive rate (FPR), false discovery rate (FDR), F-score, Matthews corre-
lation coefficient (MCC), and structural Hamming distance (SHD). “GAMPI-no deconf”
method refers to employing the nodewise GLM regression approach without adjusting for
confounders based on (16).

C.2 Presence of Confounders

This subsection compares the DRI approach with that without adjusting for confounders under the
simulation setting in the presence of confounders. Furthermore, we compare our deconfounding
approach, DRI in Algorithm 3 of the main paper, with that via predictor substitution (DPS)
in Algorithm 6. In addition to the five metrics in the paper, we compute the estimation error
‖Û −U0‖2F to evaluate the accuracy of parameter estimation, where ‖ · ‖F denotes the Frobenius
norm.

Graph (p, q, n)
F-score ‖Û −U∗‖2F

GAMPI-no deconf GAMPI-DRI GAMPI-DPS GAMPI-no deconf GAMPI-DRI GAMPI-DPS

Hub (100,100,500) 0.96 (0.01) 0.96 (0.01) 0.91 (0.01) 77.45 (5.28) 58.11 (6.66) 108.04 (12.11)
(200,200,500) 0.95 (0.01) 0.95 (0.01) 0.89 (0.01) 185.12 (25.01) 140.73 (25.02) 255.65 (24.69)
(300,300,500) 0.95 (0.01) 0.95 (0.01) 0.90 (0.01) 279.17 (35.82) 200.55 (45.36) 373.97 (47.27)

Chain (100,100,500) 0.74 (0.01) 0.87 (0.01) 0.87 (0.01) 118.06 (6.37) 74.67 (4.74) 93.06 (5.2)
(200,200,500) 0.71 (0.01) 0.84 (0.01) 0.84 (0.01) 281.96 (12.01) 189.05 (9.82) 217.29 (10.96)
(300,300,500) 0.71 (0.01) 0.83 (0.01) 0.84 (0.01) 415.11 (20.26) 294.81 (12.57) 332.47 (13.82)

Random (100,100,500) 0.71 (0.02) 0.74 (0.02) 0.74 (0.02) 282.58 (15.98) 278.67 (15.95) 321.49 (15.86)
(200,200,500) 0.64 (0.01) 0.69 (0.01) 0.69 (0.01) 656.68 (30.57) 633.23 (31.49) 711.17 (31.42)
(300,300,500) 0.59 (0.00) 0.64 (0.00) 0.62 (0.01) 1111.06 (37.05) 1053.11 (32.15) 1174.76 (37.16)

Table 4: Assessing GAMPI’s reconstruction accuracy for binary outcomes with confounders, employ-
ing the extended BIC (EBIC) for tuning parameter selection. Evaluation metrics include
F-score and parameter estimation error in the Frobenius norm. “GAMPI-DPS” employs
the predictor substitution (DPS) approach for deconfounding as proposed in Algorithm 6.
“GAMPI-DRI” uses the residual inclusion approach proposed in Algorithm 3 of the main
paper. In other tables, “GAMPI” refers to the recommended “GAMPI-DRI” approach.

Table 4 suggests that our deconfounding approach outperforms the standard GLM approach (16)
without adjusting for confounders in the presence of confounders. Moreover, deconfounding via DRI
proposed in Algorithm 3 outperforms that using predictor substitution (DPS) in Algorithm 6 in
terms of parameter estimation. Our simulation result indicates that DRI is more suited than DPS
for binary or count outcomes, which is concordant with the observation of Terza et al. (2008).
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C.3 Presence of Confounders with Replicates

In this subsection, we evaluate the performance of GAMPI using the generalized linear mixed models
(GLMMs) for root equations proposed in Algorithm 5 under the simulation setting with repeated
measurements. Table 5 suggests that our deconfounding approach using a GLMM outperforms the
standard GLM approach, as it better estimates the confounders.

Graph (p, q, n)
F-score ‖Û −U∗‖2F

GAMPI-no deconf GAMPI GAMPI-GLMM GAMPI-no deconf GAMPI GAMPI-GLMM

Hub (100,100,500) 0.94 (0.02) 0.94 (0.02) 0.95 (0.02) 102.96 (24.02) 79.71 (23.14) 61.6 (21.58)
(200,200,500) 0.92 (0.01) 0.92 (0.01) 0.93 (0.01) 259.2 (24.82) 209.5 (25.42) 160.8 (21.94)
(300,300,500) 0.91 (0.02) 0.91 (0.02) 0.93 (0.02) 357.33 (74.04) 321.79 (70.8) 251.28 (68.07)

Chain (100,100,500) 0.75 (0.01) 0.87 (0.01) 0.93 (0.01) 125.64 (6.81) 81.8 (5.5) 65.99 (6.38)
(200,200,500) 0.71 (0.01) 0.83 (0.01) 0.91 (0.00) 285.35 (12.08) 201.56 (4.04) 155.85 (3.66)
(300,300,500) 0.69 (0.01) 0.80 (0.01) 0.89 (0.01) 500.19 (20.73) 366.98 (16.24) 287.8 (11.69)

Table 5: Evaluating GAMPI’s reconstruction accuracy for binary outcomes in repeated measure-
ments, using the extended BIC (EBIC) for tuning. Evaluation metrics include F-score and
parameter estimation error in the Frobenius norm. “GAMPI-GLMM” refers to GAMPI
using GLMM for root equations proposed in Algorithm 5.

C.4 Comparison with DAGMA

This subsection compares GAMPI with a recently proposed structure learning method, called
DAGMA. DAGMA is designed only for Gaussian or logistic outcomes. Thus, we compare GAMPI
with DAGMA for the binary outcomes case. Table 6 suggests that GAMPI continues to outperform
DAGMA in most scenarios. Specifically, DAGMA performs equally well in the easy case, namely,
the hub graph. However, in challenging situations like the chain and random graphs, GAMPI
outperforms DAGMA significantly.

Binary
(p, q, n)

FPR FDR F-score MCC SHD
Graph DAGMA GAMPI DAGMA GAMPI DAGMA GAMPI DAGMA GAMPI DAGMA GAMPI

Hub (100,100,500) 0.00 (0.00) 0.00 (0.00) 0.04 (0.00) 0.05 (0.01) 0.98 (0.00) 0.96 (0.01) 0.98 (0.00) 0.96 (0.01) 4.20 (0.57) 8.10 (1.46)
(200,200,500) 0.00 (0.00) 0.00 (0.00) 0.05 (0.01) 0.04 (0.01) 0.97 (0.00) 0.95 (0.01) 0.97 (0.00) 0.95 (0.01) 11.60 (1.60) 20.40 (3.95)
(300,300,500) 0.00 (0.00) 0.00 (0.00) 0.07 (0.01) 0.04 (0.01) 0.96 (0.00) 0.95 (0.01) 0.96 (0.00) 0.95 (0.01) 24.40 (1.84) 28.20 (7.61)

Chain (100,100,500) 0.01 (0.00) 0.00 (0.00) 0.43 (0.01) 0.16 (0.02) 0.68 (0.01) 0.87 (0.01) 0.70 (0.01) 0.87 (0.01) 51.70 (2.63) 21.00 (2.72)
(200,200,500) 0.00 (0.00) 0.00 (0.00) 0.53 (0.01) 0.21 (0.01) 0.60 (0.01) 0.84 (0.01) 0.62 (0.01) 0.84 (0.01) 145.60 (2.84) 52.30 (2.31)
(300,300,500) 0.00 (0.00) 0.00 (0.00) 0.57 (0.01) 0.22 (0.01) 0.56 (0.01) 0.83 (0.01) 0.59 (0.01) 0.83 (0.01) 247.60 (4.02) 84.30 (5.17)

Random (100,100,500) 0.01 (0.00) 0.00 (0.00) 0.80 (0.01) 0.14 (0.01) 0.29 (0.01) 0.74 (0.02) 0.30 (0.02) 0.74 (0.02) 141.60 (3.54) 33.90 (1.98)
(200,200,500) 0.01 (0.00) 0.00 (0.00) 0.82 (0.01) 0.17 (0.01) 0.26 (0.01) 0.69 (0.01) 0.29 (0.01) 0.70 (0.01) 342.90 (5.44) 78.40 (3.25)
(300,300,500) 0.01 (0.00) 0.00 (0.00) 0.84 (0.01) 0.26 (0.01) 0.24 (0.01) 0.64 (0.00) 0.27 (0.01) 0.65 (0.00) 573.20 (6.88) 144.00 (3.69)

Table 6: Comparing reconstruction accuracy of GAMPI and DAGMA for binary outcomes with
confounders, where GAMPI employs the extended BIC (EBIC) for tuning and DAGMA
uses the default setting with a tuning parameter value of 0.02.

C.5 Tuning Parameter Selection

This subsection examines the performance of two tuning parameter selection approaches for GAMPI.
We use either 5-fold cross-validation or the extended Bayesian information criterion (EBIC) to
choose (τj ,Kj) by minimizing the predictive likelihood or the EBIC criterion. For cross-validation,
we adopt the one-standard error rule which is commonly used for the high-dimensional data. We
consider the base simulation in the presence of confounders. Table 7 suggests that the EBIC
approach outperforms cross-validation in all settings.
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Graph (p, q, n)
F-score SHD

CV EBIC CV EBIC

Hub (100,100,500) 0.70 (0.03) 0.96 (0.01) 44.30 (3.97) 8.10 (1.46)
(200,200,500) 0.70 (0.04) 0.95 (0.01) 89.20 (10.25) 20.40 (3.95)
(300,300,500) 0.74 (0.05) 0.95 (0.01) 120.30 (15.74) 28.20 (7.61)

Chain (100,100,500) 0.56 (0.03) 0.87 (0.01) 46.20 (1.96) 21.00 (2.72)
(200,200,500) 0.59 (0.01) 0.84 (0.01) 88.20 (2.10) 52.30 (2.31)
(300,300,500) 0.56 (0.01) 0.83 (0.01) 137.50 (2.93) 84.30 (5.17)

Random (100,100,500) 0.55 (0.02) 0.74 (0.02) 46.20 (2.03) 33.90 (1.98)
(200,200,500) 0.48 (0.02) 0.69 (0.01) 102.50 (4.47) 78.40 (3.25)
(300,300,500) 0.47 (0.01) 0.64 (0.00) 158.90 (6.32) 144.00 (3.69)

Table 7: Reconstruction accuracy of causal graph of GAMPI for binary outcomes in the presence of
confounders, where GAMPI uses cross-validation (CV) or the extended BIC (EBIC) for
tuning parameter selection. Evaluation metrics include F-score and SHD.

C.6 Causal Graph Selection Consistency

In this subsection, we verify our theoretical statements and demonstrate the consistency of the
proposed method, as proved in Theorem 5. Following Ravikumar et al. (2011), we evaluate the
performance of the method in terms of the probability of correct causal graph selection. Figure 4
plots the probability of correct causal graph recovery against the sample size n, with varying number
of nodes p. The probability of correct causal graph selection is calculated as the proportion of the
B = 50 trials in which the proposed GAMPI recovers the directed edge sets exactly. We consider the
hub and chain graphs for Poisson primary variables with the same setup as the base simulation in
Table 2 except varying the sample size n and number of nodes p. For each curve, the probability of
success starts at zero, and converges to one as the sample size increases, suggesting the causal graph
selection consistency of our proposed method. Figure 4 shows that the proposed method performs
well when the sample size n is large or the number of nodes p (graph size) is small, aligning with
the theoretical results stated in Theorem 5. Figure 4 also suggests that a larger graph size requires
a larger sample size for exact graph recovery, so that the curve for p = 300 is shifted to the right
compared with the curve for p = 100.
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Figure 4: Simulation results of graph selection consistency for Poisson hub and chain graphs with
varying number of nodes p; plots of probability of correct directed edge-set recovery versus
the sample size n. Each point corresponds to the average over 50 trials.
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C.7 Correlated Instrumental Variables

In this subsection, we evaluate the performance of the proposed method when the instrumental
variables X are correlated. We consider the same setup for binary primary variables as the base
simulation in Table 2 except that X is Gaussian with autoregressive covariance X ∼ N(0,ΣX)
where (ΣX)ij = ρ|i−j| and ρ = 0.5. Figure 5 shows that our method still performs well in the case
where the instrumental variables are correlated. We compare our proposed method with DAGMA
as it is shown to outperform NOTEARS in Appendix C.4.
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Figure 5: Simulation results when the instrumental variables X are correlated.

C.8 Comparison with Linear Deconfounding Structure Learning Algorithm

This subsection compares GAMPI with a recently proposed linear deconfounding algorithm, called
GrIVET (Chen et al. 2023). Compared with Chen et al. (2023), we use the generalized linear models
to account for different distributions of the outcome variables, which enhance model interpretation.
Moreover, in contrast to the imputation-based approach by Chen et al. (2023), we propose a
residual-inclusion-based deconfounding algorithm to address confounders, which has been shown
to be more suitable for nonlinear outcomes. Going beyond, we present novel theoretical analysis
including the fidelity model and consistency of residual inclusion for the GLMs. We compare the
two methods for the Poisson outcomes case as in Table 2. Figure 6 suggests that our proposed
method outperforms the existing linear deconfounding algorithm, demonstrating the advantage of
the proposed method for handling non-Gaussian outcomes.
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Figure 6: Simulation results of comparison with linear deconfounding algorithm, GrIVET.
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Appendix D. Technical Proofs

D.1 Proof of Proposition 1

We prove the proposition in two steps. First, we show that the topological order and the corresponding
DAG are identifiable. Next, we show that the model parameters are identifiable given the graph.
Assume that two structural equation models as in equation (2), defined by θ = (U ,W ) and

θ̃ = (Ũ , W̃ ), induce the same distribution of (Y ,X). We will show that θ = θ̃.
Identifying G. Let G(θ) and G(θ̃) be the DAGs corresponding to θ and θ̃. First, we show that
the topological order of Y1, · · · , Yp is identifiable. For G(θ), assume, without loss of generality,
that Y1 is a leaf node in G(θ). By Assumption 1(B), there exists a valid instrument, say X1, that
intervenes on Y1. By Assumptions 1(A) and (ii),

Cov
(
Y1, X1 | Y S ,X{2,...,q}

)
6= 0, for any S ⊆ {2, . . . , p}, (17)

Cov
(
Yj , X1 |X{2,...,q}

)
= 0, j = 2, . . . , p. (18)

Hence, (17) implies that X1 → Y1 in G(θ̃). Now suppose Y1 is not a leaf node in G(θ̃) and there
exists Y2 such that Y1 → Y2. Then, Cov

(
Y2, X1 |X{2,...,q}

)
= 0 by (18) but X1 → Y1 and Y1 → Y2,

which contradicts Assumption 1(A). Therefore, if Y1 is a leaf node in G(θ), then Y1 must also be a
leaf node in G(θ̃). Therefore, we can identify the leaf nodes Y L1 in the graph. Further, following Li
et al. (2023), the parents and instruments in G(θ) and G(θ̃) of Y1 can be identified by:

E(Y1 | Y −1,X,h) = E(Y1 | Y paG(θ)(1),X, h1) = E(Y1 | Y paG(θ)(1),X inG(θ)(1), h1), (19)

E(Y1 | Y −1,X,h) = E(Y1 | Y paG(θ̃)(1),X, h1) = E(Y1 | Y paG(θ̃)(1),X inG(θ̃)(1), h1), (20)

where paG(θ)(1) refers to the parent variables of Y1 in G(θ) and inG(θ)(1) refers to the instru-

mental variables of Y1 in G(θ); paG(θ̃)(1) and inG(θ̃)(1) are similarly defined for G(θ̃). We

have paG(θ)(1) = paG(θ̃)(1) and inG(θ)(1) = inG(θ̃)(1). To see this, if there exists Yk such

that k ∈ paG(θ)(1) and k /∈ paG(θ̃)(1), we have Cov
(
Y1, Yk | Y {2,...,p}\k,X, h1

)
6= 0 by (19) and

Cov
(
Y1, Yk | Y {2,...,p}\k,X, h1

)
= 0 by (20), leading to a contradiction, and we conclude that

paG(θ)(1) = paG(θ̃)(1). Similarly, we have inG(θ)(1) = inG(θ̃)(1). Therefore, the leaf node Y1 has the

same parents and instruments in G(θ) and G(θ̃).
Toward this end, we have identified the leaf nodes Y L1 along with their parents and instruments

respectively. Next, after removing the leaf nodes Y L1 , we apply the same argument and identify
the leaf variables Y L2 in the sub-graph. We proceed until all the variables are removed, leading
to G(θ) = G(θ̃) and in(j) = ĩn(j), ∀j. In this way, the graph G and the topological order can be
identified.
Identifying θ = (U ,W ) given G. Second, we show that θ = θ̃. Recall that for the jth equation,
ψj(E

(
Yj |Y pa(j),X, hj

)
) = u>j Y pa(j)+w>j X in(j)+hj , j = 1, · · · , p. Let Yk be a parent of Yj . We can

rewrite the above equation as ψj(E
(
Yj |Y pa(j),X, hj

)
) = UkjY k+Upa(j)\k,jY pa(j)\k+w>j X in(j)+hj .

Similarly, for the kth equation, E
(
Y k|Y pa(k),X, hk

)
= ψ−1

k (u>k Y pa(k) +w>kX in(k) +hk). Therefore,

E
(
ψj(E

(
Yj |Y pa(j),X, hj

)
)−Upa(j)\k,jY pa(j)\k|Y pa(k),X, hk

)
= Ukjψ

−1
k (u>k Y pa(k) +w>kX in(k) + hk) +W>

in(j),jX in(j) + E
(
hj |Y pa(k),X, hk

)
. (21)

Note that the left-hand side is not equal to ψj(E
(
Yj |Y pa(k),X, hj

)
) but still characterizes a proper

conditional distribution. We next prove the identifiability of θ = (U ,W ) by induction. Suppose
uk = U•k and wk = W •k are identified. We will show that Ukj and W in(j),j are identifiable and

27



Wang, Shen, and Pan

therefore θ = (U ,W ) is also identifiable by induction on the topological depth. If there exist

Ũkj 6= Ukj and W̃ in(j),j 6= W in(j),j which render the same conditional distribution (21) in that

Ukjψ
−1
k (u>k Y pa(k) +w>kX in(k) +hk) +W>

in(j),jX in(j) +Eθ
(
hj |Y pa(k),X, hk

)
= Ũkjψ

−1
k (u>k Y pa(k) +

w>kX in(k) + hk) + W̃
>
in(j),jX in(j) + Eθ̃

(
hj |Y pa(k),X, hk

)
. Rearranging terms yields that

Ukjψ
−1
k (u>k Y pa(k) +w>kX in(k) + hk)− Ũkjψ−1

k (u>k Y pa(k) +w>kX in(k) + hk)

= W̃
>
in(j),jX in(j) −W>

in(j),jX in(j) + Eθ̃
(
hj |Y pa(k),X, hk

)
− Eθ

(
hj |Y pa(k),X, hk

)
. (22)

If ψ−1
k (·) is a non-linear function, then the left-hand side cannot be linearly represented by the

right-hand side linear function of X in(j). To see this, note that there exists an instrumental variable
Xl for Yk, l ∈ in(k). In addition, by Assumption 2, Eθ

(
hj |Y pa(k),X, hk

)
= Eθ

(
hj |hpa(k),X, hk

)
=∑

m∈{k∪pa(k)} αmhm, leading to Eθ̃
(
hj |Y pa(k),X, hk

)
− Eθ

(
hj |Y pa(k),X, hk

)
=
∑

m(α̃m − αm)hm.
Taking the second derivative of (22) with respect to Xl and then hk yields that

(Ukj − Ũkj)W 2
lk · (ψ−1

k )′′′′(u>k Y pa(k) +w>kX in(k) + hk) = 0,

where we use the property that the second derivative of a linear function is zero. This implies
Ukj = Ũkj and therefore Ukj is identifiable. Further, plugging Ukj = Ũkj into (22) yields W̃ in(j),j =
W in(j),j . Note the statement still holds in the absence of the confounders h by taking the second
derivative of (22) with respect to Xl.

If ψ−1
k (·) is a linear function, then the same conclusion holds under the majority rule that the

number of valid IVs for Yk exceeds 50% of its total number of IVs. To see this, let in∗(k) and ĩn∗(k)
denote the valid IVs of Yk in G(θ) and G(θ̃) respectively. Given a linear ψ−1

k , (22) can be written as

UkjW
>
in(k),kX in(k) − ŨkjW>

in(k),kX in(k) = (Ũkj − Ukj)(u>k Y pa(k) + hk) + W̃
>
in(j),jX in(j) −W>

in(j),jX in(j)

+ Eθ̃
(
hj |Y pa(k),X, hk

)
− Eθ

(
hj |Y pa(k),X, hk

)
.

Let I denote the right-hand side term, which is not a function of X in∗(k) or X ĩn∗(k). Rearranging
terms yields that

UkjW
>
in∗(k),kX in∗(k) − ŨkjW>

ĩn∗(k),k
X ĩn∗(k) = ŨkjW

>
in(k)\ĩn∗(k),k

X in(k)\ĩn∗(k) − UkjW
>
in(k)\in∗(k),kX in(k)\in∗(k) + I.

By the majority rule, |in∗(k)| > |in(k)|/2 and |ĩn∗(k)| > |in(k)|/2. Hence, there must exist
some valid IV, l ∈ in∗(k) ∩ ĩn∗(k), such that (Ukj − Ũkj)WlkXl cannot be linearly represented by

X in(k)\(in∗(k)∩ĩn∗(k)) or X in(k)c . Again, we have Ũkj = Ukj , W̃ in(j),j = W in(j),j . This completes the
proof.

Before proving Proposition 2 and Proposition 3, we first introduce Lemma 6 which investigates
the marginal distribution defined by the true model P(Yj |X) and instruments.

Lemma 6 For a valid instrument Xl, if the marginal distribution under the true model P(Yj |X)
satisfies: ∂

∂Xl
P(Yj |X) 6= 0, then Xl intervenes on Yj or an ancestor of Yj.

Proof of Lemma 6. Note that the marginal distribution can be written as

f(Yj |X) =

∫∫
f(Yj |Y pa(j),X in(j), hj)f(Y pa(j)|X)f(hj) dY pa(j) dhj . (23)

If ∂
∂Xl

P(Yj |X) 6= 0, or equivalently, ∂
∂Xl

f(Yj |X) 6= 0, then, by the product rule and Assumption 1(C),

i) ∂
∂Xl

f(Yj |Y pa(j),X in(j), hj) 6= 0, or ii) ∂
∂Xl

f(Y pa(j)|X) 6= 0. Note f(Yj |Y pa(j),X in(j), hj) =
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exp(Yj
(
U>pa(j),jY pa(j) + W>

in(j),jX in(j) + hj
)
− Aj(U

>
pa(j),jY pa(j) + W>

in(j),jX in(j) + hj)) under

(2). By the chain rule,
∂f(Yj |Y pa(j),Xin(j),hj)

∂Xl
= f(Yj |Y pa(j),X in(j), hj)(Yj − ϕj(U

>
pa(j),jY pa(j) +

W>
in(j),jX in(j) + hj))Wlj . Therefore, condition i) implies that Wlj 6= 0 and l ∈ in(j). Condition

ii) implies that there exists an m ∈ pa(j) such that ∂
∂Xl

f(Ym|X) 6= 0. Similarly, this implies

l ∈ in(m),m ∈ pa(j), or there exists an r ∈ pa(m) such that ∂
∂Xl

f(Yr|X) 6= 0. By induction, we

conclude that if ∂
∂Xl

P(Yj |X) 6= 0, then (i) there exists an l ∈ in(j) such that Wlj 6= 0, or (ii) there
exists an k ∈ an(j) and l ∈ in(k) such that Wlk 6= 0. Hence, Xl intervenes on Yj or an ancestor of
Yj .

Remark: By the proof of Lemma 6 and (23), for a general IV (valid or non-valid), if ∂
∂Xl

P(Yj |X) 6= 0,

then i) ∂
∂Xl

f(Yj |Y pa(j),X in(j), hj) 6= 0, or ii) ∂
∂Xl

f(Y pa(j)|X) 6= 0, or iii) ∂
∂Xl

f(hj) 6= 0. This
suggests: i) Xl intervenes on Yj or an ancestor of Yj , or ii) Xl is correlated with hj or han(j).

D.2 Proof of Proposition 2

Recall that Sj = {l : Vlj 6= 0} for the fidelity model (3) and S̃j = {l :
∂P(Yj |X)
∂Xl

6= 0} for the true

model P (Yj |X). Next, we will show that {l : Vlj 6= 0} = S̃j , implying that the fidelity model
P∗(Yj |X) and the marginal model P(Yj |X) have the same support.

For any l ∈ S̃j , ∂P(Yj |X)
∂Xl

6= 0. By Lemma 6 and the remark, i) Xl intervenes on Yj or an ancestor
of Yj , or ii) Xl is correlated with hj or han(j). Case i) suggests that l ∈ {in(j)} ∪ in(an(j)). Hence,
there exists a path in the graph from Xl to Yj : Xl → Yk → · · · → Yj . By the local faithfulness
in Assumption 1(A), Cov(Xl, Yj) 6= 0. This implies that Vlj 6= 0 in the fidelity model. Otherwise,
suppose Vlj = 0. By (3), E(Yj |Xl,X−l) = E(Yj |X−l), implying that P(Yj |Xl,X−l) = P(Yj |X−l) and
thus Cov(Xl, Yj) = 0 by the definition of conditional independence, which contradicts Cov(Xl, Yj) 6=
0. Hence, Vlj 6= 0 in the fidelity model. For case ii), Cov(Xl, hj) 6= 0 or Cov(Xl, han(j)) 6= 0 implies
Cov(Xl, Yj) 6= 0. Following the same argument as in case i), we obtain Vlj 6= 0. Combining the two

cases, Vlj 6= 0 in the fidelity model or l ∈ Sj , implying S̃j ⊂ Sj .
On the other hand, for any l ∈ Sj , Vlj 6= 0. Then, E[Yj |Xl,X−l] 6= E[Yj |X−l]. Now, suppose

∂P(Yj |X)
∂Xl

= 0. Then, as in (23), there does not exist a path in the graph from Xl to Yj . Moreover, we

have ∂
∂Xl

f(hj) = 0 and ∂
∂Xl

f(han(j)) = 0, implying Cov(Xl, hj) = 0 and Cov(Xl, han(j)) = 0. Thus,

Cov(Xl, Yj) = 0, which contradicts E[Yj |Xl,X−l] 6= E[Yj |X−l]. Hence, l ∈ S̃j and thus Sj ⊂ S̃j .

This establishes that Sj = S̃j .

D.3 Proof of Proposition 3

If Vlj 6= 0, then ∂
∂Xl

P(Yj |X) 6= 0 by Proposition 2. For a valid instrument Xl, by Lemma 6, Xl

intervenes on Yj or an ancestor of Yj .

Moreover, following Li et al. (2023), for a leaf node Yj , there exists a valid instrument Xl → Yj
by Assumption 1(B). If there exists j′ 6= j such that Vlj′ 6= 0, then Yj must be an ancestor of Yj′ ,
which contradicts the fact that Yj is a leaf node. On the other hand, suppose Vlj 6= 0 and Vlj′ = 0,
∀j′ 6= j. If Yj is not a leaf node, then there exists a Yj′ such that Yj is a parent of Yj′ . This implies
∂
∂Xl

f(Yj′ |X) 6= 0 and thus Vlj′ 6= 0, which contradicts ‖Vl•‖0 = 1.

D.4 Proof of Theorem 4

Let S0
j = {l : V 0

lj 6= 0} and S
[t]
j = {l : |Ṽ [t]

lj | ≥ τj} be the indices of the true and estimated non-zero

elements of the jth columns V̂
0

•j and Ṽ
[t]

•j at the t-th iteration of Algorithm 1, respectively. Let the
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corresponding false negative and positive sets be FN
[t]
j = S0

j \S
[t]
j and FP

[t]
j = S

[t]
j \S0

j at iteration t.

Let an event Ej =
{
‖X>ξ̂j/n‖∞ ≤ 0.5γjτj

}
∩
{
‖V̂

0

•j−V 0
•j‖∞ ≤ 0.5τj

}
, where ξ̂j = Y j−ϕj(XV̂

0

•j)

is the residual of the oracle MLE V̂
0

•j for the GLM, with the support {l : V̂ 0
lj 6= 0} = S0

j . Consider
the data matrix (Xn×q,Y n×p) and Y j refers to the j-th column of Y , that is, an n× 1 vector.

Our proof consists of three steps. In Step 1, we show by induction that if
∣∣S0
j ∪S

[t−1]
j

∣∣ ≤ 2K0
j on

Ej , then |S0
j ∪S

[t]
j | ≤ 2K0

j , t = 1, . . ., so that Assumption 4 applies. Recall that K0
j = ‖V 0

•j‖0 = |S0
j |.

In Step 2, we estimate the number of iterations to termination T . Particularly, we prove that

|FP
[t]
j | + |FN

[t]
j | < 1 or |FP

[t]
j | = |FN

[t]
j | = 0 and thus S

[t]
j = S0

j , for t ≥ T . In Step 3, we bound

P(Ej) and show that 1− P
(
∪pj=1 Ecj

)
has a high probability tending to one as n→∞.

Step 1: Suppose |S0
j ∪ S

[t−1]
j | ≤ 2K0

j on Ej . By the Taylor’s expansion of the gradient ∇L(Ṽ
[t]

•j)

at V̂
0

•j ,

∇L(Ṽ
[t]

•j) = ∇L(V̂
0

•j) +∇2L(V •j)
(
Ṽ

[t]

•j − V̂
0

•j
)
, (24)

where V •j is a vector of intermediate values on the line between V̂
0

•j and Ṽ
[t]

•j , ∇L(V̂
0

•j) =

n−1
∑n

i=1Xi•(−Yij + ϕj(X
>
i•V̂

0

•j)) = −n−1X>ξ̂j with ξ̂j = Y j − ϕj(XV̂
0

•j). By the optimality
condition of (6) at iteration t,

0 ≤
(
V̂

0

•j − Ṽ
[t]

•j
)>(∇L(Ṽ

[t]

•j) + γjτj∇
∥∥(Ṽ [t]

•j
)(
S
[t−1]
j

)c∥∥
1

)
, (25)

where ‖ · ‖1 denotes the `1-norm. On the other hand, by the optimality condition of the oracle

estimator V̂
0

•j : X
>
S0
j
(Y j − ϕj(XV̂

0

•j)) = X>ξ̂j = 0 on S0
j , implying that (Rj)S[t−1]

j ∩S0
j

= 0, where

Rj = X>ξ̂j/n − γjτj∇
∥∥(Ṽ [t]

•j
)(
S
[t−1]
j

)c∥∥
1
. Let S0

j∆S
[t−1]
j = (S0

j \S
[t−1]
j ) ∪ (S

[t−1]
j \S0

j ), where ∆

denotes the symmetric difference.
Hence, combination of (24) and (25) yields that(
Ṽ

[t]

•j − V̂
0

•j
)>∇2L(V •j)

(
Ṽ

[t]

•j − V̂
0

•j
)
≤
(
Ṽ

[t]

•j − V̂
0

•j
)>(

X>ξ̂j/n− γjτj∇
∥∥(Ṽ [t]

•j
)(
S
[t−1]
j

)c∥∥
1

)
≤
(
Ṽ

[t]

•j − V̂
0

•j
)>
S0
j∆S

[t−1]
j

(Rj)S0
j∆S

[t−1]
j

+
(
Ṽ

[t]

•j − V̂
0

•j
)>(
S0
j∪S

[t−1]
j

)c(Rj)(
S0
j∪S

[t−1]
j

)c
≤
∥∥(Ṽ [t]

•j − V̂
0

•j
)
S0
j∆S

[t−1]
j

∥∥
1

(
‖X>ξ̂j/n‖∞ + γjτj

)
+
∥∥(Ṽ [t]

•j − V̂
0

•j
)(
S0
j∪S

[t−1]
j

)c∥∥
1

(
‖X>ξ̂j/n‖∞ − γjτj

)
, (26)

where the last inequality holds since
(
Ṽ

[t]

•j − V̂
0

•j
)>(
S0
j∪S

[t−1]
j

)c(∇∥∥(Ṽ [t]

•j
)(
S0
j∪S

[t−1]
j

)c∥∥
1

)
=
∥∥(Ṽ [t]

•j −

V̂
0

•j
)(
S0
j∪S

[t−1]
j

)c∥∥
1
. Note that

(
Ṽ

[t]

•j − V̂
0

•j
)>∇2L(V •j)

(
Ṽ

[t]

•j − V̂
0

•j
)
≥ 0 since ∇2L(V •j) is positive-

definite. By (26),∥∥(Ṽ [t]

•j − V̂
0

•j
)(
S0
j∪S

[t−1]
j

)c∥∥
1

(
γjτj −

∥∥X>ξ̂j/n∥∥∞) ≤ ∥∥(Ṽ [t]

•j − V̂
0

•j
)
S0
j∆S

[t−1]
j

∥∥
1

(∥∥X>ξ̂j/n∥∥∞+ γjτj
)
.

Note, on event Ej ,
∥∥X>ξ̂j/n∥∥∞ ≤ γjτj/2, and thus∥∥∥(Ṽ [t]

•j − V̂
0

•j
)(
S0
j∪S

(t−1]
j

)c∥∥∥
1
≤ 3
∥∥∥(Ṽ [t]

•j − V̂
0

•j
)
S0
j∆S

[t−1]
j

∥∥∥
1
≤ 3
∥∥∥(Ṽ [t]

•j − V̂
0

•j
)
S0
j∪S

[t−1]
j

∥∥∥
1
.
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Note that
∣∣∣S0
j ∪ S

[t−1]
j

∣∣∣ ≤ 2K0
j . By Assumption 4 and (26),

m
∥∥Ṽ [t]

•j − V̂
0

•j
∥∥2

2
≤
(
Ṽ

[t]

•j − V̂
0

•j
)>∇2L(V •j)

(
Ṽ

[t]

•j − V̂
0

•j
)

≤
(∥∥X>ξ̂j/n∥∥∞ + γjτj

)∥∥(Ṽ [t]

•j − V̂
0

•j
)
S0
j∆S

[t−1]
j

∥∥
1

+
(∥∥X>ξ̂j/n∥∥∞ − γjτj)∥∥(Ṽ [t]

•j − V̂
0

•j
)(
S0
j∪S

[t−1]
j

)c∥∥
1

≤
(∥∥X>ξ̂j/n∥∥∞ + γjτj

)∥∥(Ṽ [t]

•j − V̂
0

•j
)
S0
j∆S

[t−1]
j

∥∥
1
,

≤ 1.5γjτj

√
|S0
j∆S

[t−1]
j | ·

∥∥Ṽ [t]

•j − V̂
0

•j
∥∥

2
, (27)

where the last inequality follows from the Cauchy-Schwarz inequality and
∥∥X>ξ̂j/n∥∥∞ ≤ 0.5γjτj

on Ej . Hence, ∥∥Ṽ [t]

•j − V̂
0

•j
∥∥

2
/τj ≤ (1.5γj/m)

√
2K0

j ≤
√
K0
j , (28)

since |S0
j∆S

[t−1]
j | ≤ |S0

j ∪ S
[t−1]
j | ≤ 2K0

j and γj ≤ m/6 by Condition (1) of Theorem 4. Moreover,∥∥Ṽ [t]

•j − V̂
0

•j
∥∥2

2
≥ |FP

[t]
j | · τ2

j since |Ṽ
[t]

lj − V̂
0

lj | = |Ṽ
[t]

lj | > τj for any l ∈ FP
[t]
j = S

[t]
j \S0

j . By (28),

|FP
[t]
j | ≤

∥∥Ṽ [t]

•j − V̂
0

•j
∥∥2

2
/τ2
j ≤ K0

j . Therefore, |S0
j ∪ S

[t]
j | = |S0

j |+ |FP
[t]
j | ≤ 2K0

j .

Step 2: Suppose |FP
[t]
j |+ |FN

[t]
j | ≥ 1. Similarly,∥∥Ṽ [t]

•j − V̂
0

•j
∥∥2

2
≥ (|FP

[t]
j |+ |FN

[t]
j |)(0.5τj)

2,

since |Ṽ [t]
lj − V̂

0
lj | ≥ |Ṽ

[t]
lj − V

0
lj | − |V̂ 0

lj − V 0
lj | ≥ τj − 0.5τj for any l ∈ FP

[t]
j ∪ FN

[t]
j , by Assumption 6.

Therefore,
√
|FP

[t]
j |+ |FN

[t]
j | ≤

∥∥Ṽ [t]

•j − V̂
0

•j
∥∥

2
/0.5τj . Moreover, by (27) and the Cauchy-Schwarz

inequality, m
∥∥Ṽ [t]

•j − V̂
0

•j
∥∥2

2
≤ 1.5γjτj

∥∥(Ṽ [t]

•j − V̂
0

•j
)
S0
j∆S

[t−1]
j

∥∥
1
≤ 1.5γjτj

√
|S0
j∆S

[t−1]
j | ·

∥∥Ṽ [t]

•j −

V̂
0

•j
∥∥

2
. Hence,

∥∥Ṽ [t]

•j − V̂
0

•j
∥∥

2
/τj ≤ (1.5γj/m)

√
|FP

[t−1]
j |+ |FN

[t−1]
j |. By Conditions (1) and (2) of

Theorem 4:√
|FP

[t]
j |+ |FN

[t]
j | ≤

∥∥Ṽ [t]

•j − V̂
0

•j
∥∥

2

0.5τj
≤ 3γj

m

√
|FP

[t−1]
j |+ |FN

[t−1]
j | ≤ 0.5

√
|FP

[t−1]
j |+ |FN

[t−1]
j |.

Iterating this process implies that
√
|FP

[t]
j |+ |FN

[t]
j | ≤ (1

2)t
√
|S0
j |+ |S

[0]
j |, t = 0, 1, . . .. If t ≥ T =

1 +
⌈

log(2K0
j )/ log 4

⌉
, then |FP

[t]
j | + |FN

[t]
j | < 1 or FP

[t]
j = FN

[t]
j = ∅ on event Ej . Consequently,

{l : Ṽ
[T ]
lj 6= 0} = {l : V 0

lj 6= 0} = S0
j .

Step 3: To bound

P
(⋃p

j=1 Ecj
)
, recall that Ej =

{∥∥X>ξ̂j/n∥∥∞ ≤ 0.5γjτj
}
∩
{∥∥V̂ 0

•j − V 0
•j
∥∥
∞ ≤ 0.5τj

}
. Next, we

bound the two events in Ecj separately. For the first event, by the triangular inequality,

P
(∥∥X>ξ̂j/n∥∥∞ > 0.5γjτj

)
= P

(∥∥X>(Y j − ϕj(XV̂
0

•j))/n
∥∥
∞ > 0.5γjτj

)
≤ P

(∥∥X>(Y j − ϕj(XV 0
•j))/n

∥∥
∞ > 0.25γjτj

)
+ P

(
‖X>(ϕj(XV

0
•j)− ϕj(XV̂

0

•j))/n‖∞ > 0.25γjτj
)
. (29)
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By Assumption 5, |Xik| ≤ c1. By Assumption 3, Yij − ϕj(V 0
•j
>
Xi•) is sub-exponential with the

bound M . Hence, by Bernstein’s inequality (Theorem 2.8.2 of Vershynin (2018)), for any given
k = 1, · · · , q,

P

(∣∣∣∣∣
n∑
i=1

Xik(Yij − E[Yij |X])/n

∣∣∣∣∣ ≥ 0.25γjτj

)
≤ 2 exp

(
−min

(
γ2
j τ

2
j n

32M2c2
1

,
γjτjn

8Mc1

))
.

Note that
∥∥X>(Y j − ϕj(XV 0

•j))/n
∥∥
∞ = maxqk=1 |

∑n
i=1Xik(Yij −E[Yij |X])/n|. The union bound

yields, for the first quantity in (29), that

P
(∥∥X>(Y j − ϕj(XV 0

•j))/n
∥∥
∞ > 0.25γjτj

)
≤ 2q exp

(
−min

( γ2
j τ

2
j n

32M2c2
1

,
γjτjn

8Mc1

))
,

≤ 2 exp(−2 log n− log q) = 2n−2q−1, (30)

by the choice of γj and τj , that is, γjτj ≥
√

64M2c2
1(log q + log n)/n.

For the second quantity in (29), we bound ‖X>(ϕj(XV
0
•j)− ϕj(XV̂

0

•j))/n‖∞. Towards this

end, note that V 0
kj = V̂ 0

kj = 0 on k /∈ S0
j . Therefore, for V 0

•j and V̂
0

•j constrained on the set S0
j ,

V 0
•j = V 0

S0
j ,j

and V̂
0

•j = V̂
0

S0
j ,j

. Then, by Assumption 3,

‖X>(ϕj(XV
0
•j)− ϕj(XV̂

0

•j))‖∞ ≤ L1‖X>XS0
j
(V 0

S0
j ,j
− V̂

0

S0
j ,j

)‖∞, (31)

for some Lipschitz constant L1 > 0. Moreover, by Lemma 7, for the oracle estimator constrained on

S0
j , namely, V̂ 0

S0
j ,j

, V̂
0

S0
j ,j
−V 0

S0
j ,j

= (X>
S0
j
MXS0

j
)−1X>

S0
j
(Y j − ζ0 − r), where M , ζ0 and r will be

defined in Lemma 7. Let K = X>XS0
j
(X>

S0
j
MXS0

j
)−1X>

S0
j
. Plugging the above expression into

(31) yields that

P
(
‖X>(ϕj(XV

0
•j)− ϕj(XV̂

0

•j))/n‖∞ > 0.25γjτj
)
≤ P

(
‖K(Y j − ζ0 − r)/n‖∞ >

γjτj
4L1

)
≤ P

(
‖K(Y j − ζ0)/n‖∞ >

γjτj
4L1

− ‖Kr/n‖∞
)
. (32)

By Assumption 5, there exists a constant c3 > 0 such that ‖X>XS0
j
(X>

S0
j
MXS0

j
)−1X>

S0
j
‖∞ ≤ c3

or maxql=1 |Kli| ≤ c3. Then, by Lemmas 7 and 8 with the choice of τj and γj ,

‖Kr/n‖∞ =
q

max
l=1
|
n∑
i=1

Kliri|/n ≤ max
l

n∑
i=1

|Kli||ri|/n ≤ c3

n∑
i=1

|ri|/n

≤ c3L2(V̂ 0
S0
j ,j
− V 0

S0
j ,j

)>(X>S0
j
XS0

j
/n)(V̂ 0

S0
j ,j
− V 0

S0
j ,j

)

≤ c3cmaxL2‖V̂ 0
S0
j ,j
− V 0

S0
j ,j
‖22 ≤ c3cmaxL2

16M2c2
1

m2
·
K0
j log(nK0

j )

n
≤ 1

2
· γjτj

4L1
,

with probability at least 1− 2 exp(− log(K0
j )− 2 log n) = 1− 2(K0

j )−1n−2.

Next, in (32), we bound K(Y j − ζ0)/n. Note that maxqk=1 |Kki| ≤ c3. By Assumption 3,
Yij − ζ0

ij = (Yij − E[Yij |X]) is sub-exponential with the bound M . By Theorem 2.8.2 of Vershynin
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(2018) and a union bound as in (30),

P
(
‖X>(ϕj(XV

0
•j)− ϕj(XV̂

0

•j))/n‖∞ > 0.25γjτj

)
≤ P

(
‖K(Y j − ζ0)/n‖∞ > 0.5

γjτj
4L1

)
≤ 2q exp

(
−min

( γ2
j τ

2
j n

8M2c2
3 · 16L2

1

,
γjτjn

16Mc3 · L1

))
+ 2(K0

j )−1n−2

≤ 2q exp
(
−

γ2
j τ

2
j n

8M2c2
3 · 16L2

1

)
+ 2(K0

j )−1n−2. (33)

Combining (29), (30), and (33) yields that

P
(∥∥∥X>ξ̂j/n∥∥∥∞ > 0.5γjτj

)
= P

(∥∥∥X>(Y j − ϕj(XV̂
0

•j))/n
∥∥∥
∞
> 0.5γjτj

)
≤ 2q exp

(
−
γ2
j τ

2
j n

32M2c2
1

)
+ 2q exp

(
−

γ2
j τ

2
j n

8M2c2
3 · 16L2

1

)
+ 2(K0

j )−1n−2

≤ 2n−2q−1 + 2n−2q−1 + 2(K0
j )−1n−2 ≤ 6n−2q−1.

Next, we bound the second event
{∥∥V̂ 0

•j − V 0
•j
∥∥
∞ ≤ 0.5τj

}
in Ecj . Since V̂

0

•j = V 0
•j = 0 on

(S0
j )c, it suffices to consider the entries of V̂

0

•j constrained on S0
j , or the oracle estimator V̂

0

S0
j ,j

. By

Lemma 7, V̂
0

S0
j ,j
− V 0

S0
j ,j

= H(Y j − ζ0 − r), where H =
(
X>

S0
j
MXS0

j

)−1
X>

S0
j

= (Hki).

To bound ‖Hr‖∞, by Assumption 5, ‖(X>
S0
j
MXS0

j
/n)−1X>

S0
j
‖∞ ≤ c2 or ‖H‖∞ ≤ c2n

−1, for

some constant c2 > 0. By Lemmas 7 and 8 with the choice of τj ,

‖Hr‖∞ = max
k
|Hk•r| = max

k
|
n∑
i=1

Hkiri| ≤ max
k

n∑
i=1

|Hki||ri| ≤ c2

n∑
i=1

|ri|/n

≤ c2L2(V̂
0

S0
j ,j
− V 0

S0
j ,j

)>(X>S0
j
XS0

j
/n)(V̂

0

S0
j ,j
− V 0

S0
j ,j

)

≤ c2cmaxL2‖V̂
0

S0
j ,j
− V 0

S0
j ,j
‖22 ≤ c2cmaxL2

16M2c2
1

m2

K0
j log(nK0

j )

n
≤ 0.25τj . (34)

To bound ‖H(Y j − ζ0)‖∞, note that maxqk=1 |Hki| ≤ c2/n. By Assumption 3, Yij − ζ0
ij =

(Yij − E[Yij |X]) is sub-exponential with the bound M . By the triangular inequality, Theorem 2.8.2
of Vershynin (2018) and the same argument as in (30), we obtain that

P
(∥∥V̂ 0

•j − V 0
•j
∥∥
∞ > 0.5τj

)
≤ P

(
H(Y j − ζ0)

∥∥
∞ > 0.5τj −

∥∥Hr∥∥∞)
≤ P

(
‖H(Y j − ζ0)‖∞ > 0.25τj

)
≤ P

(
‖Hξj‖∞ > 0.25τj

)
≤ 2K0

j exp
(
−min

( τ2
j n

32M2c2
2

,
τjn

8Mc2

))
+ 2(K0

j )−1n−2.

To conclude, on Ej , Ŝj ≡ S[T ]
j = S0

j , which means V̂ •j = Ṽ
[T ]

•j = V̂
0

•j . Hence, for j = 1, . . . , p,

P(V̂ •j 6= V̂
0

•j) ≤ P(Ecj ) ≤ 2q exp
(
−

γ2
j τ

2
j n

32M2c2
1

)
+ 2q exp

(
−

γ2
j τ

2
j n

8M2c2
3 · 16L2

1

)
+ 2K0

j exp
(
−

τ2
j n

32M2c2
2

)
+ 2(K0

j )−1n−2 ≤ 8n−2q−1. (35)
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It remains to show that V̂
0

•j is a global minimizer of (5) with high probability. Towards this
end, we will show that Assumptions 4 and 6 imply the degree of separation condition (3) of Shen

et al. (2013). To see this, let g(yij |θ,xi) = e−`(yij ,θ
>xi) be a probability density for yij where we

denote θ = V •j for notation simplicity. In addition, denote θ0 = (V S0
j ,j
,0) and θAj = (0,V Aj ,j).

By the mean value theorem, there exists θ0 between θAj and θ0 such that

(
g1/2(yij |θAj ,xi)− g1/2(yij |θ0,xi)

)2
=

((
∇g1/2(yij |θ0,xi)

)>
(θAj − θ0)

)2

=
(

(∇e−`(yij ,θ
>
0 xi)/2)>(θAj − θ0)

)2

=
1

4
e−`(yij ,θ

>
0 xi)

(
∇`(yij , θ

>
0 xi)

>(θAj − θ0)
)2
.

Then, the Hellinger distance can be written as:

h2
(
θAj , θ

0
)

=
1

4

(∫ (
g1/2(yij |θAj ,xi)− g1/2(yij |θ0,xi)

)2
dµ(yij)

)
=

1

16

(∫
e−`(yij ,θ

>
0 xi)(θAj − θ0)>∇`(yij , θ

>
0 xi)∇`(yij , θ

>
0 xi)

>(θAj − θ0)dµ(yij)

)
=

1

16
(θAj − θ0)>

(∫
e−`(yij ,θ

>
0 xi) · ∇`(yij , θ

>
0 xi)∇`(yij , θ

>
0 xi)

>dµ(yij)

)
(θAj − θ0)

=
1

16
(θAj − θ0)>Eθ0

[
∇2`(y′ij , θ

>
0 xi)

]
(θAj − θ0),

where Eθ0 is the expectation with respect to Y ′ij ∼ g(y′ij |θ
>
0 ,xi) while the last equality follows by

the fact that Eθ
[
∇ log g(yij |θ,xi)∇ log g(yij |θ,xi)>

]
= −Eθ

[
∇2 log g(yij |θ,xi)

]
for any θ.

Let θ̃ = θAj − θ0. Then, ‖θ̃‖22 ≥ |S0
j \Aj |‖V S0

j ,j
‖22. By the definition of Cmin of Shen et al. (2013)

and Assumption 4,

Cmin = min
Aj 6=S0

j ,|Aj |≤K0
j

h2
(
θAj , θ

0
)

max(|S0
j \Aj |, 1)

≥ min
Aj 6=S0

j ,|Aj |≤K0
j

|S0
j \Aj |−1(θAj − θ0)>E

[
∇2`(yij , θ

>
0 xi)

]
(θAj − θ0)

≥ m‖V S0
j ,j
‖22 ≥ m(100Mc2)2 log q + log n

n
≥ m(100Mc2)2 log q

n
,

where the last inequality uses Assumptions 4 and 6 and the fact θ0 = θAj + t(θAj − θ0), t ∈ [0, 1] so

that ‖θ0‖0 ≤ 2K0
j . This implies the degree of separation condition (3) of Shen et al. (2013). By

Theorem 2 there, P
(
V̂

0

•j is not a global minimizer of (5)
)
≤ 3 exp(−2(log(q) + log(n))), 1 ≤ j ≤ p,

implying that

P
(
V̂

0

•j is not a global minimizer of (5), 1 ≤ j ≤ p
)
≤ 3p (exp(−2(log(q) + log(n)))) .

Hence, V̂ •j is a global minimizer of (5) with probability tending to 1 as n→∞; note that q ≥ p by

Assumption 1(B). Finally, we have shown that Ŝj ≡ {l : V̂lj 6= 0} = S0
j ≡ {l : V 0

lj 6= 0}, implying

{(l, j) : V̂lj 6= 0} = {(l, j) : V 0
lj 6= 0}. By Proposition 3, the estimated Ŝ via V̂ reconstructs the true

super-graph S0 correctly. This completes the proof. We next present proofs of the lemmas.
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Lemma 7 (Expression of the oracle MLE V̂
0

S0
j ,j

) Let V̂
0

S0
j ,j

be the oracle MLE, defined as

the minimizer of L(V S0
j ,j
|Y j ,XS0

j
) = n−1

∑n
i=1

(
−Yij(x>i,S0

j
V S0

j ,j
) +Aj(x

>
i,S0

j
V S0

j ,j
)

)
over V S0

j ,j
.

Then,

V̂
0

S0
j ,j
− V 0

S0
j ,j

= (X>S0
j
MXS0

j
)−1X>S0

j
(Y j − ζ0 − r), (36)

where ζ0 = (ζ0
1 , . . . , ζ

0
n) with ζ0

i = ϕj(x
>
i,S0

j
V 0
S0
j ,j

), M is a diagonal matrix with the ith diagonal

M ii = A′′j (X
>
i•V

0
•j) and r = (r1, · · · , rp) is the integral form of the reminder for Taylor’s expansion

satisfying

n∑
i=1

|ri| ≤ L2(V̂
0

S0
j ,j
− V 0

S0
j ,j

)>(

n∑
i=1

xi,S0
j
x>i,S0

j
)(V̂

0

S0
j ,j
− V 0

S0
j ,j

), (37)

for L2 defined in Assumption 3.

Proof of Lemma 7. By the optimality condition for the constrained oracle MLE, for k ∈ S0
j ,

n∑
i=1

Xik(yij − ϕj(x>i,S0
j
V̂

0

S0
j ,j

)) = 0,

n∑
i=1

Xik(yij − ϕj(x>i,S0
j
V 0
S0
j ,j

) + ϕj(x
>
i,S0

j
V 0
S0
j ,j

)− ϕj(x>i,S0
j
V̂

0

S0
j ,j

)) = 0. (38)

A Taylor series expansion of ϕj(x
>
i,S0

j
V S0

j ,j
) at V 0

S0
j ,j

yields that

ϕj(x
>
i,S0

j
V̂

0

S0
j ,j

) = ϕj(x
>
i,S0

j
V 0
S0
j ,j

) + wj(x
>
i,S0

j
V 0
S0
j ,j

)x>i,S0
j
(V̂

0

S0
j ,j
− V 0

S0
j ,j

) + ri, (39)

where

ri =

∫ 1

0

ϕ′′j
(
x>i,S0

j
(V̂

0

S0
j ,j

+ t(V̂
0

S0
j ,j
− V 0

S0
j ,j

))
)
(1− t) dt

(
(V̂

0

S0
j ,j
− V 0

S0
j ,j

)>xi,S0
j
x>i,S0

j
(V̂

0

S0
j ,j
− V 0

S0
j ,j

)
)
,

is the integral form of the remainder for Taylor’s expansion as Li and Lederer (2019) and wj(x
>u) =

ϕ′j(x
>u) = A′′j (x

>u). Let M be a diagonal matrix whose ith diagonal M ii = A′′j (V
0
•j
>
Xi•).

Write (38) in a matrix form using (39):

X>S0
j
MXS0

j
(V̂ 0

S0
j ,j
− V 0

S0
j ,j

) = X>S0
j
(Y j − ζ0 − r)

V̂ 0
S0
j ,j
− V 0

S0
j ,j

= (X>S0
j
MXS0

j
)−1X>S0

j
(Y j − ζ0 − r), (40)

where ζ0
i = ϕj(x

>
i,S0

j
V 0
S0
j ,j

). Further, note that ϕj(x
>u) = A′j(x

>u). Then, in the expression

for ri, ϕ
′′
j

(
x>
i,S0

j
(V̂

0

S0
j ,j

+ t(V̂
0

S0
j ,j
− V 0

S0
j ,j

))
)

= gi(t), where gi(t) = ϕ′′j (ηi(t)) = A′′′j (ηi(t)) with

ηi(t) = x>
i,S0

j
(V̂ 0

S0
j ,j

+ t(V̂ 0
S0
j ,j
−V 0

S0
j ,j

)), t ∈ (0, 1). By Assumption 3, |gi(t)| ≤ L2. Hence, (37) holds.

Lemma 8 (Rate of convergence under the `2-norm) Under Assumption 4 (restricted strong
convexity),

‖V̂
0

S0
j ,j
− V 0

S0
j ,j
‖2 ≤

2

m

√
K0
j

∥∥X>S0
j
(Y j − ϕj(XS0

j
V 0
S0
j ,j

))/n
∥∥
∞ ≤

4Mc1

m

√
K0
j log(nK0

j )

n
,

with probability at least 1− 2 exp(− log(K0
j )− 2 log n) = 1− 2(K0

j )−1n−2.
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Proof of Lemma 8. We follow the proof of Lee et al. (2015) and consider the entries of V 0
•j on

S0
j . The negative log-likelihood is

L(V S0
j ,j
|Y j ,XS0

j
) = n−1

n∑
i=1

(
−Yij(x>i,S0

j
V S0

j ,j
) +Aj(x

>
i,S0

j
V S0

j ,j
)
)
,

where xi,S0
j

is a subvector of xi with elements constrained on the indices S0
j . By the definition of

the oracle MLE, L(V̂
0

S0
j ,j

) ≤ L(V 0
S0
j ,j

). Taylor’s expansion of L(·) at V 0
S0
j ,j

yields that

0 ≥ ∇L(V 0
S0
j ,j

)(V̂
0

S0
j ,j
− V 0

S0
j ,j

) +
1

2
(V̂

0

S0
j ,j
− V 0

S0
j ,j

)>∇2L(V
0
S0
j ,j

)(V̂
0

S0
j ,j
− V 0

S0
j ,j

).

Let ∆ = V̂
0

•j − V 0
•j . Clearly, 0 = ‖∆(S0

j )c‖1 ≤ 3‖∆S0
j
‖1. Therefore, by the restricted strong

convexity condition 1
2(V̂

0

•j−V 0
•j)
>∇2L(V

0
•j)(V̂

0

•j−V 0
•j) ≥ m

2 ‖V̂
0

•j−V 0
•j‖22, which implies 1

2(V̂
0

S0
j ,j
−

V 0
S0
j ,j

)>∇2L(V
0
S0
j ,j

)(V̂
0

S0
j ,j
− V 0

S0
j ,j

) ≥ m
2 ‖V̂

0

S0
j ,j
− V 0

S0
j ,j
‖22 as V̂

0

(S0
j )c,j = V 0

(S0
j )c,j

= 0.

By the restricted strong convexity condition,

∇L(V 0
S0
j ,j

)(V̂
0

S0
j ,j
− V 0

S0
j ,j

) +
m

2
‖V̂

0

S0
j ,j
− V 0

S0
j ,j
‖22 ≤ 0.

By the Hölder’s inequality,

m

2
‖V̂

0

S0
j ,j
− V 0

S0
j ,j
‖22 ≤ −∇L(V 0

S0
j ,j

)(V̂
0

S0
j ,j
− V 0

S0
j ,j

) ≤ ‖∇L(V 0
S0
j ,j

)‖∞‖V̂
0

S0
j ,j
− V 0

S0
j ,j
‖1.

By the Cauchy–Schwarz inequality,

m

2
‖V̂

0

S0
j ,j
− V 0

S0
j ,j
‖22 ≤

√
K0
j ‖∇L(V 0

S0
j ,j

)‖∞‖V̂
0

S0
j ,j
− V 0

S0
j ,j
‖2,

‖V̂
0

S0
j ,j
− V 0

S0
j ,j
‖2 ≤

2

m

√
K0
j ‖∇L(V 0

S0
j ,j

)‖∞,

where ∇L(V 0
S0
j ,j

) = n−1X>
S0
j
(Y j − ϕj(XS0

j
V 0
S0
j ,j

)). Therefore,

P
(∥∥X>S0

j
(Y j − ϕj(XS0

j
V 0
S0
j ,j

))/n
∥∥
∞ > ε

)
≤ 2K0

j exp
(
−min

( nε2

2M2c2
1

,
nε

2Mc1

))
.

Hence, ‖V̂
0

S0
j ,j
− V 0

S0
j ,j
‖2 ≤ 2

m

√
K0
j ε = 4Mc1

m

√
K0
j log(nK0

j )

n , with probability 1 − 2K0
j exp

(
−

min
(

nε2

2M2c21
, nε

2Mc1

))
≥ 1 − 2 exp(− log(K0

j ) − 2 log n) = 1 − 2(K0
j )−1n−2, ‖V̂

0

S0
j ,j
− V 0

S0
j ,j
‖2 ≤

2
m

√
K0
j ε = 4Mc1

m

√
K0
j log(nK0

j )

n , where ε = 2Mc1

√
log(nK0

j )

n .

D.5 Proof of Theorem 5

For the jth equation, the TLP estimator minimizes:

(Ŵ in(j),j , Ûan(j),j , α̂an(j),j)

= argmin
W in(j),j ,Uan(j),j ,αan(j),j

n−1
n∑
i=1

−Yij
(
W>

in(j),j
Xi,in(j) +U>an(j),jY i,an(j) +α>an(j),jĥi,an(j)

)
+Aj

(
W>

in(j),j
Xi,in(j) +U>an(j),jY i,an(j) +α>an(j),jĥi,an(j)

)
subject to

∑
k∈an(j)

I(Ukj 6= 0) ≤ Kj ,
∑

k∈an(j)

I(αkj 6= 0) ≤ K ′j , j = 1, . . . , p.
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In the absence of confounders (hi,an(j) = 0), if we use standard constrained GLM regression

without deconfounding, (ĥi,an(j) = 0), it is straightforward to show that Ûan(j),j → U0
an0(j),j and

Ŵ in(j),j →W 0
in0(j),j

by standard high-dimensional statistics results.

We now show the causal graph selection consistency of the TLP estimator in the presence
of the confounders. We follow the same proof procedure of Theorem 4. Denote the oracle M-

estimator θ̂
ml

= (Ŵ
ml

in(j),j , Û
ml

an(j),j , α̂
ml
an(j),j)) = argminL(θ|Y an(j),X in(j), ĥan(j)) such that {k :

Ûmlkj 6= 0} = {k : U0
kj 6= 0} = pa0(j), {l : Ŵml

lj 6= 0} = {l : W 0
lj 6= 0} = in0(j) and {k : α̂mlkj 6=

0} = {k : α0
kj 6= 0}. Further, denote A0

j as the set of non-zero indices of the concatenated

vector θ0 = (W 0
in0(j),j

,U0
an0(j),j ,α

0
an0(j),j). Therefore, θ0

A0
j

= (W 0
in0(j),j

,U0
pa0(j),j ,α

0
an0(j),j) and

θ̂
ml

A0
j

= (Ŵ
ml

in0(j),j , Û
ml

pa0(j),j , α̂
ml
an0(j),j); supp(θ0) = supp(θ̂

ml
) = A0

j . By the proof of Theorem 4, it

suffices to bound the event
{∥∥∥θ̂ml − θ0

∥∥∥
∞
≤ 0.5τj

}
, or equivalently,

{∥∥∥θ̂mlA0
j
− θ0

A0
j

∥∥∥
∞
≤ 0.5τj

}
, as

Ûmlkj = U0
kj = 0 on k ∈ (A0

j )
c. Alternatively, by Proposition 1 of Shen et al. (2012),

P
(
θ̂ 6= θ̂

ml
)
≤ exp

(
−c2nCmin(θ0) + 2 log(p+ 1) + 3

)
,

where θ̂ = (Ŵ in(j),j , Ûan(j),j , α̂an(j),j) is the final TLP estimator at iteration T , i.e., θ̂
[T ]

. Therefore,∥∥∥θ̂ml − θ0
∥∥∥
∞
≤ 0.5τj implies that

∥∥∥θ̂ − θ0
∥∥∥
∞
≤ 0.5τj .

For the root equations, note that the confounder hk is independent of the instrumental variable
X in0(k). Hence, the confounders do not interfere with the estimation of the coefficient W in(k),k. By

the standard GLM result, ‖W 0
in0(k),k

− Ŵ
ml

in0(k),k‖∞ ∝
√

log(ps̃)
n . We prove the error bound in detail

in Lemma 11.
For the child equations, let θA0

j
= (W in0(j),j ,Upa0(j),j ,αan0(j),j) and Z̃ =

[X in0(j),Y pa0(j), ĥan0(j)]. Let s = max1≤j≤p ‖U0
•j‖0 and s̃ = max1≤j≤p ‖W 0

•j‖0. The log-

likelihood that θ̂
ml

A0
j

= (Ŵ
ml

in0(j),j , Û
ml

pa0(j),j , α̂
ml
an0(j),j) minimizes is:

L(θA0
j
|Z̃) = L(W in0(j),j ,Upa0(j),j ,αan0(j),j |X in0(j),Y pa0(j), ĥan0(j))

=
1

n

n∑
i=1

−Yij
(
W>

in0(j),jXi,in0(j) +U>pa0(j),jY i,pa0(j) +α>an0(j),jĥi,an0(j)

)
+Aj

(
W>

in0(j),jXi,in0(j) +U>pa0(j),jY i,pa0(j) +α>an0(j),jĥi,an0(j)

)
.

Since θ̂
ml

A0
j

= (Ŵ
ml

in0(j),j , Û
ml

pa0(j),j , α̂
ml
an0(j),j) minimizes L(θA0

j
|Y pa0(j),X in0(j), ĥan0(j)), by the KKT

condition for the oracle MLE constrained on the true set:
n∑
i=1

Z̃ik(yij − ϕj(z̃>i θ̂
ml

A0
j
)) = 0,

n∑
i=1

Z̃ik(yij − ϕj(z̃>i θ0
A0
j
) + ϕj(z̃

>
i θ

0
A0
j
)− ϕj(z̃>i θ̂

ml

A0
j
)) = 0. (41)

As in Lemma 7, applying Taylor series expansion, (41) can be written in matrix form:

Z̃
>
MZ̃(θ̂

ml

A0
j
− θ0

A0
j
) = Z̃

>
(Y j − ϕj(z̃>i θ0

A0
j
)− r).
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Therefore, θ̂
ml

A0
j
− θ0

A0
j

= (Z̃
>
MZ̃)−1Z̃

>
(Y j − ϕj(z̃>i θ0

A0
j
)− r). Then we calculate the `∞-norm of

the estimation error:

‖θ̂
ml

A0
j
− θ0

A0
j
‖∞ = ‖(Z̃

>
MZ̃)−1Z̃

>
(Y j − ϕj(z̃>i θ0

A0
j
)− r)‖∞

= ‖(Z̃
>
MZ̃)−1Z̃

>
(Y j − ϕj(z>i θ0

A0
j
) + ϕj(z

>
i θ

0
A0
j
)− ϕj(z̃>i θ0

A0
j
)− r)‖∞

≤ ‖H(Y j − ϕj(z>i θ0
A0
j
))‖∞ + ‖H(ϕj(z

>
i θ

0
A0
j
)− ϕj(z̃>i θ0

A0
j
))‖∞ + ‖Hr‖∞,

where H = (Z̃
>
MZ̃)−1Z̃

>
. Denote Z = [X in0(j),Y pa0(j),han0(j)] as the true predictor vari-

able. Again, by the bounded domain for interventions condition, there exists b2 such that

‖n(Z̃
>
MZ̃)−1Z̃

>
‖∞ ≤ b2. Note Z̃ = [X in0(j),Y pa0(j), ĥan0(j)] ∈ R2s+s̃; han0(j) refers to a subma-

trix consisting of hk, k ∈ an0(j) and han0(j)α
0
an0(j),j =

∑
k∈an0(j) α

0
kjhk.

Since E[Y j |Z] = ϕj(X in0(j)W
0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +

∑
k∈an0(j) α

0
kjhk) = ϕj(z

>
i θ

0
A0
j
), the

first term can be bounded by the Bernstein’s inequality. That is,

P(‖H(Y j − ϕj(z>i θ0
A0
j
))‖∞ > ε) ≤ 2(2s+ s̃) exp

(
−min

(
nε2

2M2b22
,
nε

2Mb2

))
.

Setting ε = 2Mb2

√
log(p(2s+s̃))

n leads to

‖H(Y j − ϕj(z>i θ0
A0
j
))‖∞ ≤ 2Mb2

√
log(p(2s+ s̃))

n
,

with probability at least 1− 2 exp(−2 log p− log(2s+ s̃)) = 1− 2p−2(2s+ s̃)−1.
Note that for the second term,

ϕj(z
>
i θ

0
A0
j
)− ϕj(z̃>i θ0

A0
j
) = (z>i θ

0
A0
j
− z̃>i θ0

A0
j
)� ϕ′j(ξ) =

∑
k

α0
kj(hk − ĥk)� ϕ′j(ξ)

= −
∑
k

α0
kj

(
∆k + (Y k − E[Y k|X in0(k),hk])

)
� ϕ′j(ξ), by (43),

where we use the fact that z>i θ
0
A0
j

= X in0(j)W
0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +

∑
k α

0
kjhk and z̃>i θ

0
A0
j

=

X in0(j)W
0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +

∑
k α

0
kjĥk. Therefore,

‖H
(
ϕj(z

>
i θ

0
A0
j
)− ϕj(z̃>i θ0

A0
j
)
)
‖∞ ≤ ‖H

∑
k

α0
kj∆k � ϕ′j(ξ)‖∞ + ‖H

∑
k

α0
kj(Y k − E[Y k|X in0(k),hk])� ϕ

′
j(ξ)‖∞.

Note that |ϕ′j(z)| ≤ L1 and |Hij | ≤ b2
n . The first quantity above is bounded by

‖
∑
k

α0
kj∆k � ϕ′j(ξ)‖∞ ≤ L1

∑
k

|α0
kj | · ‖∆k‖∞,

‖H
∑
k

α0
kj∆k � ϕ′j(ξ)‖∞ ≤ n ·

b2
n
· L1

∑
k

|α0
kj | · ‖∆k‖∞ = b2L1

∑
k

|α0
kj | · ‖∆k‖∞.

For the second quantity, note that ‖H
∑

k α
0
kj(Y k−E[Y k|X in0(k),hk])�ϕ′j(ξ)‖∞ = ‖

∑
k α

0
kjH(Y k−

E[Y k|X in0(k),hk]) � ϕ′j(ξ)‖∞ ≤ L1‖
∑

k α
0
kjH(Y k − E[Y k|X in0(k),hk])‖∞. By Assumption 3,
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Y k − E[Y k|X in0(k),hk] is sub-exponential and therefore
∑

k α
0
kjH(Y k − E[Y k|X in0(k),hk]) is also

sub-exponential. We conclude that ‖
∑

k α
0
kjH(Y k − E[Y k|X in0(k),hk])‖∞ = o(

√
log(p(2s+s̃))

n ) with
probability tending to 1 by the Bernstein’s inequality, and therefore converges to zero with increased
sample size. Therefore, ‖H(ϕj(z

>
i θ

0
A0
j
)− ϕj(z̃>i θ0

A0
j
))‖∞ ≤ b2L1

∑
k |α0

kj | · ‖∆k‖∞.

Last, for the remainder of Taylor series expansion r, similar to Theorem 4 and Lemma 7,

|Hk•r| = |
∑n

i=1Hkiri| ≤ b2
∑n

i=1 |ri|/n ≤ b2D(θ0
A0
j
− θ̂

ml

A0
j
)>(Z>Z/n)(θ0

A0
j
− θ̂

ml

A0
j
) ≤ b2c0D‖θ0

A0
j
−

θ̂
ml

A0
j
‖22. Further, by Lemma 9, ‖θ̂

ml

A0
j
− θ0

A0
j
‖2 ≤ 2

m

√
2s+ s̃ · ‖∇L(θ0

A0
j
|Y pa0(j),X in0(j), ĥan0(j))‖∞ ≤

2
m

√
2s+ s̃

[
η1

√
log(p(2s+s̃))

n + b1L1
∑

k |α0
kj | · ‖∆k‖∞

]
with η1 = 2Mb1. Therefore,

|Hk•r| ≤ b2c0D‖θ0
A0
j
− θ̂

ml

A0
j
‖22

≤ b2c0D

(
2

m

√
2s+ s̃ ·

(
η1

√
log(p(2s+ s̃))

n
+ b1L1

∑
k

|α0
kj | · ‖∆k‖∞

))2

≤ b2c0D

( 2

m

√
2s+ s̃

)2

· 2

η2
1

log(p(2s+ s̃))

n
+

(
b1L1

∑
k

|α0
kj | · ‖∆k‖∞

)2


≤ 2b2c0D

(
2

m

)2
(
η2

1(2s+ s̃)
log(p(2s+ s̃))

n
+ (2s+ s̃) · (b1L1)2 · s ·

∑
k

|α0
kj |2 · ‖∆k‖2∞

)

≤ b2c0D

(
8

m2
η2

1 ·
√

log(p(2s+ s̃))

n
+

8

m2
(b1L1)2

∑
k

|α0
kj |2 · ‖∆k‖∞

)
,

where the last inequality holds true as n > (2s + s̃)2 log(p(2s + s̃)) and (2s + s̃)s‖∆k‖∞ ≤
(2s + s̃)s

√
log(ps̃)
n ≤ 1. Also, we use the property (

∑s
i=1 ai)

2 ≤ s
∑s

i=1 a
2
i . Combining the three

terms leads to

‖θ̂
ml

A0
j
− θ0

A0
j
‖∞ ≤ a1

√
log(p(2s+ s̃))

n
+
∑
k

(b2L1|α0
kj |+

8b2c0Db
2
1L

2
1|α0

kj |2

m2
)‖∆k‖∞

≤ a1

√
log(p(2s+ s̃))

n
+ max

k

(
b2L1|α0

kj |+
8b2c0Db

2
1L

2
1|α0

kj |2

m2

)
·
∑
k

‖∆k‖∞,

with probability greater than 1 − 4 exp(−2 log p − log(2s + s̃)) = 1 − 4p−2(2s+ s̃)−1. Here, a1 =
2Mb2 + b2c0D( 32

m2M
2b21). Denote Âj as the set of non-zero indices of the concatenated vector θ̂.

Similar to the proof of Theorem 4, if τj is chosen such that τj ≥ 2
∥∥∥θ̂ml − θ0

∥∥∥
∞

, then θ̂ = θ̂
ml

and Âj = A0
j , that is, p̂a(j) = pa0(j), în(j) = in0(j) and ân(j) = an0(j). Additionally, note that

max(‖Û•j −U0
•j‖∞, ‖Ŵ •j −W 0

•j‖∞) ≤ ‖θ̂A0
j
− θ0

A0
j
‖∞.

We have calculated the parameter estimation errors for the jth equation. Now we calculate the
accumulated error for the confounder hj . Note that, by construction, ĥj =

∑
k α̂kjĥk + ε̂j where

ε̂j = Y j − ϕj(X în(j)Ŵ în(j),j + Y p̂a(j)Û p̂a(j),j +
∑

k∈ân(j) α̂kj ĥk) is the residual estimated from the

jth equation. In practice, we replace ĥj with ε̂j in the algorithm as ĥj is a linear combination of

ĥk and ε̂j ; including ĥk and ĥj in the GLM regression model is equivalent to including ĥk and ε̂j .
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Note θ̂ = θ̂
ml

implies Û p̂a(j),j = Û
ml

pa0(j),j , Ŵ în(j),j = Ŵ
ml

in0(j),j , and α̂kj = α̂mlkj . We therefore have

ε̂j = Y j − ϕj(X in0(j)Ŵ
ml

in0(j),j + Y pa0(j)Û
ml

pa0(j),j +
∑
k

α̂mlkj ĥk).

On the other hand, by Assumption 2, hj =
∑

k α
0
kjhk + εj , where εj is orthogonal to the space

spanned by {hk : k ∈ an(j)}. Therefore, (2) can be written as:

E
[
Y j |Y pa(j),X,h

]
= ϕj(X in0(j)W

0
in0(j),j + Y pa0(j)U

0
pa0(j),j +

∑
k

α0
kjhk + εj).

Similar to the root node case, we use Y j − ϕj(X in0(j)W
0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +

∑
k α

0
kjhk)

to approximate εj so that ε̂j and εj can be compared at the same scale. Note by our previous
calculation, the approximation error E

[
Yij |Y pa(j),X,h

]
− Yij is sub-exponential with mean zero

and the aggregate impact of this error term across samples is of the order of o(

√
log(p(2s+s̃))

n ) by the
Bernstein’s inequality in subsequent equations. Toward this end,

∆j = ĥj − hj = (
∑
k

α̂mlkj ĥk + ε̂j)− (
∑
k

α0
kjhk + εj) =

∑
k

(α̂mlkj ĥk − α0
kjhk) + (ε̂j − εj)

= I1 − ϕj(X in0(j)Ŵ
ml

in0(j),j + Y pa0(j)Û
ml

pa0(j),j +
∑
k

α̂mlkj ĥk) + ϕj(X in0(j)W
0
in0(j),j + Y pa0(j)U

0
pa0(j),j +

∑
k

α0
kjhk)

= I1 + ϕ′j(ξ)�
(
X in0(j)(W

0
in0(j),j − Ŵ

ml

in0(j),j) + Y pa0(j)(U
0
pa0(j),j − Û

ml

pa0(j),j) +
∑
k

α0
kjhk −

∑
k

α̂mlkj ĥk
)
,

where I1 =
∑

k(α̂mlkj ĥk−α0
kjhk). Further, we have I1 =

∑
k(α̂mlkj ĥk−α0

kjhk) =
∑

k(α̂mlkj ĥk−α0
kjĥk+

α0
kjĥk − α0

kjhk). On the other hand, note that Z̃(θ0
A0
j
− θ̂

ml

A0
j
) = X in0(j)(W

0
in0(j),j

− Ŵ
ml

in0(j),j) +

Y pa0(j)(U
0
pa0(j),j − Û

ml

pa0(j),j) +
∑

k(α
0
kj − α̂mlkj )ĥk. Therefore, ∆j can be written as

∆j =
∑
k

(α̂mlkj − α0
kj)ĥk +

∑
k

α0
kj(ĥk − hk) + ϕ′j(ξ)� Z̃(θ0

A0
j
− θ̂

ml

A0
j
) + ϕ′j(ξ)�

∑
k

α0
kj(hk − ĥk)

=
∑
k

(α̂mlkj − α0
kj)ĥk + ϕ′j(ξ)� Z̃(θ0

A0
j
− θ̂

ml

A0
j
) + (1− ϕ′j(ξ))�

∑
k

α0
kj(ĥk − hk).

Note ‖
∑

k(α̂
ml
kj − α0

kj)ĥk‖∞ ≤
∑

k ‖(α̂mlkj − α0
kj)ĥk‖∞ ≤ maxk |α̂mlkj − α0

kj | ·
∑

k ‖ĥk‖∞ ≤ ‖θ
0
A0
j
−

θ̂
ml

A0
j
‖∞ ·

∑
k ‖ĥk‖∞ ≤ b1s · ‖θ

0
A0
j
− θ̂

ml

A0
j
‖∞, and ‖

∑
k α

0
kj(ĥk−hk)‖∞ ≤

∑
k |α0

kj | · ‖∆k‖∞. Moreover,

‖Z̃(θ0
A0
j
− θ̂

ml

A0
j
)‖∞ = ‖Z̃(Z̃

>
MZ̃)−1Z̃

>
(Y j − ϕj(z̃>i θ0

A0
j
)− r)‖∞

= ‖H2(Y j − ϕj(z>i θ0
A0
j
) + ϕj(z

>
i θ

0
A0
j
)− ϕj(z̃>i θ0

A0
j
)− r)‖∞

≤ ‖H2(Y j − ϕj(z>i θ0
A0
j
))‖∞ + ‖H2(ϕj(z

>
i θ

0
A0
j
)− ϕj(z̃>i θ0

A0
j
))‖∞ + ‖H2r‖∞,
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whereH2 = Z̃(Z̃
>
MZ̃)−1Z̃

>
. Again, by Assumption 5, there exists b3 such that ‖nZ̃(Z̃

>
MZ̃)−1Z̃

>
‖∞ ≤

b3. Similarly, following the calculation of ‖θ̂
ml

A0
j
− θ0

A0
j
‖∞, we obtain

||∆j ||∞ ≤ b1s · ‖θ0
A0
j
− θ̂

ml

A0
j
‖∞ + L1

[
2Mb3

√
log(p(2s+ s̃))

n
+ b3L1

∑
k

|α0
kj | · ‖∆k‖∞

+ b3c0D

(
32

m2
M2b21 ·

√
log(p(2s+ s̃))

n
+

8

m2
b21L

2
1

∑
k

|α0
kj |2 · ‖∆k‖∞

)]
+ (1 + L1)

∑
k

|α0
kj | · ‖∆k‖∞

≤ a4

∑
k

‖∆k‖∞ + a3

√
log(p(2s+ s̃))

n
≤ a4s ·max

k
‖∆k‖∞ + a3

√
log(p(2s+ s̃))

n
,

where a4 = maxk

(
b3L

2
1|α0

kj |+
8b3c0Db21L

3
1|α0

kj |
2

m2 + b1s

(
b2L1|α0

kj |+
8b2c0Db21L

2
1|α0

kj |
2

m2

)
+ (1 + L1)|α0

kj |
)

and a3 =
(
2Mb3L1 + b3c0D

32
m2M

2b21L1 + b1s(2Mb2 + b2c0D
32
m2M

2b21)
)
. The above inequality can

be written as: ‖∆j‖∞ + c ≤ a4s (maxk ‖∆k‖∞ + c), where c = a3
a4s−1

√
log(p(2s+s̃))

n . Therefore,

‖∆j‖∞ + c ≤ (a4s)
dj (‖∆0‖∞ + c),

where dj denotes the topology depth of the primary variable Yj defined as the maximal length of a
directed path in the graph from a root variable with depth zero; therefore, 0 ≤ dj ≤ dmax ≤ p− 1
with dmax the maximal length of a directed path. Rearranging terms yields

‖∆j‖∞ ≤ (a4s)
dj‖∆0‖∞ + ((a4s)

dj − 1)c

= (a4s)
dj‖∆0‖∞ + ((a4s)

dj − 1)
a3

a4s− 1

√
log(p(2s+ s̃))

n
.

In this way, we derive the general form of the accumulated error for ‖∆j‖∞ for the multi-layer

case. To conclude, if τj satisfies: τj ≥ 2
∥∥∥θ̂ml − θ0

∥∥∥
∞

= C

√
log(p(2s+s̃))

n , then the deconfounding

algorithm reconstructs the causal graph consistently, i.e., {(k, j) : Ûkj 6= 0} = {(k, j) : U0
kj 6= 0},

with probability 1 − 8p · p−2(2s+ s̃)−1 by the union bound, tending to one as p → ∞ and thus
n→∞. This completes the proof. We next present proofs of the lemmas.

Lemma 9 bounds the quantity ‖θ̂
ml

A0
j
− θ0

A0
j
‖2 in child equations.

Lemma 9 (Rate of convergence under the `2-norm for child equations)

‖θ̂
ml

A0
j
− θ0

A0
j
‖2 ≤

2

m

√
2s+ s̃ · ‖∇L(θ0

A0
j
|Y pa0(j),X in0(j), ĥan0(j))‖∞

≤ 2

m

√
2s+ s̃

[
2Mb1

√
log(p(2s+ s̃))

n
+ b1L1

∑
k

|α0
kj | · ‖∆k‖∞

]
,

with probability at least 1− 2 exp(−2 log p− log(2s+ s̃)) = 1− 2p−2(2s+ s̃)−1.

Proof of Lemma 9. Since θ̂
ml

A0
j

= (Ŵ
ml

in0(j),j , Û
ml

pa0(j),j , α̂
ml
an0(j),j) minimizes

L(θA0
j
|Y pa0(j),X in0(j), ĥan0(j)), L(θ̂

ml

A0
j
|Y pa0(j),X in0(j), ĥan0(j)) ≤ L(θ0

A0
j
|Y pa0(j),X in0(j), ĥan0(j)).
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As in Lemma 8, ‖θ̂
ml

A0
j
− θ0

A0
j
‖2 ≤ 2

m

√
2s+ s̃ · ‖∇L(θ0

A0
j
|Y pa0(j),X in0(j), ĥan0(j))‖∞. Meanwhile,

‖∇L(θ0
A0
j
|Y pa0(j),X in0(j), ĥan0(j))‖∞

= n−1‖Z̃
>

(Y j − ϕj(X in0(j)W
0
in0(j),j + Y pa0(j)U

0
pa0(j),j +

∑
k

α0
kjĥk))‖∞

= n−1
∥∥T1 + T2‖∞ ≤ n−1

∥∥T1‖∞ + n−1
∥∥T2‖∞

≤ n−1‖T1‖∞ + n−1
∥∥Z̃> · (∑

k

α0
kj(hk − ĥk)� ϕ′j(ξ)

)∥∥
∞

≤ n−1‖T1‖∞ + n−1
∥∥Z̃> · (∑

k

α0
kj

(
∆k + (Y k − E[Y k|X in0(k),hk])

)
� ϕ′j(ξ)

)∥∥
∞ by (43)

≤ n−1‖T1‖∞ + b1L1

∑
k

|α0
kj | · ‖∆k‖∞ + L1n

−1
∥∥Z̃>(∑

k

α0
kj(Y k − E[Y k|X in0(k),hk])

)∥∥
∞,

where T1 = Z̃
>

(Y j − ϕj(X in0(j)W
0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +

∑
k α

0
kjhk)) and T2 =

Z̃
>

(ϕj(X in0(j)W
0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +

∑
k α

0
kjhk) − ϕj(X in0(j)W

0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +∑

k α
0
kjĥk)). The last inequality holds as |ϕ′j(z)| = |A

′′
j (z)| ≤ L1.

For the last term above, n−1‖Z̃
>(∑

k α
0
kj(Y k−E[Y k|X in0(k),hk])

)
‖∞ = n−1‖

∑
k α

0
kjZ̃

>
(Y k−

E[Y k|X in0(k),hk])‖∞. Similarly, by Assumption 3 and the Bernstein’s inequality, we conclude that

n−1‖
∑

k α
0
kjZ̃

>
(Y k − E[Y k|X in0(k),hk])‖∞ = o(

√
log(p(2s+s̃))

n ) with probability tending to 1.

Note that ‖Z̃‖∞ ≤ b1 and Z̃ = [X in0(j),Y pa0(j), ĥan0(j)] ∈ R2s+s̃. The first term is also bounded

by the Bernstein’s inequality since E[Y j |Z] = ϕj(X in0(j)W
0
in0(j),j

+ Y pa0(j)U
0
pa0(j),j +

∑
k α

0
kjhk).

P(n−1‖T1‖∞ > ε) ≤ 2(2s+ s̃) exp

(
−min

(
nε2

2M2b21
,
nε

2Mb1

))
.

Setting ε = η1

√
log(p(2s+s̃))

n yields

P

(
n−1‖T1‖∞ ≤ η1

√
log(p(2s+ s̃))

n

)
≥ 1− 2 exp

(
−1

2
(
η2

1

M2b21
− 2) log(2s+ s̃)− η2

1

2M2b21
log p

)
.

In particular, setting η1 = 2Mb1 yields

‖θ̂
ml

A0
j
− θ0

A0
j
‖2 ≤

2

m

√
2s+ s̃

[
2Mb1

√
log(p(2s+ s̃))

n
+ b1L1

∑
k

|α0
kj | · ‖∆k‖∞

]
,

with probability at least 1− 2 exp(−2 log p− log(2s+ s̃)) = 1− 2p−2(2s+ s̃)−1.

Lemma 10 bounds the quantity ‖Ŵ
ml

in0(k),k −W 0
in0(k),k

‖2 in root equations.

Lemma 10 (Rate of convergence under the `2-norm for root equations)

‖Ŵ
ml

in0(k),k −W 0
in0(k),k‖2 ≤

2

m

√
s̃

[
2Mb1

√
log(ps̃)

n

]
,

with probability at least 1− 2 exp(−2 log p− log s̃) = 1− 2p−2s̃−1.
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Proof of Lemma 10. Consider the log-likelihood for a root variable Yk:

L(W in0(k),k|Y k,X in0(k)) = n−1
n∑
i=1

−Yik
(
W>

in0(k),kXi,in0(k)

)
+Ak

(
W>

in0(k),kXi,in0(k)

)
,

where the oracle estimator Ŵ
ml

in0(k),k is its minimizer with respect to W in0(k),k.

By the definition of Ŵ
ml

in0(k),k, it follows from Lemma 8 that ‖Ŵ
ml

in0(k),k − W 0
in0(k),k

‖2 ≤
2
m

√
s̃ · ‖∇L(W 0

in0(k),k
|Y k,X in0(k))‖∞, where ∇L(W 0

in0(k),k
|Y k,X in0(k)) is the gradient of

L(W 0
in0(k),k

|Y k,X in0(k)). By the triangular inequality,

‖∇L(W 0
in0(k),k|Y k,X in0(k))‖∞ = n−1‖X>in0(k)(Y k − ϕk(X in0(k)W

0
in0(k),k))‖∞

≤ n−1‖X>in0(k)(Y k − ϕk(X in0(k)W
0
in0(k),k + hk))‖∞

+ n−1‖X>in0(k)(ϕk(X in0(k)W
0
in0(k),k + hk)− ϕk(X in0(k)W

0
in0(k),k))‖∞

≡ G1 +G2. (42)

Note that ‖X in0(k)‖∞ ≤ b1 and E[Y k|X in0(k),hk] = ϕk(X in0(k)W
0
in0(k),k

+ hk). By the Bern-

stein’s inequality, the first term in (42) is bounded by

P(G1 > ε) ≤ 2s̃ exp

(
−min

(
nε2

2M2b21
,
nε

2Mb1

))
.

Setting ε = 2Mb1

√
log(ps̃)
n leads to G1 ≤ 2Mb1

√
log(ps̃)
n with probability at least 1− 2 exp(−2 log p−

log s̃) = 1− 2p−2s̃−1.
For G2 in (42), by the Taylor series expansion,

G2 = n−1‖X>in0(k) ·
(
ϕ′k(X in0(k)W

0
in0(k),k)� hk

)
‖∞

= n−1‖(X>in0(k)diag(ϕ′k(X in0(k)W
0
in0(k),k))) · hk‖∞.

Note that X in0(k) and hk are independent. Hence, E[
(
X>

in0(k)
diag(ϕ′k(X in0(k)W

0
in0(k),k

))
)
·

hk] = 0. By the bounded domain for interventions condition, there exists b4 such that
‖X>

in0(k)
diag(ϕ′k(X in0(k)W

0
in0(k),k

))‖∞ ≤ b4. For j ∈ in0(k), by the Hoeffding’s inequality,

P(n−1‖X>j diag(ϕ′k(X in0(k)W
0
in0(k),k))hk‖∞ > ε) ≤ 2 exp

(
− nε2

2σ2
j b

2
4

)
.

Applying the union bound and setting ε = 2σjb4

√
log(ps̃)
n yield G2 ≤ 2σjb4

√
log(ps̃)
n with probability

at least 1− 2 exp(−2 log p− log s̃) = 1− 2p−2s̃−1. For simplicity, set G2 = o(

√
log(ps̃)
n ).

Finally, combining the two terms in (42) yields:

‖Ŵ
ml

in0(k),k −W 0
in0(k),k‖2 ≤

2

m

√
s̃ · ‖∇L(W 0

in0(k),k|Y k,X in0(k))‖∞ ≤
2

m

√
s̃
(
2Mb1

√
log(ps̃)

n

)
.

Lemma 11 derives the estimation bound for ‖Ŵ in(k),k −W
0
in0(k),k

‖∞ in root equations.
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Lemma 11 (Rate of convergence under the `∞-norm for root equations)

‖Ŵ in(k),k −W
0
in0(k),k‖∞ ≤

(
2Mb2 + b2c0D

16

m2
M2b21

)√
log(ps̃)

n
,

with probability at least 1− 4 exp(−2 log p− log s̃) = 1− 4p−2s̃−1. Further, the estimation error of

the confounder hk satisfies: ||∆k||∞ ≤
(
2Mb3 + b3c0D

16
m2M

2b21
)√ log(ps̃)

n .

Proof of Lemma 11. Note that by Theorem 4, {l : V̂lk 6= 0} = {l : V 0
lk 6= 0}, implying that

in(k) = in0(k) in root equations. Therefore, by construction, Ŵ in(k),k = Ŵ
ml

in0(k),k, as both are
GLM estimators constrained on the same set. It suffices to derive the error bound for the oracle
estimator.

To establish the `∞-norm of the oracle estimator, as in Lemma 7, we apply the Taylor series
expansion of ϕk(X in0(k)W in0(k),k) as:

X>in0(k)MX in0(k)(Ŵ
ml

in0(k),k −W 0
in0(k),k) = X>in0(k)(Y k − ϕk(X in0(k)W

0
in0(k),k)− r).

This implies that Ŵ
ml

in0(k),k − W 0
in0(k),k

= H(Y k − ϕk(X in0(k)W
0
in0(k),k

) − r), where H =

(X>
in0(k)

MX in0(k))
−1X>

in0(k)
. Then,

‖Ŵ
ml

in0(k),k −W 0
in0(k),k‖∞ = ‖H(Y k − ϕk(X in0(k)W

0
in0(k),k + hk)

+ ϕk(X in0(k)W
0
in0(k),k + hk)− ϕk(X in0(k)W

0
in0(k),k)− r)‖∞

≤ ‖H(Y k − ϕk(X in0(k)W
0
in0(k),k + hk))‖∞

+ ‖H(ϕk(X in0(k)W
0
in0(k),k + hk)− ϕk(X in0(k)W

0
in0(k),k))‖∞ + ‖Hr‖∞, ≡ I1 + I2 + I3.

By Assumption 5, there exists b2 such that ‖n(X>
in0(k)

MX in0(k))
−1X>

in0(k)
‖∞ ≤ b2. Note that

E[Y k|X in0(k),hk] = ϕk(X in0(k)W
0
in0(k),k

+ hk). Then, by the Bernstein’s inequality:

P(I1 > ε) ≤ 2s̃ exp

(
−min

(
nε2

2M2b22
,
nε

2Mb2

))
.

Setting ε = 2Mb2

√
log(ps̃)
n yields I1 ≤ 2Mb2

√
log(ps̃)
n with probability at least 1−2 exp(−2 log p−

log s̃) = 1− 2p−2s̃−1. On the other hand, as in Lemma 10, we have

I2 = ‖H
(
hk � ϕ′k(X in0(k)W

0
in0(k),k)

)
‖∞

= ‖(X>in0(k)MX in0(k))
−1X>in0(k) ·

(
hk � ϕ′k(X in0(k)W

0
in0(k),k)

)
‖∞ = o(

√
log(ps̃)

n
).

Finally, as in Theorem 4 and Lemma 7,

|Hk•r| = |
n∑
i=1

Hkiri| ≤
n∑
i=1

|Hki||ri| ≤ b2
n∑
i=1

|ri|/n

≤ b2D(Ŵ
ml

in0(k),k −W 0
in0(k),k)

>(X>in0(k)X in0(k)/n)(Ŵ
ml

in0(k),k −W 0
in0(k),k)

≤ b2c0D‖Ŵ
ml

in0(k),k −W 0
in0(k),k‖

2
2.
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By Lemma 10, ‖Ŵ
ml

in0(k),k −W 0
in0(k),k

‖2 ≤ 2
m

√
s̃

[
2Mb1

√
log(ps̃)
n

]
. Therefore,

I3 = max
k
|Hk•r| ≤ b2c0D

(
2

m

√
s̃

[
2Mb1

√
log(ps̃)

n

])2

≤ b2c0D
16

m2
M2b21

√
log(ps̃)

n
,

where the last inequality holds as n > s̃2 log(ps̃). Therefore, combining I1, I2 and I3 yields

‖Ŵ
ml

in0(k),k −W 0
in0(k),k‖∞ ≤ a1

√
log(ps̃)

n
,

with probability greater than 1 − 4 exp(−2 log p − log s̃) = 1 − 4p−2s̃−1. Here, a1 = 2Mb2 +

b2c0D
16
m2M

2b21. Lastly, recall that in(k) = in0(k) and Ŵ in(k),k = Ŵ
ml

in0(k),k. Therefore, ‖Ŵ in(k),k −

W 0
in0(k),k

‖∞ ≤ a1

√
log(ps̃)
n .

To compute the estimation error of the confounder hk, note that, by construction,

ĥk = Y k − ϕk(X in(k)Ŵ in(k),k) = Y k − ϕk(X in0(k)Ŵ
ml

in0(k),k).

On the other hand, by (2) and following (A5)-(A7) in Appendix A of Johnston et al. (2008),

E[Y k|X in0(k),hk] = ϕk(X in0(k)W
0
in0(k),k + hk) = ϕk(X in0(k)W

0
in0(k),k) + ϕ′k(ξ)� hk.

Rearranging terms yields hk =
[
E[Y k|X in0(k),hk]− ϕk(X in0(k)W

0
in0(k),k

)
]
� (ϕ′k(ξ))

−1. We now

use E[Y k|X in0(k),hk] − ϕk(X in0(k)W
0
in0(k),k

) to approximate hk as we estimate the coefficient of

the confounder in subsequent child equations. This reparametrization and approximations permits
a comparison of ĥk and hk at the same scale; see Appendix A of Johnston et al. (2008) for some
details about such approximations. Hence,

ĥk − hk = −ϕk(X in0(k)Ŵ
ml

in0(k),k) + ϕk(X in0(k)W
0
in0(k),k) + (Y k − E[Y k|X in0(k),hk])

= −ϕ′k(ξ)�X in0(k)(Ŵ
ml

in0(k),k −W 0
in0(k),k) + (Y k − E[Y k|X in0(k),hk])

= −ϕ′k(ξ)�H2(Y k − ϕk(X in0(k)W
0
in0(k),k)− r) + (Y k − E[Y k|X in0(k),hk])

= ∆k + (Y k − E[Y k|X in0(k),hk]), (43)

where H2 = X in0(k)(X
>
in0(k)

MX in0(k))
−1X>

in0(k)
and ∆k = −ϕ′k(ξ) � H2(Y k −

ϕk(X in0(k)W
0
in0(k),k

)− r). Hence, the estimation error of the confounder consists of two terms: the

prediction error ∆k and an approximation error. For the approximation error, by Assumption 3,
Yik is sub-exponential and Yik − E[Yik| · ] is sub-exponential with mean zero. Therefore, we have
ε = Y k − E[Y k|X in0(k),hk], where εi is sub-exponential with mean zero. We show in the proof
of Theorem 5 and Lemma 9 that the aggregate impact of this term across all samples is of the

order of o(

√
log(p(2s+s̃))

n ) when calculating the estimation error of parameters in the subsequent child
equations. For the prediction error ∆k, by the triangular inequality,

‖∆k‖∞ ≤ L1 · ‖H2(Y k − ϕk(X in0(k)W
0
in0(k),k)− r)‖∞

≤ L1 ·
(
‖H2(Y k − ϕk(X in0(k)W

0
in0(k),k + hk))‖∞

+ ‖H2(ϕk(X in0(k)W
0
in0(k),k + hk)− ϕk(X in0(k)W

0
in0(k),k))‖∞ + ‖H2r‖∞

)
.

45



Wang, Shen, and Pan

By the bounded domain for interventions condition, there exists b3 such that

‖nX in0(k)(X
>
in0(k)

MX in0(k))
−1X>

in0(k)
‖∞ ≤ b3. Similarly, ||∆k||∞ ≤ a2L1

√
log(ps̃)
n , with

probability greater than 1−4 exp(−2 log p− log s̃) = 1−4p−2s̃−1. Here, a2 = 2Mb3 +b3c0D
16
m2M

2b21.
This completes the proof.
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Sara A. van de Geer and Peter Bühlmann. On the conditions used to prove oracle results for the
Lasso. Electronic Journal of Statistics, 3:1360–1392, 2009.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge University Press, 2018.

Frank Windmeijer, Helmut Farbmacher, Neil Davies, and George Davey Smith. On the use of
the lasso for instrumental variables estimation with some invalid instruments. Journal of the
American Statistical Association, 114(527):1339–1350, 2019.

Eunho Yang, Yulia Baker, Pradeep Ravikumar, Genevera Allen, and Zhandong Liu. Mixed Graphical
Models via Exponential Families. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, volume 33, pages 1042–1050. PMLR, 2014.

Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, and Zhandong Liu. Graphical models via
univariate exponential family distributions. Journal of Machine Learning Research, 16(115):
3813–3847, 2015. URL http://jmlr.org/papers/v16/yang15a.html.

Andrew Ying, Ronghui Xu, and James Murphy. Two-stage residual inclusion for survival data and
competing risks — An instrumental variable approach with application to SEER-Medicare linked
data. Statistics in Medicine, 38(10):1775–1801, 2019.

48

http://jmlr.org/papers/v16/yang15a.html


Causal Discovery with GLMs through Peeling

Yiping Yuan, Xiaotong Shen, Wei Pan, and Zizhuo Wang. Constrained likelihood for reconstructing
a directed acyclic Gaussian graph. Biometrika, 106(1):109–125, 2019.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894–942, 2010. doi: 10.1214/09-AOS729.

Hui Zhang. The restricted strong convexity revisited: analysis of equivalence to error bound and
quadratic growth. Optimization Letters, 11(4):817–833, 2017.

Jun-Yuan Zhang, Shuang Ma, Xiaoli Liu, Yayun Du, Xilin Zhu, Ying Liu, and Xiaopan Wu.
Activating transcription factor 6 regulates cystathionine to increase autophagy and restore memory
in Alzheimer’s disease model mice. Biochemical and Biophysical Research Communications, 615:
109–115, 2022.

Tuo Zhao, Han Liu, and Tong Zhang. Pathwise coordinate optimization for sparse learning:
Algorithm and theory. The Annals of Statistics, 46(1):180–218, 2018.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P Xing. DAGs with NO TEARS:
continuous optimization for structure learning. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. Learning sparse
nonparametric DAGs. In International Conference on Artificial Intelligence and Statistics, pages
3414–3425. PMLR, 2020.

49


	Introduction
	Generalized Structural Mean Models
	Directed Acyclic Graphs, Confounders, and Interventions
	Identifiability

	Method
	Fidelity Models
	Identifying Ancestral Relationships
	Nodewise constrained GLM regressions
	Identifying Ancestral Relationships via Peeling

	Identifying Parent-Child Relationships via Deconfounding
	Deconfounding
	Connections with 2SRI and 2SPS


	Theory
	Simulations
	Simulation Setting
	Results

	Mixed DAG Networks: Direct Effect to AD
	Discussion
	Illustrative Examples
	Peeling Algorithm
	Majority Rule
	Dense Confounding Setting

	General Form of Deconfounding Algorithm
	Additional Simulations
	Absence of Confounders
	Presence of Confounders
	Presence of Confounders with Replicates
	Comparison with DAGMA
	Tuning Parameter Selection
	Causal Graph Selection Consistency
	Correlated Instrumental Variables
	Comparison with Linear Deconfounding Structure Learning Algorithm

	Technical Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 4
	Proof of Theorem 5


