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Abstract

In this paper, we study the commutativity of infinite width and depth limits in deep neural
networks. Our aim is to understand the behavior of neural functions (functions that depend
on a neural network model) as width and depth go to infinity (in some sense), and eventually
identify settings under which commutativity holds, i.e. the neural function tends to the
same limit no matter how width and depth limits are taken. In this paper, we formally
introduce and define the commutativity framework, and discuss its implications on neural
network design and scaling. We study commutativity for the neural covariance kernel which
reflects how network layers separate data. Our findings extend previous results established
in Hayou and Yang (2023) by showing that taking the width and depth to infinity in a deep
neural network with skip connections, when branches are suitably scaled to avoid exploding
behavior, result in the same covariance structure no matter how that limit is taken. This
has a number of theoretical and practical implications that we discuss in the paper. The
proof techniques in this paper are new and rely on tools that are more accessible to readers
who are not familiar with stochastic calculus (used in the proofs of Hayou and Yang (2023)).

1. Introduction

The success of large language and vision models have recently amplified an existing trend of
research on large size neural network. There are generally two ways to increase the size of a
neural network model: increasing the width, for instance the number of neurons in hidden
layers in a fully-connected network, the number of channels in a convolutional network, or
the number of attention heads in a transformer architecture; and increasing the depth of
the network, i.e. the number of layers. A suitable appraoch to understand the behavior
of large neural networks is by analyzing some pre-defined quantity as the width and/or
depth tend to infinity. While the width limit by itself is now relatively well understood
in different contexts (Neal, 1995; Schoenholz et al., 2017; Lee et al., 2018; Yang, 2021b;
Hayou et al., 2019), the depth limit and the interaction between the two have not been
studied as much. In particular, given some pre-defined quantity of interest that depends on
the network model, a basic question is: do these two limits commute? (in the sense that
the behavior of the quantity of interest as width and depth go to infinity does not change
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depending on the order of which these limits are taken). One statistical quantity of interest
is the neural covariance kernel which reflects how layers in a neural network model separate
input data. In this context, recent literature suggests that, at initialization, in certain
kinds of multi-layer perceptrons (MLPs) or residual neural networks (ResNets) with scaled
main branch, the depth and width limits generally do not commute (Li et al., 2023; Noci
et al., 2023); this would imply that in practice, such networks would behave quite differently
depending on whether width is much larger than depth or the other way around. However,
in the case of ResNets with suitably scaled residual blocks, Hayou and Yang (2023) showed
that, to the contrary, at initialization, for a ResNet with blocks scaled the natural way so
as to avoid blowing up the output, the width and depth limits do commute. An interesting
practical implication of this result is that it justifies prior calculations that take the width
limit first, then depth, to understand the behavior of deep residual networks, such as prior
works in the signal propagation literature (Schoenholz et al., 2017; Yang and Schoenholz,
2017; Hayou et al., 2021).

In this work, we introduce and formalize the framework of commutativity of the width
and depth limits and generalize (and improve) existing results on the covariance from Hayou
and Yang (2023) for arbitrary sequences of scaling factors; these sequences are used to scale
the residual blocks so as to avoid exploding behavior as depth grows. We discuss the
theoretical and practical implications of commutativity by addressing the natural question;
why should care about commutativity at all? (see Section 3).

In addition to the significance of the results and the new framework, the mathematical
novelty of this paper lies in the proof techniques: in contrast to Hayou and Yang (2023)
where the depth limit is taken first (fixing the width), followed by the width limit, we first
take the width to infinity this time, which is a more conventional approach in the theory
of signal propagation in deep networks. As such, the proof techniques in this paper can be
seen as ‘orthogonal’ to the machinery developed in Hayou and Yang (2023), and are more
accessible to readers who are not familiar with stochastic calculus. Our results provide new
insights into the behavior of deep neural networks with general depth scaling factors and
we discuss implications for the design and analysis of these networks.

All the proofs are deferred to the appendix and referenced after each result. Empirical
evaluations are provided to illustrate the theoretical results.

2. Related Work

The theoretical analysis of randomly initialized neural networks with an infinite number of
parameters has yielded a stream of interesting results, both theoretical and practical. A
majority of this research has concentrated on examining the scenario in which the width
of the network is taken to infinity while the depth is considered fixed. However, in recent
years, there has been a growing interest in exploring the large depth limit of these networks.
In this overview, we present a summary of existing results on this topic, though it is not
exhaustive. A more comprehensive literature review is provided in Appendix A.
Infinite-Width Limit: The study of the infinite-width limit of neural network architectures
has been a topic of significant research interest, yielding various theoretical and algorithmic
innovations. These include initialization methods, such as the Edge of Chaos (Poole et al.,
2016; Schoenholz et al., 2017; Yang and Schoenholz, 2017; Hayou et al., 2019), and the
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selection of activation functions (Hayou et al., 2019; Martens et al., 2021; Zhang et al.,
2022; Wolinski and Arbel, 2023), which have been shown to have practical benefits. In the
realm of Bayesian analysis, the infinite-width limit presents an intriguing framework for
Bayesian deep learning, as it is characterized by a Gaussian process prior. Several studies
(e.g. Neal (1995); Lee et al. (2018); Yang (2021b); Matthews et al. (2018); Hron et al. (2020))
have investigated the weak limit of neural networks as the width increases towards infinity,
and have demonstrated that the network’s output converges to a distribution modeled by
a Gaussian process. Bayesian inference utilizing this “neural” Gaussian process has been
explored in Lee et al. (2018); Hayou et al. (2021). 1

Infinite-Depth Limit: The infinite-depth limit of neural networks with random initialization
is a less explored area compared to the study of the infinite-width limit. Existing results
can be categorized depending on how the two limits are taken. For instance, in the case
of sequential limits, the width of the neural network is taken to infinity first, followed
by the depth. This limit has been extensively utilized to explore various aspects of neural
networks, such as examining the neural covariance, deriving the Edge of Chaos initialization
scheme (cited in (Schoenholz et al., 2017; Poole et al., 2016; Yang and Schoenholz, 2017)),
evaluating the impact of the activation function (Hayou et al., 2019; Martens et al., 2021),
and studying the behavior of the Neural Tangent Kernel (NTK) (Hayou et al., 2022; Xiao
et al., 2020). Another interesting limit is the proportional limit where the ratio of depth
to width is fixed, and both are jointly taken to infinity. In Li et al. (2021), the authors
showed that for a particular type of residual neural networks (ResNets), the network output
exhibits a (scaled) log-normal behavior in this limit, which differs from the sequential limit
in which the width is first taken to infinity followed by depth, in which case the distribution
of the network output is asymptotically normal (Schoenholz et al., 2017; Hayou et al.,
2019). Additionally, in Li et al. (2023), the authors examined the neural covariance of a
multi-layer perceptron (MLP) in the joint limit and proved that it weakly converges to the
solution of a Stochastic Differential Equation (SDE). Other works have investigated this
limit and found similar results (Noci et al., 2021; Zavatone-Veth and Pehlevan, 2021; Hanin
and Nica, 2019; Hanin, 2022; Noci et al., 2023). A third interesting approach is the general
limit min{n,L} → ∞, where width and depth can to infinity in any order. To the best of
our knowledge, this limit was only studied in Hayou and Yang (2023) where the authors
showed convergence of the neural covariance in this limit for suitably scaled ResNet.

3. Setup and Definitions: Commutativity and Neural Functions

When analyzing the asymptotic behavior of randomly initialized neural networks, various
notions of probabilistic convergence are employed, depending on the context. In this work,
we particularly focus on strong convergence, defined to be the L2 convergence as described
in the following definition.

Definition 1 (Strong convergence). Let d ≥ 1. We say that a sequence of Rd-valued
random variables (Xk)k≥1 converges in L2 (or strongly) to a continuous random variable Z

if limk→∞ ‖Xk − Z‖L2 = 0, where the L2 is defined by ‖X‖L2 =
(
E[‖X‖2]

)1/2
.

1. It is worth mentioning that kernel methods such as NNGP and NTK significantly underperform properly
tuned finite-width network trained using SGD, see Yang et al. (2022).
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With this notion of strong convergence, we are now ready to introduce the commutativity
framework for general neural network models.

Notation. Throughout the paper, the width and depth of a neural network model are
denoted by n and L, respectively, and the input dimension is denoted by d. We write
[N ] := {1, 2, . . . , N} for any N ≥ 1.

Let us now consider a general neural network model of width n ≥ 1 and depth L ≥ 1,
given by {

Y0(a) = Wina, a ∈ Rd

Yl(a) = Fl(Wl, Yl−1(a)), l ∈ [L], Yl(a) ∈ Rn,
(1)

where Fl is a mapping that defines the nature of the lth layer and Win ∈ Rn×d,Wl ∈ Rn×n
are model weights. For the sake of simplification, we omit the dependence of Yl on n
and L in the notation. We refer to the vectors {Yl, l = 0, . . . , L} as pre-activations. Let
θn,L = (Win,W1, . . . ,Wl) be the model weights and assume that θ0

n,L ∼ µ0
n,L, where θ0

n,L are

the weights at initialization and µ0 is a distribution that (naturally) depends on network
width n and depth L. The distribution µ0

n,L. Let us now define the notion of neural
functions.

Definition 2 (Neural Function). Given a general neural network model (Eq. (1)) of width
n and depth L, a set of network inputs a = (a1, a2, . . . , ak) ∈ (Rd)k, a neural function T is
any function of the form T (n,L,a) = G(θ0

n,L,a), where G is a general mapping with output

in R.2

Note that (almost) any quantity in the training process of neural networks can be
represented as a neural function. This remark was first observed in the series of Tensor
Programs (Yang and Hu, 2022) where the result of any neural computation can be seen as
a random quantity where the randomness is inherited from the initialization weights. The
training dataset is considered deterministic in this case and consists of a sequence of inputs
(a1, a2, . . . , ak). Other neural functions that cannot be expressed with Tensor Programs
include the generalization error for instance. In this paper, we think of neural functions as
proxy functions that track some behavior of the network as we scale width and depth with
the goal of providing insights on scaling strategies (see below for a specific choice of the
neural function).

With this definition of neural functions, we now formalize the notion of commutativity
of the width and depth limits.

Definition 3 (Commutativity). Given a neural function T ,3 we say that T satisfies univer-
sality for the width and depth limits if for any set of inputs a = (a1, a2, . . . , ak), T (n,L,a)
converges in L2 in the limit min {n,L} → ∞.

2. This definition of neural functions can be extended to general mappings G with outputs in Rp for some
p ≥ 1. This is not required in this paper since we will be focusing on neural covariance kernel which has
output in R.

3. Note that by definition, a neural function is associated with a network model. When we consider a neural
function T , the underlying model is assumed to be fixed.
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We can define a weak notion of commutativity where only sequential limits are consid-
ered, i.e. n or L limits are taken in a sequential order.

Definition 4 (Weak Commutativity). Given neural function T , we say that T satisfies
commutativity for the width and depth limits if for any set of inputs a = (a1, a2, . . . , ak),
both lim

L→∞
lim
n→∞

T (n,L,a) and lim
n→∞

lim
L→∞

T (n,L,a) exist in L2 and are equal.

Weak commutativity is trivially implied by commutativity. Intuitively, weak commuta-
tivity only deals with the ‘extreme’ scenarios L � n � 1 and n � L � 1 and does not
consider the cases where for instance L ≈ n� 1.

Implications of Commutativity. Naturally, one might ask why we should care about
commutativity at first. Commutativity of width and depth limits in neural networks holds
significant importance for several compelling reasons:

1. Unification of Width and Depth Scaling: when we aim to scale a neural network for
improved performance, we often encounter scenarios where we must decide whether to
increase the network’s width or depth. Each of these choices generally lead to different
design considerations, including variations in initialization schemes, activation func-
tions, and learning rates. However, commutativity of the width and depth limits for
some neural function T ensures that regardless of how we scale the network—whether
by increasing width before depth, growing both width and depth proportionally, or
taking width to infinity before depth—the resulting limiting behavior remains con-
sistent. This means that once an effective scaling strategy is identified for a specific
scenario with large width and depth, it remains a viable choice as long as both width
and depth are large, simplifying the scaling process.

2. Robust Scaling: as a result of commutativity, scaling the width and depth becomes
robust to extreme changes in neural functions. This allows some flexibility in the
scaling procedure; in practice, one might want to increase width significantly while
fixing depth, or the opposite, while preserving desirable properties captured by the
neural function.

3. Transfer of Insights: commutativity facilitates the transfer of insights from simplified
theoretical settings to practical applications. When dealing with neural networks
of large width and depth, it can be challenging to analyze their behavior directly.
However, commutativity allows us to explore different limits, such as taking width
to infinity first and then depth or vice versa, to gain a better understanding of the
network’s behavior.

4. Commutativity is Achievable in Practice: we show that by introducing a simple scaling
factor in front of the residual block in ResNets, commutativity holds for the neural
covariance function at initialization (defined below). This neural function is used as
a measure of how network layer separate input data, and led to many interesting
practical methods (initialization schemes, neural network Gaussian process, choice of
the activation function etc.) (Lee et al., 2018; Schoenholz et al., 2017; Hayou et al.,
2019). An in-depth discussion on this topic is provided below.
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Neural Covariance. In this paper, we focus on neural functions given by the covari-
ance/correlation functions at initialization. Given two inputs a, b ∈ Rd\{0},4 the neural
covariance and correlation kernels at layer l are given by{

ql,n(a, b) = 〈Yl(a),Yl(b)〉
n

cl,n(a, b) = 〈Yl(a),Yl(b)〉
‖Yl(a)‖‖Yl(b)‖ ,

where the correlation is only defined when ‖Yl(a)‖, ‖Yl(b)‖ 6= 0.

Note that in general, if commutativity holds for the covariance kernel, then it holds for
the neural correlation kernel, and vice-versa. This is true as long as pre-activations norms
‖Yl(a)‖ are non-zero with high probability, which is generally satisfied, see Lemma 5 for
a rigorous proof of this result. Hereafter, we will interchangeably discuss commutativity
for neural covariance and correlation, while stating the theoretical results only for neural
covariance. The results on the convergence of neural covariance are stated for two inputs
a, b, but they can be readily generalized to the case of multiple inputs a1, a2, . . . , ak ∈ Rd,
where we can define the neural covariance matrix at layer l by

ql,n(a1, a2, . . . , ak) =

ql,n(a1, a1) . . . ql,n(a1, ak)
...

. . .
...

ql,n(ak, a1) . . . ql,n(ak, ak)

 .

Why Neural Covariance/Correlation? In the literature on signal propagation, there is
a significant interest in understanding the covariance/correlation between the pre-activation
vectors YbtLc(a) and YbtLc(b) for two different inputs a, b ∈ Rd. A natural question in this
context is: Why should we care about this covariance function?

It is well-established that even for properly initialized multi-layer perceptrons (MLPs),
the network outputs YL(a) and YL(b) become perfectly correlated (correlation=1) in the
limit of “n → ∞, then L → ∞” (Schoenholz et al., 2017; Poole et al., 2016; Hayou et al.,
2019; Yang and Salman, 2020). This can lead to unstable behavior of the gradients and
make the model untrainable as the depth increases and also results in the inputs being
non-separable by the network5. To address this issue, several techniques involving targeted
modifications of the activation function have been proposed (Martens et al., 2021; Zhang
et al., 2022). In the case of ResNets, the correlation still converges to 1, but at a polyno-
mial rate (Yang and Schoenholz, 2017). A solution to this problem has been proposed by
introducing well-chosen scaling factors in the residual branches, preventing the correlation
kernel from converging to 1. This analysis was carried in the limit “n→∞, then, L→∞”
in Hayou et al. (2021), and recently extended in Hayou and Yang (2023) to the case where

4. Here, we assume that the inputs are non-zero, other all the pre-activations Yl are zero, and the correlation
is undefined in this case. All the results in this paper are trivial if a = 0 or b = 0. We will therefore
always assume that a, b 6= 0.

5. To see this, assume that the inputs are normalized. In this case, the correlation between the pre-
activations of the last layer for two different inputs converges to 1. This implies that as the depth grows,
the network output becomes similar for all inputs, and the network no longer separates the data. This
is problematic for the first step of gradient descent as it implies that the information from the data is
(almost) unused in the first gradient update.
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“min(n,L) → ∞”, showing that commutativity holds in this case. Most of these works
have provided empirical evidence showing an association between favorable characteristics
of the neural covariance/correlation and good trainability properties of deep networks.6

4. Existing Results

In this section, we present corollaries of existing results showing different scenarios where
commutativity is satisfied or not for the neural covariance. The aim of this section is show
that commutativity depends on the neural architecture.

4.1 Non-Commutativity in MLPs

Let d, n, L ≥ 1, and consider a simple MLP architecture given by the following:{
Y0(a) = Wina, a ∈ Rd

Yl(a) = Wlφ(Yl−1(a)), l ∈ [L],
(2)

where φ : R → R is the ReLU activation function, Win ∈ Rn×d, and Wl ∈ Rn×n is the
weight matrix in the lth layer. We assume that the weights are randomly initialized with
iid Gaussian variables W ij

l ∼ N (0, 2
n),7 W ij

in ∼ N (0, 1
d). While the activation function is

only defined for real numbers (1-dimensional), we abuse the notation and write φ(z) =
(φ(z1), . . . , φ(zk)) for any k-dimensional vector z = (z1, . . . , zk) ∈ Rk for any k ≥ 1. We
refer to the vectors {φ(Yl), l = 0, . . . , L} as post-activations.

In the case of the joint limit n,L → ∞ with n/L fixed, it has been shown that the
covariance/correlation between YbtLc(a) and YbtLc(b) becomes similar to that of a Markov
chain that incorporates random terms. However, the correlation still converges to 1 in this
limit.

Proposition 1 (Correlation, (Hayou et al., 2019; Li et al., 2023)). Consider the MLP
architecture given by Eq. (2) and let a, b ∈ Rd such that a, b 6= 0. Then, in the limit
“n → ∞, then L → ∞” or the the joint limit “n,L → ∞, L/n fixed”, the correlation
〈YL(a),YL(b)〉
‖YL(a)‖‖YL(b)‖ converges8 weakly to 1.

The convergence of the correlation to 1 in the infinite depth limit of a neural network
poses a significant issue, as it indicates that the network loses all of the covariance struc-
ture from the inputs as the depth increases. This results in degenerate gradients (see e.g.
Schoenholz et al. (2017)), rendering the network untrainable. To address this problem in
MLPs, various studies have proposed the use of depth-dependent shaped ReLU activations,
which prevent the correlation from converging to 1 and exhibit stochastic differential equa-
tion (SDE) behavior. As a result, the correlation of the last layer does not converge to a
deterministic value in this case.

6. By favorable characteristics of the neural covariance, we refer for instance to non-degeneracy as L→∞
as reported in (Hayou et al., 2021).

7. This is the standard He initialization which coincides with the Edge of Chaos initialization (Schoenholz
et al., 2017). This is the only choice of the variance that guarantees stability in both the large-width
and the large-depth limits.

8. Note that weak convergence to a constant implies also convergence in probability.

7



Hayou

Proposition 2 (Correlation SDE, Corollary of Thm 3.2 in Li et al. (2023)). Consider the
MLP architecture given by Eq. (2) with the following activation function φL(z) = z+ 1√

L
φ(z)

(a modified ReLU). Let a, b ∈ Rd such that a, b 6= 0. Then, in the joint limit “n,L → ∞,

L/n fixed”, the correlation 〈YL(a),YL(b)〉
‖YL(a)‖‖YL(b)‖ converges weakly to a nondeterministic random

variable.9

The joint limit, therefore, yields non-deterministic behavior of the covariance structure.
It is easy to check that even with shaped ReLU as in Proposition 2, taking the width
to infinity first, then depth, the result is a deterministic covariance structure. The main
takeaway from this section is the following:

Corollary 1. With MLPs (Eq. (2)), the width and depth limits do not commute for the
neural covariance/correlation.

4.2 Commutativity with Scaled Residual Networks

Using the same notation as in the MLP case, consider the following ResNet architecture of
width n and depth L

Y0(a) = Wina, a ∈ Rd

Yl(a) = Yl−1(a) +
1√
L
Wlφ(Yl−1(a)), l ∈ [1 : L],

(3)

where φ : R → R is the ReLU activation function. Assume that the weights are randomly
initialized with iid Gaussian variables W ij

l ∼ N (0, 1
n), W ij

in ∼ N (0, 1
d). If we consider the

set of scaling factors of the form L−γ for γ > 0, then the choice of γ = 1/2 is the smallest
value of γ such that the network output do not explode in the infinite-depth limit (see
Lemma 1). Therefore, in some sense, this scaling is the ‘optimal’ amongst uniform scalings
(meaning all residual branches are scaled with the same factor) for two reasons: it stabilizes
the network as depth increases, and it does not result in trivial behavior (see discussion
after Proposition 3).

With the ResNet architecture Eq. (3), we have the following result for the covariance
kernel, which establishes commutativity in this case.

Proposition 3 (Thm 2 in Hayou and Yang (2023)). Let a, b ∈ Rd such that a, b 6= 0 and
a 6= b. Then, we have the following

sup
t∈[0,1]

∥∥qbtLc,n(a, b)− qt(a, b)
∥∥
L2
≤ C

(
1√
n

+
1√
L

)

9. In Li et al. (2023), the authors show that the correlation of 〈φL(YL(a)),φL(YL(b))〉√
‖φL(YL(a))‖

√
‖φL(YL(b))‖

converges to a

random variable in the joint limit. Since φL converges to the identity function in this limit, simple
calculations show that the correlation between the pre-activations 〈YL(a),YL(b)〉

‖YL(a)‖‖YL(b)‖ is also random in this
limit.
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where C is a constant that depends only on ‖a‖, ‖b‖, and d, and qt(a, b) is the solution of
the following differential flow 

dqt(a,b)
dt = 1

2
f(ct(a,b))
ct(a,b)

qt(a, b),

ct(a, b) = qt(a,b)√
qt(a,a)

√
qt(b,b)

,

q0(a, b) = 〈a,b〉
d ,

(4)

where the function f : [−1, 1]→ [−1, 1] is given by

f(z) =
1

π
(z arcsin(z) +

√
1− z2) +

1

2
z.

This result suggests that commutativity for the neural covariance depends on the archi-
tecture, and holds in this particular case. More importantly, with this residual architecture,
taking the width and depth limits to infinity yield a non-trivial limit of the neural covari-
ance given by the function qt. In (Hayou et al., 2021), it was shown that qt is a universal
kernel, meaning that, it is not only non-trivial, but one can approximate any sufficiently
smooth function on some compact set with features from the kernel qt. This has a number of
implications, especially in the context of neural network Gaussian processes. We invite the
reader to check (Hayou et al., 2021) for a more in-depth discussion. Another recent result
showed that trivial behavior can be avoided by scaling the main branch of the ResNet. The
neural covariance converges weakly to a random variable in the proportional limit, which
implies that such scaling breaks commutativity.

Proposition 4 (Corrollary of Thm 3.2 in Noci et al. (2023)). Conider a ResNet where the
hidden layers are of the form Yl(a) = βYl−1(a)+

√
1− β2WlφL(W̃lYl−1(a)), where β ∈ (0, 1)

is a constant, Wl and W̃l are weight matrices initialized as N (0, n−1), and φL is the shaped
ReLU (defined in Proposition 2). Then, the width and depth limits for the covariance kernel
do not commute in this case.

Scaling the main branch of the residual network results in a similar behavior to the
of the MLP case. Intuitively, with the factor β, the direct contribution of any layer to
the main branch decreases exponentially with depth, hence simulating the ‘compositional’
nature of MLPs. Note that the use of shaped ReLU is essential with this scaling in order to
avoid degeneracy problems; with ReLU, the correlation converges to 1 in the infinite-depth
limit. In the same work, the authors show a similar result for Transformers which is a more
modern residual architecture.

With the background information provided above, we are now able to present our find-
ings. In the next section, we demonstrates commutativity of the width and depth limits for
a general class of ResNet architectures, extending the results of Hayou and Yang (2023).

5. Main Results: Commutativity under General Scaling

In this section, we present our main results regarding commutativity of the width and depth
limits under general scaling rules. All the proofs are deferred to the Appendix. We first
define the sequence of scaling factors, a notion that will be frequently used in the paper.
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Definition 5 (Sequence of Scaling Factors). A sequence of scaling factors is an infinite
triangular array of non-negative real numbers. It has the form α = (αl,L)l∈{1,...,L},L≥1.

Visually, one can think of α as an infinite object of the form

α =



α1,1

α1,2 α2,2

...
...

. . .

α1,L . . . αL,L
... . . . . . .

. . .

The use of such notation will come handy when we scale up the depth of a neural network.
Such sequences will are used to define a scaling strategy as network depth grows.

Setup. Recall the previously introduced notation, the width and depth of the network are
denoted by n and L, respectively, and the input dimension is denoted by d. Let n,L, d ≥ 1,
and consider the following neural network model with skip connections{

Y0(a) = Wina, a ∈ Rd,
Yl(a) = Yl−1(a) + αl,LWl φ(Yl−1(a)), l ∈ [L],

(5)

where φ is the ReLU activation function, Win ∈ Rn×d is the input layer weight matrix, and
Wl ∈ Rn×n is the weight matrix in the lth layer. We assume that the weights are randomly
initialized as W ij

d ∼ N (0, 1/d), and W ij
l ∼ N (0, 1/n) for l ∈ [L], a 6= 0 is an arbitrary input

in Rd, α = (αl,L)L≥1,l∈[L] is a sequence of scaling factors. For the sake of simplification, we
only consider networks with no bias, and we omit the dependence of Yl on n and L in the
notation. For a vector Z ∈ Rk, we write Z = (Z1, Z2, . . . , Zk) ∈ Rk to denote its entries.
Hereafter, we consider two inputs a, b ∈ Rd satisfying a, b 6= 0 and 〈a, b〉.10

As depth increases, the pre-activations might grow arbitrarily large, depending on the
choice of the sequence α. The next result fully characterizes sequences that guarantee
stability in terms of the L2 norm.

Lemma 1. For all L ≥ 1, l ∈ [L], i ∈ [n]

E
[
Y i
l (a)2

]
=
‖a‖2

d

l∏
k=1

(
1 +

α2
k,L

2

)
.

As a result, supl∈[L],L≥1,i∈[n] E
[
Y i
l (a)2

]
is bounded iff supL≥1

∑L
l=1 α

2
l,L <∞.

Proof. Simple calculations yield

E
[
Y i
l (a)2

]
= E

[
Y i
l−1(a)2

]
+ α2

l,LE
[
φ(Y i

l (a))2
]
.

To conclude, it suffices to see that Y i
l (a)2 is a symmetric random variable, and therefore

E
[
φ(Y i

l (a))2
]

= 1
2E
[
Y i
l (a)2

]
.

10. These conditions on a, b are generally satisfied in practical scenarios. From a theoretical standpoint, we
added these conditions in order to avoid dealing with division by 0 etc. These cases are trivial and can
be easily incorporated in the main results. However, we believe this is an unnecessary complication that
does not add any value to the results.

10



Commutative Scaling of Width and Depth

The result of Lemma 1 is independent from the width n. Hence, a necessary and
sufficient condition so that the pre-activations do not explode with depth (in L2 norm),
for any width n, is to have supL≥1

∑L
l=1 α

2
l,L < ∞. We say that such sequences of scaling

factors are stable.

Definition 6 (Stable Sequence of Scaling Factors). Let α be a sequence of scaling factors.
We say that α is stable if it satisfies supL≥1

∑L
l=1 α

2
l,L <∞. We denote the space of stable

sequences of scaling factors by S. For α ∈ S, we define the S-norm of α by ‖α‖S =√
supL≥1

∑L
l=1 α

2
l,L.11

Stable Sequences of Scaling Factors have appeared Hayou et al. (2021). In that work,
the sequential limit ‘infinite-width, then infinite-depth’ was considered, and such sequences
were proven to stabilize the gradients as well, and yield other favorable network properties
regarding the neural covariance kernel and the neural tangent kernel.

In the next two (sub)sections, we show that unlike in MLPs or residual networks with
scaled main branch where the neural covariance/correlation exhibits different limiting be-
haviors depending on how the width and depth limits are taken, under general conditions
on the sequence α, for the ResNet architecture given by Eq. (5), the neural covariance con-
verges strongly to a deterministic kernel, which depends on the choice of the sequence α, in
the limit min(n,L) → ∞ regardless of the relative rate at which n and L tend to infinity.
We show different examples and recover and strengthen previous results as special cases.

5.1 Sequence of Scaling Factors as Convergent Series

In this section, we consider sequences α that “converge” to a series in a specific way. We show
that in this case, the neural covariance kernel converges to the same limiting kernel with a
specific convergence rate as long as min(n,L) goes to infinity, hence inducing commutativity.

Theorem 1. Let α ∈ S. Assume that there exists a sequence ζ = (ζi)i≥1 ∈ `2(N) such that∑L
l=1 |α2

l,L − ζ2
l | → 0 as L→∞. Then, we have that for all t ∈ (0, 1]

‖qbtLc,n(a, b)− qζ∞(a, b)‖L2 ≤ C

n−1/2 +
L∑
l=1

|α2
l,L − ζ2

l |+
∑
l≥L

ζ2
l

 ,

where C is a constant that depends only on t, ‖a‖, ‖b‖, d, ‖ζ‖S, and qζ∞(a, b) = limL→∞ q
ζ
L(a, b)

and qζL are given by the recursive formula
qζL(a, b) = qζL−1(a, b) + 1

2ζ
2
L
f(cL−1(a,b))
cL−1(a,b) qL−1(a, b), L ≥ 1

cL(a, b) = qL(a,b)√
qL(a,a)qL(b,b)

,

qζ0(a, b) = 〈a,b〉
d ,

where f : [−1, 1]→ [−1, 1] is given by

f(z) = π−1(z arcsin z +
√

1− z2) +
1

2
z.

11. If we allow negative values for αl,L, then we can show that the space S, endowed with the inner product
〈α, β〉S = supL≥1

∑L
l=1 αl,Lβl,L , is a complete space (Banach space). We omit these technicalities in

this paper.
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Theorem 1 shows that the neural covariance kernel converges to the same limiting kernel
no matter how the width and depth limits are taken. In the proof, provided in Appendix D,
we first show the existence of the limit of qL, then proceed to bound the difference with
the neural covariance kernel. The convergence rate depends on he properties of the series ζ
that approximates α as depth grows. Notice that the limiting kernel qζ∞ does not depend
on t ∈ (0, 1]. This is because the entries of ζ do not depend on depth L.

Examples. The conditions of Theorem 1 are satisfied by many sequences α. Examples
include:

• “Decreasing” scaling: assume that αl,L = ζl for all L ≥ 1, l ∈ [L], where ζ ∈ `2(N).
We call this scaling decreasing because liml→∞ ζl = 0. This choice of scaling fac-
tors trivially satisfies the conditions of Theorem 1 and the convergence rate is given
by O(n−1 +

∑
l≥L ζ

2
l ). An examples of such scaling was studied in (Hayou et al.,

2021) and empirical results (performance of trained networks) were reported with
ζ =

(
(l log(l + 1)2)−1/2

)
l≥1

.

• “Aggressive” Uniform scaling: assume that αl,L = L−γ for some constant γ > 1/2.
This scaling is called uniform because all the residual branches have the same scaling
factor. This sequence of scaling factors satisfies the conditions of Theorem 1 with
ζ = 0`2(N). The convergence rate is given by O(n−1 + L−(2γ−1)), and the limiting

kernel is trivial and given by qζ∞ = qζ0 , hence the wording ‘aggressive’ since this
scaling removes all contributions of the hidden layers in the limiting kernel. Note that
this case covers the Neural ODE limit with scaling factors αl,L = L−1. In the next
section, we will see that another kind of uniform scaling(non-aggressive) that yield
non-trivial limits.

5.2 Normalized Sequences of Scaling Factors

In this section, we discuss another type of sequences of scaling factors. We know from
Hayou and Yang (2023) that with αl,L = L−1/2, the limiting kernel is given by the solution
of an ODE. In this section, we generalize this result by considering all sequences α that
satisfy the condition

∑L
l=1 α

2
l,L = 1 for all L ≥ 1. Let us first give a formal definition of

such sequences.

Definition 7 (Normalized Sequence of Scaling Factors). Let α be a sequence of scaling
factors. We say that α is normalized if it satisfies

∑L
l=1 α

2
l,L = 1 for all L ≥ 1. The space

of normalized sequences of scaling factors is denoted by S1.

It is trivial that S1 ⊂ S, and for all α ∈ S1, ‖α‖S = 1 (hence the subscript in S1). The
next result establishes commutativity of the infinite width and depth limit for normalized
sequences.

Theorem 2 (Universal Limits for Normalized Sequences). Consider a sequence of scaling
factors α ∈ S1. Let hL = max1≤l≤L α

2
l,L and assume that Lh2

L = o(1). Then, we have that

sup
t∈(0,1]

‖qbtLc,n(a, b)− qtL(a, b)‖L2 ≤ C
(
n−1/2 + hL + Lh2

L

)
,

12



Commutative Scaling of Width and Depth

where C depends only on ‖a‖, ‖b‖, d, tL =
∑btLc

k=1 α
2
k,L, and qt is given by the solution of the

following differential flow 
dqt(a,b)
dt = 1

2
f(ct(a,b))
ct(a,b)

qt(a, b),

ct(a, b) = qt(a,b)√
qt(a,a)

√
qt(b,b)

,

q0(a, b) = 〈a,b〉
d ,

(6)

where the function f : [−1, 1]→ [−1, 1] is given by

f(z) =
1

π
(z arcsin(z) +

√
1− z2) +

1

2
z.

Moreover, assume that there exists a function λ : [0, 1]→ [0, 1] such that the sequence α

satisfies supt∈[0,1]

∣∣∣∑btLck=1 α
2
k,L − λ(t)

∣∣∣ ≤ rL and limL→∞ rL = 0. Then, we have

sup
t∈(0,1]

‖qbtLc,n(a, b)− qλ(t)(a, b)‖L2 ≤ C ′
(
n−1/2 + hL + Lh2

L + rL

)
,

where C ′ depends only on ‖a‖, ‖b‖, d.

Theorem 2 generalizes previous results from Hayou and Yang (2023) to arbitrary nor-
malized sequences. Using this theorem, we recover those results by choosing αl,L = L−1/2

and verifying the conditions in the theorem. In particular, with the new proof techniques
developed in this paper, we obtain a stronger convergence rate for depth.

Corollary 2 (Normalized Uniform Scaling). Assume that αl,L = L−1/2 for all L ≥ 1 and
l ∈ [L]. Then, the results of Theorem 2 are satisfied with λ(t) = t, rL = L−1, and hL = L−1.
As a result, we have that

sup
t∈(0,1]

‖qbtLc,n(a, b)− qt(a, b)‖L2 ≤ C
(
n−1/2 + L−1

)
,

where C depends only on ‖a‖, ‖b‖, d, and qt is defined in Theorem 2.

Proof. With αl,L = L−1/2, we trivially have hL = L−1 and Lh2
L = L−1. Moreover, given

t ∈ (0, 1] we have that
∑btLc

k=1 α
2
l,L = btLc

L , and therefore
∣∣∣∑btLck=1 α

2
l,L − t

∣∣∣ ≤ L−1.

Improved Depth Rate. In this paper, we obtain a depth rate of L−1 in contrast to the
L−1/2 convergence rate reported in Hayou and Yang (2023). The reason lies in the differ-
ences of the proof techniques used to derive the results. The proof techniques in both results
are essentially ‘orthogonal’ in the following sense: in Hayou and Yang (2023), the proofs rely
on taking the depth to infinity first, while controlling the effect of width at the same time.
With this approach, the best depth rate one can obtain is L−1/2 which is induced by the
Euler disctretization error (note that with αl,L = L−1/2, the ResNet behaves as the solution
of a Stochastic Differential Equation (SDE) in the infinite depth limit when the width is
fixed). However, in the present work, we first take the width to infinity while controlling the
depth. By doing this, all the randomness in the covariance is removed as n→∞, regardless
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of the L. As a result, by taking depth to infinity, we deal with deterministic dynamical sys-
tems instead of stochastic ones (the SDE case), in which case the Euler disctretization error
is of order L−1. We refer the reader to Section 7 for more details about the proof techniques.

Remark. The normalized uniform scaling is optimal in terms of the depth-related error
in Theorem 2. More precisely, the depth-related error is given by the term RL(α) =
hL + Lh2

L + rL up to constant C. A natural question is to ask what properties should the
sequence of scaling factors satisfy in order to minimize this error. Given a fixed depth L,
this problem can be formulated as a constrained minimization problem

min
α∈S1

RL(α) = hL + Lh2
L + rL, (7)

where the constraint is given by the fact that α ∈ S1.

Lemma 2. The normalized uniform scaling given by αl,L = L−1/2 is a solution to problem
(7).

To explain the intuition behind the result of Lemma 2, we first need to understand what
each term in RL represents. The first term hL is well-known in numerical methods and
represents the Euler discretization (global) error. The second term Lh2

L is a bound on the
error between the Euler scheme of the ODE satisfied by qt and the actual neural covariance
kernel from the finite depth network. The last term rL is induced by the behavior of the
scaling sequence as L grows. If we consider just the sum of the first two terms, uniform
scaling balances the two terms which should intuitively minimize that sum. It also happens
that for this choice of scaling rL is of the same order as hL + Lh2

L.

Note that the uniform scaling αl,L = L−1/2 was used in the parametrization of the
initialization weights of the GPT2 model (Radford et al., 2019).

6. Experiments

In this section, we validate our theoretical results with simulations on large width and depth
residual neural networks of the form Eq. (5) with different choices of the sequence α.

6.1 Convergence of the Neural Covariance

Theorem 2 and Theorem 1 predict that the covariance ql,n(a, b) for two inputs a, b converges
in L2 norm in the limit min(n,L)→∞. We empirically investigate this convergence in the
the case of uniform scaling.

Uniform Scaling αl,L = L−1/2. In Fig. 1, we compare the empirical covariance ql,n with
the theoretical prediction qt from Theorem 2 for n ∈ {23, 28, 214} and L ∈ {21, 23, 28}.
We chose maximum depth to be much smaller than maximum width to take into account
the difference in the width and depth convergence rates: n−1/2 versus L−1 in this case.
The empirical L2 error between qL,n and q1 (from Theorem 2) is also reported. As the
width increases, we observe an excellent match with the theory. The role of the depth
is less noticeable, but for instance, with width n = 214, we can see that the L2 error is
smaller with depth L = 256 as compared to depth L = 2. The theoretical prediction qt
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Figure 1: The blue curve represents the average covariance ql,n(a, b) for ResNet Eq. (5) with
n ∈ {23, 28, 214}, L ∈ {21, 23, 28}, d = 30, and a and b are sampled randomly from N (0, Id)
and normalized to have ‖a‖ = ‖b‖ = 1. The average is calculated based on N = 100
simulations. The shaded blue area represents 1 standard deviation of the observations. The
red dashed line represents the theoretical covariance qt(a, b) predicted in Theorem 2. The
empirical L2 error for t = 1 is reported.

is approximated with a PDE solver (RK45 method, Fehlberg (1968)) for t ∈ [0, 1] with a
discretization step ∆t =1e-6.

6.2 Comparison with Other Architectures

In Fig. 2, we show the evolution of the distribution of qL,n for three different architectures
with L = n. With our choice of scaling factors αl,L, the distribution concentrates around
the deterministic limit given by the solution of the ODE described in Theorem 2. For MLP
with shaped ReLU, and the Shaped ResNet (Proposition 4, the main branch is scaled with
β = 1/2), we observe that the neural covariance remains random as width (and depth)
grows. The sequential infinite-width-then-depth is illustrated in blue, and shows that with
our choice of scaling factors, the covariance concentrates around this sequential limit even
when n = L → ∞. In contrast, with shaped MLP/ResNet, the two limits (sequential vs
proportional) exhibit different behaviors, confirming that commutativity does not hold in
these two cases.
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Figure 2: The distribution of the qL,n with L = n for varying n ∈ [5, 4000]. (Left) ResNet
described in Eq. (5) with αl,L = L−1/2. (Center) MLP described in Eq. (2) with shaped
ReLU φL Li et al. (2023). (Right) Shaped ResNet with β = 1/2 (Proposition 4). The
vertical blue line represents the limit sequential limit limL→∞ limn→∞ qL,n. The inputs a, b
are sampled following the same procedure in Fig. 1.

6.3 Improved Depth Rate
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Figure 3: The curve of ∆L =
|qL,∞(a, b) − qt=1(a, b)| for L ∈
{2k, k = 3, . . . , 14}.

In Hayou and Yang (2023), commutativity was es-
tablished with the choice of scaling factors αl,L =
L−1/2. The reported convergence rate (as n and L
go to infinity) of the neural covariance is of the form
O(n−1/2 + L−1/2). In this paper, we established an
improved convergence rate of order O(n−1/2 +L−1),
which suggests that convergence is more sensitive
to the width than to depth. To validate this re-
sult, we conduct the following experiment: we let
n grow to infinity while fixing L and obtain the
infinite-width neural covariance qL,∞ (infinite-width
covariance for the last layer). We then measure
∆L = |qL,∞(a, b) − qt=1(a, b)| where qt is given in
Theorem 2 and (a, b) are sampled randomly follow-
ing the procedure in Fig. 1. We observe a perfect
match of the L−1 convergence rate (where the inter-
cept was adjusted so that all the lines start from the
same initial value).

7. Outline of Proof Techniques

In Hayou and Yang (2023), it was shown that the neural covariance satisfies commutativity
with the specific scaling αl,L = L−1/2. The main technical novelty in that work is taking
the depth L to infinity first, while controlling the dependence of the constants on the width
n. Given a fixed width n, taking depth L to infinity results in an SDE behavior (Stochastic
Differential Equation), and the main tools to study such convergence are numerical methods
for SDEs (Euler discretization scheme). In this case, it is possible to obtain infinite-depth
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strong convergence where the constants do not depend on width n. Commutativity then
follows by studying the infinite-width limit of these SDEs. This involves the use of tools
from mean-field stochastic calculus (namely McKean-Vlasov processes).

In the present work however, we take an orthogonal approach where the width is taken to
infinity first, and the constants are well chosen so that they do not depend on depth, followed
by infinite-depth which concludes the proof. The main innovation in the proofs is related to
the introduction fot the auxiliary process Ỹ : given a residual network of the form Eq. (5),
we introduce an auxiliary process Ỹl that shares some properties with the original neural
process Yl. We bound the difference between Yl and Ỹl using Gronwall’s type of techniques,
and show that the constants in this bound can be chosen to be independent of depth,
hence providing a depth-uniform bound for the infinite-width limit. More importantly, the
auxiliary process has iid Gaussian entries, which make it easier to study the covariance kernel
related to Ỹl, and allow us to conclude on commutativity. Some technical results involve
the use of concentration inequalities to treat low probability events such as φ(Yl) = 0 when
n is large.

8. Conclusion and Limitations

In this paper, we have shown that, at initialization, under general assumptions on the
sequence of scaling factors, the large-depth and large-width limits of a residual neural net-
work (resnet) commute for the neural covariance. We used novel proof techniques. Our re-
sults generalize and strengthen previous works on commutativity. While ReLU was specif-
ically considered due to the closed-form expression for the covariance/correlation kernel,
the proofs can be extended to general Lipschitz continuous activation functions. The Lip-
schitz continuity is needed to bound the term f(cαl−1) − f(cβl−1) in the proof of Lemma
8, where f is the correlation kernel. However, there will be some technical differences
in the proofs. For instance, with Tanh activation function, the event ‖φ(Yl−1)‖ = 0 be-
comes a zero probability event, eliminating the need (and it is mathematically wrong) for
the nested conditional expectation trick used in the proof of Theorem 4 (bounding T1 in
page 30). Extending the results to general layers is more challenging. Intuitively, for L2

Lipschitz-continuous residual blocks (i.e. neural networks Yl = Yl−1 + αl,LFl(Yl−1,Wl),
where E‖Fl(Z,Wl)−Fl(Z ′,Wl)‖2 ≤ κ× E‖Z − Z ′‖2), the results should in-principle hold,
although additional assumptions might be needed. Unfortunately, this is not satisfied with
quadratic-type layers like self-attention in Transformers architecture, in which case a more
delicate analysis might be needed to prove commutativity.

Note also that our results are restricted to the neural covariance function and do not
extend to other neural functions (Definition 2). More importantly, it is unclear what hap-
pens during training, and potentially, different behaviors can occur depending on how the
learning rate is chosen as a function of width and depth.

One might also ask whether commutativity is needed in the current context of Large
Language Models, where most architectures are in the regime n � L � 1 (e.g. n ∼
1000, L ∼ 50) and that this regime can be fairly described by the sequential limit ‘n→∞,
then L → ∞’. While this might be true to some extent, note that convergence of neural
functions can happen at different width and depth rates (e.g. n−1/2 and L−1 in the case of
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neural covariance), which implies that small changes in depth (or width) could completely
change the behavior of the neural function. We leave this question for future work.
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Appendix A. A More Comprehensive Literature Review

Theoretical analysis of randomly initialized neural networks with an infinite number of
parameters has yielded a wealth of interesting results, both theoretical and practical. Most
of the research in this area has focused on the case where the depth of the network is
fixed and the width is taken to infinity. However, in recent years, motivated by empirical
observations, there has been an increased interest in studying the large depth limit of these
networks. We provide here a non-exhaustive summary of existing results of these limits.

A.1 Infinite-Width Limit

The infinite-width limit of neural network architectures has been extensively studied in
the literature and has led to many interesting theoretical and algorithmic innovations. We
summarize these results below.

• Initialization schemes: the infinite-width limit of different neural architectures has been
extensively studied in the literature. In particular, for multi-layer perceptrons (MLP),
a new initialization scheme that stabilizes forward and backward propagation (in the
infinite-width limit) was derived in Poole et al. (2016); Schoenholz et al. (2017). This
initialization scheme is known as the Edge of Chaos, and empirical results show that it
significantly improves performance. In Yang and Schoenholz (2017); Hayou et al. (2021),
the authors derived similar results for the ResNet architecture, and showed that this
architecture is placed by-default on the Edge of Chaos for any choice of the variances
of the initialization weights (Gaussian weights). In Hayou et al. (2019), the authors
showed that an MLP that is initialized on the Edge of Chaos exhibits similar properties
to ResNets, which might partially explain the benefits of the Edge of Chaos initialization.

• Gaussian process behavior : Multiple papers (e.g. Neal (1995); Lee et al. (2018); Yang
(2021b); Matthews et al. (2018); Hron et al. (2020)) studied the weak limit of neural
networks when the width goes to infinity. The results show that a randomly initialized
neural network (with Gaussian weights) has a similar behavior to that of a Gaussian
process, for a wide range of neural architectures, and under mild conditions on the ac-
tivation function. In Lee et al. (2018), the authors leveraged this result and introduced
the neural network Gaussian process (NNGP), which is a Gaussian process model with
a neural kernel that depends on the architecture and the activation function. Bayesian
regression with the NNGP showed that NNGP surprisingly achieves performance close
to the one achieved by an SGD-trained finite-width neural network.

The large depth limit of this Gaussian process was studied in Hayou et al. (2021), where
the authors showed that with proper scaling, the infinite-depth (weak) limit is a Gaussian
process with a universal kernel12.

• Neural Tangent Kernel (NTK): the infinite-width limit of the NTK is the so-called NTK
regime or Lazy-training regime. This topic has been extensively studied in the literature.
The optimization and generalization properties (and some other aspects) of the NTK have
been studied in Liu et al. (2022); Arora et al. (2019); Seleznova and Kutyniok (2022).

12. A kernel is called universal when any continuous function on some compact set can be approximated
arbitrarily well with kernel features.
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The large depth asymptotics of the NTK have been studied in Jacot et al. (2022); Xiao
et al. (2020). We refer the reader to Jacot (2022) for a comprehensive discussion on the
NTK.

• Tensor programs: It is worth mentioning that a series of works called Tensor Programs
studied the dynamics of infinite-width limit of finite-depth general neural networks both
at initialization and at finite training step t with gradient descent (Yang, 2021a,b, 2020;
Yang and Hu, 2022).

A.2 Infinite-Depth Limit

Infinite-width-then-infinite-depth limit. In this case, the width of the neural network
is taken to infinity first, followed by the depth. This is known as the infinite-depth limit
of infinite-width neural networks. This limit has been widely used to study various aspects
of neural networks, such as analyzing neural correlations and deriving the Edge of Chaos
initialization scheme (Schoenholz et al., 2017; Poole et al., 2016), investigating the impact
of the activation function (Hayou et al., 2019), and analyzing the behavior of the Neural
Tangent Kernel (NTK) (Hayou et al., 2022; Xiao et al., 2020).

The joint infinite-width-and-depth limit. In this case, the depth-to-width ratio is
fixed13, the width and depth are jointly taken to infinity. There are a limited number of
studies that have examined the joint width-depth limit. For example, in Li et al. (2021), the
authors demonstrated that for a specific form of residual neural networks (ResNets), the
network output exhibits a (scaled) log-normal behavior in this joint limit, which is distinct
from the sequential limit where the width is taken to infinity first followed by the depth,
in which case the distribution of the network output is asymptotically normal (Schoenholz
et al., 2017; Hayou et al., 2019). Furthermore, in Li et al. (2023), the authors studied
the covariance kernel of a multi-layer perceptron (MLP) in the joint limit and found that
it weakly converges to the solution of a Stochastic Differential Equation (SDE). In Hanin
and Nica (2020), it was shown that in the joint limit case, the Neural Tangent Kernel
(NTK) of an MLP remains random when the width and depth jointly go to infinity, which
is different from the deterministic limit of the NTK when the width is taken to infinity
before depth (Hayou et al., 2022). In Hanin (2022, 2019), the authors explored the impact
of the depth-to-width ratio on the correlation kernel and the gradient norms in the case of
an MLP architecture and found that this ratio can be interpreted as an effective network
depth. Similar results have been discussed in Zavatone-Veth and Pehlevan (2021); Noci
et al. (2021, 2023).

Infinite-depth limit of finite-width neural networks. In both previous limits, the
width of the neural network is taken to infinity, either in isolation or jointly with the depth.
However, it is natural to question the behavior of networks where the width is fixed and
the depth is taken to infinity. For example, in Hanin (2019), it was shown that neural
networks with bounded width are still universal approximators, motivating the examina-
tion of finite-width large depth neural networks. The limiting distribution of the network
output at initialization in this scenario has been investigated in the literature. In Peluchetti

13. Other works consider the case when the depth-to-width ratio converges to a constant instead of being
fixed.
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and Favaro (2020), it was demonstrated that for a specific ResNet architecture, the pre-
activations converge weakly to a diffusion process in the infinite-depth limit. This a simple
corollary of existing results in stochastic calculus on the convergence of Euler-Maruyama
disctretization schemes to continuous Stochastic Differential Equations. Other recent work
by Hayou (2023) examined the impact of the activation function on the distribution of the
pre-activation, and characterized the distribution of the post-activation norms in this limit.

General limit min{n,L} → ∞. This limit is understudied, and to the best of our knowl-
edge, it has been only studied in Hayou and Yang (2023).

Appendix B. Proof Outline

Thm 3 

Thm 4 

Lemmas 10, 11 

Thm 6, HY23 Thm 8, HY23 

Figure 4: Proof outline and comparison with Hayou and Yang (2023).

The structure of the proofs is depicted in Fig. 4. In Hayou and Yang (2023), the proof
relies on taking the infinite-depth limit first, followed by the infinite-width limit. In this
paper, we first construct an auxiliary process Ỹ that remains within O(n−1/2) distance from
Y , then take the infinite-width limit first, followed by the infinite-depth limit. We thank
the anonymous reviewer for suggesting this figure in their review.

Appendix C. Depth-Uniform Infinite Width Limit: The Auxiliary
Process

In this section, we aim to understand the infinite-width behavior of the pre-activations Yl
as a function of depth L. We will show that there exists a process Ỹl(.) : Rd → Rn such
that for any a ∈ Rd, the entries (Ỹ i

l (a))i∈[n] are iid Gaussian random variables, and

n−1E‖Yl(a)− Ỹl(a)‖2 ≤ C
l∑

i=1

α2
l,L,

where C > 0 is a constant that depends only on the input a, and which can be made
independent of aif the input is chosen in a compact set. A straightforward result is that if
the sequence αsatisfies supL≥1

∑L
l=1 α

2
l,L ≤ M for some constant M , then the convergence
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rate of the neural processes Yl to Ỹl can be upperbounded by a quantity that does not
depend on depth.

C.1 Constructing Ỹl

We can write the forward propagation as follows

Yl(a) = Yl−1(a) + αl,L
1√
n
‖φ(Yl−1(a))‖Gl(a)

Gl(a) =

{√
nWl

φ(Yl−1(a))
‖φ(Yl−1(a))‖ if ‖φ(Yl−1(a))‖ 6= 0,

√
nWle otherwise,

where e = n−1/2(1, . . . , 1)> ∈ Rn (the choice of e here is arbitrary and does not impact
the identity above). As such, the vector Gl(a) consists of iid standard Gaussian variables as
a result of Lemma 13. Moreover, for any l 6= l′, the processes Gl and Gl′ are independent.

Using this auxiliary process Gl, we define the process Ỹl as follows

Ỹl(a) = Ỹl−1(a) + αl,L

(
E[φ(Ỹ 1

l−1(a))2]
)1/2

Gl(a)

The volatility term E[φ(Ỹ 1
l−1(a))2] in the definition of the process Ỹl can be expressed

analytically. We state this result in the next lemma.

Lemma 3. For all l ∈ [L],

ql(a) = E[(Y 1
l )2] = E[(Ỹ 1

l )2] =
‖a‖2

d

l∏
k=1

(
1 +

α2
k,L

2

)
.

As a result, we also have

E
[
φ(Y 1

l (a))2
]

= E
[
φ(Ỹ 1

l (a))2
]

=
‖a‖2

2d

l∏
k=1

(
1 +

α2
k,L

2

)
.

.

Proof. Simple calculations yield.

E[(Y 1
l )2] = E[(Y 1

l−1)2] + α2
l,LE[φ(Y 1

l−1)2]

=

(
1 +

α2
l,L

2

)
E[(Y 1

l−1)2].

Knowing that E[(Y 1
0 )2] = ‖a‖2

d , we obtain E[(Y 1
l )2] = ‖a‖2

d

∏l
k=1

(
1 +

α2
l,L

2

)
. Similar calcu-

lations hold for E[(Ỹ 1
l )2].

As a result of Lemma 3, we can express the process Ỹl by substituting the volatility term
with its analytical expression. This allows us to conclude that Ỹl has iid Gaussian weights
with a analytical expression of the variance.
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Lemma 4. The process Ỹl satisfies the following

Ỹl(a) = Ỹl−1(a) + αl,L
‖a‖√

2d

l∏
k=1

(
1 +

α2
k,L

2

)1/2

Gl(a).

As a result, the entries of Ỹl(a) are iid centered Gaussian random variables with variance

Var(Ỹ 1
l (a)) = ‖a‖2

d

∏l
k=1

(
1 +

α2
l,L

2

)
.

Note that while the the entries of Ỹl(a) are Gaussian, the process ˜Yl(.) is not necessarily
a Gaussian process.

C.2 Convergence Rate

In this section, we will analyze the convergence properties of different quantities as width
goes to infinity.

Theorem 3. (Depth-Uniform strong convergence rate) Let α be a stable sequence of scaling
factors. Then, there exists a constant C > 0 that depends only on ‖a‖, d, ‖α‖S such that

sup
L≥1

sup
l∈[L]

E‖Yl(a)− Ỹl(a)‖2 ≤ C.

As a result, we have that

sup
L≥1

sup
l∈[L]

sup
i∈[n]

E‖Y i
l (a)− Ỹ i

l (a)‖2 ≤ Cn−1.

Proof. Let a ∈ Rd. To alleviate the notation, we write Yl := Yl(a) and Ỹl := Ỹl(a). We
would like to obtain recursive bounds on E‖Yl − Ỹl‖2 which would allow us to conclude.
The proof technique follows Gronwall’s style inequalities. We have the following

E‖Yl − Ỹl‖2 = E‖Yl−1 − Ỹl−1‖2 + nα2
l,L E

(
1√
n
‖φ(Yl−1)‖ −

(
E[φ(Ỹ 1

l−1)2]
)1/2

)2

︸ ︷︷ ︸
T

.

We bound the term T as follows

E
(

1√
n
‖φ(Yl−1)‖ −

(
E[φ(Ỹ 1

l−1)2]
)1/2

)2

≤ 2E
(

1√
n
‖φ(Yl−1)‖ − 1√

n
‖φ(Ỹl−1)‖

)2

+ 2E
(

1√
n
‖φ(Ỹl−1)‖ −

(
E[φ(Ỹ 1

l−1)2]
))2

≤ 2

n
E‖Yl−1 − Ỹl−1‖2 + 2E

(
1√
n
‖φ(Ỹl−1)‖ −

(
E[φ(Ỹ 1

l−1)2]
))2

where we have used the fact that φ is 1-Lipschitz.
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Using the fact that the entries of Ỹl−1 are iid, and that ql(a) ∈
[
‖a‖2
d , ‖a‖

2

d e
1
2
‖α‖2S

]
,

standard concentration inequalities (Hoeffding’s inequality) ensure that with probability at
least 1− e−nc (where c is a constant that depends only on ‖a‖, ‖α‖S ,d), we have that

1
n‖φ(Ỹl−1)‖2 > 1

2E[φ(Ỹ 1
l−1)2] = 1

4ql−1(a).

Using this results combined with the fact that |√x1 −
√
x2| ≤ 1

2
√
x0
|x1 − x2| for all

x1, x2 > x0 > 0, we obtain that

E
(

1√
n
‖φ(Ỹl−1)‖ −

(
E[φ(Ỹ 1

l−1)2]
))2

≤ 2e−ncql−1(a) +
2

ql−1(a)
E
(

1

n
‖φ(Ỹl−1)‖2 − E[φ(Ỹ 1

l−1)2]

)2

≤ 2e−ncql−1(a) +
2

nql−1(a)
E[φ(Ỹ 1

l−1)4]

≤ 2e−ncql−1(a) +
2ql−1(a)

n
E[φ(Z)4]

where Z ∼ N (0, 1). As a result, there exists a constant C1 > 0 that depends only on
‖a‖, d, and ‖α‖S , such that

E
(

1√
n
‖φ(Ỹl−1)‖ −

(
E[φ(Ỹ 1

l−1)2]
))2

≤ C1n
−1. Hence, denoting ∆l = n−1E‖Yl − Ỹl‖2,

we have that
∆l ≤ (1 + 2α2

l,L)∆l−1 + 2Cα2
l,Ln

−1.

Given that ∆0 = 0, we obtain

∆l ≤ n−1 × 2C1

l∑
i=1

α2
i,L

l∏
k=i+1

(1 + α2
k,L) ≤ 2C1‖α‖2Se‖α‖

2
Sn−1,

which concludes the proof.

As a result of this theorem, we have the following result (a useful lemma for subsequent
proofs).

Lemma 5. Let a ∈ Rd, ζ ∈ [0, (8d)−1/2‖a‖). For L ≥ 1 and l ∈ [L], define the event

Hla = {‖φ(Yl(a))‖ > ζn1/2} ∩ {‖φ(Ỹl(a))‖ > ζn1/2}.

Then, we have that P(Hla) ≥ 1− Cn−1, where C is a constant that depends only on ‖a‖, d,
and ‖α‖S.

Proof. We have that Hla = Ea ∩ Ẽa, where Ea = {‖φ(Yl(a))‖ > ζn1/2}, and Ẽa =
{‖φ(Ỹl(a))‖ > ζn1/2}. For some event A, let Ac denote its complimentary event. Using the
fact that the entries of Ỹl(a) are iid zero-mean Gaussians, we have that

P(Ẽca) = P(‖φ(Ỹl(a))‖ ≤ ζn1/2) = P(
1

n
‖φ(Ỹl(a))‖2 ≤ ζ2)

≤ P(
1

n
‖φ(Ỹl(a))‖2 ≤ 1

4
ql(a))

≤ e−nC1
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where C1 is a constant that depends only on ‖a‖, d, ‖α‖S , ζ, where we have used the same
techniques as in the proof of Theorem 3 (Hoeffding’s inequality).

Now let κ =
(
ql(a)

8 n
)1/2

. We have that

P(Eca) = P(‖φ(Yl(a))‖ ≤ ζn1/2) ≤ P(‖φ(Ỹl(a))‖ ≤ κ+ ζn1/2)

+ P(‖φ(Yl(a))− φ(Ỹl(a))‖ > κ).

Therefore we obtain

P(‖φ(Ỹl(a))‖ ≤ κ+ ζn1/2) ≤ P(
1

n
‖φ(Ỹl(a))‖ ≤ 1

4
ql(a)) ≤ e−nC1 .

Using Theorem 3, Markov’s inequality, and the fact that φ is 1-Lipschitz, we have that

P(‖φ(Yl(a))− φ(Ỹl(a))‖ > κ) ≤ κ−2E‖φ(Yl(a))− φ(Ỹl(a))‖2

≤ 4K

ql(a)
n−1 ≤ 4Kd

‖a‖2
n−1.

Combining both bounds, there exists a constant C2 that depends only on ‖a‖, d, ‖α‖S , ζ,
such that P(Eca) ≤ C2n

−1.

C.3 Infinite-Width Limits of the Neural Covariance

The auxiliary process Ỹl was introduced for two reasons:

1. The distance between Ỹl and Yl as n grows can be upperbounded so that the constants
do not depend on depth.

2. It is easier to study the covariance kernel of the Ỹl instead of that of Yl as n and l go
to infinity.

We dealt with (1) in the previous section, now we deal with (2).
Define the covariance kernel of the auxiliary process

q̃l,n(a, b) = n−1〈Ỹl(a), Ỹl(b)〉.

This covariance kernel satisfies the following recursion

q̃l,n(a, b) = q̃l−1,n(a, b) + α2
l,Ln

−1(1/2ql−1(a))1/2(1/2ql−1(b))1/2〈Gl(a), Gl(b)〉

+ αl,Ln
−1((1/2ql−1(b))1/2〈Ỹl−1(a), Gl(b)〉+ (1/2ql−1(a))1/2〈Ỹl−1(b), Gl(a)〉)

In the following, we will show that in the infinite-width limit, the kernel q̃l,n converges
to a kernel q̃l,∞ that satisfies the following recursion

q̃l,∞(a, b) = q̃l−1,∞(a, b) + α2
l,L(1/2ql−1(a))1/2(1/2ql−1(b))1/2f(cl−1(a, b)),

where f(c) := 2E[φ(Z1)φ(cZ1 +
√

1− c2Z2)] with Z1,Z2 ∼ N (0, 1), and cl−1,∞(a, b) :=
q̃l−1,∞(a,b)

q̃l−1,∞(a,a)1/2q̃l−1,∞(b,b)1/2
(the infinite-width correlation kernel).
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Remark. Observe that q̃l−1,∞(a, a) = ql−1(a). (proof is straightforward by induction).

Now we derive non-asymptotic convergence rates for the covariance kernel q̃l,n in the
infinite-width limit. Similar to the analysis in the previous section, define the L2 error
between the kernels by ∆̃l,n := E |q̃l,n(a, b)− q̃l,∞(a, b)|2. Simple calculations yield

∆̃l,n = ∆̃l−1,n + E(α2
l,L(1/2ql−1(a))1/2(1/2ql−1(b))1/2(n−1〈Gl(a), Gl(b)〉 − f(cl−1(a, b)))

+ αl,Ln
−1((1/2ql−1(b))1/2〈Ỹl−1(a), Gl(b)〉+ (1/2ql−1(a))1/2〈Ỹl−1(b), Gl(a)〉))2

≤∆̃l−1,n +
1

2
α4
l,Lql−1(a)ql−1(b)E

(
n−1〈Gl(a), Gl(b)〉 − f(cl−1(a, b))

)2︸ ︷︷ ︸
T1

+ 2α2
l,Ln

−2
(
ql−1(b)E〈Ỹl−1(a), Gl(b)〉2 + ql−1(a)E〈Ỹl−1(b), Gl(a)〉2

)
︸ ︷︷ ︸

T2

We will deal with the diffferent terms separately.

Bounding T2: We have that

ql−1(b) E〈Ỹl−1(a), Gl(b)〉2 = ql−1(b)E‖Ỹl−1(a)‖2 = nql−1(b)ql−1(a) ≤ ‖a‖
2‖b‖2

d2
e‖α‖

2
S

As a result, we obtain

T2 = 2α2
l,Ln

−2
(
ql−1(b)E〈Ỹl−1(a), Gl(b)〉2 + ql−1(a)E〈Ỹl−1(b), Gl(a)〉2

)
≤ 2
‖a‖2‖b‖2

d2
e‖α‖

2
Sα2

l,Ln
−1.

Bounding T1: Define the events Hla = {‖φ(Yl(a))‖ 6= 0} ∩ {‖φ(Ỹl(a))‖ 6= 0} and Hlb =
{‖φ(Yl(b))‖ 6= 0} ∩ {‖φ(Ỹl(b))‖ 6= 0}. We will condition on the event Hl−1

a ∩ Hl−1
b to avoid

dividing by zero. This allows us to control a conditional expectation in the following manner

E
(
n−1〈Gl(a), Gl(b)〉 − f(cl−1(a, b))

)2 ≤ C1n
−1

+ E
[(
n−1〈Gl(a), Gl(b)〉 − f(cl−1(a, b))

)2 | Hl−1
a ∩Hl−1

b

]
,

where C1 is a constant that depends only on ‖a‖, ‖b‖, d, ‖α‖S (using Lemma 5 with ζ = 0).
To alleviate the notation, we denote El[.] = E[. | Hl−1

a ∩Hl−1
b ]. We therefore have
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El
(
n−1〈Gl(a), Gl(b)〉 − f(cl−1(a, b))

)2 ≤
3El

(
n−1〈Gl(a), Gl(b)〉 − El

〈φ(Yl−1(a)), φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

)2

︸ ︷︷ ︸
T11

+ 3

2(
El
〈φ(Yl−1(a)), φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

− El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Ỹl−1(a))‖‖φ(Ỹl−1(b))‖

)
︸ ︷︷ ︸

T12

+ 3

(
El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Ỹl−1(a))‖‖φ(Ỹl−1(b))‖

− f(cl−1(a, b))

)2

︸ ︷︷ ︸
T13

We deal with each one of the terms T11, T12, T13 separately.

• The first term T11 satisfies

T11 = El
(
n−1〈Gl(a), Gl(b)〉 − El

〈φ(Yl−1(a)), φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

)2

= n−1Varl

(
(w>

φ(Yl−1(a))

‖φ(Yl−1(a))‖
)× (w>

φ(Yl−1(b))

‖φ(Yl−1(b))‖
)

)
≤ n−1El

(
(w>

φ(Yl−1(a))

‖φ(Yl−1(a))‖
)× (w>

φ(Yl−1(b))

‖φ(Yl−1(b))‖
)

)2

,

where w ∼ N (0, I). We bound this quantity using the following lemma.

Lemma 6. We have that El
(

(w>
φ(Yl−1(a))
‖φ(Yl−1(a))‖)× (w>

φ(Yl−1(b))
‖φ(Yl−1(b))‖)

)2
≤ 3, for w ∼

N (0, I).

Proof. Let u(a) :=
φ(Yl−1(a))
‖φ(Yl−1(a))‖ and the same for b. Expanding the term inside the ex-

pectation yields
(
(w>u(a))× (w>u(b))

)2
=
∑

i=1w
4
i ui(a)2ui(b)

2+
∑

i 6=j w
2
iw

2
jui(a)2uj(b)

2+
ζ , where ζ consists of terms with at least one weight having an odd exponent. For
such terms, the expectation is null, and we obtain

El
(

(w>u(a))× (w>u(b))
)2

= El

3
∑
i=1

ui(a)2ui(b)
2 +

∑
i 6=j

ui(a)2uj(b)
2


= El

(
2
∑
i=1

ui(a)2ui(b)
2 + 1

)
≤ 3.
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Using this Lemma, we obtain

T11 = El
(
n−1〈Gl(a), Gl(b)〉 − E

〈φ(Yl−1(a)), φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

)2

≤ 3n−1.

• Now let us deal with the second term T12. We use the uniform bound we obtained in
Theorem 3. We have that(

El
〈φ(Yl−1(a)), φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

− El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Ỹl−1(a))‖‖φ(Ỹl−1(b))‖

)2

≤ 2

(
El
〈φ(Yl−1(a)), φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

− El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

)2

+ 2

(
El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

− El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Ỹl−1(a))‖‖φ(Ỹl−1(b))‖

)2

(8)

Using Lemma 5 with ζ = 12−1/2d−1/2 min{‖a‖, ‖b‖}, then with probability at least
1 − C2n

−1, where C2 is a constant that depends only on ‖a‖, ‖b‖, d, ‖α‖S , we have

that ‖φ(Yl−1(a))‖ ≥ ‖a‖
2
√

3d
n1/2 and ‖φ(Yl−1(b))‖ ≥ ‖b‖

2
√

3d
n1/2. Therefore,

(
El
〈φ(Yl−1(a)), φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

− El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖

)2

≤ 144d2

‖a‖2‖b‖2
n−2E

(
〈φ(Yl−1(a)), φ(Yl−1(b))〉 − 〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉

)2

≤ 288d2

‖a‖2‖b‖2
n−2

[
E
(
〈φ(Yl−1(a)), φ(Yl−1(b))− φ(Ỹl−1(b))〉

)2

+ E
(
〈φ(Yl−1(a))− φ(Ỹl−1(a)), φ(Ỹl−1(b))〉

)2
]

≤ C3n
−1,

where C3 depends only on ‖a‖, ‖b‖, d, ‖α‖S and where we have used Jensen’s inequality
(first line), the Lipschitz property of ReLU, and the bounds on E‖Yl−1 − Ỹl−1‖2 from
Theorem 3. Using the same techniques for the second term in the RHS of Eq. (8), we
obtain a similar bound, and we finally get

T12 =
(
El
〈φ(Yl−1(a)),φ(Yl−1(b))〉
‖φ(Yl−1(a))‖‖φ(Yl−1(b))‖ − El

〈φ(Ỹl−1(a)),φ(Ỹl−1(b))〉
‖φ(Ỹl−1(a))‖‖φ(Ỹl−1(b))‖

)2
≤ C4n

−1

where C4 depends only on ‖a‖, ‖b‖, d, ‖α‖S .
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• It remains to bound the third term T13 to conclude. We have that

T13 =

(
El
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Ỹl−1(a))‖‖φ(Ỹl−1(b))‖

− f(cl−1(a, b))

)2

≤ 3

El
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉

n−1/2‖φ(Ỹl−1(a))‖n−1/2‖φ(Ỹl−1(b))‖
− El

n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√
1
2ql−1(a)

√
1
2ql−1(b)

2

︸ ︷︷ ︸
T131

+ 3

El
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

− E
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

2

︸ ︷︷ ︸
T132

+ 3

E
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

− f(cl−1(a, b))

2

︸ ︷︷ ︸
T133

.

Simple calculations yield

T131 =

E
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉

n−1/2‖φ(Ỹl−1(a))‖n−1/2‖φ(Ỹl−1(b))‖
− E

n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√
1
2ql−1(a)

√
1
2ql−1(b)

2

≤ C5n
−1,

where C5 depends only on ‖a‖, ‖b‖, d, ‖α‖S .

For the second term T132, we have that

T132 =

El
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

− E
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

2

≤ (1− P(Hla ∩Hlb))2

El
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

− Ecl
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

2

≤ C6n
−2,

where we write Ecl [.] = E[. | (Hla ∩ Hlb)c], and where C6 is a constant that depends
only on ‖a‖, ‖b‖, d, ‖α‖S .

Now let us deal with the last term T133. Observe that En−1〈φ(Ỹl−1(a)),φ(Ỹl−1(b))〉√
1
2
ql−1(a)

√
1
2
ql−1(b)

=

f(c̃l−1(a, b)) where c̃l−1(a, b) :=
ElỸ 1

l−1(a)Ỹ 1
l−1(b)√

ql−1(a)
√
ql−1(b)

. Using the Lipschitz property of f ,
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we obtain

T133 =

E
n−1〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉√

1
2ql−1(a)

√
1
2ql−1(b)

− f(cl−1(a, b))

2

≤ (c̃l−1(a, b)− cl−1(a, b))2

= (ql−1(a)ql−1(b))−1
(
EỸ 1

l−1(a)Ỹ 1
l−1(b)− q̃l−1,∞(a, b)

)2

≤ 2(ql−1(a)ql−1(b))−1
(
E(Ỹ 1

l−1(a)Ỹ 1
l−1(b)− q̃l−1,n(a, b))2 + E(q̃l−1,n(a, b)− q̃l−1,∞(a, b))2

)
≤ C7(n−1 + ∆̃l−1,n)

where we have used the bounds on ql−1, and where C7 is a constant that depends only
on ‖a‖, ‖b‖, d, ‖α‖S . As a result, we have that

T13 =

(
E
〈φ(Ỹl−1(a)), φ(Ỹl−1(b))〉
‖φ(Ỹl−1(a))‖‖φ(Ỹl−1(b))‖

− f(cl−1(a, b))

)2

≤ C8(n−1 + ∆̃l−1,n),

where C8 is a constant that depends only on ‖a‖, ‖b‖, d, ‖α‖S .

Combining all the results we obtain the following upperbound on ∆̃l,n

∆̃l,n ≤ (1 + C9α
4
l,L)∆̃l−1,n + C10α

2
l,Ln

−1

where C9, C10 are constants that depend only on ‖a‖, ‖b‖, d, ‖α‖S . Using the fact that
∆̃0,n = 0, and that

∑L
l=1 α

4
l,L ≤ ‖α‖2S , we obtain that

sup
L≥1

sup
l∈[L]

∆̃l,n ≤ C11n
−1,

where C11 depends only on ‖a‖, ‖b‖, d, ‖α‖S .

We state this result formally in the next theorem.

Theorem 4. Let α be a stable sequence of scaling factors. There exists a constant C > 0
that depends only on ‖a‖, ‖b‖, d, ‖α‖S, such that supL≥1 supl∈[L] E |q̃l,n(a, b)− q̃l,∞(a, b)|2 ≤
Cn−1.

Combining the results of Theorem 4 and Theorem 3, we obtain the following result.

Theorem 5. Let α be a stable sequence of scaling factors. There exists a constant C > 0
that depends only on ‖a‖, ‖b‖, d, ‖α‖S, such that supL≥1 supl∈[L] E |ql,n(a, b)− q̃l,∞(a, b)|2 ≤
Cn−1.

We will see in the next section that the result of Theorem 5 is the cornerstone of commu-
tativity; indeed, it suffices to study the infinite-depth limit of q̃l,∞ to obtain commutativity
with explicit convergence rates for width and depth.
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Appendix D. Infinite-Depth Limits

In this section, we study the infinite depth limit of the covariance kernel for different choices
of the sequence α. We begin by proving a general commutativity result.

D.1 Infinite Depth Convergence of the Neural Covariance

Now that we have depth-uniform bounds for the kernels, we can look at what happens to
the infinite-width kernels when depth increases.

Theorem 6 (General Theorem). Let α ∈ S. Assume that the kernel q̃btLc,∞(a, b) converges
to some limiting kernel q∞t (a, b) in the limit L→∞ with some rate rL. Then we have that

sup
t∈[0,1]

‖qbtLc,n(a, b)− q∞t (a, b)‖L2 ≤ C
(
n−1/2 + rL

)
,

where C is a constant that depends only on ‖a‖.‖b‖, d, ‖α‖S.

Proof. We have that

‖qbtLc,n(a, b)− q∞t (a, b)‖L2 ≤ ‖qbtLc,n(a, b)− q̃btLc,∞(a, b)‖L2

+ ‖q̃btLc,∞(a, b)− q∞t (a, b)‖L2

≤ C1n
−1/2 + rL,

where we have used Theorem 5 to obtain the constant C1 which depends only on
‖a‖.‖b‖, d, ‖α‖S . We conclude the proof by taking C = max(C1, 1).

The result of Theorem 6 requires that the kernel q̃btLc,∞(a, b) converges in the infinite-
depth limit with some rate rL. In the following sections, we refine our analysis and study
two scenarios where such convergence occurs.

D.2 Sequence of Scaling factors as ‘Quasi-Convergent’ Series.

Recall that for L ≥ 1, l ∈ [L]

q̃l,∞(a, b) = q̃l−1,∞(a, b) + α2
l,L(1/2ql−1(a))1/2(1/2ql−1(b))1/2f(cl−1(a, b)),

where cl−1,∞(a, b) :=
q̃l−1,∞(a,b)

q̃l−1,∞(a,a)1/2q̃l−1,∞(b,b)1/2
is the infinite-width correlation kernel.

Given a sequence of scaling factors α, define Qαl (a, b) = q̃l,∞(a, b) with the scaling factors
being αl,L.

To analyze the infinite-depth behavior of the kernel Qαl , it is crucial to understand the
sensitivity of Qαl to α. The first result characterizes the sensitivity of the variance to a
change in α.

Lemma 7. Consider two stable sequences of scaling factors α, β ∈ S. Then, for all L ≥
1, l ∈ {1, . . . , L}, we have that

sup
l∈{1,...,L}

|Qαl (a, a)−Qβl (a, a)| ≤ ‖a‖
2

2d
esup{‖α‖2S ,‖β‖

2
S}

L∑
l=1

|α2
l,L − β2

l,L|
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Proof. To alleviate the notation, we write Qαl = Qαl (a, a). We have that

|Qαl −Q
β
l | ≤ |Q

α
l−1 −Q

β
l−1|+

1

2
Qαl−1|α2

l,L − β2
l,L|+

1

2
β2
l,L|Qαl−1 −Q

β
l−1|

≤ (1 +
1

2
β2
l,L)|Qαl−1 −Q

β
l−1|+

‖a‖2

2d
e‖α‖

2
S/2|α2

l,L − β2
l,L|

The result follows immediately by induction.

Next, we prove a similar result for the kernel (not just the variance terms).

Lemma 8. Consider two sequences of scaling factors α, β ∈ S. Then, for all L ≥ 1, l ∈ [L],
we have that

sup
l∈{1,...,L}

|Qαl (a, b)−Qβl (a, b)| ≤ C
L∑
l=1

|α2
l,L − β2

l,L|,

where C is a constant that depends only on ‖a‖, ‖b‖, d, ‖α‖S , ‖β‖S.

Proof. Let Il(α) = (1/2Qαl−1(a, a))1/2(1/2Qαl−1(b, b))1/2. We also use the notation cαl to
denote the previously defined correlation kernel cl. We have that

|Qαl (a, b)−Qβl (a, b)| ≤ |Qαl−1(a, b)−Qβl−1(a, b)|+ |α2
l,L − β2

l,L|Il(α)

+ β2
l,L|Il(α)f(cαl−1(a, b))− Il(β)f(cβl−1(a, b))|

(9)

Using Lemma 3, we have that Il(α) ≤ ‖a‖‖b‖2d e‖α‖
2
S/2 and Il(β) ≤ ‖a‖‖b‖2d e‖β‖

2
S/2. Moreover,

using Lemma 7, we have that

|Il(α)− Il(β)| ≤ (1/2Qαl−1(a, a))1/2|(1/2Qαl−1(b, b))1/2 − 1/2Qβl−1(b, b))1/2|

+ (1/2Qβl−1(b, b))1/2|(1/2Qαl−1(a, a))1/2 − 1/2Qβl−1(a, a))1/2|

≤ C1

L∑
l=1

|α2
l,L − β2

l,L|,

where C1 is a constant that depends only on ‖a‖, ‖b‖, d, ‖α‖S , ‖β‖S , and where we have
used the fact that |√x1 −

√
x2| ≤ 1

2
√
x0
|x1 − x2| for x1, x2 > x0 > 0.

For the third term in the RHS of Eq. (9), we have that

|Il(α)f(cαl−1(a, b))− Il(β)f(cβl−1(a, b))| ≤ |Il(α)− Il(β)|+ |f(cαl−1(a, b))− f(cβl−1(a, b))|Il(β)

≤ C1

L∑
l=1

|α2
l,L − β2

l,L|+ |cαl−1(a, b)− cβl−1(a, b)|Il(β).

(10)
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The second term on the RHS in the Eq. (10) can be upperbounded using the following

|cαl−1(a, b)− cβl−1(a, b)| =
∣∣∣(2Il−1(α))−1Qαl−1(a, b)− (2Il−1(β))−1Qβl−1(a, b)

∣∣∣
≤ (2Il−1(α))−1

∣∣∣Qαl−1(a, b)−Qβl−1(a, b)
∣∣∣

+
∣∣(2Il−1(α))−1 − (2Il−1(β))−1

∣∣ |Qβl−1(a, b)|

≤ (2Il−1(α))−1
∣∣∣Qαl−1(a, b)−Qβl−1(a, b)

∣∣∣
+

1

2
(Il−1(α)Il−1(β))−1 |Il−1(α)− Il−1(β)| |Qβl−1(a, b)|

Using the fact that Qβl−1(a, b) ≤ 2Il−1(β), and (from Lemma 3) that Il−1(α)−1, Il−1(β)−1 ≤
2d ‖a‖−1‖b‖−1, we conclude that there exist constants C̃1, C2 that depends only on ‖a‖, ‖b‖, d, ‖α‖S ,
‖β‖S , such that

|Il(α)f(cαl−1(a, b))− Il(β)f(cβl−1(a, b))| ≤ C̃1

L∑
l=1

|α2
l,L − β2

l,L|+ C2|Qαl−1(a, b)−Qβl−1(a, b)|.

As a result, we obtain

|Qαl (a, b)−Qβl (a, b)| ≤ (1 + C3β
2
l,L)|Qαl−1(a, b)−Qβl−1(a, b)|

+ C4|α2
l,L − β2

l,L|+ C5β
2
l,L

L∑
l=1

|α2
l,L − β2

l,L|,

where C3, C4, C5 are constants that depends only on ‖a‖, ‖b‖, d, ‖α‖S , ‖β‖S .

Using the fact thatQα0 = Qβ0 , there exists a constant C that depends only on ‖a‖, ‖b‖, d, ‖α‖S ,
‖β‖S , such that

|Qαl (a, b)−Qβl (a, b)| ≤ C
L∑
l=1

|α2
l,L − β2

l,L|.

Let us now prove convergence in the case where α is the truncation (at level L) of a
convergent series. The convergence is straightforward in this case and similar results have
appeared in (Hayou et al., 2021).

Lemma 9. Let α ∈ S such that there exists a sequence ζ = (ζi)i≥1 ∈ `2(N) such that
αl,L = ζl for all L ≥ 1, l ∈ [L]. Then, there exists a limiting kernel Qα∞ such that

|QαL(a, b)−Qα∞(a, b)| ≤ C
∑
l≥L

ζ2
l ,

where C is a constant that depends only on ‖a‖, ‖b‖, d, ‖α‖S =
√∑∞

l=1 ζ
2
l .
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Proof. Let L′ ≥ L ≥ 1. It is straightforward that there exists a constant C1 > 0 that
depends only on ‖a‖, ‖b‖, d, ‖α‖S such that

|QαL(a, b)−QαL′(a, b)| ≤ C1

∑
L<l≤L′

ζ2
l ,

which shows that (QαL)L≥1 is a Cauchy sequence and therefore it converges to some limit
Qα∞. Taking L′ to infinity provide the convergence rate.

Note that we only show the existence of the limit (and the convergence rate) in Lemma 9.
Some properties of the limiting kernel in this case were studied in Hayou et al. (2021), these
include continuity, universality etc.

Combining the results of Lemma 9 and Lemma 8, we conclude the following.

Lemma 10. Let α ∈ S. Assume that there exists a sequence ζ = (ζi)i≥1 ∈ `2(N) such that∑L
l=1 |α2

l,L − ζ2
l | → 0 as L→∞. Then, for all t ∈ (0, 1], we have

|QαbtLc(a, b)−Q
ζ
∞(a, b)| → 0,

where the convergence rate is given by rL = Θ(
∑btLc

l=1 |α
2
l,L − ζ2

l |+
∑

l≥btLc ζ
2
l ).

Combining Theorem 6 and Lemma 10, we conclude for Theorem 1.

D.3 Convergence with “Normalized” Sequences

For the specific choice of αl,L = L−1/2, we know from (Hayou and Yang, 2023) that the
covariance kernel q̃btLc,∞(a, b) converges to the solution of the following ODE

dqt(a, b)

dt
=
et/2

2
ζ(a, b)f(ζ(a, b)−1e−t/2qt(a, b)) = F (t, qt(a, b)), (11)

where ζ(a, b) = d−1‖a‖‖b‖. The Euler scheme of Eq. (11) is given by

qEl (a, b) = qEl−1(a, b) + α2
l,LF (tl−1, q

E
l−1(a, b)), qE0 (a, b) = q0(a, b),

where tl =
∑l

i=1 α
2
l,L.

For an ODE of the form ż(t) = F (t, z(t)), we call F the ODE functional. It is well
known that under some conditions on this functional, the discretization error of the Euler
scheme with steps δ1, . . . , δL is of order O(maxi∈[L] δi).

Theorem 7 (Corollary of Thm 212A in (Butcher, 2003)). Consider an ODE of the form
ż(t) = F (t, z(t)), t ∈ [0, 1], and consider the Euler discretization scheme with steps δ1, . . . , δL
given by zEl = zEl−1 + δlF (tl−1, z

E
l−1) with the initial condition zE0 = z0, where tl =

∑l
i=1 δi.

Assume that the following hold
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• There exists a constant L > 0 such that |F (t, z) − F (t, z′)| ≤ |z − z′| for all t ∈
[0, 1], z, z′ ∈ R.

• M = supt∈[0,1]

∣∣∣d2z(t)dt2

∣∣∣ <∞.

Then, we have

sup
l∈[L]
|zEl − ztl | ≤ C max

i∈[L]
δi,

where C depends only on M and L.

In the next result, we use this result to show convergence rate of the Euler scheme
presented above.

Lemma 11. Consider a normalized sequence of scaling fatcors α and let hL = max1≤l≤L α
2
l,L.

We have

sup
1≤l≤L

|qEl (a, b)− qtl(a, b)| ≤ C hL,

where C is a constant that depends only on ‖a‖, ‖b‖, d.

Proof. Let us verify the conditions of Theorem 7 one by one.

• Lipschitz property: from Lemma 14, we know that the function f is Lipschitz. There-
fore, we have |F (t, z)− F (t, z′)| ≤ 1

2e
t/2|ζ(a, b)||e−t/2ζ(a, b)−1(z − z′)| = |z − z′|.

• For t ∈ [0, 1], we have

d2qt(a, b)

dt2
=
tet/2

4
ζ(a, b)f(ζ(a, b)−1e−t/2qt(a, b)) +

et/2

2
ζ(a, b)(−ζ(a, b)−1 te

t/2

2
qt(a, b)

+ ζ(a, b)−1e−t/2
dqt(a, b)

dt
)f ′(ζ(a, b)−1e−t/2qt(a, b)),

Replacing dqt(a,b)
dt by its valye, it is straightforward that M = supt∈[0,1]

∣∣∣d2qt(a,b)dt2

∣∣∣ is

finite and depends only on ‖a‖, ‖b‖, d.

This concludes the proof.

Now it remains to bound the difference between qEl (a, b) and q̃l,∞(a, b), the covariance
kernel of the auxiliary process. We deal with this in the next result.

Lemma 12. Consider a normalized sequence of scaling factors α. Let hL = max1≤l≤L α
2
l,L

and assume that Lh2
L = o(1). Then, we have

sup
1≤l≤L

|q̃l,∞(a, b)− qEl (a, b)| ≤ CLh2
L,

where C is a constant that depends only on ‖a‖, ‖b‖, d.
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Proof. Assume that L×h2
L = o(1). We write ζ = ζ(a, b) to simplify the notation. We have

|q̃l,∞(a, b)− qEl (a, b)| ≤ |q̃l−1,∞(a, b)− qEl−1(a, b)|

+
1

2
α2
l,Lζf(ζ−1

l−1∏
i=1

(1 +
α2
l,L

2
)−1q̃l−1,∞(a, b))|

l−1∏
i=1

(1 +
α2
l,L

2
)− e

1
2

∑l−1
i=1 α

2
l,L |

+
1

2
α2
l,Lζe

1
2

∑l−1
i=1 α

2
l,L |f(ζ−1

l−1∏
i=1

(1 +
α2
l,L

2
)−1q̃l−1,∞(a, b))− f(ζ−1e−

1
2

∑l−1
i=1 α

2
l,LqEl−1(a, b))|

(12)
Notice that

l−1∏
i=1

(1 +
α2
l,L

2
) =

l−1∏
i=1

(e
1
2
α2
l,L +O(α4

l,L)) =

l−1∏
i=1

e
1
2
α2
l,L(1 +O(α4

l,L))

= e
1
2

∑l−1
i=1 α

2
l,L(1 +O(h2

L))l−1 = e
1
2

∑l−1
i=1 α

2
l,L +O(Lh2

L),

where the constant in “O” is universal. As a result, there exists a constant C1 that depends
only on ‖a‖, ‖b‖, d, such that the second term in the RHS of Eq. (12) is smaller than C×Lh2

L.
We also have

l−1∏
i=1

(1 +
α2
l,L

2
)−1 =

l−1∏
i=1

e
1
2
α2
l,L +O(Lh2

L),

where the constant in “O” is universal. Using the Lipschitz property of f (Lemma 14), we
obtain that

|f(ζ−1
l−1∏
i=1

(1 +
α2
l,L

2
)−1q̃l−1,∞(a, b))− f(ζ−1e−

1
2

∑l−1
i=1 α

2
l,LqEl−1(a, b))|

≤ ζ−1|
l−1∏
i=1

(1 +
α2
l,L

2
)−1 − e−

1
2

∑l−1
i=1 α

2
l,L |q̃l−1,∞(a, b)

+ ζ−1e−
1
2

∑l−1
i=1 α

2
l,L |q̃l−1,∞(a, b)− qEl−1(a, b)|,

This yield,

|q̃l,∞(a, b)− qEl (a, b)| ≤ (1 + C2α
2
l,L)|q̃l−1,∞(a, b)− qEl−1(a, b)|+ C3Lh

2
L,

where C2, C3 are constants that depend only on ‖a‖, ‖b‖, d. An induction argument allows
us to conclude.

Combining the results of Lemma 11 and Lemma 12, we obtain the following result.

Theorem 8. Consider a sequence of scaling factors α such that
∑L

l=1 α
2
l,L = 1. Let hL =

max1≤l≤L α
2
l,L and assume that Lh2

L = o(1). Then, we have that

sup
1≤l≤L

|q̃l,∞(a, b)− qtl(a, b)| ≤ C(hL + Lh2
L)
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By combining the results of Theorem 6 and Theorem 8, we obtain the first part of Theo-

rem 2. It remains to show the second part of the theorem when supt∈[0,1]

∣∣∣∑btLck=1 α
2
k,L − λ(t)

∣∣∣ ≤
rL and limL→∞ rL = 0. Assume that this condition holds. From the ODE Eq. (11), it is
straightforward that |qt(a, b)−qt′(a, b)| ≤ C1|t−t′| holds for all t, t′ ∈ [0, 1] for some constant
C1 > 0 that depends only on ζ(a, b).

Let t ∈ [0, 1] and tL =
∑btLc

k=1 α
2
k,L. As a result of the inequality above, we have |qtL(a, b)−

qλ(t)| ≤ C1|tL − λ(t)| ≤ C1rL. We conclude using the first part of the theorem and the
triangular inequality.

Appendix E. Other Technical Results

E.1 Lemma for the Auxiliary process

We use the next lemma to prove that the Auxiliary process has iid coordinates. This is a
trivial result, but we include the proof for better readability.

Lemma 13. Let W ∈ Rn×n be a matrix of standard Gaussian random variables Wij ∼
N (0, 1). Let v ∈ Rn be a random vector independent from W and satisfies ‖v‖2 = 1 . Then,
Wv ∼ N (0, I).

Proof. The proof follows a simple characteristic function argument. Indeed, by conditioning
on v, we observe that Wv ∼ N (0, I). Let u ∈ Rn, we have that

EW,v[ei〈u,Wv〉] = Ev[EW [ei〈u,Wv〉|v]]

= Ev[e−
‖u‖2

2 ]

= e−
‖u‖2

2 .

This concludes the proof as the latter is the characteristic function of a random Gaussian
vector with Identity covariance matrix.

E.2 Lemma for the (correlation) function f

Lemma 14 (Function f). Let f : [−1, 1] → [−1, 1] be the function defined by f(c) :=
2E[φ(Z1)φ(cZ1 +

√
1− c2Z2)]. Then, we have

f(c) =
1

π
(c arcsin c+

√
1− c2) +

1

2
c.

Thus, f is 1-Lipschitz.

Proof. The closed-form expression of f has appeared in a series of papers under different
forms (Cho and Saul, 2009; Hayou et al., 2019, 2021). Here, we only show the Lipschitz
property, which is straightforward. From the closed-form expression of f , we obtain

f ′(c) = π−1 arcsin(c) +
1

2
,

which shows that |f ′| ≤ 1 and concludes the proof.
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