
Journal of Machine Learning Research 25 (2024) 1-74 Submitted 8/23; Published 3/24

Win: Weight-Decay-Integrated Nesterov Acceleration for Faster
Network Training

Pan Zhou PANZHOU@SMU.EDU.SG
School of Computing and Information Systems, Singapore Management University, Singapore

Xingyu Xie XYXIE@PKU.EDU.CN
National Key Lab of General AI, School of Intelligence Science and Technology, Peking University, China

Zhouchen Lin ZLIN@PKU.EDU.CN
National Key Lab of General AI, School of Intelligence Science and Technology, Peking University, China
Institute for Artificial Intelligence, Peking University, China
Peng Cheng Laboratory, China

Kim-Chuan Toh MATTOHKC@NUS.EDU.SG
Department of Mathematics and Institute of Operations Research and Analytics, National University of
Singapore, Singapore

Shuicheng Yan SHUICHENG.YAN@GMAIL.COM

Skywork AI

Editor: Sanjiv Kumar

Abstract
Training deep networks on large-scale datasets is computationally challenging. This work explores
the problem of “how to accelerate adaptive gradient algorithms in a general manner”, and proposes
an effective Weight-decay-Integrated Nesterov acceleration (Win) to accelerate adaptive algorithms.
Taking AdamW and Adam as examples, per iteration, we construct a dynamical loss that com-
bines the vanilla training loss and a dynamic regularizer inspired by proximal point method, and
respectively minimize the first- and second-order Taylor approximations of dynamical loss to update
variable. This yields our Win acceleration that uses a conservative step and an aggressive step to
update, and linearly combines these two updates for acceleration. Next, we extend Win into Win2
which uses multiple aggressive update steps for faster convergence. Then we apply Win and Win2
to the popular LAMB and SGD optimizers. Our transparent derivation could provide insights for
other accelerated methods and their integration into adaptive algorithms. Besides, we theoretically
justify the faster convergence of Win- and Win2-accelerated AdamW, Adam and LAMB to their
non-accelerated counterparts. Experimental results demonstrates the faster convergence speed and
superior performance of our Win- and Win2-accelerated AdamW, Adam, LAMB and SGD over
their vanilla counterparts on vision classification and language modeling tasks.
Keywords: Accelerated Adaptive Gradient Algorithms, Deep Learning Optimizer, Network
Optimization, Nesterov Acceleration in Deep Learning

1. Introduction

Deep neural networks (DNNs) are effective in modeling realistic data and have been successfully ap-
plied to many applications, e.g., image classification (He et al., 2016) and speech recognition (Sainath

c©2024 Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/23-1073.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1073.html

ZHOU, XIE, LIN, TOH, AND YAN

et al., 2013). Typically, their training models can be formulated as a nonconvex problem:

minx∈Rd F (x) := Eζ∼D[f(x, ζ)] +
λ

2
‖x‖22 , (1)

where x ∈ Rd is the model parameter, sample ζ is drawn from a data distribution D, the loss
f is differentiable, and λ is a constant. Although there are various algorithms available, such as
gradient descent (Cauchy et al., 1847) and variance-reduced algorithms (Rie Johnson, 2013), that
can solve problem (1), stochastic gradient descent (SGD) (Robbins and Monro, 1951) leverages the
compositional structure in (1) to efficiently estimate the gradient using minibatch data. As a result,
SGD has emerged as a dominant algorithm for training deep neural networks (DNNs) because of its
improved efficiency and effectiveness. Nevertheless, SGD encounters slow convergence speed on the
sparse data or ill-conditioned problems (Duchi et al., 2011; Kingma and Ba, 2015), as it uniformly
scales the gradient across all parameter coordinates, disregarding the problem-specific properties
associated with each coordinate. To address this issue, recent research has introduced adaptive
methods like Adam (Kingma and Ba, 2015) and AdamW (Loshchilov and Hutter, 2018), which scale
each gradient coordinate based on the current geometry curvature of the loss function F (x). This
coordinate-wise scaling significantly accelerates optimization convergence, making methods like
Adam and AdamW more popular for DNN training, particularly with transformer models.

Unfortunately, along with the increasing scale of both datasets and models, efficient DNN training
even with SGD or adaptive algorithms has become increasingly challenging. In this work, we are
particularly interested in the problem of “how to accelerate the convergence of adaptive algorithms
in a general manner” because of their widespread popularity in various DNNs. While acceleration
techniques, such as heavy ball acceleration (Polyak, 1964) and Nesterov acceleration (Nesterov,
2003), are commonly employed in SGD, their application to adaptive algorithms remains largely
unexplored. Among the limited studies in this area, NAdam (Dozat, 2016) simplifies Nesterov
acceleration by solely estimating the first moment of the gradient in Adam, disregarding the second-
order moments, which is not exact Nesterov acceleration and may not inherit its full acceleration
potential.
Contributions: In this work, based on a recent Nesterov-type acceleration formulation (Nesterov
et al., 2018) and proximal point method (PPM) (Moreau, 1965), we propose a new Weight-decay-
Integrated Nesterov acceleration (Win1 for short) to accelerate adaptive algorithms, and also further
analyze the convergence of Win-accelerated adaptive algorithms to justify their convergence superi-
ority by taking AdamW, Adam and LAMB as examples. We also further extend Win into a more
general version, Win2, for training networks more efficiently. Our main contributions are highlighted
below.

Firstly, we use PPM to rigorously derive our Win acceleration for accelerating adaptive algorithms.
By taking AdamW and Adam as examples, at the k-th iteration, we follow PPM spirit and minimize
a dynamically regularized loss F (x)+ 1

2ηxk
‖x− xk‖2√vk+ν

, where xk is the previous solution, vk is
the second-order gradient moment, the small constant ν is to stabilize in AdamW and Adam, and
‖x‖vk =

√
〈x,vk�x〉 with an element-wise product operation �. Then to introduce Nesterov-alike

acceleration and also make the problem solvable iteratively, we respectively approximate F (x) by
its first- and second-order Taylor expansions to update the variable x twice while always fixing the
above dynamic regularization and also an extra regularizer 1

2ηxk
‖x‖2√

vk+ν
induced by the weight

1. Code is released at https://github.com/sail-sg/win.

2

https://github.com/sail-sg/win

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

decay in AdamW. As a result, we arrive at our Win acceleration, a Nesterov-alike acceleration, for
AdamW and Adam that uses a conservative step and an aggressive step to update twice and then
linearly combines these two updates for acceleration. Since Win is simple and efficient, it brings
negligible computational overhead for per iteration cost when plugging it into popular optimizers,
e.g., about 2% extra average training time per iteration on AdamW evaluated on ResNet as shown in
Sec. 5.4. Then we extend this Win acceleration to LAMB (You et al., 2019) and SGD. The above
acceleration derivation is transparent and general which could motivate other accelerations and serve
as examples for introducing other accelerations into adaptive gradient algorithms.

Secondly, we prove the convergence of our Win-accelerated AdamW, Adam, LAMB and SGD.
For Win-accelerated AdamW and Adam, to find an ε-approximate first-order stationary point, their
stochastic gradient complexity is O

(c2.5∞
ν1.25ε4

)
and this matches the lower bound Ω(1

ε4
) in (Arjevani

et al., 2022, 2020) (up to constant factors) under the same conditions, where c∞ upper bounds the
`∞ norm of stochastic gradient. Moreover, this complexity improves a factor of O(d

c0.5∞
) over the

complexity O(c2∞d
ν1.25ε4

) of Adam-type optimizers in (Zhou et al., 2018; Guo et al., 2021), e.g., Adam,
AdaGrad (Duchi et al., 2011), AdaBound (Luo et al., 2018), since the network parameter dimension
d is often much larger than c0.5

∞ , especially for over-parameterized networks. Indeed, Win-accelerated
Adam and AdamW also enjoy superior complexity to other Adam variants, e.g., Adabelief (Zhuang
et al., 2020) with compelxity O(

c62
ν2ε4

), especially on over-parameterized networks, where c2 is the
maximum `2-norm of stochastic gradient. We also show that Win-accelerated LAMB improves the
complexity of LAMB by a factor of O

(
d2.5

c1.5∞

)
which is often large, especially for over-parameterized

networks. For Win-accelerated SGD, it enjoys the complexity of O(1
ε4

) which matches the lower
bound in (Arjevani et al., 2022, 2020).

Thirdly, we develop a more general Win acceleration, Win2 for short, which extends the parameter
update from two steps in Win to multiple steps. To minimize the dynamically regularized loss
F (x)+ 1

2ηxk
‖x−xk‖2√vk+ν

, Win2 also approximates the vanilla F (x) by its Taylor expansions but at
multiple different points. Accordingly, Win2 needs to update the parameter multiple times, and then
linearly combines these multiple updates for acceleration. Since multiple updates yield more stable
linear combination and thus better stabilize the training, Win2 can use more aggressive stepsize
than Win to achieve faster convergence speed as empirically shown in Sec. 5. Besides, we prove
that Win2-accelerated AdamW, Adam and LAMB respectively enjoy superior stochastic gradient
complexity to vanilla AdamW, Adam and LAMB. For Win2-accelerated SGD, its stochastic gradient
complexity also accords with the lower complexity bound in (Arjevani et al., 2022, 2020).

Finally, extensive experimental results on both vision tasks (e.g., classification and segmentation)
and language modeling tasks show that our Win- and Win2-accelerated algorithms, i.e. accelerated
AdamW, Adam, LAMB and SGD, can accelerate the convergence speed and also improve the
performance of their corresponding non-accelerated counterparts by a remarkable margin on both
CNN and transformer architectures. Moreover, Win2 also shows better empirical acceleration effects
and also higher empirical performance than Win. All these results show the strong compatibility,
generalization and superiority of our acceleration techniques.
Comparison with our conference work. This paper is an extension of our previous work (Zhou
et al., 2023) which proposes Win and analyzes the convergence performance of Win-accelerated
AdamW, Adam, and SGD on the stochastic nonconvex problem (1). Compared with its shorter
version, this paper makes the following changes. 1) Our previous work (Zhou et al., 2023) only
analyzes Win-accelerated AdamW, Adam and SGD, while this work further analyzes Win-accelerated

3

ZHOU, XIE, LIN, TOH, AND YAN

LAMB and shows its superior complexity to vanilla LAMB. In practice, LAMB is a very popular
optimizer for large minibatch training, and is more complex due to its scaling operation, imposing
more challenges for analysis. 2) It proposes a more general acceleration framework, Win2, which
extends the parameter update from two steps in Win to multiple steps, and achieves faster convergence
speed empirically. 3) This work also proves that Win2-accelerated AdamW, Adam and LAMB reveal
superior complexity to vanilla AdamW, Adam and LAMB, and Win2-accelerated SGD enjoys a
complexity which matches the lower complexity bound. 4) This work conducts comprehensive
experiments on additional tasks, e.g., instance segmentation which includes object detection and
mask segmentation, to evaluates the performance of Win, and also Win2 on image classification,
detection, segmentation and language modeling tasks.

2. Related Work
In the context of deep learning, when considering efficiency and generalization, one often prefers
to employ SGD and adaptive gradient algorithms, e.g., Adam (Kingma and Ba, 2015) , instead
of other algorithms, e.g., variance-reduced algorithms (Rie Johnson, 2013), to solve problem (1).
But, in practice and theory, adaptive gradient algorithms often suffer from inferior generalization
performance than SGD (Zhou et al., 2020a,b). To solve this issue, AdamW (Loshchilov and Hutter,
2018) proposes a decoupled weight decay which introduces an `2-like regularization into Adam to
decay the network weight iteratively, and its effectiveness is widely validated on vision transformers,
e.g., ViTs (Touvron et al., 2021), and CNN, e.g., ResNet (He et al., 2016; Touvron et al., 2021; Zhou
et al., 2024). Later, to train DNNs with a large batch, LAMB (You et al., 2019) scales the update in
AdamW to the weight magnitude for getting rid of too large or small update for faster convergence.
But in practice, LAMB suffers unsatisfactory performance on small batch. In this work, we hope to
design a general acceleration approach to accelerate the convergence of these algorithms.

Heavy-ball acceleration (Polyak, 1964) and Nesterov acceleration (Nesterov, 2003) are two
classical acceleration techniques, and their effectiveness in SGD is well testified. Heavy-ball
acceleration moving averages stochastic gradient in SGD for faster convergence, while Nesterov
acceleration runs a step along the moving gradient average and then computes gradient at the new
point to look ahead for correction. Typically, Nesterov acceleration (Nesterov, 2003) converges faster
both empirically and theoretically at least on convex problems, and also has superior generalization
on DNNs (Foret et al., 2021; Kwon et al., 2021). Later, NAdam (Dozat, 2016) integrates Nesterov
acceleration into the first-order gradient moment estimation but ignores the second-order gradient
moments which harms the acceleration effect. Some works (Anil et al., 2022, 2020) also explore
Nesterov acceleration for second-order algorithms, e.g., shampoo (Gupta et al., 2018). Recently,
for full gradient decent algorithm, a new general Nesterov-type acceleration (Nesterov et al., 2018)
directly interpolates two variables to look ahead for correction, and is more flexible than vanilla
Nesterov acceleration (Nesterov, 2003) which interpolates the variable and gradient. See discussion
in Sec. 3.2. Here we use proximal point method to introduce this new acceleration into adaptive
algorithms by a rigorous and transparent derivation, which could provide insights for other accelerated
methods and their integration into adaptive gradient algorithms.

3. Weight-decay-Integrated Nesterov Acceleration
In this section, we first use AdamW and Adam as two examples to elaborate on our Weight-decay-
Integrated Nesterov (Win) acceleration and also derive Win-accelerated AdamW and Adam in

4

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Sec. 3.1. Then, we extend this acceleration technique to LAMB and SGD in Sec. 3.2. Finally, we
analyze the convergence behvaiors of Win-accelerated AdamW, Adam, LAMB and SGD in Sec. 3.3.

To accelerate full gradient descent algorithm, given a full gradient ∇F (xk) of problem (1) at the
k-th iteration, Nesterov-type acceleration (Nesterov et al., 2018) generally uses a conservative step
ηxk and an aggressive step ηyk to update two sequences xk+1 and y′k+1 respectively, and then linearly
combines them to update the variable xk+1 of the problem. Similar formulations are also observed
and proved in recent works, e.g., (Allen-Zhu and Orecchia, 2017; Bansal and Gupta, 2019; Ahn and
Sra, 2022). In general, their acceleration formulation can be formally written as

xk+1 = xk − ηxk∇F (xk), y′k+1 = yk − ηyk∇F (xk), yk+1 = ρykxk+1 + (1− ρyk)y
′
k+1, (2)

where ρyk ∈ [0, 1] is a constant. This acceleration enjoys provably faster convergence rate for the
full gradient descent method on convex problems (Beck and Teboulle, 2009; Nesterov et al., 2018),
and is also empirically validated in many convex and nonconvex cases, e.g., (Wilson et al., 2017;
Nado et al., 2021). Despite its effectiveness, such an acceleration is rarely explored in adaptive
gradient algorithms, particularly in the realm of network training. In deterministic optimization
setting, another widely used optimization stabilization and acceleration approach is the proximal
point method (PPM) (Moreau, 1965; Rockafellar, 1976). At the k-th iteration, PPM optimizes an
`2-regularized loss

F (x)+
1

2ηxk
‖x−xk−1‖22

instead of the vanilla loss F (x). This small change enhances the convexity of the problem, acceler-
ating and also stabilizing the optimization process (Kim et al., 2022; Zhou et al., 2021). To enable
iterative solvability of the `2-regularized problem, PPM approximates the loss F (x) using either its
first- or second-order Taylor expansion, ensuring that each iteration has a closed-form solution (see
below). In this work, we draw inspiration from PPM to induce a Weight-decay-Integrated Nesterov
acceleration (Win) for adaptive gradient algorithms by using AdamW and Adam as examples in
Sec. 3.1, and then extend this acceleration technique to LAMB and SGD in Sec. 3.2.

3.1 Win-Accelerated AdamW and Adam

To begin with, following most adaptive gradient algorithms, e.g., Adam and AdamW, we estimate
the first- and second-order moments mk and vk of gradient as follows:

gk =
1

b

∑b

i=1
∇f(yk; ζi), mk = (1− β1)mk−1 + β1gk, vk = (1− β2)vk−1 + β2g

2
k, (3)

where gk is the average gradient on a minibatch data of size b, β1 ∈ [0, 1] and β2 ∈ [0, 1]. For the
initialization, we set m0 = g0, v0 = g2

0. For brevity, with a small scaler ν>0, we define

sk =
√
vk + ν, uk = mk/

√
vk + ν. (4)

Then following the spirit of PPM, at the k-th iteration, we minimize a regularized loss F (x)+ 1
2ηxk
‖x−

xk‖2sk , where ‖x‖sk =
√
〈x, sk�x〉 with an element-wise product operation �. Here we use the

regularizer ‖x−xk‖2sk instead of the `2-regularization ‖x−xk‖22, since 1) this new regularization can
induce adaptive gradient algorithms as shown below in Eqn. (5); and 2) it increases the convexity of
the problem and further considers different sharpness property of each coordinate in sk to accelerate

5

ZHOU, XIE, LIN, TOH, AND YAN

Algorithm 1: Win-Accelerated AdamW, Adam, LAMB and SGD
Input: initialization x0 = y0, stepsize {(ηxk , η

y
k)}T−1

k=0 , weight decay parameter {λk}T−1
k=0 ,

moment parameter {(β1, β2)}, moment parameter β′1 in SGD.
Output: (x̄, ȳ) uniformly seleted from {(xk,yk)}Tk=0.

1 while k < T do
2 gk = 1

b

∑b
i=1∇f(yk; ζi)

3 mk = (1− β1)mk−1 + β′1gk where β′1 = β1 except SGD /* m0 = g0 */
4 vk = (1− β2)vk−1 + β2g

2
k /* v0 = g2

0 */
5 compute parameter update uk:

uk =


mk√
vk+ν

, for AdamW and Adam
‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

(
mk√
vk+ν

+ λkxk
)
, for LAMB

mk, for SGD

6 set λ′k = λk for AdamW, Adam and SGD, and λ′k = 0 for LAMB as vanilla LAMB uses
weight decay in Step 5

7 xk+1 = 1
1+λ′kη

x
k

(xk − ηxkuk)
8 yk+1 = ηykτkxk+1 + ηxkτk

(
yk − ηykuk

)
with τk = 1

ηxk+ηyk+λ′kη
x
kη
y
k

9 end while

the convergence speed. To make the problem solvable iteratively, we approximate the vanilla loss
F (x) in the PPM-inspired regularized loss F (x)+ 1

2ηxk
‖x− xk‖2sk by its first-order Taylor expansion

at the point xk, and update the parameter xk+1 as follows:

xk+1 = argminxF (xk)+〈mk,x−xk〉+
1

2ηxk
‖x−xk‖2sk+

λk
2
‖x‖2sk =

1

1+λkη
x
k

(xk−ηxkuk), (5)

where mk is used to approximate the full gradient∇F (xk). In Eqn. (5), we add a small regularization
λk
2 ‖x‖

2
sk

, since 1) it can largely improve the generalization performance in practice (Loshchilov and
Hutter, 2018; Touvron et al., 2021); 2) it allows us to derive Adam (λk=0) and AdamW (λk>0).
Here λk can be fixed as a constant or evolves with iteration number k. In practice, an evolving λk
often enjoys better performance than a fixed one (Caron et al., 2021; Zhou et al., 2022). When λk=0,
the updating scheme (5) becomes the exact Adam. If λk>0, the updating (5) can approximate the
updating rule xk+1 =(1− λkηxk)xk−ηxkuk of AdamW. This is because as λkηxk is small in practice,
we can approximate (1 + λkη

x
k)−1 = 1− λkηxk +O(λ2

k(η
x
k)2) and thus

1

1 + λkη
x
k

(xk − ηxkuk) =
[
1− λkηxk +O(λ2

k(η
x
k)2)

]
xk −

[
ηxk −O(λk(η

x
k)2) +O(λ2

k(η
x
k)3)

]
uk

which becomes AdamW by ignoring the very small terms O((ηxk)2) or O((ηxk)3). This is also one
reason that we adopt the regularizer ‖x− xk‖2sk in (5) instead of the `2-regularization in PPM, since
we can flexibly derive Adam and AdamW.

6

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Similarly, we minimize a regularized lossF (y)+ 1
2ηxk
‖y−xk+1‖2sk again, and further approximate

F (y) by its second-order approximation F (yk) + 〈mk,y − yk〉+ 1
2ηyk
‖y − yk‖2sk :

yk+1 = argminy F (yk)+〈mk,y − yk〉+
1

2ηyk
‖y − yk‖2sk+

1

2ηxk
‖y − xk+1‖2sk+

λk
2
‖y‖2sk

=ηykτkxk+1 + ηxkτk
(
yk − ηykuk

)
,

(6)

where τk = 1
ηxk+ηyk+λkη

x
kη
y
k

, mk is used to approximate ∇F (yk) as guaranteed by Theorem 1 in

Sec. 3.3, ηyk approximates the inverse of the local smoothness parameter of F (y) around yk. Here
we use a regularizer ‖y−xk+1‖2sk with the latest update xk+1 instead of xk as an anchor point, since
the latest update xk+1 could often provide better regularization for the concurrent optimization.

Now we have used PPM to rigorously derive our Win-accelerated AdamW and Adam in Eqns. (3),
(5) and (6). For more clarity, we summarize the algorithmic steps of Win-accelerated AdamW
and Adam in Algorithm 1, omitting the bias-correction term for simplicity. When λk = 0, it is
Win-accelerated Adam; if λk>0, it corresponds to Win-accelerated AdamW. Generally, AdamW
can greatly improve the generalization performance of Adam by simply adding a weight decay
(i.e. the regularizer λk2 ‖ · ‖

2
sk

) into Adam as observed in many works, e.g., (Loshchilov and Hutter,
2018; Touvron et al., 2021). Our Win-acceleration is simple and efficient, since our accelerated
AdamW/Adam merely adds one extra simple algorithmic step, i.e. the eighth step in Algorithm 1, on
vanilla AdamW/Adam, and brings negligible extra computational overhead into the vanilla optimizer,
e.g., about 2% extra average training time per iteration on AdamW evaluated on ResNet as shown
in Sec. 5.4. Moreover, regarding the extra hyperparameter, namely, the aggressive step ηyk , in
Algorithm 1 over AdamW/Adam, we always set it to be 2 times larger than the conservative step ηxk
for all iterations, i.e. ηyk =2ηxk , which works well in all our experiments.

Now we discuss the relations between Nesterov-type acceleration (2) and our Win acceleration (6).
For comparison, we introduce a virtual sequence y′k+1 =yk−ηykuk in Win, and rewrite (6) as

xk+1 =(1 + λkη
x
k)−1 (xk − ηxkuk) , y′k+1 =yk − ηykuk, yk+1 =ηykτkxk+1 + ηxkτky

′
k+1, (7)

where uk is defined in (4). By comparing Nesterov-type acceleration (2) with our Win accelera-
tion (7), one can observe some similarities and also differences as well. For similarity, both methods
use a conservative step ηxk and an aggressive step ηyk to update xk+1 and y′k+1 respectively, and then
linearly combine xk+1 and y′k+1 to obtain yk+1. Regarding the differences, the first distinction is
that Win incorporates a weight-decay-alike factor 1

1+λkη
x
k

in (7) which slightly decays the variable
xk like AdamW and also the update uk, while Nesterov acceleration does not. Notably, weight
decay has demonstrated significant benefits for generalization in practical applications, as observed
in various studies, e.g., (Loshchilov and Hutter, 2018; Touvron et al., 2021; Liu et al., 2021). Another
difference is that for almost all acceleration techniques, including Nesterov-type acceleration (2),
the sum of their linear combination factors (e.g., ρyk and 1− ρyk in (2)) is always one. In contrast, in

Eqn. (7), Win uses ηykτk + ηxkτk=1− λkη
x
kη
y
k

ηxk+ηyk+λkη
x
kη
y
k
<1 when λk>0, which introduces an additional

weight decay effect. Since these two differences arise from the presence of weight decay, we refer
to our acceleration technique as “weight-decay-integrated Nesterov acceleration” (Win for brevity).
Besides, the empirical results on ResNet in Sec. 5.4 also show that Win acceleration often brings
more performance improvement than Nesterov-type acceleration (2).

7

ZHOU, XIE, LIN, TOH, AND YAN

3.2 Extension to LAMB and SGD

Here we generalize Win acceleration to LAMB (You et al., 2019) and SGD (Robbins and Monro,
1951). For LAMB, it scales the update uk of AdamW in Eqn. (4) so that uk is of the same magnitude
as the network weight xk. That is, it changes the update rule xk+1 = (1− λkηxk)xk − ηxkmk/sk in
AdamW to xk+1 = xk − ηxk

‖xk‖2
‖rk+λkxk‖2 (rk + λkxk) where rk = mk/sk. This modification is to

avoid too large or small update to improved the optimization efficiency. To extend Win acceleration
to LAMB, we inherit this scaling spirit, and scale the update uk in (4) to the following:

uk =
‖xk‖2

‖rk + λkxk‖2
(rk + λkxk). (8)

Next, we can respectively follow Eqn. (5) and (6) to update the two sequences xk and yk. See the
detailed steps of Win-accelerated LAMB in Algorithm 1. Since vanilla LAMB uses weight decay in
scaling operation already (namely computing uk), it does not use extra weight decay in updating
xk+1 = xk − ηxkuk. Following this spirit, we also do not use extra weight decay in updating xk+1

and yk+1 as shown in Steps 7 and 8 in Algorithm 1.
For SGD, applying Win acceleration to it is quite straightforward. Specifically, the only algo-

rithmic difference between SGD and AdamW on the `2-regularized problem is that SGD lacks the
second-order moment vk in AdamW. So we can leverage the acceleration framework of AdamW
described in Sec. 3.1 to accelerate SGD. By setting sk = 1 ∈ Rd in Eqn. (4), (5) and (6), we can
obtain Win-accelerated SGD:

mk=β1mk−1 +β′1gk, xk+1 =
1

1+λkη
x
k

(xk−ηxkmk), yk+1=ηykτkxk+1 +ηxkτk
(
yk−ηykmk

)
, (9)

where β′1∈ [0, 1] is dampening parameter. Here we slightly modify the moment mk to accord with
the one used in Nesterov-accelerated SGD (e.g., SGD-N in Pytorch) whose updating steps are

mk = β1mk−1 + β′1(gk + λkxk), xk+1 = (1− λkηxk)xk − ηxk(gk + β2mk). (10)

By comparing Win-accelerated SGD and SGD-N in (10), one can find their big differences primar-
ily stemming from their distinct acceleration strategies and approaches to handling weight decay.
Win-accelerated SGD is derived from PPM and a recently proposed acceleration (2), while SGD-N
modifies another previous Nesterov-type acceleration (Nesterov, 2003) (namely, mk=β1mk−1−
ηxk
b

∑b
i=1∇f(xk + ηxkmk−1; ζi) and xk+1 = xk + mk) to better train networks. See more mecha-

nisms of previous Nesterov acceleration and (10) in (Sutskever et al., 2013; Bengio et al., 2013).
Sec. 5.4 also empirically compares Win-accelerated SGD and Nesterov-accelerated SGD on image
classification tasks, and shows the superiority of Win-accelerated SGD.

3.3 Convergence Analysis

Here we investigate the convergence performance of Win-accelerated algorithms by taking accelerated
AdamW, Adam, LAMB and SGD as examples, as these algorithms are commonly used in the deep
learning field. Moreover, since we aim to accelerate deep network training which is a highly
nonconvex problem, we focus on analyzing nonconvex problems to align with the practical scenarios.
For analysis, we follow previous optimization works, e.g., (Kingma and Ba, 2015; Reddi et al., 2018;
Duchi et al., 2011; Zhou et al., 2021; Xie et al., 2022), to introduce necessary assumptions.

8

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Assumption 1 (L-smoothness) We say a function f(x, ·) to be L-smooth w.r.t. x, if for ∀x1,x2 and
∀ζ ∼ D, we have ‖∇f(x1, ζ)−∇f(x2, ζ)‖2 ≤ L ‖x1 − x2‖2 with a universal constant L.

Assumption 2 (Unbiased and bounded gradient estimation) Assume the gradient estimation gk =
1
b

∑b
i=1∇f(xk; ζi) is unbiased, i.e., E[gk] = ∇F (xk), and its magnitude and variance are bounded,

i.e., ‖gk‖∞ ≤ c∞ and E[‖∇F (xk)− gk‖22] ≤ σ2 (∀k) with two universal constants c∞ and σ.

Next, we first define a dynamic function Fk(x) at the k-th iteration which is the real loss
minimized by our algorithms. It combines the vanilla loss F (x) in (1) and a dynamic regulariza-
tion λk

2 ‖x‖
2
sk

:

Fk(x) = F (x) +
λk
2
‖x‖2sk = Eζ [f(x; ζ)] +

λk
2
‖x‖2sk , (11)

where sk is given in (4). To obtain (11), following PPM spirit and Eqn. (5), one can approximate F (x)
by its first-order Taylor expansion, and obtain Eqn. (5) to update xk+1 = 1

1+λkη
x
k

(xk − ηxkmk/sk).
Since λkηxk is very small, one can follow the discussion below Eqn. (5) and approximate xk+1 as
xk+1 = (1−λkηxk)xk−ηxkmk/sk which becomes the update rule of AdamW. This is the reason
why our analysis on Win-accelerated AdamW involves a dynamic loss Fk(x) in (11). Note, for
Win-accelerated Adam (λk=0), Fk(x) degenerates to the vanilla objective loss F (x).
Convergence Analysis of Win-accelerated AdamW and Adam. With these assumptions, we
analyze the convergence behaviors of our accelerated algorithms on general nonconvex problems,
and summarize our main results in Theorem 1 with its proof given in Appendix D.1. For brevity, we
use the notation 1

T

∑T
i=0{ai, bi} ≤ {a, b} to denote 1

T

∑T
i=0 ai ≤ a and 1

T

∑T
i=0 bi ≤ b.

Theorem 1 Suppose that Assumptions 1 and 2 hold, x?∈argminx F (x), and η≤O
(

ν1.25bε2

c1.5γ1.5σ2L

)
.

Let ηyk =γηxk (γ>1), ηxk =η, β1≤O
(
ν0.5bε2

cσ2

)
, β2 ∈ (0, 1), c = (c2

∞+ν)0.5, λk = λ(1−β2c2∞
ν)k (k >

0) and λ0 = 0 with a constant λ > 0. Then after T = O
(c2.5∞ γ1.5σ2L∆

ν1.25bε4

)
iterations with minibatch

size b and ∆ = F (x0)− F (x?), the sequence {(xk,yk)}Tk=0 generated by Win-accelerated AdamW
and Adam in Algorithm 1 satisfies the following four properties.
a) The gradient∇Fk(xk) of the sequence {xk}Tk=0 can be upper bounded by

1

T

∑T−1

k=0
E
[
‖∇Fk(xk)‖22 +

1

4
‖mk + λkxk � sk‖22

]
≤ε2.

b) The gradient moment mk can well estimate the full gradient∇F (xk) and ∇F (yk):

1

T

∑T−1

k=0
max

{
E‖mk −∇F (xk)‖22 ,E‖mk −∇F (yk)‖22

}
≤16ε2 +

8η2γ2L2

ν2
ε2.

c) The sequence {(xk,yk)} satisfies

1

T

∑T−1

k=0

{
E‖xk−xk+1‖2sk ,E‖yk−xk‖

2
2

}
≤
{

4η2ε2,
4η2γ2

ν2
ε2
}
.

d) The stochastic gradient complexity to achieve the above three properties is O
(c2.5∞ ∆σ2L

ν1.25ε4

)
, where

stochastic gradient complexity is the total evaluation number of the gradient on a single sample.

9

ZHOU, XIE, LIN, TOH, AND YAN

Theorem 1 guarantees the convergence of Win-accelerated AdamW and Adam in Algorithm 1
on nonconvex problems. When λk>0, Algorithm 1 corresponds to Win-accelerated AdamW, and if
λk=0, it becomes Win-accelerated Adam. For both cases, Theorem 1 holds. Theorem 1 a) shows
that by running at most T =O

(c2.5∞ ∆σ2L
ν1.25bε4

)
iterations, the average gradient 1

T

∑T−1
k=0 E

[
‖∇Fk(xk)‖22

]
is upper bounded by ε2, guaranteeing the algorithmic convergence. Theorem 1 b) indicates that the
gradient moment mk can well estimate the full gradient ∇F (yk) and also ∇F (xk) because of their
small distances, guaranteeing the good Taylor approximation used in Eqns. (5) and (6). Moreover, in
Theorem 1 c), one can find that although Algorithm 1 uses a conservative step ηxk and an aggressive
step ηyk = γηxk (∀γ > 1) to update, the two sequences xk+1 and yk+1 can converge to each other,
which could be the key for the good convergence behavior of both Win-accelerated AdamW and
Adam.

Now we discuss the stochastic gradient complexity of Win-accelerated Adam and AdamW.
Theorem 1 d) shows that to find an ε-approximate first-order stationary point, both Win-accelerated
Adam and AdamW have the complexity of O

(c2.5∞ σ2L
ν1.25ε4

)
when ignoring some other constant factors

like other algorithms (Zhuang et al., 2020; Guo et al., 2021; Xie et al., 2022). This complexity
matches the lower bound of Ω(1

ε4
) in (Arjevani et al., 2022, 2020) (up to constant factors). Our

accelerated Adam and AdamW enjoy superior complexity to Adam-type optimizers, e.g., Adam,
AdaGrad (Duchi et al., 2011), AdaBound (Luo et al., 2018), whose previously best known complexity
under the same assumptions is O(c

2
∞dσ

2L
ν1.25ε4

) in (Zhou et al., 2018; Chen et al., 2021; Guo et al.,
2021). By comparison, both accelerated Adam and AdamW improve their complexity by a factor
O(d

c0.5∞
), where the network parameter dimension d is often much larger than c0.5

∞ , especially for over-
parameterized neural networks. Moreover, the complexity of Win-accelerated Adam and AdamW is
also lower thanO(

c62σ
2L

ν2ε4
) of Adabelief (Zhuang et al., 2020) andO(c

0.5
∞ d0.5σ2L

νε4
) of RMSProp (Tijmen

and Geoffrey, 2012; Zhou et al., 2018), especially on over-parameterized networks, since for a d-
dimensional gradient, its `2-norm upper bound c2 is often much larger than the `∞-norm c∞ and can
be
√
d times larger in the worse case.

Convergence Analysis of Win-accelerated LAMB. Next we analyze another important optimizer,
LAMB, which is also widely used in vision transformer training. For analysis, we first define
the scaling factor αk = ‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

and follow the analysis of LAMB to assume it to be
bounded, namely, 0 < αs ≤ αk ≤ αl, where αs and αl are two universal constants. Based on these
assumptions, we can analyze the convergence behavior of Win-accelerated LAMB and present the
main results in Theorem 2, whose proof can be found in Appendix D.2.

Theorem 2 Suppose that Assumptions 1 and 2 hold, x?∈argminx F (x), 0 < αs ≤ αk ≤ αl, and
η≤O

(
ν1.25bε2

αlc1.5γ1.5σ2L

)
. Let ηyk =γηxk (γ>1), ηxk =η, β1≤O

(
αsν0.5bε2

αlcσ2

)
, β2 ∈ (0, 1), c = (c2

∞+ ν)0.5,

λk = 0 (k ≥ 0). Then after T = O
(αlc2.5∞ γ1.5σ2L∆

αsν1.25bε4

)
iterations with minibatch size b and ∆ =

F (x0)− F (x?), the sequence {(xk,yk)}Tk=0 generated by Win-accelerated LAMB in Algorithm 1
satisfies the following four properties.
a) The gradient∇Fk(xk) of the sequence {xk}Tk=0 can be upper bounded by

1

T

∑T−1

k=0
E
[
‖∇Fk(xk)‖22 +

1

4αsαl
‖mk + λkxk � sk‖22

]
≤ε2.

10

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

b) The gradient moment mk can well estimate the full gradient∇F (xk) and ∇F (yk):

1

T

∑T−1

k=0
max

{
E‖mk −∇F (xk)‖22 ,E‖mk −∇F (yk)‖22

}
≤ 20αl

αs
ε2 +

8αsαlη
2γ2L2

ν2
ε2.

c) The sequence {(xk,yk)} satisfies

1

T

∑T−1

k=0

{
E‖xk−xk+1‖2sk ,E‖yk−xk‖

2
2

}
≤
{

4αsαlη
2ε2,

4αsαlγ
2η2

ν2
ε2
}
.

d) The total stochastic gradient complexity to achieve the above three properties is O
(αlc2.5∞ ∆σ2L
αsν1.25ε4

)
.

From Theorem 2 a), one can observe that on the nonconvex problems, Win-accelerated LAMB
optimizer can also converge, because its average gradient 1

T

∑T−1
k=0 E

[
‖∇Fk(xk)‖22

]
can be bounded

by ε2 after running at most T = O
(αlc2.5∞ γ1.5σ2L∆

αsν1.25bε4

)
iterations. Similar to Theorem 1 b), Theorem 2

b) also reveals that the first-order moment mk is a good estimation to the full gradient ∇F (xk)
and ∇F (yk), validating the Taylor approximation in Eqns. (5) and (6). Moreover, Theorem 1 c)
shows small distance between the two points xk and yk which also guarantees the convergence of
Win-accelerated LAMB optimizer.

Now we compare the stochastic gradient complexity of LAMB and Win-accelerated LAMB. To
compute an ε-approximate first-order stationary point, You et al. (2019) showed the complexity of
vanilla LAMB optimizer is at the order of O

(
c∞d2.5

ε4

)
(see their Theorem 3). In contrast, as shown in

Theorem 2 d), Win-accelerated LAMB has the complexity of O
(c2.5∞
ε4

)
and improves LAMB by a

factor O
(
d2.5

c1.5∞

)
which is often large, especially for over-parameterized networks where parameter

dimension d is huge. This shows the superiority of Win-accelerated LAMB in terms of the efficiency.
Convergence Analysis of Win-accelerated SGD. Now we discuss the convergence performance of
Win-accelerated SGD in Theorem 3 with its proof given in Appendix D.3.

Theorem 3 Suppose that Assumptions 1 and 2 hold, and x? ∈ argminx F (x). Let ηyk = γηxk , γ >

1, ηxk = η ≤ O
(

bε2

c1.5γ2.5σ2L

)
, β1 ≤ O

(
bε2

cσ2

)
, β′1 = 1−β1, λk = λ(1 − β2c2∞

ν)k (k > 0), λ0 = 0.

After T = O
(

∆σ2L
bε4

)
iterations with minibatch size b and ∆ = F (x0) −F (x?), the sequence

{(xk,yk)}Tk=0 generated by Win-accelerated SGD in (9) satisfies the four properties in Theorem 1
with ν=c∞=c=1 and sk=1∈Rd.

Theorem 3 also guarantees the convergence of Win-accelerated SGD. By using the hyper-parameter
settings in Theorem 3, the sequence {(xk,yk)}Tk=0 generated by Win-accelerated SGD satisfies the
four properties in Theorem 1 with ν = c∞ = c = 1 and sk = 1. It shows the complexity of O(Lσ

2

ε4
)

of the Win-accelerated SGD which also matches the lower bound of Ω(1
ε4

) in (Arjevani et al., 2022,
2020) (up to constant factors) under Assumptions 1 and 2.

4. Win2: A More General Win Acceleration

In Sec. 3, we have integrated PPM and Nestrov acceleration to develop Win acceleration in which it
respectively uses a conservative step and an aggressive step to update parameters, and then linearly
combines these two updates for acceleration. The effectiveness and simplicity of Win inspires us
to consider the problem of how to extend the parameter update from two updating steps in Win to

11

ZHOU, XIE, LIN, TOH, AND YAN

multiple updating steps, yielding a more general Win acceleration version called “Win2”. Compared
with the combination of two updates in Win, the multiple updates in Win2 should achieve a more
stable linear combination, and thus should better stabilize the training (see more discussion below
Eqn. (15)). In this way, Win2 can use more aggressive stepsize than Win which can often help to
achieve faster convergence speed as empirically shown in Sec. 5. In the following, to provide a clear
and intuitive example of Win2, we first derive the formulation for three updating steps, and then
extend it to q updating steps (∀q ≥ 4) in Sec. 4.1. We also apply Win2 into LAMB and SGD in
Sec. 4.2, and finally provide convergence analysis of Win2-accelerated optimizers in Sec. 4.3.

4.1 Win2-Accelerated AdamW and Adam

Since Win2 uses a conservative step, an aggressive step and a more aggressive step for parameter
update, it needs three sequences denoted by {(xk,yk, zk)} which respectively correspond to the
three steps. Accordingly, we define minibatch gradient gk at the point zk instead of yk as used in
Win, the first- and second-order moments mk and vk as follows:

gk =
1

b

∑b

i=1
∇f(zk; ζi), mk = (1− β1)mk−1 + β1gk, vk = (1− β2)vk−1 + β2g

2
k. (12)

Then the same as in Eqn. (4), we also define sk =
√
vk + ν and uk = mk/

√
vk + ν for brevity.

Next, at the k-th iteration, to update the sequence xk, following (5) in Win, we minimize a regularized
loss F (x) + 1

2ηxk
‖x− xk‖2sk , and further approximate the vanilla loss F (x) by its first-order Taylor

expansion at the point xk to compute the close-form solution. In this way, we can follow Eqn. (5) in
Win to update xk as

xk+1 = argminxF (xk)+〈mk,x−xk〉+
1

2ηxk
‖x−xk‖2sk+

λk
2
‖x‖2sk =

1

1+λkη
x
k

(xk−ηxkuk), (13)

where ηxk is small and yields a conservative step in (13). Next, we minimize a regularized loss
F (y) + 1

2ηxk
‖y − xk+1‖2sk again, and further approximate F (y) by its second-order approximation

F (yk)+〈mk,y − yk〉+ 1
2ηyk
‖y − yk‖2sk at the point yk. This gives the following update of yk:

yk+1 = argminy F (yk)+〈mk,y − yk〉+
1

2ηyk
‖y − yk‖2sk+

1

2ηxk
‖y − xk+1‖2sk+

λk
2
‖y‖2sk

=ξxkδ
y
kxk+1 + ξykδ

y
k

(
yk − ηykuk

)
,

(14)

where ξxk = 1
ηxk

, ξyk = 1
ηyk

, and δyk = 1
1/ηxk+1/ηyk+λk

. For the stepsize ηyk , it is larger than ηxk and
corresponds to an aggressive step for boosting the convergence speed.

Finally, we use a similar technique in updating yk to update zk, but add two addiontal local
regularization terms 1

2ηxk
‖z − xk+1‖2sk and 1

2ηyk
‖z − yk+1‖2sk . This is because 1) these two local

regularization terms can enhance the convexity of the problem like PPM method; 2) they can prevent
zk+1 from being too far from xk+1 and yk+1, since ηzk is much larger than ηxk , e.g., 8ηxk in all our
experiments, and could results in a large but undesired update. Accordingly, we can update zk by

12

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Algorithm 2: Win2-Accelerated AdamW, Adam, LAMB and SGD
Input: initialization x0 = y0 = z0, stepsize {(ηxk , η

y
k , η

z
k)}

T−1
k=0 , weight decat {λk}T−1

k=0 ,
weight decay parameter {λk}T−1

k=0 , moment parameter {(β1, β2)}, moment parameter
β′1 in SGD.

Output: (x̄, ȳ, z̄) uniformly seleted from {(xk,yk, zk)}Tk=0.
1 while k < T do
2 gk = 1

b

∑b
i=1∇f(zk; ζi)

3 mk = (1− β1)mk−1 + β′1gk where β′1 = β1 except SGD /* m0 = g0 */
4 vk = (1− β2)vk−1 + β2g

2
k /* v0 = g2

0 */
5 compute parameter update uk:

uk =


mk√
vk+ν

, for AdamW and Adam
‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

(
mk√
vk+ν

+ λkxk
)
, for LAMB

mk, for SGD

6 set λ′k = λk for AdamW, Adam and SGD, and λ′k = 0 for LAMB as vanilla LAMB uses
weight decay in Step 5

7 xk+1 = 1
1+λkη

x
k

(xk − ηxkuk)
8 yk+1 = ξxkδ

y
kxk+1 + ξykδ

y
k

(
yk − ηykuk

)
with ξxk = 1

ηxk
, ξyk = 1

ηyk
, δyk = 1

ξxk+ξyk+λk

9 zk+1 = ξxkδ
z
kxk+1 + ξykδ

z
kyk+1 + ξzkδ

z
k

(
zk − ηzkuk

)
with ξzk = 1

ηzk
, δzk = 1

ξxk+ξyk+ξzk+λk
.

10 end while

solving the following subproblem:

zk+1 = argminz

{
F (zk)+〈mk, z− zk〉+

1

2ηzk
‖z− zk‖2sk+

1

2ηxk
‖z− xk+1‖2sk +

1

2ηyk
‖z− yk+1‖2sk

+
λk
2
‖z‖2sk

}
= ξxkδ

z
kxk+1 + ξykδ

z
kyk+1 + ξzkδ

z
k

(
zk − ηzkuk

)
,

(15)

where ξzk = 1
ηzk

and δzk = 1
ξxk+ξyk+ξzk+λk

, mk is used to approximate ∇F (zk), and ηzk approximates
the inverse of the local smoothness parameter of F (z) around zk.

In this way, by combining Eqns. (12), (13), (14) and (15), we can obtain our Win2-accelerated
AdamW and Adam. Algorithm 2 also summarizes their algorithmic steps in which the bias-correction
term is omitted for simplicity. Similar to Algorithm 1, if λk = 0, Algorithm 2 represents Win2-
accelerated Adam, while if λk > 0, it corresponds to Win2-accelerated AdamW. Compared with
vanilla optimziers, e.g., AdamW and Adam, our Win2-acceleration introduces only two extra steps in
them, namely i.e. the eighth and ninth steps in Algorithm 2, and thus is very simple. Moreover, for the
two extra hyper-parameters, the aggressive stepsize ηyk and ηzk, in Algorithm 2 over AdamW/Adam,
we always set ηyk =2ηxk and ηzk=8ηxk which achieve good performance in all our experiments and thus
do not introduce extra hyper-parameter tuning cost. Compared with Win whose aggressive stepsize
is ηyk = 2ηxk , Win2 uses a more aggressive stepsize ηzk = 8ηxk to pursue faster convergence speed
while ensuring stable training. This is because as shown in Eqn. (15), Win2 combines three updates
zk+1 = ξxkδ

z
kxk+1 + ξykδ

z
kyk+1 + ξzkδ

z
k

(
zk− ηzkuk

)
in which xk+1 and yk+1 computed by using less

13

ZHOU, XIE, LIN, TOH, AND YAN

aggressive stepsizes can effectively stabilize the training, even though zk uses a much more aggressive
stepsize. In contrast, Win updates the aggressive step as yk+1 = ηykτkxk+1 + ηxkτk

(
yk − ηykuk

)
in

Eqn. (6), and only uses a single xk+1 to stabilize the training, which limits the aggressive stepsize ηyk .
Following the above three updating steps (xk,yk and zk), one can extend it to q-updating steps

denoted by {x(i)
k }

q
i=1 (q ≥ 4). At the (k + 1)-th iteration, after computing {x(i)

k+1}
s
i=1, to update

x
(s+1)
k+1 , we minimize a regularized loss F (x) + λk

2 ‖x‖
2
sk

+
∑s

i=1
1

2η
(i)
k

‖x−x
(i)
k ‖

2
sk

, and approximate

F (x) by its second-order estimation F (x
(s+1)
k) + 〈mk,x− x

(s+1)
k 〉+ 1

2η
(s+1)
k

‖x− x
(s+1)
k ‖2sk :

x
(s+1)
k+1 = argminx

{
F (x

(s+1)
k)+〈mk,x− x

(s+1)
k 〉+

s+1∑
i=1

1

2η
(i)
k

‖x− x
(i)
k ‖

2
sk

+
λk
2
‖x‖2sk

}

=ξ
(s+1)
k δ

(s+1)
k

(
x

(s+1)
k − η(s+1)

k uk
)

+
s∑
i=1

ξ
(i)
k δ

(s+1)
k x

(i)
k ,

where ξ(i)
k = 1

η
(i)
k

and δ(s+1)
k = 1

λk+
∑s+1
i=1 ξ

(i)
k

. For x(1)
k+1, we update it as x

(1)
k+1 = ξ

(1)
k δ

(1)
k

(
x

(1)
k −

η
(1)
k uk

)
, which accords with Eqn. (13) when q = 3. In practice, as shown in Sec. 5.4, large q (e.g.,

q ≥ 4) actually does not bring significant improvement but extra memory cost. This is because for
Win2 with three updating steps, it already uses very aggressive stepsizes in practice, e.g., η(2)

k = 2η
(1)
k ,

η
(3)
k = 8η

(1)
k in all our experiments. So for more updating steps, e.g., q ≥ 4, it is hard to use more

aggressive stepsize η(4)
k = aη

(1)
k (a > 8) while enjoying very stable training. So in the following,

we focus more on Win2 with three updating steps unless otherwise specified.

4.2 Extension to LAMB and SGD

Based on Win-accelerated LAMB and SGD, we can extend Win2 acceleration to these two algorithms
easily. For LAMB, we can follow Eqn. (8) in Win to scale the update uk in (4) so that uk is at the
same magnitude as the network weight xk. Then we can update xk, yk and zk by respectively using
Eqn. (13), (14) and (15). Accordingly, we can obtain Win2-accelerated LAMB. For more clarity,
Algorithm 2 summarizes the detailed algorithmic steps of Win2-accelerated LAMB.

For SGD, its only algorithmic difference with AdamW on the `2-regularized problem is that
SGD has no second-order moment vk, while AdamW has. In this way, one can set sk = 1 ∈ Rd in
Eqn. (4), (13), (14) and (15) which directly yields the Win2-accelerated SGD. To obtain exact SGD,
one should update the first-order moment mk in SGD as mk=β1mk−1+β

′
1gk, where β′1∈ [0, 1] is a

dampening parameter. By these modifications, one can obtain the desired Win2-accelerated SGD as
shown in Algorithm 2.

4.3 Convergence Analysis

In this subsection, we provide theoretical convergence analysis for Win2-accelerated AdamW, Adam,
LAMB and SGD. Here we also analyze the highly nonconvex network training problems to accord
with the practical setting. For the convergence analysis, we also need to borrow the dynamic function
Fk(x) = F (x) + λk

2 ‖x‖
2
sk

= Eζ [f(x; ζ)] + λk
2 ‖x‖

2
sk

at the k-th iteration which is defined in (11).
It combines the vanilla loss F (x) in (1) and a dynamic regularization λk

2 ‖x‖
2
sk

which induces
the decoupled weight decay and often improves the generalization performance in practice. For

14

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Win2-accelerated Adam (λk=0), Fk(x) degenerates to the vanilla loss F (x). For the reasons why
our analysis on Win2-accelerated AdamW involves a dynamic loss Fk(x), please refer to the detailed
discussion in Sec. 3.3. In the following, we will analyze AdamW, Adam, LAMB and SGD in turn.
Convergence Analysis of Win2-accelerated Adam and AdamW. Based on Assumptions 1 and 2
in Sec. 3.3, we are ready to provide the theoretical results of Win2-accelerated Adam and AdamW in
Theorem 4 whose proof can be found in Appendix E.1.

Theorem 4 Suppose that Assumptions 1 and 2 hold, x?∈argminx F (x), and η≤O
(

ν1.25bε2

c1.5(γ1.5y +γ1.5z)σ2L

)
.

Let ηxk = η, ηyk = γyη, η
z
k = γzη, γz > γy > 1, β1 ≤ O

(
ν0.5bε2

cσ2

)
, β2 ∈ (0, 1), c = (c2

∞ + ν)0.5,

λk = λ(1 − β2c2∞
ν)k (k > 0) and λ0 = 0 with a constant λ > 0. Then after T = O

(c2.5∞ σ2L∆
ν1.25bε4

)
iterations with minibatch size b and ∆ = F (x0)−F (x?), the sequence {(xk,yk, zk)}Tk=0 generated
by Win2-accelerated AdamW and Adam in Algorithm 2 satisfies the following four properties.
a) The gradient∇Fk(xk) of the sequence {xk}Tk=0 can be upper bounded by

1

T

∑T−1

k=0
E
[
‖∇Fk(xk)‖22 +

1

4
‖mk + λkxk � sk‖22

]
≤ε2.

b) The gradient moment mk can well estimate the full gradient∇F (xk) and ∇F (zk):

1

T

∑T−1

k=0
max

{
E‖mk −∇F (xk)‖22 ,E‖mk −∇F (zk)‖22

}
≤16ε2 +

8(γ3
y + γ3

z)η2

ν2
ε2.

c) The sequence {(xk,yk, zk)} satisfies

1

T

∑T−1

k=0

{
E‖xk−xk+1‖2sk ,E‖yk−xk‖

2
2,E‖zk−xk‖

2
2

}
≤

{
4η2γ2

yε
2, 4ηγ2

yε
2,

8(γ3
y + γ3

z)η2

ν2
ε2

}
.

d) The total stochastic gradient complexity to achieve the above three properties is O
(c2.52 σ2L∆

ν1.25ε4

)
.

By inspecting Theorem 4, one can observe that on the nonconvex problem, Win2-accelerated
AdamW and Adam in Algorithm 2 can converge. Specifically, as shown in Theorem 4 a), with at most
T =O

(c2.5∞ ∆σ2L
ν1.25bε4

)
iterations, one can bound the average gradient 1

T

∑T−1
k=0 E

[
‖∇Fk(xk)‖22

]
≤ ε2.

Theorem 1 b) indicates that the gradient moment mk is very close to the full gradient ∇F (zk)
and also ∇F (xk), and thus is a good estimation to ∇F (zk) and ∇F (xk) used in Eqn. (13)–(15).
Theorem 1 c) shows that the three sequences xk, yk and zk can converge to each other even
though they use different stepsizes, guaranteeing the good convergence behavior of Win2-accelerated
AdamW and Adam. All these convergence properties are very similar to Win-accelerated AdamW
and Adam.

To find an ε-approximate first-order stationary point, Theorem 1 d) shows that stochastic gradient
complexity of Win2-accelerated Adam and AdamW is at the order of O

(c2.5∞ σ2L
ν1.25ε4

)
which accords

with the lower bound Ω(1
ε4

) in (Arjevani et al., 2022, 2020) (up to constant factors). By comparing
Theorem 1 and 4, one can observe that Win2-accelerated Adam and AdamW share the same
complexity O

(c2.5∞ σ2L
ν1.25ε4

)
with Win-accelerated Adam and AdamW, but achieves faster empirical

convergence speed on deep network training tasks as shown in Sec. 5. Accordingly, like Win-
accelerated Adam and AdamW, Win2-accelerated Adam and AdamW also reveal superior complexity
to previous network optimizers, including Adam-type optimizers (e.g., Adam, AdaGrad, AdaBound),
Adabelief and RMSProp. Please see the detailed comparison in Sec. 3.3.

15

ZHOU, XIE, LIN, TOH, AND YAN

Convergence Analysis of Win2-accelerated LAMB. Here we also define the scaling factor αk =
‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

for the analysis of Win2-accelerated LAMB. Theorem 5 summarizes the main
convergence results of Win2-accelerated LAMB. See its proof in Appendix E.3.

Theorem 5 Suppose that Assumptions 1 and 2 hold, x?∈argminx F (x), 0 < αs ≤ αk ≤ αl, and
η ≤O

(
ν1.25bε2

αlc1.5(γ1.5y +γ1.5z)σ2L

)
. Let ηxk = η, ηyk = γyη

x
k , η

z
k = γzη

x
k , γz > γy > 1, β1 ≤O

(
αsν0.5bε2

αlcσ2

)
,

β2 ∈ (0, 1), c = (c2
∞ + ν)0.5, λk = λ(1− β2c2∞

ν)k (k > 0) and λ0 = 0 with a constant λ > 0. Then

after T = O
(αlc2.5∞ σ2L∆
αsν1.25bε4

)
iterations with minibatch size b and ∆ = F (x0)− F (x?), the sequence

{(xk,yk, zk)}Tk=0 generated by Win2-accelerated LAMB in Algorithm 2 satisfies the following four
properties.
a) The gradient∇Fk(xk) of the sequence {xk}Tk=0 can be upper bounded by

1

T

∑T−1

k=0
E
[
‖∇Fk(xk)‖22 +

1

4αsαl
‖mk + λkxk � sk‖22

]
≤ε2.

b) The gradient moment mk can well estimate the full gradient∇F (xk) and ∇F (zk):

1

T

∑T−1

k=0
max

{
E‖mk −∇F (xk)‖22 ,E‖mk −∇F (zk)‖22

}
≤ 20αl

αs
ε2 +

8αsαl(γ
3
y + γ3

z)η2

c2
1

ε2.

c) The sequence {(xk,yk, zk)} satisfies

1

T

∑T−1

k=0

{
E‖xk−xk+1‖2sk ,E‖yk−xk‖

2
2,E‖zk−xk‖

2
2

}
≤4αsαl ·

{
η2ε2, ηγ2

yε
2,

2(γ3
y + γ3

z)η2

ν2
ε2

}
.

d) The total stochastic gradient complexity to achieve the above three properties is O
(
αlc

2.5
2 σ2L∆

αsν1.25ε4

)
.

Theorem 5 shows the convergence of Win2-accelerated LAMB optimizer. Specifically, it proves
that the average gradient 1

T

∑T−1
k=0 E

[
‖∇Fk(xk)‖22

]
can be bounded by ε2, and the moment mk is

very close to the full gradient ∇F (xk) and ∇F (zk). Furthermore, it also reveals the small distance
between the three sequences xk, yk and zk. For the stochastic gradient complexity to compute an
ε-approximate first-order stationary point, Win2-accelerated LAMB shares the same complexity of
O
(c2.5∞
ε4

)
with Win-accelerated LAMB, but reveals faster empirical convergence speed and better

performance as shown in Sec. 5. In this way, Win2-accelerated LAMB has also lower complexity
than vanilla LAMB optimizer whose complexity is O

(
c∞d2.5

ε4

)
, and makes an improvement by a

factor of O
(
d2.5

c1.5∞

)
which is indeed large for modern over-parameterized networks. All these results

are similar and also consistent with the results in Theorem 2.
Convergence Analysis of Win2-accelerated SGD. Now we discuss the convergence performance
of Win-accelerated SGD in Theorem 6, whose proof is given in Appendix D.3.

Theorem 6 Suppose that Assumptions 1 and 2 hold, and x? ∈ argminx F (x). Assume η ≤
O
(

ν1.25bε2

c1.5(γ1.5y +γ1.5z)σ2L

)
. Let ηxk = η, ηyk = γyη, η

z
k = γzη, γz > γy > 1, β1 ≤O

(
ν0.5bε2

cσ2

)
, β2 ∈ (0, 1),

c = (c2
∞ + ν)0.5, λk = λ(1 − β2c2∞

ν)k (k > 0) and λ0 = 0 with a constant λ > 0. Then af-

ter T = O
(c2.5∞ σ2L∆
ν1.25bε4

)
iterations with minibatch size b and ∆ = F (x0) − F (x?), the sequence

{(xk,yk, zk)}Tk=0 generated by Win2-accelerated SGD in Algorithm 2 satisfies the four properties
in Theorem 4 with ν=c∞=c=1 and sk=1∈Rd.

From Theorem 6, one can observe that with the same hyper-parameter settings as in Theorem 4,
the sequence {(xk,yk, zk)}Tk=0 generated by Win2-accelerated SGD satisfies the four properties in

16

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Table 1: ImageNet top-1 accuracy (%) of ResNet18. ∗, † and ‡ are respectively reported in (Chen
et al., 2021), (Zhuang et al., 2020) and (Liu et al., 2019).

AdaBound 68.1∗ Radam 67.7∗
Yogi 68.2∗ Padam 70.1∗

Nadam 68.8 AdaBelief 70.1†
SGD-H 67.3 Yogi 68.2∗

SGD-N 70.2∗ Adam 66.5‡
SGD-Win 70.7+0.5 Adam-Win 69.3+2.8

SGD-Win2 70.8+0.6 Adam-Win2 69.9+3.4

AdamW 67.9∗ LAMB 68.5
AdamW-Win 71.0+3.1 LAMB-Win 71.1+2.6

AdamW-Win2 71.2+3.3 LAMB-Win2 71.3+2.8

Theorem 4 with ν = c∞ = c = 1 and sk = 1. In this way, the complexity of Win2-accelerated SGD
is O(Lσ

2

ε4
), and accords with the lower bound Ω(1

ε4
) in (Arjevani et al., 2022, 2020) (up to constant

factors) under Assumptions 1 and 2. This also shows the efficiency of Win2-accelerated SGD.

5. Experiments

Here we evaluate our accelerated algorithms on three representative tasks, including vision classifi-
cation tasks, instance segmentation tasks, and natural language modeling tasks. For classification
tasks, we conduct experiments using Convolutional Neural Networks (CNNs) such as ResNet (He
et al., 2016), as well as Vision Transformers (ViTs), including ViT (Dosovitskiy et al., 2021) and
PoolFormer (Yu et al., 2022a,b). Regarding instance segmentation, Mask R-CNN (He et al., 2017)
with Swin transformer (Liu et al., 2021) as backbone is used for evaluation. For language modeling
tasks, we employ LSTM (Hochreiter and Schmidhuber, 1997) and Transformer-XL (Dai et al., 2019)
for evaluation. Moreover, we also compare Win and Nesterov in Sec. 5.4.

For clarity, we call our accelerated algorithm “X-Win” or “X-Win2” , where “X” denotes vanilla
optimizers, e.g., Adam. For Win2, it always uses three updating steps as shown in Algorithm 2,
because of its good trade-off performance and GPU memory cost (see the experiments in Sec. 5.4).
In all experiments, we do not change model architectures and data augmentations, and only re-
place the default optimizer with ours. Moreover, for all experiments, our accelerated algorithms,
e.g., AdamW-Win and AdamW-Win2, always use the default optimizer-inherent hyper-parameters of
the vanilla optimizers, e.g., first- and second-order moment parameters β1 and β2 in AdamW; and
their aggressive steps ηyk and ηzk always satisfies ηyk =2ηxk and ηzk=8ηxk . These settings well reduce
the parameter-tuning cost of our algorithms. In the experiments, same with other optimizers, we
only slightly tune other widely tuned hyper-parameters around the default ones used in the vanilla
optimizers, e.g., stepsize and warm-up epochs. This is reasonable, as our accelerated algorithms
have two or three stepsizes, while vanilla optimizers often have a single step size which may not be
suitable for ours.

5.1 Results on Vision Classification Tasks

Results on ResNet18. Here we follow the conventional supervised training setting commonly used
in ResNets (He et al., 2016) and evaluate our accelerated algorithms on the ImageNet dataset (Fei-Fei,
2009). We defer the hyper-parameter settings of the four accelerated algorithms in Table 1 into
Appendix A.

17

ZHOU, XIE, LIN, TOH, AND YAN

Table 2: ImageNet top-1 accuracy (%) of ResNet50&101 whose official optimizer is LAMB due to
the stronger data augmentation for better performance. ∗ is reported in (Wightman et al., 2021).

ResNet50 ResNet101
Epoch 100 200 300 average 100 200 300 average

SAM 77.3 78.7 79.4 78.5 79.5 81.1 81.6 80.7
SGD-H 75.3 76.9 77.2 76.5 77.7 78.6 78.8 78.4

SGD-N 77.0 78.6 79.3 78.3 79.3 81.0 81.4 80.6
SGD-Win 78.0 79.2 79.7 79.0+0.7 80.1 81.2 81.6 81.0+0.4

SGD-Win2 78.1 79.3 79.8 79.1+0.8 80.3 81.4 81.8 81.2+0.6

Adam 76.9 78.4 78.8 78.1 78.4 80.2 80.6 79.7
Adam-Win 77.4 78.8 79.3 78.5+0.4 79.2 80.6 81.0 80.3+0.6

Adam-Win2 77.7 79.1 79.4 78.8+0.6 79.2 80.6 81.3 80.4+0.7

AdamW 77.0 78.9 79.3 78.4 78.9 79.9 80.4 79.7
AdamW-Win 78.0 79.3 79.9 79.1+0.7 80.2 81.1 81.3 80.9+1.2

AdamW-Win2 78.2 79.5 79.9 79.2+0.8 80.4 81.4 81.7 81.2+1.5

LAMB 77.0 79.2 79.8∗ 78.7 79.4 81.1 81.3∗ 80.6
LAMB-Win 78.4 79.7 80.1 79.4+0.7 80.6 81.5 81.7 81.3+0.7

LAMB-Win2 78.6 79.7 80.2 79.5+0.8 80.6 81.6 81.9 81.4+0.8

From the results in Table 1, one can observe that our Win- and Win2-accelerated algorithms can
improve the corresponding non-accelerated versions by a remarkable margin. For instance, AdamW-
Win, Adam-Win and LAMB-Win respectively make 3.1%, 2.8% and 2.6% improvement over their
corresponding non-accelerated counterparts, AdamW, Adam and LAMB. Moreover, AdamW-Win2,
Adam-Win2 and LAMB-Win2 make more improvements, and respectively improve the corresponding
vanilla optimizers by 3.3%, 3.4% and 2.8% in accuracy. For SGD optimizer, SGD-Win improves
SGD-H (i.e. SGD + heavy ball) by 3.4%, and also surpasses SGD-N (Nesterov-accelerated SGD
in Sec. 3.2) by 0.5%, thus validating the superiority of our Win acceleration. SGD-Win2 also
outperforms SGD-H by 3.5% and SGD-N by 0.6%.

Notably, our Win2- and Win-accelerated algorithms, i.e. SGD-Win2, AdamW-Win2 and LAMB-
Win2, beat several other optimizers, e.g., AdaBound, Radam (Liu et al., 2019), Nadam (Dozat, 2016),
Padam (Chen et al., 2021), AdaBelief, in which Nadam uses vanilla Nesterov acceleration in Adam
to estimate its first-order gradient moment. Actually, LAMB-Win2 sets a new SoTA top-1 accuracy
of 71.3% on ResNet18. All these results show the strong compatibility and superiority of our Win-
and Win2-acceleration in adaptive algorithms.

Results on ResNet50 & 101. Here we adopt the training setting in (Wightman et al., 2021) to train
ResNet50 and ResNet101, because this setting uses stronger data augmentation and largely improves
CNNs’ performance. Specifically, this setting uses not only the conventional augmentations in (He
et al., 2016), e.g., random crop and horizontal flipping, but also other advanced augmentations,
e.g., RandAugment (Cubuk et al., 2020); see the augmentation details and our algorithmic hyper-
parameter settings in Appendix A. Here LAMB is the default optimizer because of its higher
performance than other optimizers caused by the stronger augmentations (Wightman et al., 2021).
All optimizers in Table 2 are under this setting.

Table 2 reports the top-1 accuracy of the compared optimizers on ImageNet. By comparison,
one can observe that our accelerated algorithms consistently outperform their corresponding non-
accelerated version. For example, across the three training epoch settings on ResNet50 / ResNet101,
LAMB-Win and LAMB-Win2 always achieve remarkable improvement over the official optimizer

18

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Table 3: ImageNet top-1 accuracy (%) of ViT and PoolFormer whose default optimizers are both
AdamW. ∗ and � are respectively reported in (Touvron et al., 2021) and (Yu et al., 2022a).

ViT-S ViT-B PoolFormer-S12
Epoch 150 300 average 150 300 average 150 300 average

SGD-N 77.4 79.4 78.4 79.6 80.0 79.8 69.7 74.3 72.0
SGD-Win 78.1 80.1 79.1+0.7 80.4 80.8 80.6+0.8 71.1 74.5 72.8+0.8

SGD-Win2 78.2 80.3 79.3+0.9 80.6 81.4 81.0+1.2 71.4 74.7 73.1+1.1

Adam 77.3 79.3 78.3 79.0 79.7 79.4 74.3 76.3 75.3
Adam-Win 78.6 80.2 79.4+1.1 80.0 80.5 80.3+0.9 75.6 77.1 76.4+1.1

Adam-Win2 79.1 80.6 79.9+1.6 80.6 81.1 80.9+1.5 76.2 77.6 76.9+1.6

AdamW 78.3 79.8∗ 79.1 79.5 81.8∗ 80.7 75.2 77.1∗ 76.2
AdamW-Win 79.3 81.0 80.2+1.1 81.0 82.3 81.7+1.0 76.7 77.6 77.2+1.0

AdamW-Win2 79.5 81.4 80.5+1.4 81.1 82.6 81.9+1.2 77.0 78.3 77.7+1.5

LAMB 78.0 79.6 78.8 80.3 80.8 80.6 75.4 77.4 76.4
LAMB-Win 79.3 80.6 80.0+1.2 81.0 81.4 81.2+0.6 76.7 78.0 77.4+1.0

LAMB-Win2 79.4 81.0 80.2+1.4 81.3 81.9 81.6+1.0 77.3 78.4 77.9+1.5

LAMB for this training recipe. Specifically, LAMB-Win makes 0.7% average improvement over
LAMB on both ResNet50 / ResNet101. For AdamW-Win and Adam-Win, they also respectively
improve their vanilla counterparts by 0.7% and 0.4% on ResNet50, 1.2% and 0.6% on ResNet101.
SGD-Win also makes 2.5% and 0.7% overall improvement over heavy-ball accelerated SGD (SGD-H)
and Nesterov accelerated SGD (SGD-N) on ResNet50, and also has similar advantage on ResNet101.
Besides, Win2-accelerated optimizers show further improvement as demonstrated by the overall
0.8%, 0.8%, 0.6%, and 0.8% improvement of LAMB-Win2, AdamW-Win2, Adam-Win2 and SGD-
Win2 over their corresponding vanilla counterparts on ResNet50. For ResNet101. One can also
observe very similar improvement of Win2-accelerated optimizers.

The above improvements achieved by Win and Win2 are not trivial because of the following two
reasons. 1) Since the performance is already high and may approach the model limit, it is already
very hard to make large improvement. This is testified by the fact that in (Wightman et al., 2021),
using LAMB to train ResNet50 for 600 epochs only gives 80.4% top-1 accuracy. In contrast, our
accelerated LAMB-Win uses 300 epochs (half training cost) to achieve 80.2%. 2) By comparing the
previous optimizers, including SAM, SGD-N, Adam, AdamW and LAMB, one can observe smaller
accuracy gap (≤ 0.2%) between the best optimizer and the runner-up. For example, on ResNet101,
the SoTA optimizer, i.e. SAM, only makes 0.1% average improvement over the runner-up LAMB.
All these comparisons show the non-travail improvement of our accelerated algorithms over their
corresponding counterparts.

Results on ViTs. We follow the widely used official training setting of ViTs (Touvron et al., 2021;
Yu et al., 2022a). To evaluate the performance of our accelerated algorithms, we select two popular
and representative ViT architures, including ViT (Dosovitskiy et al., 2021) and PoolFormer (Yu et al.,
2022a) whose official optimziers are both AdamW. We refere the reader to the training setting and
our hyper-parameter settings in Appendix A.

We test our accelerated algorithms under different model sizes and different training epochs,
and report the results in Table 3. One can find that since AdamW and LAMB use the decoupled
weight decay, they often enjoy better performance than SGD and Adam, which is also observed
in other works, e.g., (Xiao et al., 2021; Nado et al., 2021). Moreover, under different training
settings, our accelerated algorithms consistently outperform the corresponding non-accelerated

19

ZHOU, XIE, LIN, TOH, AND YAN

0 30 60 90
Training Epochs

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s SGD on ResNet18
SGD-N train loss
SGD-Win train loss
SGD-Win2 train loss
SGD-N test loss
SGD-Win test loss
SGD-Win2 test loss

0 30 60 90
Training Epochs

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s Adam on ResNet18
Adam train loss
Adam-Win train loss
Adam-Win2 train loss
Adam test loss
Adam-Win test loss
Adam-Win2 test loss

0 30 60 90
Training Epochs

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s AdamW on ResNet18
AdamW train loss
AdamW-Win train loss
AdamW-Win2 train loss
AdamW test loss
AdamW-Win test loss
AdamW-Win2 test loss

0 30 60 90
Training Epochs

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s LAMB on ResNet18
LAMB train loss
LAMB-Win train loss
LAMB-Win2 train loss
LAMB test loss
LAMB-Win test loss
LAMB-Win2 test loss

0 50 100 150
Training Epochs

1

2

3

4

5

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s SGD on ViT-B
SGD-N train loss
SGD-Win train loss
SGD-Win2 train loss
SGD-N test loss
SGD-Win test loss
SGD-Win2 test loss

0 50 100 150
Training Epochs

1

2

3

4

5

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s Adam on ViT-B
Adam train loss
Adam-Win train loss
Adam-Win2 train loss
Adam test loss
Adam-Win test loss
Adam-Win2 test loss

0 50 100 150
Training Epochs

1

2

3

4

5

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s AdamW on ViT-B
AdamW train loss
AdamW-Win train loss
AdamW-Win2 train loss
AdamW test loss
AdamW-Win test loss
AdamW-Win2 test loss

0 50 100 150
Training Epochs

1

2

3

4

5

Tr
ai

ni
ng

 a
nd

 T
es

t L
os

s LAMB on ViT-B
LAMB train loss
LAMB-Win train loss
LAMB-Win2 train loss
LAMB test loss
LAMB-Win test loss
LAMB-Win2 test loss

Figure 1: Visualization of training and test losses on ImageNet. In all figures, training loss is larger
than test one, as training data use random augmentations, e.g., random crop and clip, while test data
only adopt the centralization crop which eases the recognition difficulty and thus has small loss.

20

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

counterparts. Specifically, compared with the default AdamW optimizer on both ViT and PoolFormer,
our accelerated AdamW-Win respectively makes about 1.1%, 1.0%, 1.0% average improvement
under the two training epoch settings on ViT-S, ViT-B and PoolFormer-S12. For Adam-Win and
LAMB-Win, one can also observe their remarkable improvements on the three ViT backbones.
Moreover, our accelerated SGD-Win also outperforms the Nesterov-accelerated SGD denoted as
“SGD-N” by non-trivial margins under all settings.

For Win2-accelerated optimizers, they can further improve the vanilla optimizers and also Win-
accelerated optimizers. Specially, compared with vanilla AdamW, AdamW-Win2 also respectively
brings overall 1.4%, 1.2%, 1.5% accuracy improvement on ViT-S, ViT-B and PoolFormer-S12. For
Adam-Win2, it also improves vanilla Adam by 1.6%, 1.5%, 1.6% on the three models. Indeed, from
the results in Table 3, one can also observe very consistent improvement made by LAMB-Win2 and
SGD-Win2 on the ViT and PoolFormer models. All these results are consistent with the observations
on ResNets, and they together demonstrate the advantage of our accelerated optimizers for deep
network training.

Results Analysis. Here we investigate the convergence behaviors of our accelerated algorithms, and
aim to explain their better test performance over their non-accelerated counterparts. In Fig. 1, we
plot the curves of training and test losses along with the training epochs on ResNet18 and ViT-B.
One can find that our accelerated algorithms, including Win- and Win2-accelerated optimizers, show
much faster convergence behaviors than their non-accelerated counterparts, e.g., AdamW. Moreover,
Win2 also outperforms Win in terms of convergence speed, especially on the training loss. Besides,
SGD-Win and SGD-Win2 also converge faster than Nesterove-accelerated SGD, i.e. SGD-N. So
these faster convergence behaviors could contribute to our accelerated algorithms for their higher
performance over non-accelerated counterparts under the same computational cost.

5.2 Results on Instance Segmentation

Here we evaluate our Win- and Win2-accelerated algorithms on the instance segmentation task which
consists of 1) bounding box detection to detect the whole object and also 2) mask segmentation to
segment the object in the bounding box. In this sense, instance segmentation indeed includes object
detection and also segmentation tasks. For evaluation, we employ the widely used large-scale COCO
dataset (Lin et al., 2014) for evaluation and adopt Mask R-CNN (He et al., 2017) framework with the
Swin transformer (Liu et al., 2021) as the backbone. For fairness, we adopt the setting in MMdection
to test all the optimizers and train the models for 12 epochs. The official optimizer is AdamW whose
results are quoted from MMdection (Chen et al., 2019).

Table 4 reports the box Average Precision (APb) and mask AP (APm) to respectively evaluate the
performance of the bounding box detection sub-task and mask segmentation sub-task in the instance
segmentation task. By comparison, one can observe that both Win- and Win2-accelerated optimizers
can improve vanilla optimizers. Specially, on the official AdamW optimizer, AdamW-Win surpasses
it by 0.2 average APb and 0.1 average APm, and AdamW-Win2 also makes 0.3 average APb and 0.2
average APm. For SGD-N, SGD-Win improves it by 0.8 average APb and 0.5 average APm, and
SGD-Win2 brings 1.1% APb and 0.7% APm improvement on average. One can also observe very
consistent improvement made by Win and Win2 on both Adam and LAMB.

21

ZHOU, XIE, LIN, TOH, AND YAN

Table 4: Instance segmentation box/mask-AP (↑) of Swin-based Mask-RCNN (He et al., 2017) on
COCO (Lin et al., 2014) dataset, where AdamW is the official optimizer. ∗ is from (Chen et al.,
2019).

Object Bounding Box Detection Object Mask Segmentation
APb APb

50 APb
75 average APm APm

50 APm
75 average

SGD-N 41.4 63.9 44.6 50.0 38.1 60.8 40.9 46.6
SGD-Win 42.1 64.2 46.0 50.8+0.8 38.7 61.2 41.5 47.1+0.5

SGD-Win2 42.3 64.6 46.4 51.1+1.1 38.8 61.5 41.7 47.3+0.7

Adam 42.4 64.6 46.2 51.1 39.1 61.6 42.0 47.5
Adam-Win 42.9 65.2 47.0 51.7+0.6 39.4 61.9 42.3 47.9+0.4

Adam-Win2 43.0 65.3 47.1 51.8+0.7 39.4 62.2 42.4 48.0+0.5

AdamW 42.7∗ 65.2∗ 46.8∗ 51.5 39.3∗ 62.2∗ 42.2∗ 47.9
AdamW-Win 42.8 65.4 46.8 51.7+0.2 39.5 62.2 42.2 48.0+0.1

AdamW-Win2 43.0 65.5 47.1 51.8+0.3 39.5 62.5 42.4 48.1+0.2

LAMB 42.5 64.9 46.3 51.2 39.1 61.7 41.9 47.5
LAMB-Win 42.7 65.0 46.7 51.5+0.3 39.3 61.8 42.4 47.8+0.3

LAMB-Win2 42.8 65.1 46.7 51.5+0.3 39.4 62.2 42.4 48.0+0.5

Table 5: Test perplexity (↓) of LSTM on Penn Treebank. ∗ is reported by AdaBelief (Zhuang et al.,
2020).

AdaBound 63.6∗ Radam 70.0∗
Yogi 67.5∗ AdaBelief 61.2∗
fromage 68.0∗ MSVAG 65.3∗
SGD-H 67.4 Padam 63.2∗

SGD-N 63.8∗ Adam 64.3∗
SGD-Win 61.6+2.2 Adam-Win 62.7+1.6

SGD-Win2 61.0+2.8 Adam-Win2 61.8+2.5

AdamW 67.0∗ LAMB 66.8
AdamW-Win 66.5+0.5 LAMB-Win 66.2+0.6

AdamW-Win2 64.4+1.6 LAMB-Win2 64.1+1.7

5.3 Results on Natural Language Modeling Tasks

Results on LSTM. We follow AdaBelief to test our accelerated algorithms via training three-layered
LSTM (Hochreiter and Schmidhuber, 1997) on the Penn TreeBank dataset (Marcinkiewicz, 1994)
for 200 epochs. See optimization and training details in Appendix A. From Table 5, one can
observe that our Win-accelerated optimizers consistently surpass the corresponding non-accelerated
counterparts, and actually bring 1.2 overall average perplexity improvement over the four non-
accelerated counterparts. Win2-accelerated algorithms further improves Win, and respectively makes
2.8, 2.5, 1.6 and 1.7 on the four corresponding vanilla optimizers.

Results on Transformer-XL. We adopt a widely used language sequence model, i.e. Transformer-
XL (Dai et al., 2019), to further evaluate the performance of our accelerated algorithms. Since 1)

Table 6: Test PPL (↑) of Transformer-XL-base on WikiText-103 where Adam is the official optimizer.
* is reported in the official implementation.

Transformer-XL
Training Steps

50k 100k 200k average
Adam 28.5 25.5 24.2∗ 26.7

Adam-Win 26.7 25.0 24.0 25.2+1.5

Adam-Win2 26.4 24.9 23.8 25.0+1.7

22

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Table 7: ImageNet top-1 accuracy (%) on ResNet18 (left) and ResNet50 (right).

SGD-H 67.3 Adam 66.5
SGD-N 70.2+2.9 Adam-N 68.8+2.3

SGD-Win 70.7+3.4 Adam-Win 69.3+2.8

SGD-Win2 70.8+3.5 Adam-Win2 69.9+3.4

AdamW 67.9 LAMB 68.5
AdamW-N 69.3+1.4 LAMB-N 69.7+1.2

AdamW-Win 71.0+3.1 LAMB-Win 71.1+2.6

AdamW-Win2 71.2+3.3 LAMB-Win2 71.3+2.8

SGD-H 75.3 Adam 76.9
SGD-N 77.0+1.7 Adam-N 77.0+0.1

SGD-Win 78.0+2.7 Adam-Win 77.4+0.5

SGD-Win2 78.1+2.8 Adam-Win2 77.7+0.8

AdamW 77.0 LAMB 77.0
AdamW-N 78.4+0.4 LAMB-N 77.5+0.5

AdamW-Win 78.0+1.0 LAMB-Win 78.4+1.4

AdamW-Win2 78.2+1.2 LAMB-Win2 78.6+1.6

Adam is the most popular and used optimizer in NLP models, including Transformer-XL, and 2)
our limited resource cannot well tune the hyper-parameters of other optimizers in Sec. 5.1, we take
Adam as an example to show the superiority of our accelerated algorithms. Follow the official setting
of Transformer-XL-base, we use Adam-Win and Adam-Win2 with the default hyper-parameters of
Adam on the WikiText-103 dataset. See more details in Appendix A.

Table 6 shows that under different training steps, our accelerated Adam-Win and Adam-Win2
always achieve lower test PPL than the official Adam optimizer. Specifically, Adam-Win and Adam-
Win2 respectively improve 1.5 and 1.7 average test PPL over the official Adam optimizer on the
three test cases. All these results are consistent with observations on vision tasks, and they together
demonstrate the advantages of our accelerated algorithms.

5.4 Ablation Study

Comparison with Nesterov acceleration. Here we empirically compare Nesterov acceleration
with our Win and Win2. Regarding Nesterov acceleration, NAdam (Dozat, 2016) introduces it
into Adam for acceleration. So we follow Nadam to implement Nesterov-accelerated AdamW and
LAMB. For Nesterov-accelerated SGD, we use the one implemented in PyTorch. For brevity, we
call Nesterov-accelerated optimizer “X-N”, where “X” denotes the vanilla optimizer, e.g., SGD and
Adam. Note, Adam-N denotes the vanilla NAdam. Then we use the same settings in Sec 5.1 to train
ResNet18 for 90 epochs and ResNet50 for 100 epochs, and evaluate them on the ImageNet dataset.

Table 7 reports the classification results. One can observe that for SGD, Adam, AdamW and
LAMB, Win- and Win2-accelerated optimizers still achieve higher classification accuracy than the
corresponding Nesterov accelerated counterparts on both ResNet18 and ResNet50. This shows the
superiority of our Win and Win2 acceleration on the deep network training tasks.
Robustness Analysis. Compared with the vanilla optimizer, Win-accelerated algorithm only in-
troduces the only extra hyper-parameter ηyk , and Win2-accelerated optimizer adds two extra hyper-
parameter ηyk and ηzk. Now we investigate the robustness of Win- and Win2-accelerated algorithms to
these hyper-parameters. For convenience, in all experiments, Win-accelerated algorithms always
set ηyk = γ1η

x
k , where γ1 = 2. Here we first investigate the effects of γ1 to Win-accelerated algo-

rithms on ResNet50 by taking AdamW-Win and LAMB-Win as examples because of their superior
performance. We train both AdamW-Win and LAMB-Win for 100 epochs. Table 8 shows the
stable performance of AdamW-Win and LAMB-Win when tuning γ1 in a relatively large range, thus
validating their robustness to the hyper-parameter γ1.

Then we investigate Win2-accelerated optimizers which always uses ηyk =γ1η
x
k and ηzk=γ2η

x
k in

all experiments. For convenience, we fix γ1 = 2 and then investigate the effects of hyper-parameter
γ2 to the performance. From Table 8, one can observe that even though γ2 varies in a relatively

23

ZHOU, XIE, LIN, TOH, AND YAN

Table 8: Effects of γ1 and γ2 to top-1 accuracy (%) of Win- and Win2-accelerated AdamW and
LAMB on ResNet50.

γ1 1.5 2 3 4 6 8 γ2 4 6 8 10 12
AdamW-Win 77.9 78.0 78.0 77.9 78.1 78.0 AdamW-Win2 78.1 78.2 78.2 78.2 78.1
LAMB-Win 78.3 78.4 78.4 78.4 78.5 78.3 LAMB-Win2 78.6 78.7 78.6 78.5 78.4

Table 9: Effects of the updating step number q to top-1 accuracy (%), GPU peak memory cost (M)
and also running time (minute) per epochs of Win2-accelerated AdamW and LAMB on ResNet18.
Note, q = 1 corresponds to the vanilla optimizer, and q = 2 denotes the Win-accelerated optimizer.

AdamW-Win2 LAMB-Win2

q 1 2 3 4 5 6 1 2 3 4 5 6
Accuracy (%) 67.9 71.0 71.2 71.3 71.3 71.0 68.5 71.1 71.3 71.4 71.2 71.1

Peak Memory (M) 7880 7978 8094 8288 8478 8588 7882 7980 8080 8252 8564 8808
Running Time

6.64 6.78 6.87 7.02 7.20 7.42 6.82 6.90 7.07 7.23 7.34 7.58per Epoch (minute)

large range, AdamW-Win2 and LAMB-Win2 are always stable, and reveals strong robustness to
hyper-parameter γ2.

Analysis on Multiple Updates in Win2. In Sec. 4.1, we already develop a more general Win
acceleration, Win2 for short, which extends the parameter update from two steps in Win to q updating
steps for brevity (q ≥ 3). Here we investigate the effects of the updating step number q in Win2
to 1) final performance (after training) and 2) GPU memory and running time (minute) per epochs
(during training). We use both AdamW-Win and LAMB-Win to train ResNet18 for 90 epochs with
minibatch size 512 on two A100 GPUs. For q = 1, the optimizer denotes the vanilla AdamW or
LAMB optimizer and its stepsize is η(1)

k . When q = 2, it corresponds to Win-accelerated AdamW
or LAMB which uses the aggressive stepsize η(2)

k = 2η
(1)
k . For Win2 with three updating steps

(q = 3), we set η(2)
k = 2η

(1)
k , η(3)

k = 8η
(1)
k . When q = 4, 5 and 6, we use η(2)

k = 2η
(1)
k , η(3)

k = 4η
(1)
k ,

η
(4)
k = 8η

(1)
k , η(5)

k = 10η
(1)
k , and η(6)

k = 12η
(1)
k for brevity.

Table 9 reports the empirical results for which we have several important observations. Firstly,
in most cases, large q (e.g., q ≥ 4) actually does not bring significant improvement in terms of
classification accuracy, but indeed results in more extra memory cost during training. This is because
for Win2 with three updating steps (q = 3), it already uses very aggressive stepsizes in practice,
e.g., η(2)

k = 2η
(1)
k , η(3)

k = 8η
(1)
k in all our experiments. In this way, even though the updating

step number q becomes larger, e.g., q ≥ 4, it is already hard to use more aggressive stepsize
η

(q)
k = aη

(1)
k (a > 8) while enjoying very stable training. This is the key reason why we often use

Win2 with three updating steps (q = 3) in our experiments.

Secondly, from Table 9, one can find that Win (i.e. q = 1) and Win2 (i.e. q = 2) actually do not
bring much extra memory cost and also computational ahead. For example, compared with vanilla
AdamW, AdamW-Win brings extra 1.2% memory cost and also extra 2% computational ahead for
each epoch. Similarly, AdamW-Win2 also only brings extra 2.7% memory cost and extra 3.4%
computational ahead. One can also observe similar comparison results between accelerated LAMB
and vanilla LAMB. Since Win and Win2 respectively introduce one and two simple and efficient
algorithmic steps on vanilla optimizers, e.g., the eighth step in Algorithm 1, they bring negligible
extra computational overhead into the vanilla optimizers. Regarding the memory cost, in network
training, one needs to store all temperate variables (e.g., activation states) and feature maps for

24

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

back-propagation which often use much more GPU memory than the model parameters introduced
by Win and Win2. This explains why Win and Win2 only bring very small extra memory cost.

6. Conclusion

In this work, we adopt the proximal point method to derive a weight-decay-integrated Nesterov
acceleration for AdamW and Adam, and extend it to LAMB and SGD. Moreover, we prove the
convergence of our accelerated algorithms, i.e. accelerated AdamW, Adam and SGD, and observe
the superiority of the accelerated Adam-type algorithm over the vanilla ones in terms of stochastic
gradient complexity. Finally, experimental results validate the advantages of our accelerated algo-
rithms. We hope that Win could become a default acceleration option for all popular optimizers in
the deep learning community to improve the training efficiency.

Acknowledgements

Pan Zhou was supported by the Singapore Ministry of Education (MOE) Academic Research Fund
(AcRF) Tier 1 grant. Zhouchen Lin was supported by the NSF China (No. 62276004) and the
major key project of PCL, China (No. PCL2021A12). The authors sincerely thank the editor and
anonymous reviewers for their constructive comments on this work.

25

ZHOU, XIE, LIN, TOH, AND YAN

This appendix is structured as follows. Appendix A provides more experimental details, such as
hyper-parameter settings of the four accelerated algorithms and the official data augmentations. In
Appendix B, we define some necessary notations for our analysis. Then Appendix C provides some
auxiliary lemmas throughout this document. Next, Appendix D presents the proof of the convergence
results in Sec. 1, i.e., the proof of Theorems 1 in Appendix D.1, Theorems 2 in Appendix D.2, and
Theorems 3 in Appendix D.3. Similarly, Appendix E presents the proof of the convergence results in
Sec. 4, i.e., the proof of Theorems 4 in Appendix E.1, Theorems 5 in Appendix E.2, and Theorems 6
in Appendix E.3. Finally, Appendix F provides the proofs of some auxiliary lemmas in Appendix C.

Appendix A. More Experimental Details

Due to space limitation, we defer the experimental details, such as hyper-parameter settings of the
four accelerated algorithms, and their official augmentations in (He et al., 2016) and (Wightman
et al., 2021), to this section.

For Win-accelerated algorithms, including AdamW-Win, LAMB-Win, Adam-Win, and SGD-
Win, always share the default optimizer-inherent hyper-parameters of the vanilla optimizers and its
aggressive step ηyk is always 2× larger than its conservative step ηxk for all iterations, i.e. ηyk = 2ηxk .
For Win2-accelerated AdamW, Adam, SGD and LAMB, we also always set ηyk = 2ηxk and ηzk = 8ηxk .
For all Win- and Win2-accelerated optimizers, their first- and second-order moment parameters β1

and β2 are set to the default values β1 = 0.9 and β2 = 0.999 used in AdamW, LAMB and Adam.
For LAMB-Win and LAMB-Win2, their other key parameters, such as “grad averaging” and “trust
clip”, also adopt the default ones in vanilla LAMB. For SGD-Win and SGD-Win2, they use the
default momentum parameter 0.9 and set dampening parameter as 0.0 used in vanilla SGD.
Settings on ResNet18. Here we follow the conventional supervised training setting used in
ResNets (He et al., 2016) and evaluate our accelerated algorithms on ImageNet (Fei-Fei, 2009). For
data augmentation in (He et al., 2016), it uses random crop and horizontal flipping with probability
0.5. For warm-up epochs, for all four accelerated algorithms, we set it as 5.0. For base learning
rate, we respectively set it as 3× 10−3, 5× 10−3, 3× 10−3, and 1.2 for AdamW-Win, LAMB-Win,
Adam-Win and SGD-Win. Moreover, we follow the default setting and use cosine learning rate decay.
For weight decay, we respectively set it as 5× 10−2, 5× 10−2, 10−6, and 10−3 for AdamW-Win,
LAMB-Win, Adam-Win and SGD-Win. On ResNet18, all algorithms are trained for 90 epochs with
minibatch size 512 by following the conventional setting. Win2-accelerated optimizer uses the same
setting as Win on ResNet18.
Settings on ResNet50&101. For these two networks, we use “A2 training recipe” in (Wightman
et al., 2021) to train them, since this training setting uses stronger data augmentation and largely
improves CNNs’ performance. Specifically, the data augmentation in (Wightman et al., 2021) uses
random crop, horizontal flipping with probability, Mixup with parameter 0.1 (Zhang et al., 2018),
CutMix with parameter 1.0 and probability 0.5 (Yun et al., 2019), and RandAugment (Cubuk et al.,
2020) with M = 7, N = 2 and MSTD = 0.5. Moreover, it often use binary cross-entropy (BCE)
loss for training.

For both ResNet50 and ResNet101, we release the hyper-parameter settings of Win and Win2-
accelerated optimizers at our Github page 1. You can find all the training hyper-parameters, e.g., base
learning rate, learning rate decay, weight decay and warm-up epoch number, from the training
commands, and also the training logs.

1. Github project: https://github.com/sail-sg/win.

26

https://github.com/sail-sg/win

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Settings on ViT and PoolFormer. We follow the widely used official training setting of ViTs (Tou-
vron et al., 2021; Yu et al., 2022a). For this setting, data augmentation includes random crop,
horizontal flipping with probability, Mixup with parameter 0.8 (Zhang et al., 2018), CutMix with
parameter 1.0 and probability 0.5 (Yun et al., 2019), RandAugment (Cubuk et al., 2020) with
M = 9, N = 2 and MSTD = 0.5, and Random Erasing with parameter p = 0.25. For training loss,
we use cross entropy loss.

For ViT-S, ViT-B and PoolFormer, we release the hyper-parameter settings of Win and Win2-
accelerated optimizers at our Github page1. You can find all the training hyper-parameters, e.g., base
learning rate, learning rate decay, weight decay and warm-up epoch number, from the training
commands, and also the training logs.
Settings on LSTM. On LSTM, for base learning rate, we respectively set it as 1× 10−3, 1× 10−2,
1× 10−2, and 15.0 for AdamW-Win, LAMB-Win, Adam-Win and SGD-Win. For weight decay, we
set it as 2× 10−2, 5× 10−2, 1.8× 10−6 and 2× 10−5 for AdamW-Win, LAMB-Win, Adam-Win,
and SGD-Win. As for Win2, we, respectively, set the base learning rates as 2 × 10−3, 2 × 10−3,
5×10−2 and 15.0 for AdamW-Win2, LAMB-Win2, Adam-Win2, and SGD-Win2. The weight decay
is 4× 10−2, 4× 10−2, 2.0× 10−6 and 2× 10−5 for AdamW-Win2, LAMB-Win2, Adam-Win2, and
SGD-Win2. Moreover, we follow the default setting and divide the learning rate by 10 at epoch 100
and 145. We do not utilize the warmup strategy in this experiment. Following the default setting, we
set minibatch size as 20.
Settings on Transformer-XL. On Transformer-XL, for the base learning rates, we set them as
4 × 10−4 and 8 × 10−4 for Adam-Win and Adam-Win2, respectively. Moreover, we follow the
default setting and use cosine learning rate decay. For both Adam-Win and Adam-Win2, we set
weight decay as 10−6 for and set warm-up steps as 2000. Following the default setting, we set the
minibatch size as 60× 4.

Appendix B. Notations

Here we first give some important notations used in this document. For brevity, we let

sk =
√
vk + ν.

Since we have ‖mk‖∞ ≤ c∞ and ν ≤ ‖vi + ν‖∞ ≤ c2
∞ + ν in Lemma 7 (see Appendix C), for

brevity, let

c1 := ν0.5 ≤ ‖sk‖∞ ≤ c2 := (c2
∞ + ν)0.5.

For Win- and Win2-accelerated AdamW and Adam, we define

wk := mk + λkxk � sk, xk+1 − xk = −
ηxk

1 + λkη
x
k

mk + λkxk � sk
sk

= −
ηxk

1 + λkη
x
k

wk

sk
.

For Win- and Win2-accelerated LAMB, we define

wk :=αkmk + (1 + αk)λkxk � sk,

xk+1 − xk =−
ηxk

1 + λkη
x
k

αkmk + (1 + αk)λkxk � sk
sk

= −
ηxk

1 + λkη
x
k

wk

sk
.

where αk = ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

.

27

ZHOU, XIE, LIN, TOH, AND YAN

Next, we introduce an virtual sequence {y′k} into the algorithm. In this way, we can rewrite the
update steps in Algorithm 1 in the manuscript as its equivalent form (16):

gk = 1
b

∑b
i=1∇f(yk; ζi);

mk = (1− β1)mk−1 + β1gk;

vk = (1− β2)vk−1 + β2g
2
k;

xk+1 = 1
1+λkη

x
k

(xk − ηxkuk)
y′k+1 = zk − ηykuk
yk+1 =

ξyk
ξxk+ξyk+λk

y′k+1 +
ξxk

ξxk+ξyk+λk
xk+1 = ηykτ

y
kxk+1 + ηxkτ

y
ky
′
k+1

(16)

where m0 = g0, v0 = g2
0, ξxk = 1

ηxk
, ξyk = 1

ηyk
, δyi = 1

ξxk+ξyk+λk
, δzi = 1

ξxk+ξyk+ξzk+λk
, τyk =

1
ηxk+ηyk+λkη

x
kη
y
k

, τ zk = 1
ηxk+ηzk+λkη

x
kη
z
k

. Moreover, uk = mk
sk

in Win-accelerated AdamW and Adam,

uk = ‖xk‖2
‖mk/sk+λkxk‖2

(
mk
sk

+ λkxk
)

in Win-accelerated LAMB.
For Win2, we have the updating rule as follows:

gk = 1
b

∑b
i=1∇f(zk; ζi);

mk = (1− β1)mk−1 + β1gk;

vk = (1− β2)vk−1 + β2g
2
k;

xk+1 = 1
1+λkη

x
k

(xk − ηxkuk) =
ξxk

ξxk+λk
xk+1 − 1

ξxk+λk
uk;

y′k+1 = yk − ηykuk
yk+1 =

ηxk
ηxk+ηyk+λkη

x
kη
y
k
y′k+1 +

ηyk
ηxk+ηyk+λkη

x
kη
y
k
xk+1 =

ξyk
ξxk+ξyk+λk

y′k+1 +
ξxk

ξxk+ξyk+λk
xk+1

z′k+1 = zk − ηykuk

zk+1 =
1
ηz
k

1
ηx
k

+ 1

η
y
k

+ 1
ηz
k

+λk
z′k +

1

η
y
k

1
ηx
k

+ 1

η
y
k

+ 1
ηz
k

+λk
yk+1 +

1
ηx
k

1
ηx
k

+ 1

η
y
k

+ 1
ηz
k

+λk
xk+1

=
ξzk

ξxk+ξyk+ξzk+λk
z′k +

ξyk
ξxk+ξyk+ξzk+λk

yk+1 +
ξxk

ξxk+ξyk+ξzk+λk
xk+1

(17)

where ξxk = 1
ηxk

, ξyk = 1
ηyk

and ξzk = 1
ηzk

. uk = mk
sk

in Win2-accelerated AdamW and Adam,

uk = ‖xk‖2
‖mk/sk+λkxk‖2

(
mk
sk

+ λkxk
)

in Win2-accelerated LAMB.
For analysis, we further define

Fk(x) = F (x) +
λk
2
‖x‖2sk = Eζ [f(x; ζ)] +

λk
2
‖x‖2sk , (18)

where λk = λ(1− µ)k in which µ = β2c2∞
ν . In the following, we mainly use these notations to finish

our proofs.

Appendix C. Auxiliary Lemmas

Before giving our analysis, we first provide some important lemmas for both Win and Win2.

Lemma 7 For Win- and Win2-accelerated Adam, AdamW and LAMB, their {(mk, sk)} satisfies

‖mk‖∞ ≤ c∞, ‖vi + ν‖∞ ≤ c
2
∞ + ν,

µ

2
≤
∥∥∥∥ sk
sk+1

∥∥∥∥
∞
< 1 +

µ

2
,

28

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where µ = β2c2∞
ν , and cs,∞ ≥ 0 can lower bound the values in uk, i.e. cs,∞ = mini

√
vk,i ≥ 0 in

which vk,i denotes the i-th entry in uk. Note, in the following proof, we directly use cs,∞ = 0 to
consider the worse case.

See its proof in Appendix F.1.

C.1 Auxiliary Lemmas for Win

Before giving our analysis, we provide some important lemmas for Win.

Lemma 8 Suppose the sequence {xk,y′k,yk} are updated by Eqn. (16). Then {xk,y′k,yk} for
Win-accelerated Adam, AdamW and LAMB satisfies

E
[
‖mk −∇F (yk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖yk − yk−1‖2

]
+
β2

1σ
2

b
.

See its proof in Appendix F.2.

Lemma 9 Assume ρyk+1 = ητyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0. Then we have

φ(y) :=
T−1∑
k=0

ρyk(τ
y
k−1)2(1 + λk−1η)2

[
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]

≤ a2τ

η(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
,

ψ(y) :=

T−1∑
k=0

τyk−1ρ
y
k

[
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]
≤ 1

η(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
,

h(y) :=
T−1∑
k=0

ρyk

[
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]
≤ 1

ητ(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
,

(19)

where a ≤ 1
1−µ , τ = 1

η+ηy . Moreover, if ρzk+1 = ητ zk−1ρ
z
k, ρz1 = 1 and ρz0 = 0, we also have

h(z) :=

T−1∑
k=0

ρzk

[
k−1∑
i=0

1

ρzi+1(1− ητ zi−1)(1 + λiη)2
‖wi‖2

]
≤ 1

ητz(1− ητz)2

T−1∑
k=0

[
‖wk‖2

]
, (20)

where τz = 1
η+ηz .

See its proof in Appendix F.3

Lemma 10 Suppose the sequence {xk,y′k,yk} are updated by Eqn. (16). By setting ηxk = ηx,
ηyk = ηy, ξxk = ξx := 1

ηx , ξyk = ξy := 1
ηy , then {xk,y′k,yk} for Win-accelerated Adam, AdamW and

29

ZHOU, XIE, LIN, TOH, AND YAN

LAMB satisfies

‖yk+1 − xk+1‖2 ≤τyk ρ
y
k+1η(ηy − η)2

k∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

‖yk+1 − yk‖2 ≤
2(ηy)2

(1 + λkη)2

∥∥∥∥wk

sk

∥∥∥∥2

+ 2ρyk+1(ηy)2(ηy − η)2(τyk)2(1 + λkη)2
k∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

where ρyk+1 = ηxτyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0; τyk = 1

ηx+ηy+λkηxηy
, δyk = 1

ξx+ξy+λk
, ξx = 1

ηx ,
ξy = 1

ηy . Here, wk := mk + λkxk � sk in Win-accelerated AdamW and Adam, and wk :=

αkmk + (1 + αk)λkxk � skin Win-accelerated LAMB, where αk = ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

.

See its proof in Appendix F.4.

Lemma 11 Suppose the sequence {xk,y′k,yk} are updated by Eqn. (16). By setting ηxk = ηx,
ηyk = ηy, ξxk = ξx := 1

ηx , ξyk = ξy := 1
ηy , β1,k = β1 and β2,k = β2, then {xk,y′k,yk} for

Win2-accelerated Adam, AdamW and LAMB satisfies

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

2Πy
1,k(1− β1)2L2

β1
+

2β2
1σ

2

b
+ 2LΠy

2,k,

where

Πy
1,k :=

2(ηy)2

(1 + λk−1η)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 2ρyk(η
y)2(ηy − η)2(τyk−1)2(1 + λk−1η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

Πy
2,k :=τyk−1ρ

y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

in which ρyk+1 = ηxτyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0; τyk = 1

ηx+ηy+λkηxηy
, δyk = 1

ξx+ξy+λk
, ξx = 1

ηx ,
ξy = 1

ηy . Here, wk := mk + λkxk � sk in Win-accelerated AdamW and Adam, and wk :=

αkmk + (1 + αk)λkxk � skin Win-accelerated LAMB, where αk = ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

.

see its proof in Appendix F.8.

C.2 Auxiliary Lemmas for Win2

Then we provide some important lemmas for Win2.

30

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Lemma 12 Suppose the sequence {xk,y′k,yk, z′k, zk} are updated by Eqn. (17). Then {xk,y′k,yk, z′k, zk}
for Win2-accelerated Adam, AdamW and LAMB satisfies

E
[
‖mk −∇F (zk)‖2

]
≤ (1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖zk − zk−1‖2

]
+
β2

1σ
2

b
.

See its proof in Appendix F.6.

Lemma 13 Suppose the sequence {xk,y′k,yk, z′k, zk} are updated by Eqn. (17). By setting ηxk = ηx,
ηyk = ηy, ηzk = ηz, ξxk = ξx := 1

ηx , ξyk = ξy := 1
ηy , ξzk = ξz := 1

ηz , then {xk,y′k,yk, z′k, zk} for
Win2-accelerated Adam, AdamW and LAMB satisfies

∥∥y′k+1 − (1 + λkη
y)xk+1

∥∥2 ≤ρyk+1(ηy − ηx)2
k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

,

‖yk − xk‖2 ≤τyk−1ρ
y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

∥∥z′k+1 − (1 + λkη
z)xk+1

∥∥2 ≤ρzk+1(ηz − ηx)2
k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

,

where ρyk+1 = ηxτyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0; ρzk+1 = ηxτ zk−1ρ

z
k, ρz1 = 1 and ρz0 = 0; τyk =

1
ηx+ηy+λkηxηy

, τ zk = 1
ηx+ηz+λkηxηz

, δyk = 1
ξx+ξy+λk

, δzk = 1
ξx+ξy+ξz+λk

. Here, wk := mk +

λkxk � sk in Win2-accelerated AdamW and Adam, and wk := αkmk + (1 + αk)λkxk � sk in
Win2-accelerated LAMB, where αk = ‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

. Moreover,

‖zk+1− xk+1‖2 ≤ 2(ξzδzk)2ρzk+1(ηz − ηx)2E
k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 2(ξy)4(δzkδ
y
k)2ρyk+1(ηy − ηx)2

k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

‖zk+1 − zk‖2 ≤
3(ξx)2

(ξz)2(λk + ξx)2

∥∥∥∥wk

sk

∥∥∥∥2

+ 3(ξx + ξy + λk)
2(δzk)2ρzk+1(ηz − ηx)2

k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 3(ξy)4(δyk)2(δzk)2ρyk+1(ηy − ηx)2
k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

See its proof in Appendix F.7.

Lemma 14 Suppose the sequence {xk,y′k,yk, z′k, zk} are updated by Eqn. (17). By setting ηxk = ηx,
ηyk = ηy, ηzk = ηz , ξxk = ξx := 1

ηx , ξyk = ξy := 1
ηy , ξzk = ξz := 1

ηz , β1,k = β1 and β2,k = β2, then

31

ZHOU, XIE, LIN, TOH, AND YAN

{xk,y′k,yk, z′k, zk} for Win2-accelerated Adam, AdamW and LAMB satisfies

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

2Πz
1,k(1− β1,k)

2L2

β1,k
+

2β2
1,kσ

2

b
+ 2LΠz

2,k,

where wk := mk + λkxk � sk in Win-accelerated AdamW and Adam, wk := αkmk + (1 +

αk)λkxk � skin Win-accelerated LAMB with αk = ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

, and

Πz
1,k :=

3(ξx)2

(ξz)2(λk−1 + ξx)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 3(ξx + ξy + λk−1)2(δzk−1)2ρzk(η
z − ηx)2

k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 3(ξy)4(δyk−1)2(δzk−1)2ρyk(η
y − ηx)2

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

,

Πz
2,k :=2(ξzδzk−1)2ρzk(η

z − ηx)2
k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 2(ξy)4(δzk−1δ
y
k−1)2ρyk(η

y − ηx)2
k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

where ρyk+1 = ηxτyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0; ρzk+1 = ηxτ zk−1ρ

z
k, ρz1 = 1 and ρz0 = 0; τyk =

1
ηx+ηy+λkηxηy

, τ zk = 1
ηx+ηz+λkηxηz

, δyk = 1
ξx+ξy+λk

, δzk = 1
ξx+ξy+ξz+λk

. Here, wk := mk +

λkxk � sk in Win2-accelerated AdamW and Adam, and wk := αkmk + (1 + αk)λkxk � skin
Win2-accelerated LAMB, where αk = ‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

.

See its proof in Appendix F.8.

Appendix D. Proofs of Main Results in Sec. 3

Here we provide proofs of the main results in Sec. 3, including Theorem 1, 2 and 3.

32

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

D.1 Proof of Theorem 1

Proof Recall our definition Fk(yk) = F (z) + λk
2 ‖z‖

2
sk

= Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk
, in the (18). By

using the smoothness of f(θ; ζ), we can obtain

Fk+1(xk+1)

≤F (xk) + 〈∇F (xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 +

λk+1

2
‖xk+1‖2sk+1

¬
≤F (xk) + 〈∇F (xk),xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk+1

2(1− µ)
‖xk+1‖2sk

­
≤F (xk) +

λk
2
‖xk‖2sk + 〈∇F (xk) + λkxk � sk,xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk
2
‖xk+1 − xk‖2sk

®
≤Fk(xk)−

ηxk
1 + λkη

x
k

〈
∇F (xk) + λkxk � sk,

wk

sk

〉
+

L(ηxk)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

+
λk(η

x
k)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

sk

where ¬ holds since Lemma 7 proves
∥∥∥ sk
sk+1

∥∥∥
∞
∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]) in which µ = β2c2∞

ν ;

­ holds because λk =
λk+1

1−µ and

‖xk+1‖2sk = ‖xk‖2sk + ‖xk+1 − xk‖2sk + 2〈xk+1 − xk,xk〉sk .

® holds, since we have 1) wk := mk +λkxk� sk and uk = mk
sk

= wk−λkxk�sk
sk

in Win-accelerated

AdamW and Adam; 2) xk+1 = 1
1+λkη

x
k

(xk − ηxkuk) = 1
1+λkη

x
k

(
xk − ηxk

wk−λkxk�sk
sk

)
= xk −

ηxk
1+λkη

x
k

wk
sk

. In this way, we can obtain

Fk+1(xk+1)

=Fk(xk) +
1

2

∥∥∥∥∥
√

ηxk
(1 + λkη

x
k)sk

(∇F (xk) + λkxk � sk −wk)

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥
√

ηxk
(1 + λkη

x
k)sk

wk

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥
√

ηxk
(1 + λkη

x
k)sk

(∇F (xk) + λkxk � sk)

∥∥∥∥∥
2

+
L(ηxk)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

+
λk(η

x
k)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

sk

¯
≤Fk(xk) +

ηxk
2c1(1 + λkη

x
k)
‖∇F (xk)−mk‖2 −

ηxk
2c2(1 + λkη

x
k)
‖∇Fk(xk)‖2

−
ηxk

2c2(1 + λkη
x
k)

[
1−

c2Lη
x
k

c2
1(1 + λkη

x
k)
−

c2λkη
x
k

c1(1 + λkη
x
k)

]
‖wk‖2

°
≤Fk(xk) +

ηxk
2c1(1 + λkη

x
k)
‖∇F (xk)−mk‖2 −

ηxk
2c2(1 + λkη

x
k)
‖∇Fk(xk)‖2 −

ηxk
4c2(1 + λkη

x
k)
‖wk‖2 ,

(21)

¯ holds, because

wk := mk + λkxk � sk, xk+1 − xk = −
ηxk

1 + λkη
x
k

mk + λkxk � sk
sk

= −
ηxk

1 + λkη
x
k

wk

sk
,

c1 := ν0.5 ≤ ‖sk‖∞ ≤ c2 := (c2
∞ + ν)0.5.

33

ZHOU, XIE, LIN, TOH, AND YAN

° holds, since we set ηxk ≤
c21(1+λkη

x
k)

2c2(L+λkc1) such that c2Lηxk
c21(1+λkη

x
k)

+
c2λkη

x
k

c1(1+λkη
x
k) ≤

1
2 .

From Lemma 11, by setting ηxk = η, ηyk = ηy = γ1η and β1,k = β1, we have

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

2Πy
1,k(1− β1)2L2

β1

+
2β2

1σ
2

b
+ 2LΠy

2,k,

(22)

where

Πy
1,k :=

2(ηy)2

(1 + λk−1η)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 2ρyk(η
y)2(ηy − η)2(τyk−1)2(1 + λk−1η)2

·
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

,

Πy
2,k :=τyk−1ρ

y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

,

(23)

Here ρyk+1 = ητyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0. By considering c2 ≥ ‖sk‖∞ ≥ c1, we have

Πy
1,k ≤ Π̄y

1,k :=
2(ηy)2

c2
1(1 + λk−1η)2

‖wk−1‖2

+
2ρyk(η

y)2(ηy − η)2(τyk−1)2(1 + λk−1η)2

c2
1

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2 ,

Πy
2,k ≤ Π̄y

2,k :=
τyk−1ρ

y
kη(ηy − η)2

c2
1

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2 ,

(24)

Therefore, by plugging the results in Eqn. (22) into the upper bound of Fk+1(xk+1), we have

Fk+1(xk+1)

≤Fk(xk)−
η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+
η(1− β1)

c1(1 + λkη)
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
ηΠ̄y

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄y
2,k

c1(1 + λkη)
¬
≤Fk(xk)−

η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+
η(1− β1)

c1
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
ηΠ̄y

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄y
2,k

c1(1 + λkη)
,

(25)

34

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where ¬ uses the fact that 0 < λk ≤ λ. Then, by plugging ‖yk − yk−1‖2 ≤ Πy
1,k ≤ Π̄y

1,k in
Lemma 10 into Lemma 8, we have

E
[
‖mk −∇F (yk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

(1− β1)2L2Π̄y
1,k

β1
+
β2

1σ
2

b
.

(26)

Then we add Eqn. (25) and α× (26) as follows:

Fk+1(xk+1) + αE
[
‖mk −∇F (yk)‖2

]
≤Fk(xk)−

η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+ (1− β1)

(
η

c1
+ α

)
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
ηΠ̄y

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄y
2,k

c1(1 + λkη)
+
α(1− β1)2L2Π̄y

1,k

β1
+
αβ2

1σ
2

b

(27)

Then by setting α = η(1−β1)
c1β1

and Gk+1(xk+1) = Fk+1(xk+1) + η(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
=

Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk

+ η(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
, we can obtain

Gk+1(xk+1)

≤Gk(xk)−
η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+
ηΠ̄y

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄y
2,k

c1(1 + λkη)
+
η(1− β1)3L2Π̄y

1,k

c1β2
1

+
η(1− β1)β1σ

2

c1b

¬
≤Gk(xk)−

η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2 +

η(1− β1)2L2Π̄y
1,k

c1β2
1

+
ηLΠ̄y

2,k

c1(1 + λkη)
+
ηβ1σ

2

c1b
,

where ¬ uses the fact that 0 < λk ≤ λ. Then summing the above inequality from k = 0 to k = T −1
and using 0 < λk ≤ λ give

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2
‖wk‖2

]
≤2c2(1 + λη)

ηT
[G(x0)−G(xT)] +

2c2β1σ
2(1 + λη)

c1bT
+

2c2β
2
1σ

2

c1b

+
2c2(1− β1)2L2(1 + λη)

c1β2
1T

T−1∑
k=0

Π̄y
1,k +

2c2L

c1T

T−1∑
k=0

Π̄y
2,k

≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b
+

2c2(1− β1)2L2(1 + λη)

c1β2
1T

T−1∑
k=0

Π̄y
1,k +

2c2L

c1T

T−1∑
k=0

Π̄y
2,k

35

ZHOU, XIE, LIN, TOH, AND YAN

where

G(x0)−G(xT)

=F0(x0) +
η(1− β1)

c1β1
E
[
‖m−1 −∇F (x−1)‖2

]
− FT (xT)− η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
=F (x0) + λ0 ‖x0‖s0 − F (xT)− λT ‖xT ‖sT −

η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
≤F (x0)− F (xT) ≤ ∆

where ∆ = F (x0)− F (x?); x−1 and m−1 are two virtual points which satisfy m−1 = ∇F (x−1).
Now we try to bound

∑T−1
k=0 Π̄y

1,k and
∑T−1

k=0 Π̄y
2,k. Firstly, we have

T−1∑
k=0

Π̄k =

T−1∑
k=0

[
2(ηy)2

c2
1(1 + λk−1η)2

‖wk−1‖2

+
2ρyk(η

y)2(ηy − η)2(τyk−1)2(1 + λk−1η)2

c2
1

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]
¬
≤2(ηy)2

c2
1

T−1∑
k=0

[
‖wk−1‖2

]
+

2(ηy)2(ηy − η)2

c2
1

T−1∑
k=0

ρyk(τ
y
k−1)2(1 + λk−1η)2

[
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]
­
≤2(ηy)2

c2
1

T−1∑
k=0

[
‖wk−1‖2

]
+

2a2(ηy)2(ηy − η)2τ

c2
1η(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
®
≤2γ2η2

c2
1

[
1 + a2(γ − 1)2/γ

] T−1∑
k=0

[
‖wk−1‖2

] ¯
≤ 8γ3η2

c2
1

T−1∑
k=0

[
‖wk−1‖2

]
,

(28)

where ¬ holds since 0 ≤ λk ≤ λ; ­ holds, since in Lemma 9, we prove
∑T−1

k=0 ρ
y
k(τ

y
k−1)2(1 +

λk−1η)2
[∑k−1

i=0
1

ρyi+1(1−ητyi−1)(1+λiη)2
‖wi‖2

]
≤ a2τ

η(1−ητ)2
∑T−1

k=0

[
‖wk‖2

]
, where a ≤ 1

1−µ ; ¯

holds by setting ηy = γη; ¯ holds since 1 + a2(γ − 1)2/γ ≤ a2γ ≤ 4γ where we set µ ∈ (0, 0.5)
which is consistant the practical setting µ = 10−8.

Similarly, we can bound

T−1∑
k=0

Π̄′k =

T−1∑
k=0

τyk−1ρ
y
kη(ηy − η)2

c2
1

[
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]
¬
≤ (ηy − η)2

c2
1(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
≤ η2γ2(γ − 1)2

c2
1(1 + γ)2

T−1∑
k=0

[
‖wk‖2

]
≤ η2(γ − 1)2

c2
1

T−1∑
k=0

[
‖wk‖2

]
(29)

36

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where ¬ holds since in Lemma 9, we prove
∑T−1

k=0 τ
y
k−1ρ

y
k

[∑k−1
i=0

1
ρyi+1(1−ητyi−1)(1+λiη)2

‖wi‖2
]
≤

1
η(1−ητ)2

∑T−1
k=0

[
‖wk‖2

]
. Therefore, we have

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2
‖wk‖2

]

≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b
+

2c2η
2L(γ − 1)2

c3
1T

T−1∑
k=0

[
‖wk‖2

]
+

16c2γ
3η2(1− β1)2L2(1 + λη)

c3
1β

2
1T

T−1∑
k=0

[
‖wk−1‖2

]
¬
≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b
+

1

4T

T−1∑
k=0

[
‖wk‖2

]

where ¬ holds since we choose proper η and β1 such that

16c2γ
3η2(1− β1)2L2(1 + λη)

c3
1β

2
1

≤ 1

8
,

2c2η
2L(γ − 1)2

c3
1

≤ 1

8
(30)

Now we select η and β1 such that (30) holds:

η ≤ min

(
c1.5

1 β1

8
√

2c0.5
2 γ1.5(1− β1)L(1 + λη)0.5

,
c1.5

1

4c0.5
2 L0.5(γ − 1)

)

So we arrive at

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

4
‖wk‖2

]
≤2c2(1 + λη)∆

ηT
+

2c2β1(1 + λη)σ2

c1b

¬
≤ ε2, (31)

where we set T ≥ 4c2(1+λη)∆
ηε2

and β1 ≤ c1bε2

4c2(1+λη)σ2 . This result directly bounds

1

T

T−1∑
k=0

‖sk � (xk − xk+1)‖2 =
η2

T

T−1∑
k=0

1

(1 + λkη)2
‖mk + λxk � sk‖2 ≤

η2

T

T−1∑
k=0

‖wk‖2 ≤ η2ε2.

37

ZHOU, XIE, LIN, TOH, AND YAN

Moreover, from Lemma 10, we have

1

T

T−1∑
k=0

∥∥y′k − (1 + λk−1η
y)xk

∥∥2 ¬
≤ 1

T

T−1∑
k=0

ρyk(η
y − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

®
=

1

T

T−1∑
k=0

Πy
3,k,

1

T

T−1∑
k=0

‖yk − xk‖2
¬
≤ 1

T

T−1∑
k=0

τyk−1ρ
y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

­
=

1

T

T−1∑
k=0

Πy
2,k,

1

T

T−1∑
k=0

‖yk+1 − yk‖2
¬
≤ 1

T

T−1∑
k=0

[
2(ηy)2

(1 + λkη)2
+ 2ρyk+1(ηy)2(ηy − η)2(τyk)2(1 + λkη)2

·
k∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

]∥∥∥∥wk

sk

∥∥∥∥2

­
≤ 1

T

T−1∑
k=0

Πy
1,k

where ρyk+1 = ητyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0. ¬ holds by using Lemma 10; ­ holds by using the

definition in Eqn. (23); ® holds by defining:

Πy
3,k :=ρyk(η

y − η)2
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

.

Now remaining task is to upper bound 1
T

∑T−1
k=0 Πy

3,k, 1
T

∑T−1
k=0 Πy

2,k and 1
T

∑T−1
k=0 Πy

1,k. Here we

first bound 1
T

∑T−1
k=0 Πy

3,k by using almost the same proof in Eqn. (29):

1

T

T−1∑
k=0

Πy
3,k

¬
≤ (ηy − η)2

c2
1ητ(1− ητ)2T

T−1∑
k=0

[
‖wk‖2

]
≤ η2γ2(γ − 1)2

c2
1(1 + γ)T

T−1∑
k=0

[
‖wk‖2

]
≤η

2γ(γ − 1)2

c2
1T

T−1∑
k=0

[
‖wk‖2

] ­
≤ 4η2γ3ε2

c2
1

(32)

where ¬ holds since in Lemma 9 we have prove
∑T−1

k=0 ρ
y
k

[∑k−1
i=0

1
ρyi+1(1−ητyi−1)(1+λiη)2

‖wi‖2
]
≤

1
ητ(1−ητ)2

∑T−1
k=0

[
‖wk‖2

]
; ­ holds by using 1

T

∑T−1
k=0 E‖wk‖2 ≤ 4ε2 in Eqn. (31).

From the bound in Eqn. (24) and the following bound on 1
T

∑T−1
k=0 Π̄k and 1

T

∑T−1
k=0 Π̄′k, we have

1

T

T−1∑
k=0

Πy
1,k ≤

1

T

T−1∑
k=0

Π̄k ≤
2a2γ3η2

c2
1T

T−1∑
k=0

E
[
‖wk‖2

] ¬
≤ 32η2γ3ε2

c2
1

,

1

T

T−1∑
k=0

Πy
2,k ≤

1

T

T−1∑
k=0

Π̄′k ≤
η2(γ − 1)2

c2
1T

T−1∑
k=0

E
[
‖wk‖2

] ¬
≤ 4η2γ2ε2

c2
1

38

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where ¬ holds, since 1) 1
T

∑T−1
k=0 E‖wk‖2 ≤ 4ε2. Therefore, we have

1

T

T−1∑
k=0

E
∥∥y′k − (1 + λkη

y)xk
∥∥2 ≤ 4η2γ3ε2

c2
1

,
1

T

T−1∑
k=0

E ‖yk − xk‖2 ≤
4η2γ2ε2

c2
1

,

1

T

T−1∑
k=0

E ‖yk+1 − yk‖2 ≤
32η2γ3ε2

c2
1

.

(33)

Besides, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2

]
≤ 1

T

T−1∑
k=0

E
[
‖mk + λkxk � sk −∇F (xk)− λkxk � sk‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇F (xk) + λkxk � sk‖2

]
=

2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇Fk(xk)‖2

]
¬
≤2

[
ε2 +

3

4
× 4ε2

]
≤ 8ε2.

where in ¬ we use wk = mk + λkxk � sk. In this way, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (yk)‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2 + ‖∇F (xk)−∇F (yk)‖2

]
≤16ε2 +

2L2

T

T−1∑
k=0

E
[
‖xk − yk‖2

]
≤ 16ε2 +

8η2γ2L2ε2

c2
1

.

(34)

For all hyper-parameters, we put their constrains together:

β1 ≤
c1bε

2

4c2(1 + λη)σ2
= O

(
c1bε

2

c2σ2

)
,

where c1 = ν0.5 ≤ ‖sk‖∞ ≤
(
c2
∞ + ν

)0.5
= c2.

For η, it should satisfy

η ≤ min

(
c1.5

1 β1

8
√

2c0.5
2 γ1.5(1− β1)L(1 + λη)0.5

,
c1.5

1

4c0.5
2 L0.5(γ − 1)

,
c2

1(1 + λη)

2c2(L+ λc1)

)

Considering λη << 1, 1+λη
1+(1−µ)λη = a ≤ 1

1−µ , µ is a constant, and c1 = ν0.5 << 1, then we have

η ≤O
(

min

(
c1.5

1 β1

c0.5
2 γ1.5L

,
c1.5

1

c0.5
2 γL0.5

,
c2

1

c2L

))
= O

(
c2.5

1 bε2

c1.5
2 γ1.5σ2L

)
where ν is often much smaller than one, and β1 is very small. For T , we have

T ≥4c2(1 + λη)∆

ηε2
= O

(
c2∆

ε2
c1.5

2 γ1.5σ2L

c2.5
1 bε2

)
= O

(
c2.5

2 γ1.5σ2L∆

c2.5
1 bε4

)
= O

(
c2.5

2 γ1.5σ2L∆

ν1.25bε4

)
.

39

ZHOU, XIE, LIN, TOH, AND YAN

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O
(
c2.5

2 γ1.5σ2L∆

ν1.25ε4

)
.

The proof is completed.

D.2 Proof of Theorem 2

Proof Recall our definition Fk(yk) = F (z) + λk
2 ‖z‖

2
sk

= Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk
, in the (18). By

using the smoothness of f(θ; ζ), we can obtain

Fk+1(xk+1)

≤F (xk) + 〈∇F (xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 +

λk+1

2
‖xk+1‖2sk+1

¬
≤F (xk) + 〈∇F (xk),xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk+1

2(1− µ)
‖xk+1‖2sk

­
≤F (xk) +

λk
2
‖xk‖2sk + 〈∇F (xk) + λkxk � sk,xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λk
2
‖xk+1 − xk‖2sk

®
≤Fk(xk)−

ηxk
1 + λkη

x
k

〈
∇F (xk) + λkxk � sk,

wk

sk

〉
+

L(ηxk)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

+
λk(η

x
k)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

sk

¯
=Fk(xk)−

αkη
x
k

1 + λkη
x
k

〈
∇F (xk),

mk

sk

〉
+

L(ηxk)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

+
λk(η

x
k)2

2(1 + λkη
x
k)2

∥∥∥∥wk

sk

∥∥∥∥2

sk

≤Fk(xk) +
1

2

∥∥∥∥∥
√
αkη

x
k

sk
(∇F (xk)−mk)

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥
√
αkη

x
k

sk
∇F (xk)

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥
√

ηxk
αksk

wk

∥∥∥∥∥
2

+
L(ηxk)2

2

∥∥∥∥wk

sk

∥∥∥∥2

≤Fk(xk) +
αkη

x
k

2c1
‖∇F (xk)−mk‖2 −

αkη
x
k

2c2
‖∇Fk(xk)‖2 −

ηxk
2c2αk

[
1−

αkc2Lη
x
k

c2
1

]
‖wk‖2

°
≤Fk(xk) +

αlη
x
k

2c1
‖∇F (xk)−mk‖2 −

αsη
x
k

2c2
‖∇Fk(xk)‖2 −

ηxk
4αlc2

‖wk‖2 ,

(35)

where ¬ holds since Lemma 7 proves
∥∥∥ sk
sk+1

∥∥∥
∞
∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]) in which µ = β2c2∞

ν ;

­ holds because λk =
λk+1

1−µ and

‖xk+1‖2sk = ‖xk‖2sk + ‖xk+1 − xk‖2sk + 2〈xk+1 − xk,xk〉sk .

® holds, since we have 1) wk := αkmk + (1 + αk)λkxk � sk and uk = ‖xk‖2
‖mk/sk+λkxk‖2

(
mk
sk

+

λkxk
)

= αk
(
mk
sk

+λkxk
)

= wk−λkxk�sk
sk

in Win-accelerated LAMB; 2) xk+1 = 1
1+λkη

x
k

(xk − ηxkuk) =

1
1+λkη

x
k

(
xk − ηxk

wk−λkxk�sk
sk

)
= xk −

ηxk
1+λkη

x
k

wk
sk

.

40

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

¯ holds, because we set λ = 0 which yields λk = 0 and wk = αkmk.
° holds, since we set ηxk ≤

c21
2c2

such that c2Lη
x
k

c21
≤ 1

2 .

From Lemma 11, by setting ηxk = η, ηyk = ηy and β1,k = β1, we have

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

2Πy
1,k(1− β1)2L2

β1

+
2β2

1σ
2

b
+ 2LΠy

2,k,

(36)

where

Πy
1,k ≤ Π̄y

1,k :=
2(ηy)2

c2
1

‖wk−1‖2 +
2ρyk(η

y)2(ηy − η)2(τyk−1)2

c2
1

k−1∑
i=0

1

ρyi+1(1− ητyi−1)
‖wi‖2 ,

Πy
2,k ≤ Π̄y

2,k :=
τyk−1ρ

y
kη(ηy − η)2

c2
1

k−1∑
i=0

1

ρyi+1(1− ητyi−1)
‖wi‖2 ,

(37)

in which ρyk+1 = ητyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0. Therefore, by plugging the results in Eqn. (36) into

the upper bound of Fk+1(xk+1), we have

Fk+1(xk+1)

≤Fk(xk)−
αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2 +

αlη(1− β1)

c1
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
αlηΠ̄y

1,k(1− β1)2L2

c1β1
+
αlηβ

2
1σ

2

c1b
+
αlηLΠ̄y

2,k

c1

(38)

Then, from Lemma 8, we have

E
[
‖mk −∇F (yk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖yk − yk−1‖2

]
+
β2

1σ
2

b

¬
≤(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

(1− β1)2L2Π̄y
1,k

β1
+
β2

1σ
2

b

(39)

where we use the results in Lemma 10 that ‖yk − yk−1‖2 ≤ Πy
1,k ≤ Π̄y

1,k.
Then we add Eqn. (38) and α× (39) as follows:

Fk+1(xk+1) + αE
[
‖mk −∇F (yk)‖2

]
≤Fk(xk)−

αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2 + (1− β1)

(
αlη

c1
+ α

)
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
αlηΠ̄y

1,k(1− β1)2L2

c1β1
+
αlηβ

2
1σ

2

c1b
+
αlηLΠ̄y

2,k

c1
+
α(1− β1)2L2Π̄y

1,k

β1
+
αβ2

1σ
2

b
(40)

41

ZHOU, XIE, LIN, TOH, AND YAN

Then by settingα = αlη(1−β1)
c1β1

andGk+1(xk+1) = Fk+1(xk+1)+αlη(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
=

Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk

+ αlη(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
, we can obtain

Gk+1(xk+1)

≤Gk(xk)−
αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2

+
αlηΠ̄y

1,k(1− β1)2L2

c1β1
+
αlηβ

2
1σ

2

c1b
+
αlηLΠ̄y

2,k

c1
+
αlη(1− β1)3L2Π̄y

1,k

c1β2
1

+
αlη(1− β1)β1σ

2

c1b

=Gk(xk)−
αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2 +

αlη(1− β1)2L2Π̄y
1,k

c1β2
1

+
αlηLΠ̄y

2,k

c1
+
αlηβ1σ

2

c1b
.

Then summing the above inequality from k = 0 to k = T − 1 and using 0 < λk ≤ λ give

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2αsαl
‖wk‖2

]

≤ 2c2

αsηT
[G(x0)−G(xT)] +

2αlc2β1σ
2

αsc1b
+

2αlc2(1− β1)2L2

αsc1β2
1T

T−1∑
k=0

Π̄y
1,k +

2αlc2L

αsc1T

T−1∑
k=0

Π̄y
2,k

≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1b
+

2αlc2(1− β1)2L2

αsc1β2
1T

T−1∑
k=0

Π̄y
1,k +

2αlc2L

αsc1T

T−1∑
k=0

Π̄y
2,k

where

G(x0)−G(xT)

=F0(x0) +
αlη(1− β1)

c1β1
E
[
‖m−1 −∇F (x−1)‖2

]
− FT (xT)

− αlη(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
=F (x0) + λ0 ‖x0‖s0 − F (xT)− λT ‖xT ‖sT −

αlη(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
≤F (x0)− F (xT) ≤ ∆

where ∆ = F (x0)− F (x?); x−1 and m−1 are two virtual points which satisfy m−1 = ∇F (x−1).

Next, we can follow Eqn. (28) and (29) to bound

T−1∑
k=0

Π̄y
1,k ≤

8γ3η2

c2
1

T−1∑
k=0

[
‖wk−1‖2

]
,

T−1∑
k=0

Π̄y
2,k ≤

η2(γ − 1)2

c2
1

T−1∑
k=0

[
‖wk‖2

]
,

42

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where ηy = γη. Therefore, we have

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2αsαl
‖wk‖2

]

≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1b
+

16αlc2γ
3η2(1− β1)2L2

αsc3
1β

2
1T

T−1∑
k=0

[
‖wk−1‖2

]
+

2αlc2η
2L(γ − 1)2

αsc3
1T

T−1∑
k=0

[
‖wk‖2

]
¬
≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1b
+

1

4αsαlT

T−1∑
k=0

[
‖wk‖2

]

where ¬ holds since we choose proper η and β1 such that

16αlc2γ
3η2(1− β1)2L2

αsc3
1β

2
1

≤ 1

8αsαl
,

2αlc2η
2L(γ − 1)2

αsc3
1

≤ 1

8αsαl
(41)

Now we select η and β1 such that (41) holds:

η ≤ min

(
c1.5

1 β1

8
√

2αlc
0.5
2 γ1.5(1− β1)L

,
c1.5

1

4αlc
0.5
2 L0.5(γ − 1)

)

So we arrive at

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

4αsαl
‖wk‖2

]
≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1b

¬
≤ ε2, (42)

where we set T ≥ 4c2∆
αsηε2

and β1 ≤ αsc1bε2

4αlc2σ2 . Since wk := αkmk + (1 + αk)λkxk � sk and

uk = αk
(
mk
sk

+ λkxk
)

= wk−λkxk�sk
sk

, we have

xk+1 =
1

1 + λkη
x
k

(xk − ηxkuk) =
1

1 + λkη
x
k

(
xk − ηxk

wk − λkxk � sk
sk

)
= xk −

ηxk
1 + λkη

x
k

wk

sk
.

This result directly bounds

1

T

T−1∑
k=0

‖sk � (xk − xk+1)‖2 =
η2

T

T−1∑
k=0

‖wk‖2 ≤ 4αsαlη
2ε2.

43

ZHOU, XIE, LIN, TOH, AND YAN

Moreover, from Lemma 10, we have

1

T

T−1∑
k=0

∥∥y′k − (1 + λk−1η
y)xk

∥∥2 ¬
≤ 1

T

T−1∑
k=0

ρyk(η
y − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

®
=

1

T

T−1∑
k=0

Πy
3,k,

1

T

T−1∑
k=0

‖yk − xk‖2
¬
≤ 1

T

T−1∑
k=0

τyk−1ρ
y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

­
=

1

T

T−1∑
k=0

Πy
2,k,

1

T

T−1∑
k=0

‖yk+1 − yk‖2
¬
≤ 1

T

T−1∑
k=0

[
2(ηy)2

(1 + λkη)2
+ 2ρyk+1(ηy)2(ηy − η)2(τyk)2(1 + λkη)2

·
k∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

]∥∥∥∥wk

sk

∥∥∥∥2

­
≤ 1

T

T−1∑
k=0

Πy
1,k

where ρyk+1 = ητyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0; ¬ holds by using Lemma 10; ­ holds by using the

definition in Eqn. (37); ® holds by defining:

Πy
3,k :=ρyk(η

y − η)2
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

.

Now remaining task is to upper bound 1
T

∑T−1
k=0 Πy

1,k, 1
T

∑T−1
k=0 Πy

2,k and 1
T

∑T−1
k=0 Πy

3,k. Here we

first bound 1
T

∑T−1
k=0 Πy

3,k by using almost the same proof in Eqn. (32):

1

T

T−1∑
k=0

Πy
3,k

¬
≤ (ηy − η)2

c2
1ητ(1− ητ)2T

T−1∑
k=0

[
‖wk‖2

]
≤ η2γ2(γ − 1)2

c2
1(1 + γ)T

T−1∑
k=0

[
‖wk‖2

] ­
≤ 4αsαlη

2γ3ε2

c2
1

(43)

where ¬ holds since in Lemma 9 we have prove
∑T−1

k=0 ρ
y
k

[∑k−1
i=0

1
ρyi+1(1−ητyi−1)(1+λiη)2

‖wi‖2
]
≤

1
ητ(1−ητ)2

∑T−1
k=0

[
‖wk‖2

]
; ­ holds by using 1

T

∑T−1
k=0 E‖wk‖2 ≤ 4αsαlε

2 in Eqn. (42).

From the bound in Eqn. (37) and the following bound on 1
T

∑T−1
k=0 Π̄k and 1

T

∑T−1
k=0 Π̄′k, we have

1

T

T−1∑
k=0

Πy
1,k ≤

1

T

T−1∑
k=0

Π̄y
1,k ≤

8γ3η2

c2
1T

T−1∑
k=0

E
[
‖wk‖2

] ¬
≤ 32αsαlγ

3η2

c2
1

1

T

T−1∑
k=0

Πy
2,k ≤

1

T

T−1∑
k=0

Π̄y
2,k ≤

η2(γ − 1)2

c2
1T

T−1∑
k=0

E
[
‖wk‖2

] ¬
≤ 4αsαlγ

2ε2

c2
1

44

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where ¬ holds, since 1) 1
T

∑T−1
k=0 E‖wk‖2 ≤ 4αsαlε

2. Therefore, we have

1

T

T−1∑
k=0

E
∥∥y′k − (1 + λkη

y)xk
∥∥2 ≤4αsαlη

2γ3ε2

c2
1

,
1

T

T−1∑
k=0

E ‖yk − xk‖2 ≤
4αsαlη

2γ2ε2

c2
1

,

1

T

T−1∑
k=0

E ‖yk+1 − yk‖2 ≤
32αsαlη

2γ3ε2

c2
1

.

Besides, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2

]
≤ 1

T

T−1∑
k=0

E
[
‖mk + λkxk � sk −∇F (xk)− λkxk � sk‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇F (xk) + λkxk � sk‖2

]
=

2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇Fk(xk)‖2

]
¬
=

2

T

T−1∑
k=0

E

[∥∥∥∥ 1

αk
wk

∥∥∥∥2

+ ‖∇Fk(xk)‖2
]

­
≤ 2

[
ε2 + 4

αl
αs
ε2
]
≤ 10αl

αs
ε2.

where in ¬ and ­, we use wk := αkmk + (1 + αk)λkxk � sk = αkmk, with λk = 0 and
αs ≤ αk = ‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

≤ αl. In this way, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (yk)‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2 + ‖∇F (xk)−∇F (yk)‖2

]
≤20αl

αs
ε2 +

2L2

T

T−1∑
k=0

E
[
‖xk − yk‖2

]
≤ 20αl

αs
ε2 +

8αsαlγ
2L2η2ε2

c2
1

.

For all hyper-parameters, we put their constrains together:

β1 ≤
αsc1bε

2

4αlc2(1 + λη)σ2
= O

(
αsc1bε

2

αlc2σ2

)
,

where c1 = ν0.5 ≤ ‖sk‖∞ ≤
(
c2
∞ + ν

)0.5
= c2.

For η, it should satisfy

η ≤ min

(
c1.5

1 β1

8
√

2αlc
0.5
2 γ1.5(1− β1)L

,
c1.5

1

4αlc
0.5
2 L0.5(γ − 1)

,
c2

1

2c2

)
Considering λη << 1, 1+λη

1+(1−µ)λη = a = 1 due to λ = 0, µ is a constant, and c1 = ν0.5 << 1, then
we have

η ≤O
(

min

(
c1.5

1 β1

αlc
0.5
2 γ1.5L

,
c1.5

1

αlc
0.5
2 γL0.5

,
c2

1

c2L

))
=O

(
min

(
c2.5

1 bε2

αlc
1.5
2 γ1.5σ2L

,
c1.5

1

αlc
0.5
2 γL0.5

,
c2

1

c2L

))
= O

(
c2.5

1 bε2

αlc
1.5
2 γ1.5σ2L

)
45

ZHOU, XIE, LIN, TOH, AND YAN

where ν is often much smaller than one, and β1 is very small. For T , we have

T ≥ 4c2∆

αsηε2
= O

(
c2∆

αsε2
αlc

1.5
2 γ1.5σ2L

c2.5
1 bε2

)
= O

(
αlc

2.5
2 γ1.5σ2L∆

αsc2.5
1 bε4

)
= O

(
αlc

2.5
2 γ1.5σ2L∆

αsν1.25bε4

)
.

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O
(
αlc

2.5
2 γ1.5σ2L∆

αsν1.25ε4

)
.

The proof is completed.

D.3 Proofs of Theorem 3

Proof Recall our definition Fk(θk) = F (θ) + λk
2 ‖θ‖

2
2 = Eζ [f(θ; ζ)] + λk

2 ‖θ‖
2
2 in the (18). By

setting β′1 = 1 − β1, then we have ‖mk‖∞ ≤ c∞ by using Lemma 7 (see Appendix C). Also we
define

wk := mk + λxk, xk+1 − xk = −
ηxk

1 + ληxk
(mk + λxk) = −

ηxk
1 + ληxk

wk.

Note in the following, we set all λk = λ. By using the smoothness of f(θ; ζ), we can obtain

Fk+1(xk+1)

≤F (xk) + 〈∇F (xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 +

λ

2
‖xk+1‖2

¬
≤F (xk) +

λ

2
‖xk‖2 + 〈∇F (xk) + λxk,xk+1 − xk〉+

L

2
‖xk+1 − xk‖2 +

λ

2
‖xk+1 − xk‖2

=Fk(xk)−
ηxk

1 + ληxk
〈∇F (xk) + λxk,wk〉+

L(ηxk)2

2(1 + ληxk)2
‖wk‖2 +

λ(ηxk)2

2(1 + ληxk)2
‖wk‖2

=Fk(xk) +
1

2

∥∥∥∥∥
√

ηxk
(1 + ληxk)

(∇F (xk) + λxk −wk)

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥
√

ηxk
(1 + ληxk)

(∇F (xk) + λxk)

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥
√

ηxk
(1 + ληxk)

wk

∥∥∥∥∥
2

+
L(ηxk)2

2(1 + ληxk)2
‖wk‖2 +

λ(ηxk)2

2(1 + ληxk)2
‖wk‖2

­
≤Fk(xk) +

ηxk
2(1 + ληxk)

‖∇F (xk)−mk‖2 −
ηxk

2(1 + ληxk)
‖∇Fk(xk)‖2

−
ηxk

2(1 + ληxk)

[
1−

Lηxk
(1 + ληxk)

−
ληxk

(1 + ληxk)

]
‖wk‖2

®
≤Fk(xk) +

ηxk
2(1 + ληxk)

‖∇F (xk)−mk‖2 −
ηxk

2(1 + ληxk)
‖∇Fk(xk)‖2 −

ηxk
4(1 + ληxk)

‖wk‖2 ,

where ¬ holds because

‖xk+1‖2sk = ‖xk‖2sk + ‖xk+1 − xk‖2sk + 2〈xk+1 − xk,xk〉sk .

46

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

­ holds, because

wk := mk + λxk, xk+1 − xk = −
ηxk

1 + ληxk
(mk + λxk) = −

ηxk
1 + ληxk

wk.

¯ holds, since we set ηxk ≤
c21(1+ληxk)

2c2(L+λc1) such that c2Lηxk
c21(1+ληxk)

+
c2ληxk

c1(1+ληxk) ≤
1
2 .

Then in the following, we can directly follow the proof of Theorem 1. This is because the only
difference between accelerated SGD and AdamW is that SGD has no the second-order moment vk,
while AdamW has. By let sk = 1 in accelerated AdamW and setting β′1 = 1 − β1 in accelerated
SGD, then they share the exact the same updating rules. So after setting β′1 = 1− β1 in accelerated
SGD, to follow the proofs of Theorem 1, we only need to verify whether the auxiliary lemmas and the
proof process of Theorem 1 hold for sk = 1. This is the true case. Please check our auxiliary lemmas,
including Lemma 7 ∼ 11, and the proof process of Theorem 1. Consider sk = 1 in accelerated SGD,
we have c1 := 1 ≤ ‖sk‖∞ ≤ c2 := 1.

In this way, by setting ηyk = γηxk , γ > 1, ηxk = η ≤ O
(

bε2

c1.5γ2.5σ2L

)
, β1 ≤ O

(
bε2

cσ2

)
, β′1 = 1−β1,

λk =λ, λ0 = 0, after T =O
(

∆σ2L
bε4

)
iterations with minibatch size b and ∆ =F (x0) −F (x?), the

sequence {(xk,yk)}Tk=0 generated by accelerated SGD satisfies the following four properties.
a) The gradient∇Fk(xk) of the sequence {xk}Tk=0 can be upper bounded by

1

T

∑T−1

k=0
E
[
‖∇Fk(xk)‖22 +

1

4
‖mk + λkxk‖22

]
≤ε2.

b) The gradient moment mk can well estimate the full gradient∇F (xk) and ∇F (yk):

1

T

∑T−1

k=0
max

{
E‖mk −∇F (xk)‖22 ,E‖mk −∇F (yk)‖22

}
≤16ε2 + 8η2γ2L2ε2.

c) The sequence {(xk,yk)} satisfies

1

T

∑T−1

k=0

{
E‖xk−xk+1‖2sk ,E‖yk−xk‖

2
2

}
≤
{
4η2ε2, 4η2γ2ε2

}
.

d) The stochastic gradient complexity to achieve the above three properties is O
(c2.5∞ ∆σ2L

ε4

)
, where

stochastic gradient complexity is the total evaluation number of the gradient on a single sample.
The proof is completed.

Appendix E. Proofs of Main Results in Sec. 4

Here we provide proofs of the main results in Sec. 4, including Theorem 4, 5 and 6.

E.1 Proof of Theorem 4

Proof Recall our definition Fk(yk) = F (z) + λk
2 ‖z‖

2
sk

= Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk
, in the (18). By

using the smoothness of f(θ; ζ), we can extactly follow Eqn. (21) in Appendix D.1 for proving
Theorem 1 to obtain

Fk+1(xk+1) ≤Fk(xk) +
ηxk

2c1(1 + λkη
x
k)
‖∇F (xk)−mk‖2 −

ηxk
2c2(1 + λkη

x
k)
‖∇Fk(xk)‖2

−
ηxk

4c2(1 + λkη
x
k)
‖wk‖2 ,

(44)

47

ZHOU, XIE, LIN, TOH, AND YAN

where we set ηxk ≤
c21(1+λkη

x
k)

2c2(L+λkc1) such that c2Lηxk
c21(1+λkη

x
k)

+
c2λkη

x
k

c1(1+λkη
x
k) ≤

1
2 .

From Lemma 14, by setting ηxk = η, ηyk = ηy, ηzk = ηz and β1,k = β1, we have

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

2Πz
1,k(1− β1)2L2

β1

+
2β2

1σ
2

b
+ 2LΠz

2,k,

(45)

where

Πz
1,k :=

3(ξx)2

(ξz)2(λk−1 + ξx)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 3(ξx + ξy + λk−1)2(δzk−1)2ρzk(η
z − ηx)2

k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 3(ξy)4(δyk−1)2(δzk−1)2ρyk(η
y − ηx)2

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

,

Πz
2,k :=2(ξzδzk−1)2ρzk(η

z − ηx)2
k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 2(ξy)4(δzk−1δ
y
k−1)2ρyk(η

y − ηx)2
k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

where ρyk+1 = ηxτyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0; ρzk+1 = ηxτ zk−1ρ

z
k, ρz1 = 1 and ρz0 = 0; τyk =

1
ηx+ηy+λkηxηy

, τ zk = 1
ηx+ηz+λkηxηz

, δyk = 1
ξx+ξy+λk

, δzk = 1
ξx+ξy+ξz+λk

.

By considering c2 ≥ ‖sk‖∞ ≥ c1 and setting ηxk = η, ηyk = ηy = γyη, ηzk = ηz = γzη and
β1,k = β1, we have

Πz
1,k ≤Π̄z

1,k =
3γ2

zη
2

c2
1(1 + λk−1η)2

‖wk−1‖2 + c3ρ
z
k(η

z − ηx)2Φk + c4ρ
y
k(η

y − ηx)2Ψk,

Πz
2,k ≤Π̄z

2,k = c5ρ
z
k(η

z − ηx)2Φk + c6ρ
y
k(η

y − ηx)2Ψk.

Φk =

k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2
‖wk−1‖2 ,

Ψk =

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2
‖wk−1‖2

in which c3 = 3
c21

(
1− γy

γy+γz+(1+λk−1η)γyγz

)2
, c4 = 3

c21(1+(1+λk−1η)γy)2(1+(1+λk−1η)γy+γy/γz)2
,

c5 = 2
((1+λk−1η)γz+1+γz/γy)2

, and c6 = 2
c21(1+(1+λk−1η)γy)2(1+(1+λk−1η)γy+γy/γz)2

.

48

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Therefore, by plugging the results in Eqn. (45) into the upper bound of Fk+1(xk+1), we have

Fk+1(xk+1)

≤Fk(xk)−
η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+
η(1− β1)

c1(1 + λkη)
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
ηΠ̄z

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄z
2,k

c1(1 + λkη)
¬
≤Fk(xk)−

η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+
η(1− β1)

c1
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
ηΠ̄z

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄z
2,k

c1(1 + λkη)
,

(46)

where ¬ uses the fact that 0 < λk ≤ λ. Then, by plugging ‖zk − zk−1‖2 ≤ Πz
1,k ≤ Π̄z

1,k in
Lemma 11 into Lemma 12, we have

E
[
‖mk −∇F (zk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1)2L2Π̄z
1,k

β1
+
β2

1σ
2

b
.

(47)

Then we add Eqn. (46) and α× (47) as follows:

Fk+1(xk+1) + αE
[
‖mk −∇F (yk)‖2

]
≤Fk(xk)−

η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+ (1− β1)

(
η

c1
+ α

)
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
ηΠ̄z

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄z
2,k

c1(1 + λkη)
+
α(1− β1)2L2Π̄z

1,k

β1
+
αβ2

1σ
2

b

(48)

Then by setting α = η(1−β1)
c1β1

and Gk+1(xk+1) = Fk+1(xk+1) + η(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
=

Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk

+ η(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
, we can obtain

Gk+1(xk+1) ≤ Gk(xk)−
η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2

+
ηΠ̄z

1,k(1− β1)2L2

c1β1(1 + λkη)
+

ηβ2
1σ

2

c1(1 + λkη)b
+

ηLΠ̄z
2,k

c1(1 + λkη)
+
η(1− β1)3L2Π̄z

1,k

c1β2
1

+
η(1− β1)β1σ

2

c1b

¬
≤Gk(xk)−

η

2c2(1 + λkη)
‖∇Fk(xk)‖2 −

η

4c2(1 + λkη)
‖wk‖2 +

η(1− β1)2L2Π̄z
1,k

c1β2
1

+
ηLΠ̄z

2,k

c1(1 + λkη)
+
ηβ1σ

2

c1b
,

49

ZHOU, XIE, LIN, TOH, AND YAN

where ¬ uses the fact that 0 < λk ≤ λ. Then summing the above inequality from k = 0 to k = T −1
and using 0 < λk ≤ λ give

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2
‖wk‖2

]
≤2c2(1 + λη)

ηT
[G(x0)−G(xT)] +

2c2β1σ
2(1 + λη)

c1bT
+

2c2β
2
1σ

2

c1b

+
2c2(1− β1)2L2(1 + λη)

c1β2
1T

T−1∑
k=0

Π̄z
1,k +

2c2L

c1T

T−1∑
k=0

Π̄z
2,k

≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b
+

2c2(1− β1)2L2(1 + λη)

c1β2
1T

T−1∑
k=0

Π̄z
1,k +

2c2L

c1T

T−1∑
k=0

Π̄z
2,k

where
G(x0)−G(xT)

=F0(x0) +
η(1− β1)

c1β1
E
[
‖m−1 −∇F (x−1)‖2

]
− FT (xT)− η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
=F (x0) + λ0 ‖x0‖s0 − F (xT)− λT ‖xT ‖sT −

η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
≤F (x0)− F (xT) ≤ ∆

where ∆ = F (x0)− F (x?); x−1 and m−1 are two virtual points which satisfy m−1 = ∇F (x−1).
Now we try to bound

∑T−1
k=0 Π̄z

1,k and
∑T−1

k=0 Π̄z
2,k.

Πz
1,k ≤Π̄z

1,k =
3γ2

zη
2

c2
1(1 + λk−1η)2

‖wk−1‖2 + c3ρ
z
k(η

z − ηx)2Φk + c4ρ
y
k(η

y − ηx)2Ψk,

Πz
2,k ≤Π̄z

2,k = c5ρ
z
k(η

z − ηx)2Φk + c6ρ
y
k(η

y − ηx)2Ψk.

Φk =
k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2
‖wk−1‖2 , Ψk =

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2
‖wk−1‖2

(49)

in which c3 = 3
c21

(
1− γy

γy+γz+(1+λk−1η)γyγz

)2
, c4 = 3

c21(1+(1+λk−1η)γy)2(1+(1+λk−1η)γy+γy/γz)2
,

c5 = 2
((1+λk−1η)γz+1+γz/γy)2

, and c6 = 2
c21(1+(1+λk−1η)γy)2(1+(1+λk−1η)γy+γy/γz)2

.
Firstly, we have

T−1∑
k=0

Π̄z
1,k =

T−1∑
k=0

[
3γ2

zη
2

c2
1(1 + λk−1η)2

‖wk−1‖2 + c3ρ
z
k(η

z − ηx)2Φk + c4ρ
y
k(η

y − ηx)2Ψk

]
¬
≤
[

3γ2
zη

2

c2
1(1 + λk−1η)2

+ c3(ηz − ηx)2 (1 + γz)
2

γz
+ c4(ηy − ηx)2 (1 + γy)

2

γy

] T−1∑
k=0

[
‖wk−1‖2

]
­
≤3η2

c2
1

[
1 + γ3

y + γ3
z

] T−1∑
k=0

[
‖wk−1‖2

]
(50)

50

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where ¬ holds since 0 ≤ λk ≤ λ; ­ holds, since in Lemma 9, we prove

T−1∑
k=0

ρzkΦk =
T−1∑
k=0

ρzk

k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2
‖wi‖2

≤ 1

ητz(1− ητz)2

T−1∑
k=0

[
‖wk‖2

]
=

(1 + γz)
2

γz

T−1∑
k=0

[
‖wk‖2

]
T−1∑
k=0

ρykΨk =
T−1∑
k=0

ρyk

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2
‖wi‖2

≤ 1

ητy(1− ητy)2

T−1∑
k=0

[
‖wk‖2

]
=

(1 + γy)
2

γy

T−1∑
k=0

[
‖wk‖2

]
(51)

where τy = 1
η+ηy and τz = 1

η+ηz . ­ holds since c3 ≤ 3
c21

, c4 ≤ 3
c21

, (γy − 1)2(γy + 1)2 ≤ γ4
y and

(γz − 1)2(γz + 1)2 ≤ γ4
z .

Similarly, we can bound

T−1∑
k=0

Π̄z
2,k =

T−1∑
k=0

[
c5ρ

z
k(η

z − ηx)2Φk + c6ρ
y
k(η

y − ηx)2Ψk

]
¬
≤
[
c5(ηz − ηx)2 (1 + γz)

2

γz
+ c6(ηy − ηx)2 (1 + γy)

2

γy

] T−1∑
k=0

[
‖wk−1‖2

]
­
≤ 2η2

c2
1

[
γ3
y + γ3

z

] T−1∑
k=0

[
‖wk−1‖2

]
(52)

where ¬ holds by using above results giving by Lemma 9. ­ holds since c5 ≤ 3
c21

, c6 ≤ 3
c21

,

(γy − 1)2(γy + 1)2 ≤ γ4
y and (γz − 1)2(γz + 1)2 ≤ γ4

z .
Therefore, we have

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2
‖wk‖2

]
≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b

+
6η2c2(1− β1)2L2(1 + λη)

c3
1β

2
1T

[
1 + γ3

y + γ3
z

] T−1∑
k=0

[
‖wk−1‖2

]
+

4η2c2L

c3
1T

T−1∑
k=0

[
γ3
y + γ3

z

] T−1∑
k=0

[
‖wk−1‖2

]
¬
≤2c2(1 + λη)∆

ηT
+

2c2β1σ
2(1 + λη)

c1b
+

1

4T

T−1∑
k=0

[
‖wk‖2

]
where ¬ holds since we choose proper η and β1 such that

6η2c2(1− β1)2L2(1 + λη)

c3
1β

2
1

[
1 + γ3

y + γ3
z

]
≤ 1

8
,

4η2c2L

c3
1

[
γ3
y + γ3

z

]
≤ 1

8
(53)

51

ZHOU, XIE, LIN, TOH, AND YAN

Now we select η and β1 such that (53) holds:

η ≤ min

(
c1.5

1 β1

c0.5
2 (1− β1)L

(
1 + γ3

y + γ3
z

)0.5 , c1.5
1

c0.5
2 L0.5

(
γ3
y + γ3

z

)0.5
)

So we arrive at

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

4
‖wk‖2

]
≤2c2(1 + λη)∆

ηT
+

2c2β1(1 + λη)σ2

c1b

¬
≤ ε2, (54)

where we set T ≥ 4c2(1+λη)∆
ηε2

and β1 ≤ c1bε2

4c2(1+λη)σ2 . This result directly bounds

1

T

T−1∑
k=0

‖sk � (xk − xk+1)‖2 =
η2

T

T−1∑
k=0

1

(1 + λkη)2
‖mk + λxk � sk‖2 ≤

η2

T

T−1∑
k=0

‖wk‖2 ≤ η2ε2.

which directly yields

1

T

T−1∑
k=0

‖xk − xk+1‖2sk ≤ η
2ε2.

Moreover, from Lemma 13, we have

1

T

T−1∑
k=0

∥∥y′k − (1 + λk−1η
y)xk

∥∥2 ¬
≤ 1

T

T−1∑
k=0

ρyk(η
y − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

­
=(ηy − η)2 1

T

T−1∑
k=0

ρykΨk,

1

T

T−1∑
k=0

‖yk − xk‖2
¬
≤ 1

T

T−1∑
k=0

τyk−1ρ
y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

­
=(ηy − η)2 1

T

T−1∑
k=0

τyk−1ρ
y
kΨk,

1

T

T−1∑
k=0

∥∥z′k+1 − (1 + λkη
z)xk+1

∥∥2 ¬
≤ 1

T

T−1∑
k=0

ρzk+1(ηz − ηx)2
k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

­
=(ηz − η)2 1

T

T−1∑
k=0

ρykΦk,

where ¬ holds by using Lemma 13; ­ holds by using the definitions of Ψk and Φk in Eqn. (49).
Then in Eqn. (51), we have prove

T−1∑
k=0

ρzkΦk ≤
(1 + γz)

2

γz

T−1∑
k=0

[
‖wk‖2

]
≤ 4(1 + γz)

2ε2

γz
,

T−1∑
k=0

ρykΨk ≤
(1 + γy)

2

γy

T−1∑
k=0

[
‖wk‖2

]
≤ 4(1 + γy)

2ε2

γy

(55)

52

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Besides, in Lemma 9, we also prove

1

T

T−1∑
k=0

τyk−1ρ
y
kΨk ≤

1

η(1− η/(η + ηy))2T

T−1∑
k=0

[
‖wk‖2

]
≤ 4ε2

η(1− η/(η + ηy))2
=

4(1 + γy)
2ε2

ηγ2
y

.

So we have

1

T

T−1∑
k=0

∥∥y′k − (1 + λk−1η
y)xk

∥∥2 ¬
≤ 4η2γ3

yε
2,

1

T

T−1∑
k=0

‖yk − xk‖2
¬
≤ 4ηγ2

yε
2,

1

T

T−1∑
k=0

∥∥z′k+1 − (1 + λkη
z)xk+1

∥∥2 ¬
≤ 4η2γ3

z ε
2.

Then by using similar method, we can upper bound

1

T

T−1∑
k=0

‖zk+1 − xk+1‖2 ≤
1

T

T−1∑
k=0

Πz
2,k

¬
≤ 2η2

c2
1T

[
γ3
y + γ3

z

] T−1∑
k=0

[
‖wk−1‖2

]
≤ 8η2ε2

c2
1

[
γ3
y + γ3

z

]
1

T

T−1∑
k=0

‖zk+1 − zk‖2 ≤
1

T

T−1∑
k=0

Πz
1,k

­
≤ 3η2

c2
1T

[
1 + γ3

y + γ3
z

] T−1∑
k=0

[
‖wk−1‖2

]
≤ 12η2ε2

c2
1

[
1 + γ3

y + γ3
z

]
where ¬ uses Eqn. (52), and ­ uses Eqn. (50)

On the other hand, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2

]
≤ 1

T

T−1∑
k=0

E
[
‖mk + λkxk � sk −∇F (xk)− λkxk � sk‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇F (xk) + λkxk � sk‖2

]
=

2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇Fk(xk)‖2

]
¬
≤2

[
ε2 +

3

4
× 4ε2

]
≤ 8ε2.

where in ¬ we use wk = mk + λkxk � sk. In this way, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (zk)‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2 + ‖∇F (xk)−∇F (zk)‖2

]
≤16ε2 +

2L2

T

T−1∑
k=0

E
[
‖xk − zk‖2

]
≤ 16ε2 +

8η2ε2

c2
1

[
γ3
y + γ3

z

]
=

(c1L+ 32c2)

2c2
ε2.

53

ZHOU, XIE, LIN, TOH, AND YAN

For all hyper-parameters, we put their constrains together:

β1 ≤
c1bε

2

4c2(1 + λη)σ2
= O

(
c1bε

2

c2σ2

)
,

where c1 = ν0.5 ≤ ‖sk‖∞ ≤
(
c2
∞ + ν

)0.5
= c2.

For η, it should satisfy

η ≤ min

(
c1.5

1 β1

c0.5
2 (1− β1)L

(
1 + γ3

y + γ3
z

)0.5 , c1.5
1

c0.5
2 L0.5

(
γ3
y + γ3

z

)0.5 , c2
1(1 + λkη)

2c2(L+ λkc1)

)

Considering λη << 1, 1+λη
1+(1−µ)λη = a ≤ 1

1−µ , µ is a constant, and c1 = ν0.5 << 1, then we have

η ≤O

(
min

(
c1.5

1 β1

c0.5
2 (γ1.5

y + γ1.5
z)L

,
c1.5

1

c0.5
2 (γ1.5

y + γ1.5
z)L0.5

,
c2

1

c2L

))
= O

(
c2.5

1 bε2

c1.5
2 (γ1.5

y + γ1.5
z)σ2L

)
where ν is often much smaller than one, and β1 is very small. For T , we have

T ≥4c2(1 + λη)∆

ηε2
= O

(
c2∆

ε2
c1.5

2 (γ1.5
y + γ1.5

z)σ2L

c2.5
1 bε2

)

=O

(
c2.5

2 (γ1.5
y + γ1.5

z)σ2L∆

c2.5
1 bε4

)
= O

(
c2.5

2 (γ1.5
y + γ1.5

z)σ2L∆

ν1.25bε4

)
.

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O

(
c2.5

2 (γ1.5
y + γ1.5

z)σ2L∆

ν1.25ε4

)
.

The proof is completed.

E.2 Proof of Theorem 5

Proof Recall our definition Fk(yk) = F (z) + λk
2 ‖z‖

2
sk

= Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk
, in the (18). By

using the smoothness of f(θ; ζ), we can extactly follow Eqn. (35) in Appendix D.2 for proving
Theorem 2 to obtain

Fk+1(xk+1) ≤Fk(xk) +
αlη

x
k

2c1
‖∇F (xk)−mk‖2 −

αsη
x
k

2c2
‖∇Fk(xk)‖2 −

ηxk
4αlc2

‖wk‖2 ,

where we set ηxk ≤
c21

2αlc2
such that αlc2Lη

x
k

c21
≤ 1

2 .

From Lemma 14, by setting ηxk = η, ηyk = ηy, ηzk = ηz and β1,k = β1, we have

E
[
‖mk −∇F (xk)‖2

]
≤2(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

2Πz
1,k(1− β1)2L2

β1
+

2β2
1σ

2

b
+ 2LΠz

2,k,
(56)

54

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where

Πz
1,k :=

3(ξx)2

(ξz)2(λk−1 + ξx)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 3(ξx + ξy + λk−1)2(δzk−1)2ρzk(η
z − ηx)2

k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 3(ξy)4(δyk−1)2(δzk−1)2ρyk(η
y − ηx)2

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

,

Πz
2,k :=2(ξzδzk−1)2ρzk(η

z − ηx)2
k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 2(ξy)4(δzk−1δ
y
k−1)2ρyk(η

y − ηx)2
k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

where ρyk+1 = ηxτyk−1ρ
y
k, ρy1 = 1 and ρy0 = 0; ρzk+1 = ηxτ zk−1ρ

z
k, ρz1 = 1 and ρz0 = 0; τyk =

1
ηx+ηy+λkηxηy

, τ zk = 1
ηx+ηz+λkηxηz

, δyk = 1
ξx+ξy+λk

, δzk = 1
ξx+ξy+ξz+λk

.
By considering c2 ≥ ‖sk‖∞ ≥ c1 and setting ηxk = η, ηyk = ηy = γyη, ηzk = ηz = γzη and

β1,k = β1, we have

Πz
1,k ≤Π̄z

1,k =
3γ2

zη
2

c2
1(1 + λk−1η)2

‖wk−1‖2 + c3ρ
z
k(η

z − ηx)2Φk + c4ρ
y
k(η

y − ηx)2Ψk,

Πz
2,k ≤Π̄z

2,k = c5ρ
z
k(η

z − ηx)2Φk + c6ρ
y
k(η

y − ηx)2Ψk.

Φk =
k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2
‖wk−1‖2 , Ψk =

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2
‖wk−1‖2

(57)

in which c3 = 3
c21

(
1− γy

γy+γz+(1+λk−1η)γyγz

)2
, c4 = 3

c21(1+(1+λk−1η)γy)2(1+(1+λk−1η)γy+γy/γz)2
,

c5 = 2
((1+λk−1η)γz+1+γz/γy)2

, and c6 = 2
c21(1+(1+λk−1η)γy)2(1+(1+λk−1η)γy+γy/γz)2

.
Therefore, by plugging the results in Eqn. (56) into the upper bound of Fk+1(xk+1), we have

Fk+1(xk+1) ≤Fk(xk)−
αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2

+
αlη(1− β1)

c1
E
[
‖mk−1 −∇F (zk−1)‖2

]
+
αlηΠ̄z

1,k(1− β1)2L2

c1β1

+
αlηβ

2
1σ

2

c1b
+
αlηLΠ̄z

2,k

c1
,

(58)

Then, by plugging ‖zk − zk−1‖2 ≤ Πz
1,k ≤ Π̄z

1,k in Lemma 11 into Lemma 12, we have

E
[
‖mk −∇F (zk)‖2

]
≤(1− β1)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1)2L2Π̄z
1,k

β1
+
β2

1σ
2

b
.

(59)

55

ZHOU, XIE, LIN, TOH, AND YAN

Then we add Eqn. (58) and α× (59) as follows:

Fk+1(xk+1) + αE
[
‖mk −∇F (yk)‖2

]
≤Fk(xk)−

αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2

+ (1− β1)

(
αlη

c1
+ α

)
E
[
‖mk−1 −∇F (yk−1)‖2

]
+
αlηΠ̄z

1,k(1− β1)2L2

c1β1

+
αlηβ

2
1σ

2

c1b
+
αlηLΠ̄z

2,k

c1
+
α(1− β1)2L2Π̄z

1,k

β1
+
αβ2

1σ
2

b

(60)

Then by settingα = αlη(1−β1)
c1β1

andGk+1(xk+1) = Fk+1(xk+1)+αlη(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
=

Eζ [f(z; ζ)] + λk
2 ‖z‖

2
sk

+ αlη(1−β1)
c1β1

E
[
‖mk −∇F (xk)‖2

]
, we can obtain

Gk+1(xk+1)

≤Gk(xk)−
αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2

+
αlηΠ̄z

1,k(1− β1)2L2

c1β1
+
αlηβ

2
1σ

2

c1b
+
αlηLΠ̄z

2,k

c1
+
αlη(1− β1)3L2Π̄z

1,k

c1β2
1

+
αlη(1− β1)β1σ

2

c1b

≤Gk(xk)−
αsη

2c2
‖∇Fk(xk)‖2 −

η

4αlc2
‖wk‖2 +

αlη(1− β1)2L2Π̄z
1,k

c1β2
1

+
αlηLΠ̄z

2,k

c1
+
αlηβ1σ

2

c1b
.

Then summing the above inequality from k = 0 to k = T − 1 give

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2αsαl
‖wk‖2

]

≤ 2c2

αsηT
[G(x0)−G(xT)] +

2αlc2β1σ
2

αsc1bT
+

2αlc2(1− β1)2L2

αsc1β2
1T

T−1∑
k=0

Π̄z
1,k +

2αlc2L

αsc1T

T−1∑
k=0

Π̄z
2,k

≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1b
+

2αlc2(1− β1)2L2

αsc1β2
1T

T−1∑
k=0

Π̄z
1,k +

2αlc2L

αsc1T

T−1∑
k=0

Π̄z
2,k

where
G(x0)−G(xT)

=F0(x0) +
η(1− β1)

c1β1
E
[
‖m−1 −∇F (x−1)‖2

]
− FT (xT)− η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
=F (x0) + λ0 ‖x0‖s0 − F (xT)− λT ‖xT ‖sT −

η(1− β1)

c1β1
E
[
‖mT−1 −∇F (xT−1)‖2

]
≤F (x0)− F (xT) ≤ ∆

where ∆ = F (x0)− F (x?); x−1 and m−1 are two virtual points which satisfy m−1 = ∇F (x−1).
Now we can directly use Eqn. (50) and (52) to upper bound

∑T−1
k=0 Π̄z

1,k and
∑T−1

k=0 Π̄z
2,k:

T−1∑
k=0

Π̄z
1,k ≤

3η2

c2
1

[
1 + γ3

y + γ3
z

] T−1∑
k=0

[
‖wk−1‖2

]
,

T−1∑
k=0

Π̄z
2,k ≤

2η2

c2
1

[
γ3
y + γ3

z

] T−1∑
k=0

[
‖wk−1‖2

]
(61)

56

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Therefore, we have

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

2αsαl
‖wk‖2

]
≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1bT

+
6αlη

2c2(1− β1)2L2

αsc3
1β

2
1T

[
1 + γ3

y + γ3
z

] T−1∑
k=0

[
‖wk−1‖2

]
+

4αlη
2c2L

αsc3
1T

T−1∑
k=0

[
γ3
y + γ3

z

] T−1∑
k=0

[
‖wk−1‖2

]
¬
≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1b
+

1

4αsαlT

T−1∑
k=0

[
‖wk‖2

]

where ¬ holds since we choose proper η and β1 such that

6αlη
2c2(1− β1)2L2

αsc3
1β

2
1

[
1 + γ3

y + γ3
z

]
≤ 1

8αsαl
,

4αlη
2c2L

αsc3
1

[
γ3
y + γ3

z

]
≤ 1

8αsαl
(62)

Now we select η and β1 such that (62) holds:

η ≤ min

(
c1.5

1 β1

αlc
0.5
2 (1− β1)L

(
1 + γ3

y + γ3
z

)0.5 , c1.5
1

αlc
0.5
2 L0.5

(
γ3
y + γ3

z

)0.5
)

So we arrive at

1

T

T−1∑
k=0

E
[
‖∇Fk(xk)‖2 +

1

4αsαl
‖wk‖2

]
≤ 2c2∆

αsηT
+

2αlc2β1σ
2

αsc1b

¬
≤ ε2, (63)

where we set T ≥ 4c2∆
αsηε2

and β1 ≤ αsc1bε2

4αlc2σ2 . This result directly bounds

1

T

T−1∑
k=0

‖sk � (xk − xk+1)‖2 =
η2

T

T−1∑
k=0

‖mk + λxk � sk‖2 ≤
η2

T

T−1∑
k=0

‖wk‖2 ≤ 4αsαlη
2ε2.

which directly yields

1

T

T−1∑
k=0

‖xk − xk+1‖2sk ≤ 4αsαlη
2ε2.

57

ZHOU, XIE, LIN, TOH, AND YAN

Moreover, from Lemma 13, we have

1

T

T−1∑
k=0

∥∥y′k − (1 + λk−1η
y)xk

∥∥2 ¬
≤ 1

T

T−1∑
k=0

ρyk(η
y − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

­
=(ηy − η)2 1

c2
1T

T−1∑
k=0

ρykΨk,

1

T

T−1∑
k=0

‖yk − xk‖2
¬
≤ 1

T

T−1∑
k=0

τyk−1ρ
y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

­
=(ηy − η)2 1

c2
1T

T−1∑
k=0

τyk−1ρ
y
kΨk,

1

T

T−1∑
k=0

∥∥z′k+1 − (1 + λkη
z)xk+1

∥∥2 ¬
≤ 1

T

T−1∑
k=0

ρzk+1(ηz − ηx)2
k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

­
=(ηz − η)2 1

c2
1T

T−1∑
k=0

ρykΦk,

where ¬ holds by using Lemma 13; ­ holds by using the definitions of Ψk and Φk in Eqn. (57).
Then in Eqn. (51) in Appendix E.1 for proving Theorem 4, we have prove

T−1∑
k=0

ρzkΦk ≤
(1 + γz)

2

γz

T−1∑
k=0

[
‖wk‖2

]
≤ 4αsαl(1 + γz)

2ε2

γz
,

T−1∑
k=0

ρykΨk ≤
(1 + γy)

2

γy

T−1∑
k=0

[
‖wk‖2

]
≤ 4αsαl(1 + γy)

2ε2

γy

(64)

Besides, in Lemma 9, we also prove

1

T

T−1∑
k=0

τyk−1ρ
y
kΨk ≤

1

η(1− η/(η + ηy))2T

T−1∑
k=0

[
‖wk‖2

]
≤ 4αsαlε

2

η(1− η/(η + ηy))2
=

4αsαl(1 + γy)
2ε2

ηγ2
y

.

So we have

1

T

T−1∑
k=0

∥∥y′k − (1 + λk−1η
y)xk

∥∥2 ¬
≤

4αsαlη
2γ3
yε

2

c2
1

,
1

T

T−1∑
k=0

‖yk − xk‖2
¬
≤

4αsαlηγ
2
yε

2

c2
1

,

1

T

T−1∑
k=0

∥∥z′k+1 − (1 + λkη
z)xk+1

∥∥2 ¬
≤ 4αsαlη

2γ3
z ε

2

c2
1

.

58

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Then by using similar method, we can upper bound

1

T

T−1∑
k=0

‖zk+1 − xk+1‖2 ≤
1

T

T−1∑
k=0

Πz
2,k

¬
≤ 2η2

c2
1T

[
γ3
y + γ3

z

] T−1∑
k=0

[
‖wk−1‖2

]
≤ 8αsαlη

2ε2

c2
1

[
γ3
y + γ3

z

]
1

T

T−1∑
k=0

‖zk+1 − zk‖2 ≤
1

T

T−1∑
k=0

Πz
1,k

­
≤ 3η2

c2
1T

[
1 + γ3

y + γ3
z

] T−1∑
k=0

[
‖wk−1‖2

]
≤12αsαlη

2ε2

c2
1

[
1 + γ3

y + γ3
z

]
where ¬ uses Eqn. (52), and ­ uses Eqn. (50)

On the other hand, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2

]
≤ 1

T

T−1∑
k=0

E
[
‖mk + λkxk � sk −∇F (xk)− λkxk � sk‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇F (xk) + λkxk � sk‖2

]
=

2

T

T−1∑
k=0

E
[
‖mk + λkxk � sk‖2 + ‖∇Fk(xk)‖2

]
¬
=

2

T

T−1∑
k=0

E

[∥∥∥∥ 1

αk
wk

∥∥∥∥2

+ ‖∇Fk(xk)‖2
]

­
≤ 2

[
ε2 + 4

αl
αs
ε2
]
≤ 10αl

αs
ε2.

where in ¬ and ­, we use wk := αkmk + (1 + αk)λkxk � sk = αkmk, with λk = 0 and
αs ≤ αk = ‖xk‖2

‖mk/
√
vk+ν+λkxk‖2

≤ αl. In this way, we have

1

T

T−1∑
k=0

E
[
‖mk −∇F (zk)‖2

]
≤ 2

T

T−1∑
k=0

E
[
‖mk −∇F (xk)‖2 + ‖∇F (xk)−∇F (zk)‖2

]
≤4(4αsαl + 1)ε2 +

2L2

T

T−1∑
k=0

E
[
‖xk − zk‖2

]
≤ 10αl

αs
ε2 +

8αsαlη
2ε2

c2
1

[
γ3
y + γ3

z

]
For all hyper-parameters, we put their constrains together:

β1 ≤
αsc1bε

2

4c2σ2
= O

(
αsc1bε

2

c2σ2

)
,

where c1 = ν0.5 ≤ ‖sk‖∞ ≤
(
c2
∞ + ν

)0.5
= c2.

59

ZHOU, XIE, LIN, TOH, AND YAN

For η, it should satisfy

η ≤O

(
min

(
c1.5

1 β1

αlc
0.5
2 (1− β1)L

(
1 + γ3

y + γ3
z

)0.5 , c1.5
1

αlc
0.5
2 L0.5

(
γ3
y + γ3

z

)0.5 , c2
1

2αlc2L

))

=O

(
min

(
c2.5

1 bε2

αlc
1.5
2 (γ1.5

y + γ1.5
z)σ2L

,
c1.5

1

αlc
0.5
2 (γ1.5

y + γ1.5
z)L0.5

,
c2

1

αlc2L

))

=O

(
c2.5

1 bε2

αlc
1.5
2 (γ1.5

y + γ1.5
z)σ2L

)
For T , we have

T ≥ 4c2∆

αsηε2
= O

(
c2∆

αsε2
αlc

1.5
2 (γ1.5

y + γ1.5
z)σ2L

c2.5
1 bε2

)

= O

(
αlc

2.5
2 (γ1.5

y + γ1.5
z)σ2L∆

αsc2.5
1 bε4

)
= O

(
αlc

2.5
2 (γ1.5

y + γ1.5
z)σ2L∆

αsν1.25bε4

)
.

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O

(
αlc

2.5
2 (γ1.5

y + γ1.5
z)σ2L∆

αsν1.25ε4

)
.

The proof is completed.

E.3 Proofs of Theorem 6

Proof Recall our definition Fk(θk) = F (θ) + λk
2 ‖θ‖

2
2 = Eζ [f(θ; ζ)] + λk

2 ‖θ‖
2
2 in the (18). By

setting β′1 = 1 − β1, then we have ‖mk‖∞ ≤ c∞ by using Lemma 7 (see Appendix C). Also we
define

wk := mk + λxk, xk+1 − xk = −
ηxk

1 + ληxk
(mk + λxk) = −

ηxk
1 + ληxk

wk.

Note in the following, we set all λk = λ. Following the proof of Eqn. (44) in the proofs of Theorem 5
in Appendix E.3, we can obtain

Fk+1(xk+1) ≤Fk(xk) +
ηxk

2c1(1 + λkη
x
k)
‖∇F (xk)−mk‖2 −

ηxk
2c2(1 + λkη

x
k)
‖∇Fk(xk)‖2

−
ηxk

4c2(1 + λkη
x
k)
‖wk‖2 ,

where we set ηxk ≤
c21(1+λkη

x
k)

2c2(L+λkc1) such that c2Lηxk
c21(1+λkη

x
k)

+
c2λkη

x
k

c1(1+λkη
x
k) ≤

1
2 .

Then in the following, we can directly follow the proof of Theorem 5. This is because the only
difference between accelerated SGD and AdamW is that SGD has no the second-order moment vk,

60

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

while AdamW has. By let sk = 1 in accelerated AdamW and setting β′1 = 1 − β1 in accelerated
SGD, then they share the exact the same updating rules. So after setting β′1 = 1− β1 in accelerated
SGD, to follow the proofs of Theorem 5, we only need to verify whether the auxiliary lemmas and
the proof process of Theorem 5 hold for sk = 1. This is the true case. Please check our auxiliary
lemmas, including Lemma 7, Lemma 12 ∼ 14, and the proof process of Theorem 5. Consider sk = 1
in accelerated SGD, we have c1 := 1 ≤ ‖sk‖∞ ≤ c2 := 1. The proof is completed.

Appendix F. Proofs of Auxiliary Lemmas

F.1 Proof of Lemma 7

Proof To begin with, we assume that ∀t ≤ k, it holds

‖mt‖∞ ≤ c∞, ‖vt + ν‖∞ ≤ c∞ + ν

Then we consider the case where t = k + 1 as follows

‖mk+1‖∞ = ‖(1− β1)mk + β1gk‖∞ ≤ (1− β1) ‖mk‖∞ + β1 ‖gk‖∞ ≤ c∞,
‖vk+1‖∞ =

∥∥(1− β2)vk + β2g
2
k

∥∥
∞ ≤ (1− β2) ‖vk‖∞ + β2

∥∥g2
k

∥∥
∞ ≤ c

2
∞.

Then we derive the second results as follows:

∥∥∥∥√ vk + ν

vk+1 + ν

∥∥∥∥
∞

=

∥∥∥∥√1 +
vk − vk+1

vk+1 + ν

∥∥∥∥
∞

=

∥∥∥∥∥∥
√

1 +
β2(vk − g2

k)

vk+1 + ν

∥∥∥∥∥∥
∞

.

Therefore, we have

1− β2c
2
∞

2(c2
s,∞ + ν)

<

√
1− β2c2

∞
c2
s,∞ + ν

≤
∥∥∥∥√ vk + ν

vk+1 + ν

∥∥∥∥
∞
≤

√
1 +

β2c2
∞

c2
s,∞ + ν

< 1 +
β2c

2
∞

2(c2
s,∞ + ν)

.

We complete the proof.

F.2 Proof of Lemma 8

Proof To begin with, for Win, we have

gk =
1

b

b∑
i=1

∇f(yk; ζi); mk = (1− β1)mk−1 + β1gk; vk = (1− β2)vk−1 + β2g
2
k.

61

ZHOU, XIE, LIN, TOH, AND YAN

Based on these updating rules, we have

E
[
‖mk −∇F (yk)‖2

]
=E

[
‖(1− β1)(mk−1 −∇F (yk−1)) + (1− β1)∇F (yk−1)−∇F (yk) + β1gk‖2

]
=E

[
‖(1− β1)(mk−1 −∇F (yk−1)) + (1− β1)(∇F (yk−1)−∇F (yk)) + β1(gk −∇F (yk))‖2

]
¬
=(1− β1)2E

[
‖mk−1 −∇F (yk−1)‖2

]
+ (1− β1)2E

[
‖∇F (yk−1)−∇F (yk)‖2

]
+ β2

1E
[
‖gk −∇F (yk)‖2

]
+ 2(1− β1)2E〈mk−1 −∇F (yk−1),∇F (yk−1)−∇F (yk)〉

­
≤(1− β1)2 [1 + a]E

[
‖mk−1 −∇F (yk−1)‖2

]
+ (1− β1)2

(
1 +

1

a

)
E
[
‖∇F (yk−1)−∇F (yk)‖2

]
+
β2

1σ
2

b

®
=(1− β1)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

(1− β1)2

β1
E
[
‖∇F (yk−1)−∇F (yk)‖2

]
+
β2

1σ
2

b

≤(1− β1)E
[
‖mk−1 −∇F (yk−1)‖2

]
+

(1− β1)2L2

β1
E
[
‖yk−1 − yk‖2

]
+
β2

1σ
2

b
,

where ¬ holds since E〈mk−1−∇F (yk−1),gk−∇F (yk)〉 = 0 and E〈∇F (yk−1)−∇F (yk),gk−
∇F (yk)〉 = 0; ­ holds by E

[
‖gk −∇F (yk)‖2

]
≤ σ2

b and ® holds by setting a = β
1−β . The proof

is completed.

F.3 Proof of Lemma 9

Proof To begin with, we prove

φ(y) =

T−1∑
k=0

1

ρyk+1(1− ητyk−1)(1 + λkη)2
‖wk‖2

[
T−1∑
i=k

ρyi (τ
y
i−1)2(1 + λi−1η)2

]
¬
≤ a2

(1− ητ)

T−1∑
k=0

1

ρyk+1

‖wk‖2
[
T−1∑
i=k

ρyi (τ
y
i−1)2

]
­
≤ a2τ

η(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]
,

where ¬ holds, since 1) for i ≥ k we have 1+λi−1η
1+λkη

≤ 1+λk−1η
1+λkη

=
1+λk−1η

1+(1−µ)λk−1η
≤ 1+λη

1+(1−µ)λη =

a ≤ 1
1−µ and 2) 1

1−ητyi−1
= η+ηy+λi−1η

yη
ηy+λi−1ηyη

= 1+ η
ηy+λi−1ηyη

≤ 1+ η
ηy = 1

1−ητ whose minimum is at

λi−1 = 0 and τ = 1
η+ηy ; ­ holds, since

∑T−1
i=k ρ

y
i (τ

y
i−1)2 = 1

η

∑T−1
i=k ρ

y
i+1τ

y
i−1 ≤

τ
η

∑T−1
i=k ρ

y
i+1 ≤

τ
η

ρyk+1(1−ηT−kτT−k)

1−ητ ≤ τρyk+1

η(1−ητ) by using ρyk+1 = ητyk−1ρ
y
k.

Similarly, we can bound
T−1∑
k=0

τyk−1ρ
y
k

[
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]

=

T−1∑
k=0

1

ρyk+1(1− ητyk−1)(1 + λkη)2
‖wk‖2

T−1∑
i=k

[
τyi−1ρ

y
i

] ¬
≤ 1

η(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]

62

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where ­ holds, since 1)
∑T−1

i=k ρ
y
i τ
y
i−1 = 1

η

∑T−1
i=k ρ

y
i+1 ≤

1
η

ρyk+1(1−ηT−kτT−k)

1−ητ ≤ ρyk+1

η(1−ητ) ; and 2)
1

1−ητyi−1
= η+ηy+λi−1η

yη
ηy+λi−1ηyη

= 1 + η
ηy+λi−1ηyη

≤ 1 + η
ηy = 1

1−ητ whose minimum is at λi−1 = 0 and

τ = 1
η+ηy . Then, we can bound

T−1∑
k=0

ρyk

[
k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2
‖wi‖2

]
=
T−1∑
k=0

1

ρyk+1(1− ητyk−1)(1 + λkη)2
‖wk‖2

T−1∑
i=k

[ρyi]

¬
≤ 1

ητ(1− ητ)2

T−1∑
k=0

[
‖wk‖2

]

where ­ holds since 1) ρyk+1 = ητyk−1ρ
y
k ≤ ητρ

y
k and ρy1 = 1 and 2)

∑T−1
i=k ρ

y
i ≤

ρyk(1−ηT−kτT−k)

1−ητ ≤
ρyk

1−ητ which together give 1
ρyk+1

[∑T−1
i=k ρ

y
i

]
≤ 1

ρyk+1

ρyk
1−ητ ≤

1
ητ

1
1−ητ ≤

1
ητ(1−ητ) .

F.4 Proof of Lemma 10

Proof For Win-accelerated AdamW and Adam, we have uk = mk
sk

and wk := mk + λkxk � sk.

For Win-accelerated LAMB, we have uk = ‖xk‖2
‖mk/sk+λkxk‖2

(
mk
sk

+ λkxk
)
, wk := αkmk + (1 +

αk)λkxk � sk where αk = ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

. Then, we have

y′k+1 − (1 + λkη
y
k)xk+1 = yk − ηykuk −

1 + λkη
y
k

1 + λkη
x
k

(xk − ηxkuk)

=ηyk−1τ
y
k−1xk + ηxk−1τ

y
k−1y

′
k − η

y
kuk −

1 + λkη
y
k

1 + λkη
x
k

(xk − ηxkuk)

=ηxk−1τ
y
k−1

(
y′k − (1 + λkη

y
k−1)xk

)
−

(
ηyk −

1 + λkη
y
k−1

1 + λkη
x
k−1

ηxk

)
uk +

λk(η
x
k − η

y
k)

1 + λkη
x
k

xk

¬
=ηxk−1τ

y
k−1

(
y′k − (1 + λkη

y
k−1)xk

)
−

(
ηyk −

1 + λkη
y
k−1

1 + λkη
x
k−1

ηxk

)
wk − λkxk � sk

sk
+
λk(η

x
k − η

y
k)

1 + λkη
x
k

xk

=ηxk−1τ
y
k−1

(
y′k − (1 + λkη

y
k−1)xk

)
−

(
ηyk −

1 + λkη
y
k−1

1 + λkη
x
k−1

ηxk

)
wk

sk

+

(
λkη

y
k −

1 + λkη
y
k−1

1 + λkη
x
k−1

λkη
x
k +

λk(η
x
k − η

y
k)

1 + λkη
x
k

)
xk

where ¬ holds since wk := mk + λkxk � sk and uk = mk
sk

= wk−λkxk�sk
sk

in Win-accelerated

AdamW and Adam; wk := αkmk + (1 + αk)λkxk � sk and uk = ‖xk‖2
‖mk/sk+λkxk‖2

(
mk
sk

+ λkxk
)

=

αk
(
mk
sk

+ λkxk
)

= wk−λkxk�sk
sk

in Win-accelerated LAMB. Next, we can further obtain

y′k+1 − (1 + λkη
y
k)xk+1

¬
= etaxτyk−1

(
y′k − (1 + λkη

y)xk
)
− ηy − ηx

1 + λkηx
wk

sk
(65)

63

ZHOU, XIE, LIN, TOH, AND YAN

where ¬ holds since we set all ηxk = ηx and ηyk = ηy which gives τyk = τ = 1
η+ηy+λkηηy

. Therefore,
by defining ρyk+1 = ηxτyk−1ρ

y
k, ρy1 = 1 and ρy0 = 0, then we have

y′k+1 − (1 + λkη
y)xk+1

ρyk+1

=
y′k − (1 + λkη

y)xk
ρyk

− 1

ρyk+1

ηy − ηx

1 + λkηx
wk

sk
(k ≥ 1)

For k = 0, we have

y′1 − (1 + λ0η
y)x1 =y0 − ηyu0 −

1 + λ0η
y

1 + λ0ηx
(x0 − ηxu0)

=y0 − ηy
w0 − λ0s0 � x0

s0
− 1 + λ0η

y

1 + λ0ηx

(
x0 − ηx

w0 − λ0s0 � x0

s0

)
=y0 − x0 −

ηy − ηx

1 + λ0ηx
w0

s0

In this way, one can obtain

y′k+1 − (1 + λkη
y)xk+1

ρyk+1

=y0 − x0 −
ηy − ηx

1 + λ0ηx
w0

s0
−

k∑
i=1

1

ρyi+1

ηy − ηx

1 + λiηx
wi

si

=−
k∑
i=0

1

ρyi+1

ηy − ηx

1 + λiηx
wi

si

where ¬ hold since y0 = x0 and ρy1 = 1. Then we can upper bound∥∥∥∥∥y′k+1 − (1 + λkη
y)xk+1

ρyk+1

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑
i=0

ρyk+1(1− ηxτyi−1)

ρyi+1

ηy − ηx

ρyk+1(1− ηxτyi−1)(1 + λiηx)

wi

si

∥∥∥∥∥
2

¬
≤

k∑
i=0

ρyk+1(1− ηxτyi−1)

ρyi+1

(ηy − ηx)2

(ρyk+1)2(1− ηxτyi−1)2(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

=
(ηy − ηx)2

ρyk+1

k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

where ¬ holds since 1)
∑k

i=0

1−ηxτyi−1

ρyi+1
=
∑k

i=0(1
ρyi+1
− 1

ρyi
) = 1

ρyk+1
, and 2) Jensen’ inequality.

Therefore, we have

∥∥y′k+1 − (1 + λkη
y)xk+1

∥∥2 ≤ ρyk+1(ηy − ηx)2
k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

Moreover, we can also bound

‖yk+1 − xk+1‖2 =
∥∥ηyτykxk+1 + ηxτyky

′
k+1 − xk+1

∥∥2
= ηxτyk

∥∥y′k+1 − (1 + λkη
y)xk+1

∥∥2

≤τyk ρ
y
k+1η

x(ηy − ηx)2
k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

=ξyδykρ
y
k+1(ηy − ηx)2

k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

64

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

where τyk η
x = ηx

ηx+ηy+λkηxηy
= ξyδyk in which ξx = 1

ηx , ξy = 1
ηy and δyk = 1

ξx+ξy+λk
.

On the other hand, we have

‖yk+1 − yk‖ =
∥∥ηyτykxk+1 + ηxτyky

′
k+1 − yk

∥∥ ¬
=
∥∥ηyτykxk+1 + ηxτyky

′
k+1 − y′k+1 − ηyuk

∥∥
=

∥∥∥∥ηyτykxk+1 + ηxτyky
′
k+1 − y′k+1 − ηy

wk − λkxk � sk
sk

∥∥∥∥
=

∥∥∥∥ηyτykxk+1 + ηxτyky
′
k+1 − y′k+1 − ηy

wk

sk
+ ηyλkxk

∥∥∥∥
­
=

∥∥∥∥(ηyτyk + ηyλk)xk+1 − (1− ηxτyk)y′k+1 −
ηy

1 + λkηx
wk

sk

∥∥∥∥
®
=

∥∥∥∥ηyτyk (1 + λkη
x)
(
(1 + λkη

y)xk+1 − y′k+1

)
− ηy

1 + λkηx
wk

sk

∥∥∥∥
≤ηyτyk (1 + λkη

x)
∥∥(1 + λkη

y)xk+1 − y′k+1

∥∥+
ηy

1 + λkηx

∥∥∥∥wk

sk

∥∥∥∥
where ¬ we plug in y′k+1 = yk − ηykuk; in ­ we plug in xk+1 = 1

1+λkηx
(xk − ηxuk) =

1
1+λkηx

(
xk − ηxwk−λkxk�sk

sk

)
= xk − ηx

1+λkηx
wk
sk

as shown in Eqn. (65); and ® we have ηyτyk +

ηyλk = ηyτyk (1 + ηyλk)(1 + ηxλk) and (1− ηxτyk) = ηyτyk (1 + ηxλk). Then we can upper bound

‖yk+1 − yk‖2

≤2(ηy)2(τyk)2(1 + λkη
x)2
∥∥(1 + λkη

y)xk+1 − y′k+1

∥∥2
+

2(ηy)2

(1 + λkηx)2

∥∥∥∥wk

sk

∥∥∥∥2

≤ 2(ηy)2

(1 + λkηx)2

∥∥∥∥wk

sk

∥∥∥∥2

+ 2(ηy)2(τyk)2(1 + λkη
x)2ρyk+1(ηy − ηx)2

k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

=
2(ξx)2

(ξy)2(ξx + λk)2

∥∥∥∥wk

sk

∥∥∥∥2

+ 2(δyk)2(ξx + λk)
2ρyk+1(ηy − ηx)2

k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

where ηyτyk (1 + λkη
x) = ηyηx

ηx+ηy+λkηxηy
(1/ηx + λk)

2 = δyk(ξx + λk) in which ξx = 1
ηx , ξy = 1

ηy

and δyk = 1
ξx+ξy+λk

. The proof is completed.

65

ZHOU, XIE, LIN, TOH, AND YAN

F.5 Proof of Lemma 11

Proof From Lemma 8, we have

E
[
‖mk −∇F (yk)‖2

]
≤(1− β1,k)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

(1− β1,k)
2L2

β1,k
E
[
‖yk − yk−1‖2

]
+
β2

1,kσ
2

b

¬
≤(1− β1,k)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

Πy
k(1− β1,k)

2L2

β1,k
+
β2

1,kσ
2

b

where in ¬, we use the results in Lemma 10 that

‖yk − yk−1‖2 ≤Πy
1,k

with

Πy
1,k :=

2(ηy)2

(1 + λk−1η)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 2ρyk(η
y)2(ηy − η)2(τyk−1)2(1 + λk−1η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

=
2(ξx)2

(ξy)2(ξx + λk)2

∥∥∥∥wk

sk

∥∥∥∥2

+ 2(δyk)2(ξx + λk)
2ρyk+1(ηy − ηx)2

k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

Then we have

E
[
‖mk −∇F (xk)‖2

]
≤2E

[
‖mk −∇F (yk)‖2

]
+ 2E

[
‖∇F (yk)−∇F (xk)‖2

]
≤2E

[
‖mk −∇F (yk)‖2

]
+ 2LE

[
‖yk − xk‖2

]
¬
≤2(1− β1,k)E

[
‖mk−1 −∇F (yk−1)‖2

]
+

2Πy
1,k(1− β1,k)

2L2

β1,k
+

2β2
1,kσ

2

b
+ 2LΠy

2,k,

where in ¬, we use the results in Lemma 10 that

‖yk − xk‖2 ≤ Πy
2,k :=τyk−1ρ

y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

=ξyδyk−1ρ
y
k(η

y − ηx)2
k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

The proof is completed.

66

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

F.6 Proof of Lemma 12

Proof To begin with, for Win, we have

gk =
1

b

b∑
i=1

∇f(zk; ζi); mk = (1− β1)mk−1 + β1gk; vk = (1− β2)vk−1 + β2g
2
k.

So we can directly follow the proof of Win in Appendix F.2 to get the desired resutls. The proof is
completed.

F.7 Proof of Lemma 13

Proof For Win2-accelerated AdamW and Adam, we have uk = mk
sk

and wk := mk + λkxk � sk.

For Win2-accelerated LAMB, we have uk = ‖xk‖2
‖mk/sk+λkxk‖2

(
mk
sk

+ λkxk
)
, wk := αkmk + (1 +

αk)λkxk � sk where αk = ‖xk‖2
‖mk/

√
vk+ν+λkxk‖2

.

Since y′k+1 = yk − ηykuk for both Win and Win2, we can follow the proof of Lemma 10 in
Appendix F.4 to prove

∥∥y′k+1 − (1 + λkη
y)xk+1

∥∥2 ≤ρyk+1(ηy − ηx)2
k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

,

‖yk − xk‖2 ≤τyk−1ρ
y
kη(ηy − η)2

k−1∑
i=0

1

ρyi+1(1− ητyi−1)(1 + λiη)2

∥∥∥∥wi

si

∥∥∥∥2

where ρyk+1 = ηxτyk−1ρ
y
k, ρy1 = 1, ρy0 = 0, τyk = 1

ηxk+ηyk+λkη
x
kη
y
k

.

Then, since z′k+1 = zk − ηzkuk which has the same updating rule of y′k+1 = yk − ηykuk, we can
also follow the proof of Lemma 10 in Appendix F.4 to prove

∥∥z′k+1 − (1 + λkη
z)xk+1

∥∥2 ≤ρzk+1(ηz − ηx)2
k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

,

where ρzk+1 = ηxτ zk−1ρ
z
k, ρz1 = 1, ρz0 = 0 and τ zk = 1

ηxk+ηzk+λkη
x
kη
z
k

.
On the other hand, we have

zk+1 − xk+1

=
ξzk

ξxk + ξyk + ξzk + λk
z′k+1 +

ξyk
ξxk + ξyk + ξzk + λk

yk+1 +
ξxk

ξxk + ξyk + ξzk + λk
xk+1 − xk+1

=
ξzk

ξxk + ξyk + ξzk + λk
z′k+1 +

ξyk
ξxk + ξyk + ξzk + λk

(
ξyk

ξxk + ξyk + λk
y′k+1 +

ξxk
ξxk + ξyk + λk

xk+1

)
+

ξxk
ξxk + ξyk + ξzk + λk

xk+1 − xk+1

=
ξzk

ξxk + ξyk + ξzk + λk

(
z′k+1 −

(
1 +

λk
ξzk

)
xk+1

)
+

ξyk
ξxk + ξyk + ξzk + λk

ξyk
ξxk + ξyk + λk

(
y′k+1 −

(
1 +

λk
ξyk

)
xk+1

)
.

67

ZHOU, XIE, LIN, TOH, AND YAN

Since δyi = 1
ξxk+ξyk+λk

, δzi = 1
ξxk+ξyk+ξzk+λk

, ξxk = 1
ηxk

, ξyk = 1
ηyk

and ξzk = 1
ηzk

, we have

‖zk+1 − xk+1‖2 ≤2(ξzkδ
z
k)2
∥∥z′k+1 − (1 + λkη

z
k)xk+1

∥∥2
+ 2(ξyk)4(δzkδ

y
k)2
∥∥y′k+1 −

(
1 + λkη

y
k

)
xk+1

∥∥2

≤2(ξzkδ
z
k)2ρzk+1(ηz − ηx)2

k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 2(ξyk)4(δzkδ
y
k)2ρyk+1(ηy − ηx)2

k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

Similarly, we have

zk =z′k+1 + ηzkuk
¬
= z′k+1 + ηzk

wk − λkxk � sk
sk

= z′k+1 − ηzkλkxk + ηzk
wk

sk
­
= z′k+1 − ηzkλk

(
xk+1 +

ηxk
1 + λkη

x
k

wk

sk

)
+ ηzk

wk

sk
= z′k+1 − ηzkλkxk+1 +

ηzk
1 + λkη

x
k

wk

sk

= z′k+1 −
λk
ξzk

xk+1 +
ξxk

ξzi (λk + ξxk)

wk

sk

where ¬ holds since wk := mk + λkxk � sk and uk = mk
sk

= wk−λkxk�sk
sk

in Win-accelerated

AdamW and Adam; wk := αkmk + (1 + αk)λkxk � sk and uk = ‖xk‖2
‖mk/sk+λkxk‖2

(
mk
sk

+ λkxk
)

=

αk
(
mk
sk

+ λkxk
)

= wk−λkxk�sk
sk

in Win-accelerated LAMB; ­ holds since

xk+1 − xk = −
ηxk

1 + λkη
x
k

αkmk + (1 + αk)λkxk � sk
sk

= −
ηxk

1 + λkη
x
k

wk

sk
.

Next, we can further obtain

zk+1 − zk

=
ξzk

ξxk + ξyk + ξzk + λk
z′k+1 +

ξyk
ξxk + ξyk + ξzk + λk

yk+1 +
ξxk

ξxk + ξyk + ξzk + λk
xk+1

−
(
z′k+1 −

λk
ξzk

xk+1 +
ξxk

ξzi (λk + ξxk)

wk

sk

)
=−

ξxk + ξyk + λk
ξxk + ξyk + ξzk + λk

(
z′k+1 −

(
1 +

λk
ξzk

)
xk+1

)
+

ξyk
ξxk + ξyk + ξzk + λk

ξyk
ξxk + ξyk + λk

(
y′k+1 −

(
1 +

λk
ξyk

)
xk+1

)
−

ξxk
ξzk(λk + ξxk)

wk

sk

=− (ξxk + ξyk + λk)δ
z
k

(
z′k+1 −

(
1 +

λk
ξzk

)
xk+1

)
+ (ξyk)2δykδ

z
k

(
y′k+1 −

(
1 +

λk
ξyk

)
xk+1

)
−

ξxk
ξzk(λk + ξxk)

wk

sk
.

68

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

So we can bound ‖zk+1 − zk‖ as follows:

‖zk+1 − zk‖2

≤3(ξxk + ξyk + λk)
2(δzk)2

∥∥∥∥z′k+1 −
(

1 +
λk
ξzk

)
xk+1

∥∥∥∥2

+ 3(ξyk)4(δyk)2(δzk)2

∥∥∥∥y′k+1 −
(

1 +
λk
ξyk

)
xk+1

∥∥∥∥2

+ 3
(ξxk)2

(ξzk)2(λk + ξxk)2

∥∥∥∥wk

sk

∥∥∥∥2

≤3
(ξxk)2

(ξzk)2(λk + ξxk)2

∥∥∥∥wk

sk

∥∥∥∥2

+ 3(ξxk + ξyk + λk)
2(δzk)2ρzk+1(ηz − ηx)2

k∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 3(ξyk)4(δyk)2(δzk)2ρyk+1(ηy − ηx)2
k∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

The proof is completed.

F.8 Proof of Lemma 14

Proof From Lemma 12, we have

E
[
‖mk −∇F (zk)‖2

]
≤(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

(1− β1,k)
2L2

β1,k
E
[
‖zk − zk−1‖2

]
+
β2

1,kσ
2

b

¬
≤(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

Πz
1,k(1− β1,k)

2L2

β1,k
+
β2

1,kσ
2

b

where in ¬, we use the results in Lemma 13 that

‖zk − zk−1‖2 ≤Πz
1,k

with

Πz
1,k :=3

(ξxk−1)2

(ξzk−1)2(λk−1 + ξxk−1)2

∥∥∥∥wk−1

sk−1

∥∥∥∥2

+ 3(ξxk−1 + ξyk−1 + λk−1)2(δzk−1)2ρzk(η
z − ηx)2

k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 3(ξyk−1)4(δyk−1)2(δzk−1)2ρyk(η
y − ηx)2

k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

69

ZHOU, XIE, LIN, TOH, AND YAN

Then we have

E
[
‖mk −∇F (xk)‖2

]
≤2E

[
‖mk −∇F (zk)‖2

]
+ 2E

[
‖∇F (zk)−∇F (xk)‖2

]
≤2E

[
‖mk −∇F (zk)‖2

]
+ 2LE

[
‖zk − xk‖2

]
¬
≤2(1− β1,k)E

[
‖mk−1 −∇F (zk−1)‖2

]
+

2Πz
1,k(1− β1,k)

2L2

β1,k
+

2β2
1,kσ

2

b
+ 2LΠz

2,k,

where in ¬, we use the results in Lemma 13 that

‖zk − xk‖2 ≤ Πz
2,k :=2(ξzk−1δ

z
k−1)2ρzk(η

z − ηx)2
k−1∑
i=0

1

ρzi+1(1− ηxτ zi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

+ 2(ξyk−1)4(δzk−1δ
y
k−1)2ρyk(η

y − ηx)2
k−1∑
i=0

1

ρyi+1(1− ηxτyi−1)(1 + λiηx)2

∥∥∥∥wi

si

∥∥∥∥2

.

The proof is completed.

References

Kwangjun Ahn and Suvrit Sra. Understanding Nesterov’s acceleration via proximal point method.
In Symposium on Simplicity in Algorithms, pages 117–130. SIAM, 2022.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and
mirror descent. In Innovations in Theoretical Computer Science, 2017.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Rohan Anil, Sandra Gadanho, Da Huang, Nijith Jacob, Zhuoshu Li, Dong Lin, Todd Phillips, Cristina
Pop, Kevin Regan, Gil I Shamir, et al. On the factory floor: Ml engineering for industrial-scale
ads recommendation models. In ACM Recommender Systems, 2022.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridharan.
Second-order information in non-convex stochastic optimization: Power and limitations. In Conf.
on Learning Theory, pages 242–299, 2020.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, Series A,
2022.

Nikhil Bansal and Anupam Gupta. Potential-function proofs for gradient methods. Theory of
Computing, 15(1):1–32, 2019.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

70

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimizing
recurrent networks. In Int’l Conf. on Acoustics, Speech and Signal Processing, pages 8624–8628,
2013.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In IEEE Conf.
Computer Vision and Pattern Recognition, pages 9650–9660, 2021.

Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations simultanées.
Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proc. Int’l
Joint Conf. Artificial Intelligence, pages 3267–3275, 2021.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, et al. MMDetection: Open MMLab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In IEEE Conf. on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Annual Meeting of
the Association for Computational Linguistics, pages 2978–2988, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In Int’l Conf. Learning
Representations, 2021.

Timothy Dozat. Incorporating Nesterov momentum into Adam. In Int’l Conf. Learning Representa-
tions Workshops, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. of Machine Learning Research, 12(7), 2011.

Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conf. Computer Vision and Pattern Recognition, pages
248–255, 2009.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In Int’l Conf. Learning Representations, 2021.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for
algorithms of the Adam family and beyond. arXiv e-prints, pages arXiv–2104, 2021.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In Int’l Conf. Machine Learning, pages 1842–1850, 2018.

71

ZHOU, XIE, LIN, TOH, AND YAN

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conf. Computer Vision and Pattern Recognition, pages 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In IEEE Int’l Conf.
on Computer Vision, pages 2961–2969, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Junhyung Lyle Kim, Panos Toulis, and Anastasios Kyrillidis. Convergence and stability of the
stochastic proximal point algorithm with momentum. In Learning for Dynamics and Control
Conference, pages 1034–1047. PMLR, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Int’l Conf.
Learning Representations, 2015.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In Int’l Conf. Machine
Learning, pages 5905–5914, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proc. European
Conf. Computer Vision, pages 740–755, 2014.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Jiawei Han. On the variance of the adaptive learning rate and beyond. In Int’l Conf. Learning
Representations, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE Int’l Conf. on
Computer Vision, pages 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Int’l Conf. Learning
Representations, 2018.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. In Int’l Conf. Learning Representations, 2018.

Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn treebank. Using
Large Corpora, 273, 1994.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France, 93:273–299, 1965.

Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. arXiv
preprint arXiv:2102.06356, 2021.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

72

WIN: WEIGHT-DECAY-INTEGRATED NESTEROV ACCELERATION

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In Int’l
Conf. Learning Representations, 2018.

Tong Zhang Rie Johnson. Accelerating stochastic gradient descent using predictive variance reduction.
In Proc. Conf. Neural Information Processing Systems, pages 315–323, 2013.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
Control and Optimization, 14(5):877–898, 1976.

Tara N. Sainath, Abdel rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran. Deep
convolutional neural networks for LVCSR. In Int’l Conf. on Acoustics, Speech and Signal
Processing, pages 8614–8618. IEEE, 2013.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In Int’l Conf. Machine Learning, pages 1139–1147, 2013.

Tieleman Tijmen and Hinton Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In Int’l Conf.
Machine Learning, pages 10347–10357, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Proc. Conf. Neural Information Processing
Systems, 2017.

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early
convolutions help transformers see better. Proc. Conf. Neural Information Processing Systems, 34:
30392–30400, 2021.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive Nesterov
momentum algorithm for faster optimizing both CNNs and ViTs. arXiv preprint arXiv:2208.06677,
2022.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In Int’l Conf. Learning Representations, 2019.

73

ZHOU, XIE, LIN, TOH, AND YAN

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In IEEE Conf. Computer Vision
and Pattern Recognition, pages 10819–10829, 2022a.

Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, and Xinchao
Wang. Metaformer baselines for vision. arXiv preprint arXiv:2210.13452, 2022b.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In IEEE Int’l
Conf. on Computer Vision, pages 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup: Beyond empirical
risk minimization. In Int’l Conf. Learning Representations, 2018.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the conver-
gence of adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671,
2018.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
understanding why SGD generalizes better than Adam in deep learning. In Proc. Conf. Neural
Information Processing Systems, volume 33, pages 21285–21296, 2020a.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven Hoi. Theory-inspired path-regularized
differential network architecture search. In Proc. Conf. Neural Information Processing Systems,
2020b.

Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understanding why
lookahead generalizes better than SGD and beyond. Proc. Conf. Neural Information Processing
Systems, 34:27290–27304, 2021.

Pan Zhou, Yichen Zhou, Chenyang Si, Weihao Yu, Teck Khim Ng, and Shuicheng Yan. Mugs: A
multi-granular self-supervised learning framework. arXiv preprint arXiv:2203.14415, 2022.

Pan Zhou, Xingyu Xie, and YAN Shuicheng. Win: Weight-decay-integrated nesterov acceleration
for adaptive gradient algorithms. In Int’l Conf. Learning Representations, 2023.

Pan Zhou, Xingyu Xie, Zhoucheng Lin, and Shuicheng Yan. Towards understanding convergence
and generalization of AdamW. In IEEE Trans. on Pattern Analysis and Machine Intelligence,
2024.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. In Proc. Conf. Neural Information Processing Systems, volume 33, pages 18795–18806,
2020.

74

	Introduction
	Related Work
	Weight-decay-Integrated Nesterov Acceleration
	Win-Accelerated AdamW and Adam
	Extension to LAMB and SGD
	Convergence Analysis

	Win2: A More General Win Acceleration
	Win2-Accelerated AdamW and Adam
	Extension to LAMB and SGD
	Convergence Analysis

	Experiments
	Results on Vision Classification Tasks
	Results on Instance Segmentation
	Results on Natural Language Modeling Tasks
	Ablation Study

	Conclusion
	More Experimental Details
	Notations
	Auxiliary Lemmas
	Auxiliary Lemmas for Win
	Auxiliary Lemmas for Win2

	Proofs of Main Results in Sec. 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proofs of Theorem 3

	Proofs of Main Results in Sec. 4
	Proof of Theorem 4
	Proof of Theorem 5
	Proofs of Theorem 6

	Proofs of Auxiliary Lemmas
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14

