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Abstract

In this paper, we investigate the impact of compression on stochastic gradient algo-
rithms for machine learning, a technique widely used in distributed and federated learning.
We underline differences in terms of convergence rates between several unbiased compres-
sion operators, that all satisfy the same condition on their variance, thus going beyond
the classical worst-case analysis. To do so, we focus on the case of least-squares regression
(LSR) and analyze a general stochastic approximation algorithm for minimizing quadratic
functions relying on a random field. We consider weak assumptions on the random field,
tailored to the analysis (specifically, expected Hölder regularity), and on the noise covari-
ance, enabling the analysis of various randomizing mechanisms, including compression. We
then extend our results to the case of federated learning.

More formally, we highlight the impact on the convergence of the covariance Cania of
the additive noise induced by the algorithm. We demonstrate despite the non-regularity of
the stochastic field, that the limit variance term scales with Tr

(
CaniaH

−1
F

)
/K (where HF

is the Hessian of the optimization problem and K the number of iterations) generalizing
the rate for the vanilla LSR case where it is σ2Tr

(
HFH

−1
F

)
/K = σ2d/K (Bach and

Moulines, 2013). Then, we analyze the dependency of Cania on the compression strategy and
ultimately its impact on convergence, first in the centralized case, then in two heterogeneous
FL frameworks.

Keywords: Large-scale optimization, linear stochastic approximation, least-squares re-
gression, federated learning, compression

1. Introduction

Large-scale optimization (Bottou and Bousquet, 2007) has become ubiquitous in today’s
learning problems due to the incredible growth of data collection. It becomes computa-
tionally extremely hard to process a full dataset or even, to store it on a single device
(Abadi et al., 2016; Seide and Agarwal, 2016; Caldas et al., 2019). This led practitioners to
either process each observation only once in a streaming fashion, or to design distributed
algorithms. This paper is part of this line of work and considers in particular stochastic
federated algorithms (Konečný et al., 2016; McMahan et al., 2017) that use a central server
to orchestrate the training over a network of N in N∗ clients.
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Application to federated learning

A well-identified challenge in this framework is the communication cost of the learning
process (Seide et al., 2014; Chilimbi et al., 2014; Strom, 2015) based on stochastic gradient
algorithms. Indeed, iteratively exchanging gradient or model information between the local
workers and the central server generates a huge computational and bandwidth bottleneck.
To reduce this communication cost, two strategies have been widely implemented and ana-
lyzed: performing local updates (see e.g. McMahan et al., 2017; Karimireddy et al., 2020),
or reducing the size of the exchanged messages by passing them through a compression
operator, on the uplink channel (Seide et al., 2014; Alistarh et al., 2017, 2018; Mishchenko
et al., 2019; Karimireddy et al., 2019; Wu et al., 2018; Horvath et al., 2022; Mishchenko
et al., 2019; Li et al., 2020; Richtarik et al., 2021), or on both uplink and downlink channels
(Harrane et al., 2018; Tang et al., 2019; Liu et al., 2020; Zheng et al., 2019; Philippenko
and Dieuleveut, 2020, 2021; Gorbunov et al., 2020b; Sattler et al., 2019; Fatkhullin et al.,
2021). These two strategies, although typically analyzed independently, are often combined.
We focus on compression; to reduce the cost of exchanging a vector, three techniques are
combined: (1) sending the message to only a few clients, (2) sending only a fraction of the
coordinates, (3) sending low-precision updates.

Most analyses of the impact of compression schema rely on generic assumptions on the
compression operator C, typically either contractive, i.e. for any z in Rd, ‖C(z) − z‖ <
(1 − δ)‖z‖ with δ ∈]0; 1[ (almost surely or in expectation, see for instance Seide et al.,
2014; Stich et al., 2018; Karimireddy et al., 2019; Ivkin et al., 2019; Koloskova et al.,
2019; Gorbunov et al., 2020b; Beznosikov et al., 2020), or unbiased with bounded variance
increase, i.e., for any z in Rd, E[C(z)] = z and E[‖C(z) − z‖2] ≤ ω‖z‖2 for a parameter
ω > 1 (see among others Alistarh et al., 2017; Wu et al., 2018; Mishchenko et al., 2019;
Chraibi et al., 2019; Gorbunov et al., 2020a; Reisizadeh et al., 2020; Horvath et al., 2022;
Kovalev et al., 2021; Philippenko and Dieuleveut, 2020, 2021; Haddadpour et al., 2021;
Li and Richtárik, 2021; Khirirat et al., 2018). Unlike biased—and often deterministic—
operators, unbiased operators typically benefit from a variance reduction proportional to
the number of clients (e.g., Gorbunov et al., 2020b vs Horváth et al., 2019).

In parallel, a line of work has thus focused on the design of compression schemes sat-
isfying one of these two assumptions (Bernstein et al., 2018; Dai et al., 2019; Beznosikov
et al., 2020; Horvath et al., 2022; Xu et al., 2020; Leconte et al., 2021; Gandikota et al.,
2021; Ramezani-Kebrya et al., 2021; Horvath et al., 2022). Two fundamental strategies
are typically combined: (1) quantization (Rabbat and Nowak, 2005; Gersho and Gray,
2012; Alistarh et al., 2018), and (2) random projection (Vempala, 2005; Rahimi and Recht,
2008; Nesterov, 2012; Nutini et al., 2015). These methods are compared based on (1) the
number of bits required for storing or exchanging a d dimensional vector and (2) the result-
ing variance increase ω or contractiveness constant δ. Consequently, convergence results
are worst-case results over the class of compression operators: two compression operators
satisfying the same variance assumption are regarded as producing the same convergence
rate.

The goal of this paper is to provide an in-depth analysis of compression within a fun-
damental learning framework, namely least-squares regression (LSR, Legendre, 1806), in
order to highlight the differences in convergence between several unbiased compression
schemes having the same variance increase.
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Distributed, compressed and averaged least-squares regression

More precisely, we aim at analyzing updates on a sequence of models (wk)k∈N of the
form wk = wk−1 − γ

N

∑N
i=1 Ci(gik(wk−1)), where γ is the step-size and gik is a stochastic

oracle on the gradient of the least-squares objective function of client i (see Algorithms 2
and 3).

To the best of our knowledge, this study is the first to compare compressors that are
in the same class, i.e. satisfying the same variance assumption. Especially, this analysis
will highlight the impact of (1) the compression scheme’s regularity (Lipschitz in squared
expectation or not) and of (2) the correlation between the compression of the different
coordinates. We highlight three examples of possible take-aways from our analysis, that
will be detailed in Section 3.

Take-away 1 Quantization-based compression schemes do not have Lipschitz in squared
expectation regularity but satisfy a Hölder condition. Because of that, their convergence is
degraded, yet they asymptotically achieve a rate comparable to projection-based compressors,
in which the limit covariance is similar.

Take-away 2 Rand-h and partial participation with probability (h/d) satisfy the same vari-
ance condition. Yet the convergence of compressed least mean squares algorithms for partial
participation is more robust to ill-conditioned problems.

Take-away 3 The asymptotic convergence rate is expected to be at least as good for quanti-
zation than for sparsification or randomized coordinate selection, if the features are standard-
ized. On the contrary, if the features are independent and the feature vector is normalized,
then quantization is worse than sparsification or randomized coordinate selection.

We consider a random-design LSR framework and make the following assumption on
the input-output pairs distribution

Model 1 (Federated case) We consider N clients. Each client i in [N ] accesses K
in N∗ i.i.d. observations (xik, y

i
k)k∈[K] ∼ D⊗Ki , such that there exists a well-defined client-

dependent model wi∗:

∀k ∈ [K], yik =
〈
xik, w

i
∗
〉

+ εik, with εik ∼ N (0, σ2) , (1)

for an i.i.d. sequence
(
(εik)k∈[K],i∈[N ]

)
independent of

(
(xik)k∈[K],i∈[N ]

)
. We use the generic

notation (xi, yi, εi) for such an input-output-noise triplet on client i. Moreover, we assume
that the inputs’ second moment1 is bounded to define E[xi ⊗ xi] = Hi and E[‖xi‖2] = R2

i ;
such that E[‖xi‖2xi ⊗ xi] 4 R2

iHi. For any i ∈ [N ], we consider the expected squared loss
on client i of a model w as Fi(w) := 1

2E(xi,yi)∼Di [(
〈
xi, w

〉
− yi)2].

Remark 1 (Almost surely bounded features) In the case of linear compressors, we
will also assume that for each client i in [N ], features are almost surely bounded by R2

i .

This model is classical in the single worker case (e.g. Hsu et al., 2012; Bach and Moulines,
2013):

1. In the following, we may refer to this matrix H as the covariance (in the case of centered features,
covariance is equal to the second moment)
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Application to federated learning

Model 2 (Centralized case) We consider Model 1 with N = 1 client. For simplicity, we
then omit the i superscript.

We focus on the problem of minimizing the global expected risk F : Rd → R, thus finding
the optimal model w∗ in Rd such that:

w∗ = arg min
w∈Rd

{
F (w) :=

1

N

N∑
i=1

Fi(w)

}
(OPT)

Note that we assume that Span{Supp(xi), i ∈ [N ]} = Rd to ensure the existence and
uniqueness of w∗.

The empirical version of the risk minimization admits an explicit formula, yet is com-
putationally too expensive to compute for large problems. This is why, in practice, LSR is
solved using iterative stochastic algorithms, for example Stochastic Gradient Descent (SGD,
see Robbins and Monro, 1951). SGD for LSR is often referred to as the Least Mean Squares
(LMS) algorithm (Bershad, 1986; Macchi, 1995). Analysis of LMS (Györfi and Walk, 1996;
Bach and Moulines, 2013) and its variants received a lot of interest over the last decades. In-
deed despite its simplicity, LSR is a model of choice for practitioners because of its efficiency
to train good and interpretable models (see e.g. Molnar, 2018, chapter 5.1). Moreover, its
simplicity enables to isolate and analyze challenges faced in specific configurations, for in-
stance, non-strong convexity (Bach and Moulines, 2013), interaction between acceleration
and stochasticity (Dieuleveut et al., 2017; Jain et al., 2018a; Varre and Flammarion, 2022),
non-uniform iterate averaging (Jain et al., 2018b; Neu and Rosasco, 2018; Muecke et al.,
2019), infinite-dimensional frameworks (Dieuleveut and Bach, 2016), or over-parametrized
regimes and double descent phenomena (Belkin et al., 2019).

Our approach follows this line of work: our goal is to analyze the impact of compression
in FL algorithms, by providing a careful study of compressed LMS, based on a fine-grained
analysis of Stochastic Approximation (SA) under weak assumptions on the random field.
More precisely, we consider linear stochastic approximation recursion, to find a zero of the
linear mean-field ∇F .

Definition 2 (Linear Stochastic Approximation, LSA) Let w0 ∈ Rd be the initializa-
tion, the linear2 stochastic approximation recursion is defined as:

wk = wk−1 − γ∇F (wk−1) + γξk(wk−1 − w∗), k ∈ N, (LSA)

where γ > 0 is the step-size and (ξk)k∈N∗ is a sequence of i.i.d. zero-centered random
fields that characterizes the stochastic oracle on ∇F (·). For any k ∈ N∗, we denote Fk =
σ (ξ1, . . . , ξk), such that the filtration (Fk)k≥0 is adapted to (wk)k≥0.

We assume that F is quadratic, we denote HF its Hessian, R2
F := Tr (HF ) its trace and

µ its smallest eigenvalue. For any k in N, with ηk = wk − w∗, we get equivalently:

ηk = (I− γHF )ηk−1 + γξk(ηk−1), k ∈ N.

2. While in LSA literature, both the mean-field ∇F and the noise-field (ξk) are linear, we do not here
consider the noise fields to be linear.
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Distributed, compressed and averaged least-squares regression

As underlined by Bach and Moulines (2013), (LSA) corresponds to a homogeneous Markov
chain. A study of stochastic approximation using results and techniques from the Markov
chain literature can be found for instance in Freidlin and Wentzell (1998) or more recently
in Dieuleveut et al. (2020).

(LSA) encompasses three examples of interest, the first one is the classical LMS algo-
rithm. Indeed, with the observations in Models 1 and 2, for any client i ∈ [N ], any iteration
k in [K], any model w ∈ Rd,

gik(w) := (
〈
xik, w

〉
− yik)xik (2)

is an unbiased oracle of ∇Fi(w). This can be used to define the following three algorithms.

Algorithm 1 (LMS) For LMS algorithm, with a single worker (Model 2), we have for
all k ∈ N, wk = wk−1 − γgk(wk−1) = wk−1 − γ(〈xk, wk−1〉 − yk)xk, thus equivalently, we
have ξk(·) = (E[x1x

>
1 ]− xkx>k )(·) + εkxk. Indeed, for any w in Rd, ξk(w − w∗) = ∇F (w)−

gk(w) = E[x1x
>
1 ](w−w∗)−(〈xk, w〉−yk)xk = (E[x1x

>
1 ]−xkx>k )(w−w∗)−(〈xk, w∗〉−yk)xk.

Second, the case of a single client compressed LMS algorithm.

Algorithm 2 (Centralized compressed LMS) A single client (N = 1) observes at any
step k ∈ [K] an oracle gk(·) on the gradient of the objective function F , and applies a
random compression mechanism Ck(·). Thus, for any step-size γ > 0 and any k ∈ N∗, the
resulting sequence of iterates (wk)k∈N satisfies: wk = wk−1 − γCk(gk(wk−1)) .

And finally, the extension to the distributed case.

Algorithm 3 (Distributed compressed LMS) In our motivating example, each client
i ∈ [N ] observes at any step k ∈ [K] an oracle gik(·) on the gradient of the local objective
function Fi, and applies a random compression mechanism Cik(·). Thus, for any step-size
γ > 0 and any k ∈ N∗, the resulting sequence of iterates (wk)k∈N satisfies: wk = wk−1 −
γ
N

∑N
i=1 Cik(gik(wk−1)) (we consider the randomization made on clients (Cik(·))i∈{1··· ,N} to be

independent)

Remark 3 The analysis naturally covers any randomized postprocessing Cik(·), beyond the
compression case.

Challenges, contributions and structure of the paper. Although there is abundant
literature on the study of (LSA), the application to Algorithms 2 and 3 poses novel chal-
lenges. Especially, most analyses of LSA (Blum, 1954; Ljung, 1977; Ljung and Söderström,
1983) assume that the field ξk is linear (i.e. for any z, z′ ∈ Rd, ξk(z) − ξk(z′) = ξk(z − z′),
see Konda and Tsitsiklis, 2003; Benveniste et al., 2012; Leluc and Portier, 2022). More
general non-asymptotic results on SA with a Lipschitz mean-field (i.e. SGD with a smooth
objective) also assume that the noise-field is Lipschitz-in-squared-expectation i.e. for any
z, z′ ∈ Rd,E[‖ξk(z) − ξk(z

′)‖2] ≤ C‖z − z′‖2 (Moulines and Bach, 2011; Bach, 2014;
Dieuleveut et al., 2020; Gadat and Panloup, 2023). One major specificity and bottleneck
in the case of compression is the fact that the resulting field does not satisfy such an
assumption. The rest of the paper is thus organized as follows:

5



Application to federated learning

General result on LSA Section 2

Section 3.2

Algorithm 2

Figure 7

Corollary 2

Section 4

Algorithm 3

Figure 8

Corollary 4 and 5

Theorem 1 and 2
Corollary 1

Impact of C on Cania Section 3.3

Figures 3, 4, 5, 6

Proposition 2

Corollary 3

Proposition 4

Proposition 3

Figure 1: Flow chart summarizing our results.

1. In Section 2, we provide a non-asymptotic analysis of (LSA) under weak regularity as-
sumptions of the noise field (ξk)k. We show that the asymptotically dominant term
depends on the covariance matrix Cania of the additive noise induced by the algorithm,
as expected from the classical asymptotic literature (Polyak and Juditsky, 1992). The
backbone results of our paper are Theorems 8 and 12 which generalize the results from
Bach and Moulines (2013) for Algorithm 1. The limit convergence rate term scales with
Tr
(
CaniaH

−1
F

)
/K, which highlights the interaction between the Hessian of the optimiza-

tion problem HF , and the additive noise’s covariance Cania.

2. In Section 3, we prove that assumptions made in Section 2 are valid for Algorithm 2 with
classical compression schemes. Although this single-client case is a simple configuration,
it enables to describe the impact of the compressor choice on the dependency between
the features’ covariance H (which is also the Hessian HF of the optimization problem)
and the additive noise’s covariance Cania. Contrary to Algorithm 1, for which the noise
is said to be structured, i.e. the additive noise’s covariance is proportional to the Hessian
HF , applying a random compression mechanism on the gradient breaks this structure.
This phenomenon is noteworthy: for an ill-conditioned HF , it may lead to a drastic
increase in Tr

(
CaniaH

−1
F

)
and thus, to a degradation in convergence. By calculating the

additive noise’s covariance for various compression mechanisms, we identify differences
that classical literature was unable to capture.

3. In Section 4, we study the distributed Algorithm 3 with heterogeneous clients. We ex-
amine two different sources of heterogeneity for which we show that Theorems 8 and 12
remain valid. First, the case of heterogeneous features’ covariances (Hi)

N
i=1 in Subsec-

tion 4.1; second, the case of heterogeneous local optimal points (wi∗)
N
i=1 in Subsection 4.2.

These results are validated by numerical experiments which help to get an intuition
of the underlying mechanisms. The code is provided on our GitHub repository: https:

//github.com/philipco/structured_noise. We summarize hereafter the structure of
the paper in Figure 1.

Notations. We denote by 4 the order between self-adjoint operators, i.e., A 4 B if and
only if B−A is positive semi-definite (p.s.d.) and A

∼
4 B if A 4 B and A = B+O(1

d). We

denote by A1/2 the p.s.d. square root of any symmetric p.s.d. matrix A. For two vectors
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Distributed, compressed and averaged least-squares regression

x, y in Rd, the Kronecker product is defined as x ⊗ y := xy>, the element-wise product is
denoted as x� y, and the Euclidean norm is ‖x‖2 :=

∑d
i=1 x

2
i . For any rectangular matrix

A in Rn×m s.t. AA> is inversible, we denote A† := A>(AA>)−1 the Moore–Penrose pseudo
inverse. For x, y in Rd, we use x∧y for the minimum between two values, and x

∼≤ y if x ≤ y
and x = y+O(1

d). For any sequence of vector (xk)k∈{0,...,K} we denote xK−1 =
∑K−1

k=0 xk/K.

We use ei to denote the vector in Rd with zero everywhere except at coordinate i, and Od(R)
the group of orthogonal matrices. Finally, all random variables are defined on a probability
space (Ω,A,P),E is the expectation associated with the probability P and A is a σ-algebra.
We define the set of probability distribution function PM whose second moment is equal to
M in Rd×d: PM = {probability distribution pM over Rd s.t.,Eε∼pM [ε⊗2] = M} . Any such
distribution pM is indexed with its matrix of covariance.

2. Non asymptotic convergence result for (LSA)

2.1 Definition of the additive noise’s covariance and assumptions on the
random fields

For any k in N∗, we define the additive noise ξadd
k and the multiplicative noise ξmult

k (·).

Definition 4 (Additive and multiplicative noise) Under the setting of Definition 2,
for any k in N∗, we define:

ξadd
k := ξk(0) and ξmult

k : z ∈ Rd 7→ ξk(z)− ξadd
k .

Remark 5 Observe that (ξadd
k )k∈N∗ is an i.i.d. sequence of random variables and (ξmult

k )k∈N∗

is an i.i.d. sequence of random field. The following assumptions, made for k = 1, are thus
equivalently valid for any k ≥ 1.

Assumption 1 (Second moment) ξadd
1 admits a second order moment. We note A ≥ 0

such that E[‖ξadd
1 ‖2] ≤ A.

Assumption 1 and Remark 5 enable us to define the covariance of the additive noise induced
by the algorithm.

Definition 6 (Additive noise’s induced by the algorithm’s covariance.) Under the
setting of Definition 2, we define the additive noise’s covariance as the covariance of the
additive noise: Cania = E[ξadd

1 ⊗ ξadd
1 ] .

Secondly, we state our assumptions on the multiplicative part of the noise, especially its
regularity around 0 (note that ξmult

1 (0) = 0).

Assumption 2 (Second moment of the multiplicative noise) There exist two con-
stants M1,M2 > 0 such that, for any η in Rd, the following hold:

A2.1: E[‖ξmult
1 (η)‖2] ≤ 2M2‖H1/2

F η‖2 + 4A .

A2.2: E[‖ξmult
1 (η)‖2] ≤M1‖H1/2

F η‖+ 3M2‖H1/2
F η‖2.
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Application to federated learning

The main originality of this section is the analysis under Assumption 2.2. This Hölder-
type condition will appear naturally for compression in Section 3. Up to our knowledge,
(LSA) has not been analyzed under this particular condition.

Under these assumptions, asymptotic results from Polyak and Juditsky (1992) can be ap-
plied. Especially, we establish the asymptotic normality of (

√
KηK−1)K>0, with an asymp-

totic variance equal to H−1
F CaniaH

−1
F .

Proposition 7 (CLT for (LSA)) Under Assumptions 1 and 2, consider a sequence (wk)k∈N∗

produced in the setting of Definition 2 for a step-size (γk)k∈N∗ s.t. γk = k−α, α ∈]0, 1[. Then
(
√
KηK−1)K>0 is asymptotically normal and converge in distribution to N (0, H−1

F CaniaH
−1
F ).

The proof of this result is almost straightforward and is recalled in Appendix A.4. In the
following, we establish non-asymptotic results in Theorems 8 and 12, that highlight the
impact of Assumption 2.2.

2.2 Convergence rates for (LSA), general case

In this section, we present non-asymptotic convergence rates for (LSA) under the assump-
tions above. These results build upon the work of Bach and Moulines (2013). Our first
result is the main result, under the Hölder assumption on the noise field, it is demonstrated
in Appendix B.

Theorem 8 (Non-linear multiplicative noise) Under Assumptions 1 and 2, consider
a sequence (wk)k∈N∗ produced in the setting of Definition 2 for a constant step-size γ such
that γ(R2

F + 2M2) ≤ 1/2. Then for any horizon K, we have:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
‖H−1/2

F η0‖
γ
√
K

∧ ‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√
M2µ−1

)2

.

The first two terms of the RHS correspond respectively to the impact of the initial
condition η0 and the impact of the additive noise. The dependency on these two terms is
similar to the one established in Bach and Moulines (2013) in the case of LMS. Note that
following Defossez and Bach (2015), we improve the dependency on the initial condition to
‖η0‖2
γK ∧ ‖H

−1/2
F η0‖2
γ2K2 . Regarding the noise term, the dependency on

Tr(CaniaH
−1
F )

2K corresponds

to the classical asymptotic noise term in CLT for Stochastic Approximation (e.g., Delyon,
1996; Duflo, 1997; Györfi and Walk, 1996). In fact, for a sequence of step sizes γt decreasing
to zero, we recover the variance from Proposition 7. Remark that in (Bach and Moulines,
2013) and several follow up works, the algorithm under consideration is LMS (Algorithm 1,
which enables to ensure that Cania 4 σ2HF : the variance term thus scales as σ2d/K.
On the contrary, Algorithms 2 and 3 do not always satisfy Cania 4 σ2HF : in such case,
Tr
(
CaniaH

−1
F

)
may scale as 1/µ.

The third and fourth term, that scale respectively as
√
γ/K and γ/K, are asymptotically

negligible for γ = o(1). Those term are proportional to the Hölder-regularity constants
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Distributed, compressed and averaged least-squares regression

M1,M2, and also increase with µ−1. The dominant term is M1
√

10Aγ
µK . Interestingly, when

γ is constant (not decreasing with K), then the limit variance of the algorithm is affected.
Moreover, contrary to (Bach and Moulines, 2013), we do not recover a convergence rate
independent of µ. This dependency is un-avoidable as the multiplicative noise is only
controlled around w∗: without strong-convexity, the iterates may not converge to w∗. While
these additional terms in the variance may be considered as a drawback, it can be mitigated
by taking a step-size γ proportional to 1/Kα with α > 0 small (γ is horizon dependent, but
constant).

Corollary 9 Under the assumptions of Theorem 8, with γ = 1/Kα, and α ∈]0, 1/2[, we
have:

E[F (wK−1)− F (w∗)] ≤
60

K

(
Tr
(
CaniaH

−1
F

)
+
‖H−1/2

F η0‖2

K(1−2α)
+
M1

√
A

µKα/2
+
M2A
µKα

)
.

The decrease of the second order terms is then optimized for α = 2/5. To highlight the
impact of the non-linearity in compression schemes, we provide for comparison the result
for a linear multiplicative noise.

2.3 Convergence rates for (LSA), linear case

Alternatively, to cover the particular case of a linear multiplicative noise (e.g., to recover
LMS or projection-based compressed LMS) we make the following stronger hypothesis:

Assumption 3 The multiplicative noise is linear i.e. there exists a random matrix Ξ1

in Rd×d s.t. for any η in Rd, we have a.s. ξmult
1 (η) = Ξ1η. Moreover E[‖ξmult

1 (η)‖2] ≤
M2‖H1/2

F η‖2.

Remark 10 Note that Ξ1 is not necessarily symmetric (in Algorithms 2 and 3, this results
from the compression).

In addition to Assumption 3, in the case of linear multiplicative noise, we also consider
the following assumption.

Assumption 4 The following hold.

A4.1: There exists a constant3 Xadd > 0 s.t. Cania 4XaddHF .

A4.2: There exists a constant Xmult > 0, such that E
[
Ξ1Ξ>1

]
4XmultHF .

Remark 11 (Link between Assumptions 1, 2 and 4) Assumption 1 (resp. Assump-
tion 2) corresponds to an assumption on the second order moment of the additive noise (resp.
multiplicative), while Assumption 4.1 (resp. Assumption 4.2) is a (stronger) assumption on
its covariance.

3. This letter X is the Russian upper letter “sha”.
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Theorem 12 (Linear multiplicative noise) Under Assumptions 1, 3 and 4, i.e., with
a linear multiplicative noise. Consider a sequence (wk)k∈N∗ produced in the setting of Defi-
nition 2, for a constant step-size γ such that γ(R2

F +M2) ≤ 1 and 4Xmultγ ≤ 1. Then for
any horizon K, we have

E[F (wK−1)− F (w∗)] ≤
1

2K

(‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ 2
√
γdXaddXmult

)2

.

Theorem 12 generalizes Theorem 1 from Bach and Moulines (2013). It also highlights
the impact of additive noise’s covariance, and the comparison between Theorem 8 and The-
orem 12 shows the advantage of linear compression schemes. Indeed the variance scales
as K−1(Tr

(
CaniaH

−1
F

)
+ 4γdXaddXmult). As before, the first term Tr

(
CaniaH

−1
F

)
corre-

sponds to the asymptotic variance given in Proposition 7, and the second term is negligible:
(i) for all 4Xmultγ ≤ 1 it can be upper bounded by dXadd, and for LMS (see Bach and
Moulines, 2013), the variance term is Tr

(
CaniaH

−1
F

)
= dσ2, which is thus at least as large,

(ii) it scales with γ thus is asymptotically negligible as γ tends to 0. Overall, depending on
Cania, the algorithm may or may not suffer from the lack of strong-convexity (µ tending to
0). More precisely, in the case of linear multiplicative noise, we can obtain a O(K−1) rate
independent of µ if and only if Cania 4 aHF , with a in R. The proof of Theorem 12 is given
in Appendix C, and follows the line of proof of Bach and Moulines (2013).

Conclusion: we established rates for (LSA) for both the Hölder-noise case and the
linear noise case. In the former, convergence requires strong convexity while in the latter,
we can achieve O(K−1) for Cania 4 aHF . In both cases, the dominant term for an optimal

choice of γ scales as
Tr(CaniaH

−1
F )

K .

In the following section, we turn to the analysis of Algorithm 2: we show how the choice
of the compression impacts both the linearity of the noise and the structure of Cania.

3. Application to Algorithm 2: compressed LSR on a single worker

In this section, we analyze Algorithm 2, i.e. compressed LSR. In Subsection 3.1, we introduce
the compression operators of interest and verify in Subsection 3.2 that Theorems 8 and 12
can be applied. Then, in Subsection 3.3, we provide explicit formulas of Tr

(
CaniaH

−1
)

for various compression schemes. Finally, in Subsection 3.4, we validate our findings with
numerical experiments.

3.1 Compression operators

Our analysis applies to most unbiased compression operators.

Definition 13 (Compression operators) Let z ∈ Rd.
1. 1-quantization is defined as Cq(z) := ‖z‖sign(z)�χ with χ ∼ ⊗di=1(Bern(|zi|/‖z‖2)).

2. Stabilized 1-quantization is defined as Csq(z) := U>Cq(Uz), with U ∈ Unif(Od).
3. Rand-h is defined as Crdh(z) := d

hB(S)�z with S ∼ Unif(Ph([d])) and B(S)i = 1i∈S.

4. Sparsification is defined as Cs(z) := 1
pB � z ∈ Rd with B ∼ ⊗di=1 (Bern(p)) .

10
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5. Partial participation is defined CPP(z) := b0
p z with b0 ∼ Bern(p).

6. Random Projection, also referred to as sketching, is defined as CΦ(z) := 1
pΦ†Φz,

where h � d ∈ N, p = h/d and Φ ∈ Rh×d is a random projection matrix onto a
lower-dimension space (Vempala, 2005; Li et al., 2006). In the following, we consider
Gaussian projection, where each element i, j ∈ J1, hK × J1, dK follows an independent
zero-centered normal distribution.

We refer to the introduction for related work on compression. Operators Cq, Csq are
quantization-based schemes while Crd1, Cs, CPP, CΦ are projection-based. Indeed sparsifica-
tion can be seen as a random projection (for h � d, p = h/d and h randomly sampled
coordinates I from J1, dK such that for any i ∈ I, the ith lines of Φ are equal to ei ∈ Rd,
and equal to zero otherwise). For CPP, the motivation is distributed settings, in which the
intermittent availability of clients prevents them from systematically participating in the
training. This can be modeled through partial participation: clients only participate in
a fraction p of the training steps. In theoretical analyses, this can be handled as a com-
pression scheme CPP, in which the compression of a vector z is either z/p or 0. Observe
that in the centralized case, this is slightly artificial as it actually means that no update
is performed at most steps and that the step-size is scaled at the other steps. Finally, we
denote CId : z ∈ Rd 7→ z the operator that does not carry out any compression.

Remark 14 The analysis of random projection is related to Random features (Rahimi and
Recht, 2008), usually used for Kernel learning in infinite dimensions. Nyström method
(introduced by Kumar et al., 2009) is another similar technique of compression often used
in this setting, it consists of removing a subset S ⊂ {1, · · · , d} of lines and columns in
the kernel matrix K. Both techniques have been extensively studied in the context of linear
and non-linear kernel learning (Rudi et al., 2015, 2017; Rudi and Rosasco, 2017; Lin and
Rosasco, 2017). Recently, the combination of SGD and random features has been analyzed
by Carratino et al. (2018). However, their results cannot be directly applied to our setting for
two reasons. Firstly, their analysis is for infinite dimensions, where they obtain a O(1/

√
K)

rate of convergence. Secondly, the compressions used in their approach are not independent
at each iteration.

Remark 15 Diffusion LMS (i.e. distributed learning without a central server) has also
been studied from the perspective of low-cost training by Arablouei et al. (2015); Harrane
et al. (2018), but using only clients’ partial participation or sparsification. Contrary to our
work they use biased compression and an adaptive correction step to compensate for the
induced error. They provide results guarantying asymptotic convergence (Harrane et al.,
2018, see Equations (28)-(37)).

3.2 Applicability of the results on (LSA) from Section 2

We first show that our results from Section 2 can be applied for Algorithm 2 with a random
compression operator C, in the case of Model 2.

Lemma 16 For any compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, there exists constants ω,Ω ∈
R∗+, such that the random operator C satisfies the following properties for all z, z′ ∈ Rd.

11
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L.1: E[C(z)] = z and E[‖C(z)−z‖2] ≤ ω‖z‖2 (unbiasedness and variance relatively bounded),
L.2: E[‖C(z)−C(z′)‖2] ≤ Ω min(‖z‖, ‖z′‖)‖z− z′‖+ 3(ω+ 1)‖z− z′‖2(Hölder-type bound),

with ω =
√
d and Ω = 12

√
d (resp. ω = (1− p)/p and Ω = 0) for Cq and Csq (resp. Crdh, Cs,

CΦ, CPP).

We note C the set of unbiased compressors verifying Lemma 16. Item L.1 is frequently
established in the literature and corresponds to the worst-case assumption, see the intro-
duction for references. On the other hand, Item L.2 is the Hölder-type bound, which is not
used in the literature up to our knowledge. The expected squared distance between the
compression of two nearby points scales with the non-squared norm of the distance. More-
over, the distance is multiplied by an unavoidable coefficient scaling with z, z′. Remark that
in Item L.2, we assume the compression randomness to be the same for the compression of
z and z′: formally, we control W2(C(z), C(z′))2, with W2 the Wassertein-2 distance. This
lemma is demonstrated in Appendix E.1.

Remark 17 For a given ω, note that the communication cost c for quantization-based
and projection-based compressors is not always equivalent. For 1-quantization we have c ≈
3
2

√
d log2 d+ 32 while for projection-based we have c ≈ 32

√
d, for

√
d-quantization we have

c ≈ 3d+ 32 while for projection-based we have c = 16d.

Lemma 16 enables to show that Theorems 8 and 12, and Algorithm 2 are valid in the
context of Model 2.

Corollary 18 Consider Algorithm 2 in the context of Model 2, with a compressor C ∈
{Cq, Csq, Crdh, Cs, CΦ, CPP}. With Lemma 16 above, Assumptions 1 and 2 on the resulting
random field (ξk)k∈N∗ are valid, with in particular HF = H, R2

F = R2, A = (ω + 1)R2σ2,
M2 = (ω + 1)R2, M1 = ΩR2σ. Therefore, it follows that Theorem 8 holds.

Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, under Remark 1, we also
have that Assumptions 3 and 4 are valid with Xadd = σ2XH and Xmult = R2XH , with
XH given below. Therefore, it follows that Theorem 12 holds.

Compressor Crdh Cs CPP CΦ

XH
h−1
p(d−1) + (1− h−1

d−1 ) τp 1 + (1−p)τ
p

1
p

α−β
p + βτ

p

XH (if H diagonal) 1
p

1
p

1
p

α−β
p + βτ

p

Where p = h/d, τ = Tr (H) /µ, and for sketching α = h+2
d+2 and β = d−h

(d−1)(d+2) .

This corollary is proved in Appendix D. We observe that a first difference in terms of
convergence exists between quantization-based compression and projection-based: for the
former, only Theorem 8 can be applied and the lower-order terms always have a poorer
dependency on µ while for the latter, Theorem 12 is applicable and lower-order terms do
not necessarily depends on µ. Indeed, the constants XH do not depend on µ for CPP, and
for Crd1, Cs, when the features’ covariance H is diagonal. On the contrary, there is always a
dependency on µ for CΦ, and for Crd1, Cs when H is not diagonal. In practice, this means
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that, among projection-based compressors, regarding lower-order terms, the convergence is
expected to be slower for random Gaussian projection.

We now turn to the analysis of the impact of the choice of the compression on the
dominant asymptotic term Tr

(
H−1
F Cania

)
.

3.3 Impact of the compression on the additive noise covariance

In this section, we illustrate how distinct compressors lead to different covariances for the
additive noise. This shows how Tr

(
H−1
F Cania

)
is impacted by the choice of a compressor.

First recall that for Algorithm 2 in the context of Model 2, with any compressor C, the
additive noise writes for any k ∈ [K], as:

ξadd
k

def. 4
= ξk(0)

algo 2
= ∇F (w∗)− Ck(gk(w∗))

eq. 2
= −Ck((〈xk, w∗〉 − yk)xk) model 2

= Ck(εkxk) .

Also recall that Cania is defined as Cania := E[(ξadd
k )⊗2] = E[C(εkxk)⊗2]. Moreover, note

that C(εkxk) a.s.
= εkC(xk) for all operators under consideration (this is immediate for linear

operators and results from the scaling for quantization-based ones). Consequently

Cania = E[ε2
kC(xk)⊗2] = σ2E[C(xk)⊗2], (3)

as E[ε2
k|xk] = σ2. Ultimately, we have to study the covariance of C(xk), for xk a random

variable with second-moment H.
We thus generically study the covariance of C(E), for E a random vector with distribu-

tion pM with second moment4 E[E⊗2] = M .

Definition 19 (Compressor’ covariance on pM) We define the following operator C
which returns the covariance of a random mechanism C acting on a distribution pM ∈ PM ,

C :
C× PM → Rd×d

(C, pM ) 7−→ E[C(E)⊗2] ,

where E ∼ pM and the expectation is over the joint randomness of C and E, which are
considered independent, that is E[C(E)⊗2] =

∫
Rd E[C(e)⊗2]dpM (e).

−1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Normal distribution

−1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Diamond distribution

C(C∅, pI2/2)

C(Cqtzt, pI2/2)

No compression

Compression

C(C∅, pI2/2)

C(Cqtzt, pI2/2)

Figure 2: Illustration of Remark 20

Using a compressor C ∈ C, we therefore have by
Equation (3):

Cania = σ2C(C, pH), (4)

where pH is the marginal distribution of xk (for any
k).

4. Remark that we do not assume E[E] = 0. Indeed, all computations only depend on the second-order
moment M of E, not on its variance (and the convergence depends of the second-order moment H of
x, not its variance). It is clear, that E[C(E)⊗2] does not depend on the fact that E is centered: indeed,

for R a Rademacher 1/2 independent of E, we have E[C(E)⊗2] = E[R2]E[C(E)⊗2]
⊥
= E[(RC(E))⊗2] =

E[C(RE)⊗2] and RE is (1) centered (2) has the same second-moment as E. Remark that centering the
covariates before learning does impact H: indeed H = E[(x)⊗2] = E[(x−E[X])⊗2]+(E[X])⊗2). Centering
subtracts (E[X])⊗2 to the second moment, which is a rank-1 matrix, typically does not affect the smallest
eigenvalue, but it can affect the top-eigenvalue.
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Remark 20 (Dependence on pM , not only M) Note that, for C = Cq, there exist two
distributions pM , p

′
M with the same covariance M , such that C(C, pM ) 6= C(C, p′M ). This is

why we cannot simply denote C(C,M).

Indeed, consider d = 2 and (1) a normal distribution E1 ∼ N (0, I2/2), vs (2) a diamond
distribution E2 ∼ P�, such that P�{(1, 0)} = P�{(−1, 0)} = P�{(0, 1)} = P�{(0,−1)}= 1/4 ,
and thus Cov [E1] = Cov [E2] = I2/2. Then Cov [E1] ≺ Cov [Cq(E1)], but Cq(E2)

a.s.
= E2

thus Cov [E2] = Cov [Cq(E2)]. We illustrate this on Figure 2: we represent Ei in blue and
Cq(Ei) in orange for i = 1 (left) and i = 2 (right). We also represent the covariance matrices
by plotting the ellipses ECov[Ei] and ECov[Cq(Ei)], where EM = {x ∈ Rd, x>M−1x = 4} (see
Definition S34)5.

We now compute for the compression operators, the value or an upper bound on
C(C , pH).

Proposition 21 (Compression and covariance) The following formulas hold:

C(CId
, pM) = M

C(Cq, pM) 4 C̃(Cq,M) := M +
√

Tr (M)
√

Diag (M)−Diag (M)

(with equality if ‖E‖ is a.s. constant under pM )

C(Cs, pM) = M + (1− p)p−1Diag (M)

C(CΦ, pM) = p−1
(

(h+1
d+2 + δhd)M +

(
1− h−1

d−1

)
Tr(M)
d+2 Id

)
, with δhd = h−1

(d−1)(d+2) = O(1
d)

C(Crdh, pM) = p−1
(
h−1
d−1M +

(
1− h−1

d−1

)
Diag (M)

)
C(CPP, pM) = p−1M .

Conclusion and interpretation. Most compression operators induce both a structured
noise (Flammarion and Bach, 2015) which covariance scales with H and an unstructured
noise, which covariance scales with Diag (H) or Id—thus corresponding to an isotropic noise.

From the convergence standpoint, the asymptotic convergence rate scales with the trace
Tr
(
CaniaH

−1
)

= σ2Tr
(
C(C , pH)H−1

)
. Therefore, the un-structured part in the noise is

problematic as Tr
(
CaniaH

−1)
)

will strongly depends on the smallest eigenvalue µ. This
comes from the fact that the compression induces a significant noise in directions in which
the Hessian curvature is very limited (thus directions onto which the contraction towards
the optimum in the algorithm is weak).

A particular case is when H is diagonal (e.g. the features are centered and independent),
we get the following corollary.

Corollary 22 (Compression and covariance, diagonal case) If M is diagonal, then
Proposition 21 is simplified to the following (with the same δhd):

C(CId
, pM) = M C(CΦ, pM) = p−1

(
(h+1
d+2 + δhd)M + (1− h−1

d−1 )Tr(M)
d+2 Id

)
C(Cq, pM) 4

√
Tr (M)

√
M C(Crdh, pM) = p−1M

C(Cs, pM) = p−1M C(CPP, pM) = p−1M.

5. The constant 4 is chosen so that for Gaussian distributions, the expected fraction of points within the
ellipse is 86, 4% ' 1− Fχ2(2)(4)

14



Distributed, compressed and averaged least-squares regression

Remark 23 (Composition of compressors) For all compression schemes but Cq, we
observe that C(C , pM) is a function of M , which complements Remark 20. In that particular
case, we can then denote C(C,M). This means that the lemma can be extended to any com-
position of compression schemes, for example to compute C(C1 ◦ C2,M) = C(C1,C(C2,M)).

From Proposition 21 and Corollary 22 we can deduce certain generic comparisons be-
tween the asymptotic convergence rates, depending on the compression operator (for com-
pression operators having the same variance bound). They are proven in Appendix E.3. In
the following, for any a, b ∈ R, we use the notation a

∼≤ b, to denote a systematic inequality
(i.e., a ≤ b) with a negligible difference as d → ∞ (i.e., a = b + O(1/d)), and similarly for
any two symmetric matrices A,B ∈ Sd(R), A

∼
4 B, for A 4 B and A = B + O(1/d) as

d→∞.

Proposition 24 (Comparison between CPP, Cs, Crdh, CΦ, ω = d/h− 1) We consider C ∈
{CPP, Cs, Crdh, CΦ} with p = h/d, such that C always satisfies Lemma 16 with ω = d/h− 1.
For any matrix M ∈ Rd×d:

1. If M is diagonal, then:

• C(CPP, pM) = C(Cs, pM) = C(Crdh, pM) = d
hM ,

• Tr
(
C(CPP/s/rdh, pM)M−1

)
≤ Tr

(
C(CΦ, pM)M−1

)
.

This means that the asymptotic convergence rate does not depend on the choice of the
compressor between CPP, Cs, Crd1 in the diagonal case.

2. Moreover, for any matrix M with a constant diagonal (e.g., we standardize6 the data in
the pre-processing step, such that Diag (M) = Id), we have:

Tr(C(CPP, pM)M−1) ≤ Tr(C(CΦ, pM)M−1) ≤ Tr(C(Cs, pM)M−1) ≤ Tr(C(Crdh, pM)M−1) ,

with strict inequalities if M is not proportional to Id. This means that we expect the
asymptotic convergence rate to be faster for PP than Sparsification, Sketching, or Rand-
h (illustrated in experiments).

In the next proposition, we compare compressors Cs, CPP to Cq for equal ω =
√
d (we

exclude Crdh and CΦ for which h must be an integer).

Proposition 25 (Comparison between CPP, Cq, Cs, ω =
√
d ) We consider that C is in

{CPP, Cq, Cs} with p = (
√
d+ 1)−1, such that C always satisfies Lemma 16 with ω =

√
d.

1. For any symmetric matrix M diagonal, we have:

Tr
(
C(CPP, pM)M−1

)
= Tr

(
C(Cs, pM)M−1

) possib. �
≤

(
1 +

1√
d

)
Tr
(
C̃(Cq,M)M−1

)
.

2. If M is not necessarily diagonal but with a constant diagonal (e.g., after standardization),
then

6. That means we center and rescale to get a variance of one for each feature.
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• C̃(Cq,M) 4 C(Cs, pM)

• Tr
(
C(CPP, pM)M−1

)
≤
(

1 + 1√
d

)
Tr
(
C̃(Cq,M)M−1

)
This means that sparsification is expected to always result in a poorer asymptotic conver-
gence rate than quantization. Moreover, the upper bound on the covariance C̃(Cq,M) for
quantization itself leads to a worst bound than for PP.7

We now propose a detailed illustration of the results of Proposition 21 and Corollary 22,
first in a low-dimensional setting (d = 2) and then in higher dimension on synthetic and
real datasets.

3.3.1 Illustration of Proposition 21 and Corollary 22 in dimension 2.

In order to build intuition, we illustrate Proposition 21 and Corollary 22 in Figures 3 and 4,
showing how compression affects the additive noise covariance, in a simple 2-dimensional
case, for both a non-diagonal matrix M (Figure 3) and a diagonal one (Figure 4).

More specifically, we consider features (xk)k∈[K] sampled from N (0,M) where M =
QDQ, D = Diag (1, 10) and Q is rotation matrix with angle π/8 (resp. 0) in Figure 3
(resp. 4). We represent the values of xk and C(xk), unit-ellipses of the corresponding covari-
ance matrices ECov[xk] and ECov[C(xk)] (see Definition S34—recall that ECov[xk] ⊂ ECov[C(xk)] ⇔
Cov [xk] 4 Cov [C(xk)]), as well as their two eigenvectors; we take p = (1 +

√
d)−1 = 0.41,

hence for C ∈ {Cq, Csq, Cs, CPP} we have ω = 1.41 but for sketching and rand-1, we have
p = 1/2 and ω = (1− p)/p = 1.

We make the following observations:

[Qtz] For quantization and stabilized quantization, in the non-diagonal case, the eigenvec-
tors of ECov[xk] and ECov[C(xk)] are slightly8 different (as

√
Diag (M) and M are not

7. Note that the behavior for quantization, apart from the upper bound C̃(Cq,M) is not quantified, it is
thus possible that quantization performs even better than PP.

8. On the figure, there are nearly aligned, but actually differ.
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jointly diagonalizable, as well as if Diag (M) is constant, although this case is not
presented here, but in Figure S13 in Appendix E.3). They are equal for the diagonal
case (as

√
Diag (M) and M are both diagonal so the eigenvectors are aligned with

the axis). In both cases, the eigenvalue decay is reduced (from λ2/λ1 = 1/10 with-
out compression to 1/

√
10 with compression, which visually corresponds to a “wider”

ellipse).
This slower eigenvalue decay results from the unstructured-noise, i.e., large noise
on the weak-curvature direction, which is particularly visible on Figure 4. This is
critical as it results in a potentially much larger limit rate, as Tr

(
C(Cq, pM)M−1

)
'

Tr
(
M−1/2

)
.

[Skt] For sketching, the eigenvectors remain the same for ECov[xk] and ECov[C(xk)] (as I2

and M are jointly diagonalizable, see Corollary 22), both in the diagonal and non-
diagonal case. However, the isotropic noise with covariance I2 is visible (wide ellipse),
also drastically impacting Tr

(
C(CPP, pM)M−1

)
∝ Tr

(
M−1

)
.

[Sp] For p-sparsification, eigenvectors are not aligned with the ones of M in the non-
diagonal case, but are in the diagonal case. In this latter case, the covariance C(Cs, pM)
is proportional to M .

[Rd] Same remarks hold for Rand-1 than for sparsification. We see that C(Crd1, pM) is
diagonal, as expected. Again, both operators induce an unstructured-noise in the
non-diagonal case.

[PP] For PP, the covariances are always proportional (with factor p−1), i.e., the ellipses
have the same axis and ECov[C(xk)] is a scaled version of ECov[xk].

We highlight the following points regarding pairwise comparisons:

• In the diagonal case, as stated by Item 1 in Proposition 24, Cov [Cs(xk)] and Cov [CPP(xk)]
are identical. Cov [Crd1(xk)] would have been identical too if p = 1/d (but here we
observe C(Crd1, pM) 4 C(Cs/PP, pM) because the variance of rand-1 is smaller that for

sparsification/PP).
• In the non-diagonal case, from Item 2 in Proposition 24, we have Tr

(
C(CPP, pM)M−1

)
≤

Tr
(
C(Cs, pM)M−1

)
, however we do not have C(CPP, pM) 4 C(Cs, pM), hence we can

not conclude anything on Cov [CPP(xk)] and Cov [Cs(xk)].
• In the non-diagonal scenario, we observe on Figure 3, that C(Cq, pM) 4 C(Cs, pM) (as

in Item 2 in Proposition 25).

3.3.2 Illustration of Proposition 21 and Corollary 22 in dimension d > 2

Another way of visualizing the structured and isotropic parts of the noise is by plotting the
eigenvalues of C(C , pM) in dimension d = 100. This is done in Figure 5, in which we plot
the eigenvalues in decreasing order for both M and C(C , pM), with Gaussian pM = N (0,M)
and Sp(M) = {(1/i4)di=1}. We see that in the diagonal case, in Figure 5a, all operators but
Cq, CΦ have a covariance proportional to M (thus a slope −4 on a log/log scale), while Cq is
proportional to

√
M (thus a slope −2) and CΦ has an isotropic component (thus eigenvalues

not decreasing to 0). In Figure 5b we see that only CPP has a covariance proportional to
M while all other ones have an isotropic component (thus eigenvalues not decreasing to 0).
We plot both empirical values and the ones obtained in Proposition 21, which shows that
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Figure 5: Figures 5a & 5b: Eigenvalues of C(C , pM). Figure 5c:
Tr
(
C(C , pM)M−1

)
. K = 104, ω = 10, M = QDiag

(
(1/i4)di=1

)
QT and Q = Id (on

5a & 5c-l) or Q ∼ Unif(Od) (on 5b & 5c-r). Plain lines: empirical values; dashed lines:
theoretical formula or upper bound given by Proposition 21.

the upper bound on quantization is reasonable in practice and acts as a safety check for
other compression schemes.

We plot on Figure 5c the theoretical and empirical Tr
(
C(C , pM)M−1

)
again in two

cases, diagonal and non-diagonal. In the diagonal case, PP, sparsification, and rand-h have
the same behavior; their traces have the smallest value among all compressors. However,
in the general case of non-diagonal features’ covariance, all compression operators have
similar slow performance except for PP. For d = 100, all the compressors have ω = 10, but
Tr
(
C(C , pM)M−1

)
varies by several orders depending on the compressor, illustrating again

that compressors satisfying Lemma 16 with the same ω may have vastly different behaviors.

Lastly, we perform the same experiments on Tr
(
C(C , pM)M−1

)
, but on non-simulated

datasets, namely quantum (Caruana et al., 2004) and cifar-10 (Krizhevsky et al., 2009): in
Figure 6 we plot Tr

(
C(C , pM)M−1

)
w.r.t. the worst-case-variance-level ω of the compression

in three scenarios: (top-row)—with data standardization, thus Diag (M) is constant equal
to 1; (middle-row)—with a PCA, thus with a diagonal covariance M (note that this
is for illustration purpose: performing a PCA would be more expensive computationally
than running Algorithm 2); and (bottom-row)—without any data transformation. As a
pre-processing, we have resized images of the cifar-10 dataset to a 16 × 16 dimension.
We adjust h ∈ Crdh, CΦ, and p ∈ CPP, Cs to make ω vary. Besides, in order to also adjust
ω for quantization, we use the s-quantization (Definition 26) schema which generalizes 1-
quantization.

Definition 26 (s-quantization operator) Given z ∈ Rd, the s-quantization operator Cs
is defined by Cs(z) := sign(z) × ‖z‖2 × χ

s . χ ∈ Rd is a random vector with j-th element

defined as: χ :=

{
l + 1 with probability s

|zj |
‖z‖2 − l ,

l otherwise
where the level l is such that

s|zj |
‖z‖2

∈

[l, l + 1[.

The s-quantization scheme verifies Assumption L.1 with ω = min(d/s2,
√
d/s). Proof

can be found in (Alistarh et al., 2017, see Appendix A.1). We do not computeM1,M2 and
the covariance Cania.
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Figure 6: Tr
(
C(C , pM)M−1

)
w.r.t the level of ω for quantum and cifar10. X/Y-axis are in

log scale. Note that the plots may have different magnitudes.

Interpretation. (Top-row): with standardization, the order predicted from Proposi-
tion 24.2 (large ω), and Proposition 25.2 (low ω) is obtained for both quantum and cifar-10:
CPP ≤ Cq ≤ Cs ' Crdh ' CΦ. For quantization, we observe two regimes: 1) when ω tends
to zero, quantization and PP outperform sketching, sparsification, and rand-h, that are
equivalent. 2) when ω increases, quantization changes from scaling as PP to scaling as the
second group. (Middle-row): in the diagonal regime, comments made for Figure 5c-l are
still valid. (Bottom-row): We observe that for a generic matrix M (obtained from raw-
data) there is no systematic order between compression schemes. This is un-avoidable as
the order for a “M diagonal” and “M with constant-diagonal” is not the same. We observe
that:

• for quantum, CPP ≤ Cs
∼≤ Crdh � Cq � CΦ

• for cifar-10, CPP � Cq � Cs ' Crdh ' CΦ.

We also observe that CΦ, which is the only operator to always induce an isotropic compo-
nent, may be much worse than all other compressors (e.g., on quantum). Ultimately, the
order depends on the covariance matrix M . Here we observe that the raw-data behavior
is close for cifar-10 to the standardized version, while for quantum the order between
compressors is the same for raw-data and diagonal (although the ratios are different). In
Appendix E.4 (Table S3), we provide an illustration of the covariance matrices, that sup-
ports such interpretation.
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3.4 Numerical experiments on Algorithm 2

In this section, we run Algorithm 2 on both synthetic and real datasets to illustrate the com-
bined theoretical results of Sections 2 and 3. In Figure 7, we compare the compression opera-
tors to the baseline of no-compression. We plot the excess loss of the Polyak-Ruppert iterate
F (wk)−F (w), versus the index in log/log scale. Each experiment is conducted 5 times, with
a new dataset generated from a new seed. The standard deviation of log10(F (wk)− F (w))
is indicated by the shadow-area.

Setting: (a) Synthetic dataset generation: The dataset is generated using Model 2 with
K = 107, σ2 = 1, an optimal point w∗ set as a constant vector of ones and a geometric
eigenvalues decay of D1 = Diag

(
(1/i4)di=1

)
(resp. D2 = Diag

(
(1/i)di=1

)
). For i ∈ {1, 2},

the covariance matrix is H{i} = QD{i}QT , where Q is either orthogonal matrix, or Q = Id
in the case of a diagonal features’ matrix. (b) Real datasets processing: We resize images
of the cifar-10 dataset to a 16 × 16 dimension, and then for both datasets, we apply
standardization. To compute the optimal point (and so to compute the excess loss), we run
SGD over 200 passes on the whole dataset and consider the last Polyak-Ruppert average as
the optimal point w∗. (c) Algorithm 2: We take a constant step-size γ = 1/(2(ω + 1)R2)
with R2 the trace of the features’ covariance, and w0 = 0 as initial point. We set the
batch-size b = 1 and the compressor variance ω = 10 for synthetic datasets. For cifar-10

and quantum, we run Algorithm 2 for 5×106 iterations (it corresponds to 100 passes on the
whole dataset) with a batch-size b = 16, and using a s-quantization (Definition 26). We set
s = 16 for cifar-10 (factor 2 compression) and s = 8 for quantum (factor 4 compression),
the compressor variance is therefore ω ≈ 1 for both datasets. These settings are summarized
in Tables S1 and S2 in Appendix A.1. Additionally, to illustrate Corollary 9, we plot on
Figure 7d the final excess loss after running Algorithm 2 with an horizon-dependent step-size
γ = K−2/5, computed for seven values of K ∈ {10i, i ∈ J1, 7K}.

Interpretation—H diagonal (Figure 7a). For sparsification, rand-h, and PP (linear
compressors), the rate of convergence is given by Theorem 12. As stated by Corollary 22,
the covariance Cania is proportional to H leading to a O(1/K) rate. We indeed observe in
Figure 7a that excess loss is linear in a log/log scale.

For non-linear compression operators, the rate is given by Theorem 8. On the one hand,
1-quantization results in a slower eigenvalues’ decay, leading to a larger Tr

(
CaniaH

−1
)
, thus

a slower convergence than linear compressors. On the other hand, for sketching, covariance
has a purely isotropic part scaling with Id, which causes Tr

(
CaniaH

−1
)

to strongly depend on
the strong-convexity coefficient µ resulting in an extremely large constant. Both behaviors
are observed in Figure 7a.

Interpretation—H not diagonal (Figures 7b and 7e). In the case of the high eigen-
values’ decay of H1 (µ = 10−8), the only compressor that shows in Figure 7b a linear rate
of convergence in the log/log scale is PP. All others exhibit a saturation phenomenon after
a certain number of iterations. This is again due to the unstructured part of the noise for
all other compressors, as given by Proposition 21. Besides, we also note an increase of the
excess loss after some iterations that is likely caused by the accumulation of noise on axis
onto which the curvature of H is weak (but the isotropic noise is not). However, taking
the optimal horizon-dependent step-size given by Corollary 9, we recover on Figure 7d for
all compressor C the sub-linear convergence rate of PP shown at Figure 7b, reducing by
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Figure 7: Logarithm excess loss of the Polyak-Ruppert iterate for a single client (N = 1).

a factor 100 the excess loss w.r.t. to the scenario where γ = 1/2(ω + 1)R2). While using
a small step-size is slightly worse for SGD, it reduces the second and third term of the
variance in Theorem 8 that depends on µ for other compressors. And in the scenario of
a slow eigenvalues’ decay (µ = 10−2), we observe on Figure 7e that all compressors reach
the sub-linear rate (same slope -1 on the log/log plot), but with different constants. This
illustrates Theorems 8 and 12 in the case of moderate coefficient µ where we expect the
second and third parts of the variance term to be negligible.

Interpretation - real datasets, H with constant diagonal (Figures 7c and 7f). As
we use s-quantization, this experience is going beyond Propositions 21 and 25 which only
apply to 1-quantization. In the case of covariance with constant diagonal, Proposition 25
states that 1-quantization is better than projection-based compressors and comparable to
partial participation. In practice, we observe that s-quantization performs competitively
with PP and outperforms all other compressors. Besides, the asymptotic behavior is con-
sistent with Figure 6 (top-row) for ω = 1, where the order CPP ' Cq � Cs ' Crdh ' CΦ is
observed.

3.5 Conclusion

In this section, we investigated how the compression scheme choice impacts the convergence
rate, first by showing that quantization-based and projection-based methods respectively
satisfy Theorem 8 and Theorem 12, resulting in different non-asymptotic behaviors. In the
asymptotic regime, in both cases, the averaged excess loss scales as Tr

(
H−1Cania

)
/K. We

then analyzed the impact of the most-used schemes on this limit rate. Overall, it appears
that all compression schemes typically generate an unstructured-noise, which covariance
does not scale with H, contrarily to the classical un-compressed Algorithm 1. The one
exception is PP, which corresponds (on a single worker) to performing fewer iterations.
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For other compression schemes, we show the impact of the covariance H: depending on
the correlation between features (H diagonal or not) and on the pre-processing (e.g., stan-
dardization for which H has diagonal constant), the ordering between compression scheme
varies. In many cases, this highlights the need for an additional regularisation when running
Algorithm 2: all compression schemes (but PP) result in a significant noise that accumu-
lates along the low curvature directions. Our results can be extended to the ridge (a.k.a.,
Tikhonov) regularized case (see Dieuleveut et al., 2017), which creates an additional bias
but changes the rate Tr

(
H−1Cania

)
/K into Tr

(
(H + λI)−1Cania

)
/K. The theoretical opti-

mal choice for λ depending on H and the compression scheme could be obtained from our
analysis but is left as future work.

We now turn to the distributed/federated case, which motivates the study of compression
schemes for practical applications.

4. Application to Federated Learning

In this section, we consider Algorithm 3 under Model 1, which corresponds to heterogeneous
Federated Learning on a network composed of N clients. We hereafter consider two par-
ticular cases naturally raising from Model 1: covariate-shift and optimal-point-shift. Note
this results can easily be extended to the case of a heterogeneous level of noise by clients.

First, in Subsection 4.1, the covariate-shift case, i.e., Model 1 with wi∗ = w∗ for all i
(thus the distribution of yi conditional to xi does not change between workers), but on
the other hand, the features’ marginal distributions are different, in particular, Hi 6= Hj .
Second, in Subsection 4.2, the optimal-point-shift case, i.e., for each client i, j ∈ [N ], their
optimal points are different wi∗ 6= wj∗, but Hi = Hj . In the rest of the section, we denote

H := 1
N

∑N
i=1Hi, R

2
:= 1

N

∑N
i=1R

2
i , and we have F (wk)− F (w∗) = 1

2

〈
ηk−1, Hηk−1

〉
.

4.1 Heterogeneous covariance

In this section, we first show that Theorems 8 and 12 on (LSA) from Section 2 can be
applied to the Federated Learning case within the scenario of covariate-shift. Corollary 27
is proved in Appendix F.1.

Corollary 27 (Algorithm 3 with covariate-shift) Consider Algorithm 3 under Model 1
with wi∗ = wj∗ (and potentially Hi 6= Hj).

1. For a compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, Theorem 8 holds, with HF = H, R2
F =

R
2
, A = (ω + 1)R

2
σ2/N , M2 = (ω + 1) maxi∈[N ](R

2
i )/N , M1 = Ωσmaxi∈[N ](R

2
i )/N .

2. Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, Theorem 12 holds, with the
same constants and Xadd = σ2 maxi∈[N ](XHi)/N and Xmult = maxi∈[N ](R

2
iXHi)/N ,

with (XHi)
N
i=1 given in Corollary 18.

The Hessian of the objective function is now H, and Theorems 8 and 12 still hold. The
proof consists in showing that with Lemma 16, Assumptions 1 to 4 on the resulting random
field (ξk)k∈N∗ are valid, with the constants given above.

In order to understand the impact of the compressor on the limit convergence rate, we
establish a formula for Cania similar to Equation (4). In the setting of covariate-shift, we
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have for any clients i, j ∈ [N ], wi∗ = wj∗, thus

ξadd
k

def. 4
= ξk(0)

algo 3
= ∇F (w∗)−

1

N

N∑
i=1

Cik(gik(w∗))

eq. 2
= − 1

N

N∑
i=1

Cik((
〈
xik, w∗

〉
− yik)xik)

model 1
=

with wi∗=w
j
∗

1

N

N∑
i=1

Cik(εikxik) .

Next for all operators under consideration we have Cik(εikxik)
a.s.
= εikCik(xik), thus, with pHi

denoting the distribution of xik with covariance Hi, we have:

Cania = E
[
(ξadd
k )⊗2

]
= E

( 1

N

N∑
i=1

Cik(εikxik)
)⊗2

 indep. of (Cik)di=1=
1

N2

N∑
i=1

E
[
Cik(εikxik)⊗2

]
=

σ2

N2

N∑
i=1

E
[
Cik(xik)⊗2

] Def. 19
=

σ2

N2

N∑
i=1

C(Cik, pHi)
notation

=:
σ2

N
C((Ci, pHi)Ni=1) . (5)

The operator C((Ci, pHi)Ni=1) generalizes the notion of compressor’s covariance (Defini-
tion 19) to the case of multiple clients, and Equation (5) corresponds to Equation (4).

Remark 28 (All clients use the same linear compressor) If for all i ∈ [N ], Ci (d)
= C

and C ∈ {CPP, Cs, Crdh, CΦ}, leveraging Remark 23, we have

C((Ci, pHi)Ni=1) = C(C, H) .

The analysis of (LSA) on a single worker made in Section 3 is still valid in this setting with
now the Hessian of the problem being equal to the average of covariance H. Corollary 27
and Equation (5) prove that the case of covariate-shift is identical to the centralized setting
with a variance reduced by a factor N .

Remark 29 (Varying compressor/compression-level, or non-linear compression)

In most other cases, the computation of σ2

N C((Ci, pHi)Ni=1) = σ2

N2

∑N
i=1 C(Cii , pHi) is possible

using the results of Subsection 3.3

Overall, in the covariate-shift case, most insights from the centralized case remain valid,
especially, client sampling (i.e., PP) is the safest way to limit the impact of compression.
Moreover, the trade-offs and ordering between compressors remain preserved, especially
regimes in which quantization outperforms other competitors.

4.2 Heterogeneous optimal point

Hereafter, we focus on the case of heterogeneous optimal points and consider that all clients
share the same covariance matrix, i.e. for any i, j ∈ [N ], Hi = H, but potentially wi∗ 6= wj∗.
This can be seen as a case of concept-shift (Kairouz et al., 2019), and we also refer to
the situation as optimal-point-shift. This setting could eventually be combined with the
covariate-shift case. Similarly, Theorems 8 and 12 on (LSA) from Section 2 can be applied.
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Corollary 30 (Algorithm 3 with concept-shift) Consider Algorithm 3 under Model 1
with Hi = Hj (and potentially wi∗ 6= wj∗).

1. For a compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, Theorem 8 holds, with HF = H, R2
F =

R2, A = R2(ω+1)
N (κTr (HCov [W∗]) + σ2) with W∗ ∼ Unif({wi∗, i ∈ [N ]}), M2 = (ω +

1)2/N , and M1 = ΩR2σ/N .

2. Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, Theorem 12 holds, with the
same constants and Xadd = σ2XH/N and Xmult = R2XH/N , with XH given in
Corollary 18.

Corollary 30 can be proved reusing computation made for Corollary 27 and using below
Proposition 31. We next aim at computing the additive noise covariance. We note gik,∗ =

gik(w∗) the local stochastic gradient evaluated at optimal point w∗. We have, in Model 1,

for any w ∈ Rd, Fi(w) := E(〈xik, w − wi∗〉 − xikεik)2, thus ∇F (w) = 1
N

∑N
i=1H(w − wi∗), and

w∗ =
∑N

i=1w
i
∗/N . The setting of Definition 2 is verified with HF = H, and for any w ∈ Rd,

that the random field ξk can be computed as:

ξk(w − w∗)
Def. 2&Alg.3

= HF (w − w∗)−
1

N

N∑
i=1

Ci(gik(w)), thus ξadd
k

Def. 4
= − 1

N

N∑
i=1

Ci(gik,∗),

with gik,∗ = (xik ⊗ xik)(w∗ − wi∗) + xikε
i
k. We thus have, for any k ∈ N:

Cania = E
[
(ξadd
k )⊗2

] ∇F (w∗)=0
= E

( 1

N

N∑
i=1

Ci(gik,∗)−∇Fi(w∗)
)⊗2


∀i 6=j, Cik⊥C

j
k=

ECik(gik,∗)=∇Fi(w∗)

1

N2

N∑
i=1

E
[(
Cik(gik,∗)−∇Fi(w∗)

)⊗2
]

=
1

N2

N∑
i=1

(
E[Cik(gik,∗)⊗2]−∇Fi(w∗)⊗2

)
=

σ2

N2

N∑
i=1

C(Ci, pΘi)−
1

N2H

N∑
i=1

(w∗ − wi∗)⊗2H 4
σ2

N
C((Ci, pΘi)

N
i=1) ,

where pΘi is the distribution of gik,∗ (for any k). In the last inequality, we simply discarded

the non-positive term −H∑N
i=1(w∗ − wi∗)⊗2H. For linear compressors, by Proposition 21,

Cania is a linear function of 1
N

∑N
i=1 Θi—the averaged second-order moment of the local

gradients (gik,∗)
N
i=1. In order to bound this quantity, following Dieuleveut et al. (2017), we

make the following assumption.

Assumption 5 The kurtosis for the projection of the covariates xi1 (or equivalently xik for
any k) is bounded on any direction z ∈ Rd, i.e., there exists κ > 0, such that:

∀i ∈ [N ], ∀z ∈ Rd, E
[〈
z, xi1

〉4
]
≤ κ〈z,Hz〉2
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For instance, it is verified for Gaussian vectors with κ = 3. By Cauchy-Schwarz inequality,
it implies that E[

〈
z, xi1

〉2
(xi1)⊗2] 4 κ〈z,Hz〉H for all z ∈ Rd. We obtain the following

proposition.

Proposition 31 (Impact of client-heterogeneity) Let W∗ be a random variable uni-
formly distributed over {wi∗, i ∈ [N ]}, thus such that, Cov [W∗] = 1

N

∑N
i=1(w∗ − wi∗)

⊗2,
then:

1

N

N∑
i=1

Θi 4 (κTr (HCov [W∗]) + σ2) H .

Proof We have:

Θi = E[((xik ⊗ xik)(w∗ − wi∗) + xikε
i
k)
⊗2]

(εik)⊥(xik)
= E[(xik ⊗ xik)(w∗ − wi∗)⊗2(xik ⊗ xik)] + σ2H

Ass. 5
4 κ

〈
w∗ − wi∗, H(w∗ − wi∗)

〉
H + σ2H = κTr

(
H(w∗ − wi∗)⊗2

)
H + σ2H .

In words, we have the following two main observations.

Remark 32 (Structured noise before compression) Before compression is possibly ap-
plied, the noise remains structured, i.e., with covariance proportional to H, in the case of
concept-shift. As a consequence, the rate for un-compressed Equation (LSA) will remain
independent of the smallest eigenvalue of H. This remark extends to the case where CPP is
applied.

Remark 33 (Heterogeneous vs homogeneous case.) Compared to the homogeneous

case, in which Θi = σ2Hi and Cania = σ2

N C((Ci, pHi)Ni=1), the averaged second-order moment
increases from σ2H to (κTr (HCov [W∗])+σ2)H, showing the impact of the dispersion of the
optimal points (wi∗)

N
i=1. This corresponds to the typical variance increase in the compressed

heterogeneous SGD case (Mishchenko et al., 2019; Philippenko and Dieuleveut, 2020).

Concept-shift thus hinders the limit convergence rate. To limit this effect, a solution is
to introduce a control-variate term (hik)k∈N∗,i∈[N ], that is subtracted to the gradient before
compression and asymptotically approximate ∇Fi(w∗) for any i ∈ [N ] (see Mishchenko
et al., 2019). We explore this direction in Appendix F.2.

4.3 Numerical experiments

We support the theoretical results from Subsections 4.1 and 4.2 by performing experiments
in the FL framework that extend the ones from Section 3.

On figures Figure 8, we present the results of the excess loss of the Polyak-Ruppert
iterate F (wk) − F (w∗) versus the number of iterations in log/log scale. The experiments
were run 5 times, each time with different datasets (dispersion is shown by shaded area).

Settings. (a) Synthetic dataset generation: The dataset is generated using Model 1 with
N = 10, K = 106 on each client, σ2/N = 1. For any clients i in [N ], the covariance matrix
is Hi = QiDiQ

T
i , where Qi is an orthogonal matrix. For heterogeneous clients, the dataset
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(f) True gradient gik = ∇Fi

Figure 8: Logarithm excess loss of the Polyak-Ruppert iterate iterations for N = 10 clients.

generation is as follows. Covariate shift: The rotation matrix Qi is sampled independently

for each client and the diagonal matrix Di is Diag
(

(1/jβi)dj=1

)
where βi ∼ Unif({3, 4, 5, 6}).

Concept-shift: The optimal models of the clients i ∈ [N ] were drawn from a zero-centered
normal distribution with a variance of 100Id, that is, wi∗ ∼ N (0, 100Id). We also take for
all client i in [N ], Hi = QDQT , with D = Diag ((1/j))dj=1. (b) Real-dataset and covariate-
shift: To simulate non-i.i.d. clients, we split the dataset in heterogeneous groups (with
equal number of points) using a K-nearest neighbors clustering on the TSNE representations
(defined by Maaten and Hinton, 2008). Thus, the marginal feature distribution significantly
varies between clients, providing a covariate-shift, while keeping the same distribution for
the output conditional to the features on all clients. (c) Algorithm 3: We take a constant
step-size γ = 1/(2(ω + 1)R2) with R2 = Tr (H) and w0 = 0 as initial point. We set the
batch-size b = 1 for synthetic datasets and b = 16 for real datasets, the compressor variance
is ω = 10. (d) Algorithm 3 vs Algorithm 4: We take a bigger constant step-size γ = (2R2)−1

in order to emphasize the difference between the case w./w.o. control variate, we set w0 = 0
as initial point and the compressor variance is ω = 10. We set the batch-size b = 32 for
Figure 8c and b = K for Figure 8f.

Interpretation—homogeneous case and covariate-shift case (Figures 8a, 8b, 8d
and 8e). These experiments extend those presented in Subsection 3.4 in the case of a single
client. The observations made in the centralized case (Figure 7), especially on the impact
of the compressor choice on the convergence and the ordering between limit convergence
rates remain valid. This illustrates Corollary 27 and Remark 28: Theorems 8 and 12 hold
in the case of homogeneous client or in the case of heterogeneous covariance and the only
compressor that ensures that the noise is structured is client sampling (partial participation).
On the real datasets, quantization is also competitive.
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Interpretation—concept-shift case (Figures 8c and 8f). These experiments extend
those presented on Figure 7e (slow eigenvalues’ decay with µ = 10−2) to the scenario of
concept shift. First, we observe on Figure 8c that for all compressors the convergence
rate remains in O(1/K), (though vanilla SGD converges faster during the first iterations).
Second, we observe that control-variates improve convergence for compressors inducing un-
structured noise ; this is predicted by theory, see Theorem S68. Third, on Figure 8f, at
each iteration k ∈ [K], we use deterministic gradients gik = ∇Fi which leads to having a.s.
ξadd
k = 0, and in the absence of compression, we obtain a O(1/K2) convergence rate for wK

which corresponds in Theorem 8 to the case where the dependency on the initial condition is

dominated by
‖H−1/2

F η0‖2
γ2K2 . Overall, these experiments illustrate and support our theoretical

insights.

5. Conclusion and open directions

Conclusion. In short, we investigate the impact of the choice of compression scheme on the
convergence of the Polyak-Ruppert averaged iterate. By analysing the case of compressed
least-squares regression, we shed light on the interplay between the Hessian of the optimiza-
tion problem HF , the features’ distribution, the additive noise’s covariance Cania, and the
compression scheme. This shows fundamental differences between compression that deemed
equivalent under the classical worst-case-variance assumption. We extend our analysis to
the case of heterogeneous federated learning, a setting in which compression is widely used
and its impact not fully understood.

More precisely, first, the analysis of the generic stochastic approximation algorithm
(LSA) provides (1) the fact that projection based compressions achieve a faster conver-
gence rate than quantization based, and that yet, their asymptotic rate is similar; (2) the
analysis of quantization-based compression requires introducing a new Hölder-type regular-
ity assumption for the analysis of the stochastic approximation scheme, and showing that
such an assumption is satisfied for quantization.

Second, the computation of the additive noise’s covariance Cania reveals the impact of
the compression scheme and the data distribution on the asymptotically dominant term.
We obtain that (1) partial participation (i.e., client sampling in the federated case) is
the only method that systematically ensures a convergence without a dependency on the
strong-convexity constant; (2) other compressors may all induce an un-structured noise, with
covariance scaling with I or

√
H, that strongly hinders convergence by accumulating noise on

low curvature directions; (3) the relative performance or various schemes changes depending
on the pre-processing applied to the data, making quantization the best method (apart
from PP) when standardization is applied, but one of the worst (with random Gaussian
projection) when the features are independent and the eigenvalues of the covariance decay
rapidly (4) in that particular last setting, all projection based methods (but Gaussian
projection) behave similarly.

Third, we discuss how these results apply to the federated case, that corresponds to the
initial motivation. We show that we encompass two particular heterogeneity situations and
how our analysis applies. Overall, these results are a step towards a better understanding
of the impact of a widely used tool.
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Open directions. This analysis can be extended to include various aspects that are
beyond the scope of this work. First, one natural improvement for application in FL would
be to consider also the scenario where each client runs several local iterations (McMahan
et al., 2017; Karimireddy et al., 2020) before sending their updates, reducing further the cost
of communication. Similar approach can be used, although the additive noise field would be
more complicated, which potentially implies a different additive noise’s covariance. Second,
as mentioned in Subsection 3.5, our analysis could also be extended to the case of stochastic
approximation with ridge regularization (e.g., following Dieuleveut et al., 2017) which in
practice is helpful to mitigate the impact of the lack of strong convexity. Third, an obvious
direction is to extend beyond quadratic functions and considering other objective functions,
such as logistic regression or even shallow neural networks. Several results in the literature
can be leveraged to tackle non quadratic but self-concordant losses Bach (2010); Gadat and
Panloup (2023). Fourth, our analysis still only relies on second moments (variance and
covariance) of the stochastic field. One major drawback of partial participation is to induce
a significant increase on higher order moments. Incorporating higher order bounds may
also bring novel insights to the use of compression in FL. Finally, all our analysis is made
in finite dimension and our asymptotic focuses on K → ∞: further works should analyze
the case of infinite dimension: within the reproducing kernel Hilbert space (Dieuleveut and
Bach, 2016) framework or within the overparametrized setting (Belkin et al., 2019).
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Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Har-
chaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi,

31

https://proceedings.mlr.press/v130/haddadpour21a.html
https://proceedings.mlr.press/v130/haddadpour21a.html


Application to federated learning

Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Fari-
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Supplementary material

In this appendix, we provide additional information to supplement our work. In Ap-
pendix A, we begin by detailing technical results, by introducing an auxiliary lemma and by
proving Proposition 7 which gives a CLT for (LSA). Secondly, in respectively Appendix B
and Appendix C, we give the proof of Theorems 8 and 12. Thirdly, in Appendix D, we verify
that the setting of single-client compressed LSR fulfills the setting presented in Section 2.
In Appendix E we prove that Lemma 16 hold and compute the compressors’ covariance
to establish Proposition 21 and Corollary 22. Finally, in Appendix F, we provide demon-
strations for the federated learning case, including verifying assumptions (covariate-shift
scenario) on random fields in Appendix F.1, and proving a Central Limit Theorem S68 in
Appendix F.2 for the concept-shift scenario.

Additional notations. We use the Frobenius norm ‖A‖2 := Tr
(
A>A

)
, which is the

same notation as the vector Euclidean norm (no ambiguity in general), Jr to denote the
d × d diagonal matrix whose r first diagonal elements are equal to one and all the other
matrix’s coefficients equal to zero, S++

d (R) the cone of positive definite symmetric matrices,
and Lp(Ω,A,P) the set of random vectors defined on the probability space (Ω,A,P) such
that E[‖X‖p] <∞. We define also the operator norm |||A||| :=

√
max eig(A>A).
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Appendix A. Technical results

A.1 Settings of experiments

In Tables S1 and S2, we summarize the settings of experiments presented in Subsection 3.4.

Table S1: Settings of experiments for a single client (N = 1) on synthetic data (Figures 7a
and 7b).

Parameter K d eig(H)i w∗ σ2 ω γ−1 w0 #runs

Values 107 100 1/i4 (1)di=1 1 10 2(ω + 1)R2 0 5

Table S2: Settings of experiments for a single client (N = 1) on real data (Figures 7c
and 7f).

Dataset d standardization b ω γ−1 w0 #runs reference

quantum 65
3 16 1 2(ω + 1)R2 0 5

(CTL04)
cifar-10 256 (Kri09)

A.2 Useful identities and inequalities

In this Subsection, we recall some classical inequalities and results.

Inequality 1 Let N ∈ N and d ∈ N. For any sequence of vector (ai)
N
i=1 ∈ Rd, we have the

following inequalities: ∥∥∥∥∥
N∑
i=1

ai

∥∥∥∥∥
2

≤
(

N∑
i=1

‖ai‖
)2

≤ N
N∑
i=1

‖ai‖2 .

The first part of the inequality corresponds to the triangular inequality, while the second
part is Cauchy’s inequality.

Inequality 2 Let x in Rd and A in Md,d(R), then we have ‖Ax‖ ≤ |||A|||‖x‖.

Below, we recall Minkowski’s and Jensen’s inequalities. Additionally, we recall the Cauchy-
Schwarz inequality for conditional expectations.

Let a probability space (Ω,A,P) with Ω a sample space, A a σ-algebra, and P a probability
measure.
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Minkowski’s inequality. Let p > 1 and suppose that X,Y are two random variables in
Lp(Ω,A,P) (i.e. their pth moment is bounded), we have the following triangular inequality:

E[‖X + Y ‖p]1/p ≤ E[‖X‖p]1/p + E[‖Y ‖p]1/p . (S6)

Jensen’s inequality. Suppose that X : Ω −→ Rd is a random variable, then for any
convex function f : Rd −→ R we have:

f (E(X)) ≤ Ef(X) . (S7)

Cauchy-Schwarz’s inequality for conditional expectations. Suppose that X,Y are
two random variables in L2(Ω,A,P) (i.e. their second moment is bounded), then for any
σ-algebra F ⊂ A we have a.s.:

E [XY | F ]2 ≤ E
[
X2

∣∣ F]E
[
Y 2
∣∣ F] . (S8)

Convergence in Lp-norm. Suppose that (Xn)n∈N is a sequence of random variables in
Lp(Ω,A,P), and that X is a random variable in Lp(Ω,A,P). We say that (Xn)n∈N converges

in Lp-norm towards X if E(‖Xn −X‖p) −−−−−→
n→+∞

0, it is denoted by: Xn
Lp−−−−−→

n→+∞
X .

In Subsection 3.3, we use ellipses to visual quadratic functions, therefore we provide in
Definition S34 the mathematical definition.

Definition S34 (Representing positive matrices through ellipsoids) Any symmet-
ric positive definite matrix M in S++

d (R) defines an ellipsoid EM = {x ∈ Rd, x>M−1x = 1}
centered around zero. The eigenvectors of M are the principal axes of the ellipsoid, and the
squared root of the eigenvalues are the half-lengths of these axes. The ellipse corresponds to
the sphere of radius 1 associated with the norm NM−1 =

√
x>M−1x.

A.3 An auxiliary inequality

In this Section, we provide an auxiliary lemma that is specific to the framework considered
in Section 2. It will be used in the proof of Theorem 8 and corresponds to an adaptation
of Lemma 1 from Bach and Moulines (2013).

Lemma S35 (Auxiliary inequality on
∑K

k=1 E[‖H1/2
F ηk‖2]/K) Under Assump-

tions 1 and 2.1, for any K in N∗ and any step-size γ ∈ R+ s.t. γ(R2
F + 2M2) ≤ 1, the

sequence (wk)k∈N∗ produced by a setting such as in Definition 2, verifies the following
bound:

1

K

K−1∑
k=0

E[‖H1/2
F (wk − w∗)‖2] ≤ ‖η0‖2

2γK(1− γ(R2
F + 2M2))

+
5Aγ

1− γ(R2
F + 2M2)

.

Proof Let k in N∗, we start writing that by Definition 2, we have wk = wk−1−γ∇F (wk−1)+
γξk(ηk−1). Thus taking the squared norm and developing it, gives:

‖ηk‖2 = ‖ηk−1‖2 − 2γ 〈ηk−1,∇F (wk−1)− ξk(ηk−1)〉+ γ2 ‖∇F (wk−1)− ξk(ηk−1)‖2 . (S9)

We need to bound the last term. By Definition 4, we have ξk(ηk−1) = ξmult
k (ηk−1) + ξadd

k ,
hence using Inequality 1, we have:

‖∇F (wk−1)− ξk(ηk−1)‖2 ≤ 2‖∇F (wk−1)− ξmult
k (ηk−1) ‖2 + 2‖ξadd

k ‖2 ,
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taking expectation w.r.t the σ-algebra Fk−1, developping
∥∥∇F (wk−1)− ξmult

k (ηk−1)
∥∥2

and
because E

[
ξmult
k (ηk−1)

∣∣ Fk−1

]
= 0 (the random fields (ξk)k∈N∗ are zero-centered, see Def-

inition 2), we have:

E
[
‖∇F (wk−1)− ξk(ηk−1)‖2

∣∣∣ Fk−1

]
≤ 2E

[
‖∇F (wk−1)‖2

∣∣ Fk−1

]
+ 2E

[
‖ξmult
k (ηk−1) ‖2

∣∣∣ Fk−1

]
+ 2E

[
‖ξadd
k ‖2

∣∣∣ Fk−1

]
.

Now, we use Definition 2 and Assumptions 1 and 2.1: it leads to:

E
[
‖∇F (wk−1)− ξk(ηk−1)‖2

∣∣∣ Fk−1

]
≤ 2R2

F ‖H1/2
F ηk−1‖2 + 4M2‖H1/2

F ηk−1‖2 + 8A+ 2A
≤ 2(R2

F + 2M2)‖H1/2
F ηk−1‖2 + 10A .

Because the sequence of random field (ξk)k∈N∗ is zero-centered (Definition 2), we have:

E [〈ηk−1,∇F (wk−1)− ξk(ηk−1)〉 | Fk−1] = 〈ηk−1, HF ηk−1〉 = ‖H1/2
F ηk−1‖2 ,

hence back to Equation (S9), we obtain:

E
[
‖ηk‖2

∣∣∣ Fk−1

]
≤ ‖ηk−1‖2 − 2γ(1− γ(R2

F + 2M2))‖H1/2
F ηk−1‖2 + 10Aγ2 . (S10)

It follows that if γ(R2
F +2M2) ≤ 1, summing the previous bound and taking full expectation

gives:

1

K

K∑
k=1

E
[
‖H1/2

F ηk−1‖2
]
≤ ‖η0‖2 − E ‖ηK‖2

2γK(1− γ(R2
F + 2M2))

+
5Aγ

1− γ(R2
F + 2M2)

,

which allows concluding.

A.4 Asymptotic results: central limit theorem for (LSA)

The demonstration of Proposition 7 uses the following theorem from Polyak and Juditsky
(1992) guaranteeing the asymptotic normality of the Polyak-Ruppert iterate.

Theorem S36 From Polyak and Juditsky (1992, see Theorem 1).
For k in N∗, we denote ηk = wk−w∗ and we define wk = wk−1− γk∇F (wk−1) + γkξ(ηk−1).
If we assume that:

• γk −−−−→
k→+∞

0 and γ−1
k (γk − γk+1) = o

k→+∞
(γk),

• F is strongly convex and
∥∥∇2F

∥∥
∞ <∞,

• the convergence in probability of the conditional covariance to a matrix Σ holds, i.e.,

we have a.s. E[ξ(ηk−1)ξ(ηk−1)> | Fk−1]
P−−−−→

k→+∞
Σ .
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Then for any K in N∗, we have the asymptotic normality of (
√
KηK−1)K∈N∗:

√
KηK−1

L−−−−−→
K→+∞

N (0,Σ∗) with Σ? =
{
∇2F (w∗)

}−1
Σ
{
∇2F (w∗)

}−1
.

Below we present our CLT that gives the asymptotic normality of (
√
KηK−1)K∈N∗ in the

case of strongly-convex case and decreasing step size.

Proposition S37 (CLT for (LSA)—strongly convex-case, deacreasing step-size)
Under Assumptions 1 and 2, consider a sequence (wk)k∈N∗ produced in the setting of
Definition 2 using a step-size (γk)k∈N∗ s.t. γk = k−α, α ∈ (0, 1). Then (ηK)K≥0

converges in L2-norm to 0, i.e. ηK
L2

−−−−−→
K→+∞

0.

Furthermore, (
√
KηK−1)K≥0 is asymptotically normal with mean zero and covariance

such that: √
KηK−1

L−−−−−→
K→+∞

N (0, H−1
F CaniaH

−1
F ).

Proof

First, we have that in the case of decreasing step size s.t. for any k in N, γk = k−α,

we have: ηK
L2

−−−−−→
K→+∞

0. This is a classical computation for SGD with bounded variance

(Assumptions 1 and 2.1.). Detailed computations are for instance given in lectures notes
of Bach (2022, pages 164-167 and 182), and Kushner and Yin (2003). To apply Theorem 1
from Polyak and Juditsky (1992, recalled in Theorem S36), which gives the desired result,
it suffices to prove the convergence in probability of the covariance of the noise ξk(ηk−1)
towards Cania, as k →∞.

In the following, we show that lim
k→+∞

E
[
ξk(ηk−1)ξk(ηk−1)>

∣∣ Fk−1

] P
= Cania. We start

writing:

ξk(ηk−1)ξk(ηk−1)> = (ξadd
k − ξmult

k (ηk−1))(ξadd
k − ξmult

k (ηk−1))>

= (ξadd
k )⊗2 − ξadd

k ξmult
k (ηk−1)> − ξmult

k (ηk−1) (ξadd
k )> + ξmult

k (ηk−1)⊗2 .

(i) First, from Definition 4, it flows that E
[
ξadd
k ⊗ ξadd

k

∣∣ Fk−1

]
= Cania.

(ii) Second, we show that E[ξmult
k (ηk−1)⊗2 | Fk−1] converges to 0 in probability: it is

sufficient to show that: E[‖ξmult
k (ηk−1)⊗2 ‖F | Fk−1] −−−−→

k→+∞
0 . To do so, we use the

fact that ‖ξmult
k (ηk−1)⊗2 ‖F = ‖ξmult

k (ηk−1) ‖22, then with Assumption 2.2: E[‖ξmult
k (w −

w∗)‖2 | Fk−1] ≤ M1‖H1/2ηk−1‖ +M2‖H1/2ηk−1‖2. And we have the result as we showed

that ηk−1
L2

−−−−→
k→+∞

0.

(iii) Third, it remains to show that E[ξmult
k (ηk−1) (ξadd

k )> | Fk−1]
L1

−−−−→
k→+∞

0. We use the

Cauchy-Schwarz inequality’s S8 for conditional expectation:

E
[
‖ξmult
k (ηk−1) (ξadd

k )>‖F
∣∣∣ Fk−1

]2
= E

[
‖ξmult
k (ηk−1) ‖2‖(ξadd

k )>‖2
∣∣∣ Fk−1

]2

≤ E
[
‖ξmult
k (ηk−1) ‖22

∣∣∣ Fk−1

]
E
[
‖ξadd
k ‖2

∣∣∣ Fk−1

]
.

40



Distributed, compressed and averaged least-squares regression

The sequence of random vectors (ξadd
k )k∈N∗ is i.i.d., and moreover we have shown previously

that E[‖ξmult
k (ηk−1) ‖2 | Fk−1] tends to 0, hence E[ξmult

k (ηk−1) (ξadd
k )> | Fk−1] converges to

0 in probability. Consequently, we can state that E[ξk(ηk−1)⊗2 | Fk−1]
P−−−−→

k→+∞
Cania .

Appendix B. Generalization of Bach and Moulines (2013).

In this section, we give the demonstration of Theorem 8 which extends Theorem 1 from
Bach and Moulines (2013); the demonstration is close to the original one.

B.1 Proof principle

For k in N∗, the proof relies (1) on decomposing E[‖H1/2
F ηK−1‖2] in two terms using the

Minkowski inequality S6 to make appear a recursion (η0
k)k∈N∗ without multiplicative noise,

and another (αk)k∈N∗ without additive noise, (2) on an expansion of η0
k and η0

k as polyno-
mials in γ, and (3) on using the Hölder-type Assumption 2.2 to bound αk. We define the
sequence (η0

k)k∈N∗ such that it involves only an additive noise:

η0
k = (Id − γHF )η0

k−1 + γξadd
k . (S11)

Then, we decompose E[‖H1/2
F ηK−1‖2] in the following way using Minkowski inequality S6:

E
[
‖H1/2

F ηK−1‖2
]
≤
(

E
[
‖H1/2

F η0
K−1‖2

]1/2
+ E

[
‖H1/2

F (ηK−1 − η0
K−1)‖2

]1/2
)2

. (S12)

The goal is then to establish a bound for the two above quantities.

1. Bounding E[‖H1/2
F η0

K−1‖2].

The bound on E[‖H1/2
F η0

K−1‖2] is given in Lemma S38. For k in N∗, the proof relies on an
expansion of η0

k and η0
k as polynomials in γ. The recursion defining the sequence (η0

k)k∈N∗

is η0
k = (Id−γHF )η0

k−1 +γξadd
k . If we denote Mk

i = (Id − γHF )k−i and M i−1
i = Id, we have:

η0
k = Mk

1 η
0
0 + γ

k∑
i=1

Mk
i+1ξ

add
k .

For K in N∗, it leads to η0
K−1 = 1

K

∑K−1
k=0 Mk

1 η
0
0 + γ

K

∑K−1
k=1

(∑K
i=kM

i
k+1

)
ξadd
k , and with

Minkowski inequality S6 to:

E
[
‖H1/2

F η0
K−1‖2

]1/2
≤ E

∥∥∥∥∥H
1/2
F

K

K−1∑
k=0

Mk
1 η

0
0

∥∥∥∥∥
2
1/2

+ E

∥∥∥∥∥γH
1/2
F

K

K−1∑
k=1

K∑
i=k

M i
k+1ξ

add
k

∥∥∥∥∥
2
1/2

.

(S13)

The left term depends only on initial conditions η0
0 (= η0) and the right term depends only

on the additive noise. This is why, in the proof, we expend η0
k−1 and η0

k−1 separately for the
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Figure S9: Proof principle of Theorem S41

noise process (i.e., when assuming η0 = 0) and for the noise-free process that depends only
on the initial conditions (i.e. when assuming that the additive noise (ξadd

k )k∈N∗ is uniformly
equal to zero). In the end, the two bounds computed separately may be added.

2. Bounding E[‖H1/2
F (ηK−1 − η0

K−1)‖2].

The bound on E[‖H1/2
F (ηK−1 − η0

K−1)‖2] is given in Lemma S39. For k in N∗, the demon-
stration is based on an exact expression of αk = ηk − η0

k and αk computed by unrolling the
recursion from αk to α0. Because α0 = 0 and because there is no additive noise involved in
αk, we obtain for K in N∗, an expression of αK−1 that depends only on the multiplicative
noise at iteration k in {1, · · · ,K}:

αK−1 =
γ

K

K−1∑
k=1

(Id − (Id − γHF )K−k)(γHF )−1ξmult
k (ηk−1) .

We then show (Equation (S16)) that bounding E[‖H1/2
F (ηK−1 − η0

K−1)‖2] leads to bound

the following sum 1
K2

∑K−1
k=1 E[‖H−1/2

F ξmult
k (ηk−1)‖2 | Fk−1], and this bound is established

using the Hölder-type Assumption 2.2; which concludes this part of the proof.

B.2 Two bounds

In this subsection, we give two lemmas that provide a bound on E[‖H1/2
F η0

K−1‖2] and

E[‖H1/2
F (ηK−1 − η0

K−1)‖2].

These bounds are required due to the decomposition of E[‖H1/2
F ηK−1‖2] done in Equa-

tion (S12).
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• The bound on E[‖H1/2
F η0

k‖2] is given in Lemma S38. It is established by decomposing
the noise process and the noise-free process. The bound on the noise process comes from
Lemma 2 (Bach and Moulines, 2013) and involves the additive noise’s covariance Cania.

• The bound on E[‖H1/2
F (ηK − η0

K)‖2] is established in Lemma S39.

Note that in order to demonstrate Lemma S39, we need to bound
∑K

k=1 ‖H
1/2
F ηk‖2/K.

This is done in Lemma S35 which is an adaptation of Lemma 1 from Bach and Moulines
(2013) to random mechanisms. This auxiliary lemma holds for any kind of multiplicative
noise—linear or non-linear.

Below lemma provides a bound on E[‖H1/2
F η0

k‖2].

Lemma S38 (Bound on E[‖H1/2
F η0

k‖2]) Under the setting considered in Definition 2,
under Assumption 1, for any K in N∗ and any step-size γ ∈ R+ s.t. γR2

F ≤ 1, the
sequence (η0

k)k∈N∗ defined in Equation (S11) verifies the following bound:

E
[
‖H1/2

F η0
K−1‖2

]1/2
≤ 1√

K

(
‖H−1/2

F η0‖
γ
√
K

∧ ‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

))
.

Proof

The proof relies on the proof presented by Bach and Moulines (2013) and is done separately
for the noise process and for the noise-free process that depends only on the initial condition.
The bounds may then be added (see the discussion in Appendix B.1).

Noise-free process.

As in section A.3 from Bach and Moulines (2013), we assume in this section that the random
fields (ξadd

k )k∈N∗ is uniformly equal to zero and that γR2
F ≤ 1. We thus have for any k in

N∗ that η0
k = (Id − γHF )η0

k−1.

First inequality. By recursion, we have η0
k = (Id − γHF )kη0

0, averaging over K in N∗ and
computing the resulting geometric sum, we have:

η0
K−1 =

1

K

K−1∑
k=0

(Id − γHF )kη0
0 =

1

K
(Id − (Id − γHF )K−1)(γHF )−1η0

0 4
1

γK
H−1
F η0

0.

And because η0
0 = η0, it gives E

[〈
η0
K−1, HF η

0
K−1

〉]
≤ ‖H

1/2
F η0‖2
γ2K2 .

Second inequality. From the expression of η0
k flows:

E[‖η0
k‖2] = E[‖η0

k−1‖2]− 2γ
〈
η0
k−1, HF η

0
k−1

〉
+ γ2

〈
η0
k−1, H

2
F η

0
k−1

〉
.

Considering that HF 4 Tr (HF ) Id 4 R2
F Id (Definition 2) and that γR2

F ≤ 1, because

η0
0 = η0, by convexity we have: E[‖H1/2

F η0
K−1‖2] ≤ 1

K

∑K
k=1 E[‖H1/2

F η0
k−1‖2] ≤ ‖η0‖

2

γK .

Putting things together.

In the end, we take the minimum of the two above bounds and obtain that:

E[‖H1/2
F η0

K−1‖2] ≤ ‖H
−1/2
F η0‖2
γ2K2 ∧ ‖η0‖2

γK
. (S14)

Noise process.
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We assume in this part that η0
0 = η0 = 0. We apply Lemma 2 from Bach and Moulines

(2013) to η0
k−1. This sequence of iterates has an i.i.d. noise process (ξadd

k )k∈N∗ which is such

that E
[
ξadd
k ⊗ ξadd

k

]
= Cania (existence guaranteed by Assumption 1). Therefore we have:

E[‖H1/2
F η0

K−1‖2] ≤ Tr
(
CaniaH

−1
F

)
K

. (S15)

Putting things together. We now take results derived from the part without noise and
the part with noise, and we get from Minkowski inequality:

E
[
‖H1/2

F η0
K−1‖2

]1/2
≤ 1√

K

(
‖H−1/2

F η0‖
γ
√
K

∧ ‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

))
.

Below lemma provides a bound on E[‖H1/2
F (ηK − η0

K)‖2].

Lemma S39 (Bound on E[‖H1/2
F (ηK − η0

K)‖2]) Under the setting considered in Defi-
nition 2 with µ > 0, under Assumption 1 , under Assumptions 2.1 and 2.2, for any K in
N∗ and any step-size γ ∈ R+ s.t. γ(R2

F + 2M2) < 1, the sequence (ηk − η0
k)k∈N∗ verifies

the following bound:

E
[
‖H1/2

F (ηK − η0
K)‖2

]1/2
] ≤ 1√

K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

Remark S40 To demonstrate Lemma S39, we use the Hölder-type Assumption 2.2. This
is why we obtain a term with a square root in the bound.

Proof
Let k in N∗, we denote αk = ηk − η0

k, with ηk = (Id − γHF )ηk−1 + γξk(ηk−1) and η0
k =

(Id − γHF )η0
k−1 + γξadd

k . First, we write the exact expression of αk−1:

αk = (Id − γHF )αk−1 + γ(ξk(ηk−1)− ξadd
k )

= (Id − γHF )kα0 + γ

k∑
i=1

(Id − γHF )k−i(ξi(ηi−1)− ξadd
i ) ,

and because η0
0 = η0, it follows that α0 = η0 − η0

0 = 0. Averaging over K in N∗, we have
the exact expression of αK−1:

αK−1 =
γ

K

K−1∑
k=0

k∑
i=1

(Id − γHF )k−i(ξi(ηi−1)− ξadd
i ))

=
γ

K

K−1∑
i=1

(
K−1∑
k=i

(Id − γHF )k−i
)

(ξi(ηi−1)− ξadd
i )) .
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Computing the geometric sum results in:

αK−1 =
γ

K

K−1∑
k=1

(Id − (Id − γHF )K−k)(γHF )−1(ξk(ηk−1)− ξadd
k ) .

And because for any k in N, 0 4 (Id − γHF )k 4 Id, we obtain:

αK−1 4
1

K

K−1∑
k=1

H−1
F (ξk(ηk−1)− ξadd

k ) ,

hence ‖H1/2
F αK−1‖2 = ‖ 1

K

∑K−1
k=1 H

−1/2
F (ξk(ηk−1) − ξadd

k )‖2. We take full expectation, be-
cause for any k in N∗, by Definitions 2 and 4, ξmult

k (ηk−1) = ξk(ηk−1)−ξadd
k is Fk-measurable

and E
[
ξmult
k (ηk−1)

∣∣ Fk−1

]
= 0, we can unroll the sum and we have in the end that the

variance of the sum is the sum of variances:

E

[∥∥∥H1/2
F αK−1

∥∥∥2
]
≤ 1

K2

K−1∑
k=1

E

[∥∥∥H−1/2
F ξmult

k (ηk−1)
∥∥∥2
∣∣∣∣ Fk−1

]
. (S16)

Computing E[‖H−1/2
F ξmult

k (ηk−1) ‖2 | Fk−1] for k in N, we first have:

‖H−1/2
F ξmult

k (ηk−1) ‖2 ≤ |||H−1/2
F |||

2
‖ξmult
k (ηk−1) ‖2 ,

where we used Inequality 2. Because HF is a symmetric semi-positive matrix, we have

|||H−1/2
F |||

2
= 1/µ, hence: ‖H−1/2

F ξmult
k (ηk−1) ‖2 ≤ µ−1‖ξmult

k (ηk−1) ‖2. Taking expectation
conditionally to the σ-algebra Fk−1 and invoking Assumption 2.2 gives:

E[‖H−1/2
F ξmult

k (ηk−1) ‖2 | Fk−1] ≤ µ−1(M1‖H1/2
F ηk−1‖+ 3M2‖H1/2

F ηk−1‖2) . (S17)

Combining equations S16 and S17, we obtain:

E[‖H1/2
F αK−1‖2] ≤ M1

µK2

K−1∑
k=1

E[‖H1/2
F ηk−1‖] +

3M2

µK2

K−1∑
k=1

E[‖H1/2
F ηk−1‖2] .

Now using Jensen’s inequality for concave function allows us to write:

1

K

K∑
k=1

E[‖H1/2
F (w − w∗)‖] ≤

1

K

K∑
k=1

√
E[‖H1/2

F (w − w∗)‖2] ≤

√√√√ 1

K

K∑
k=1

E[‖H1/2
F (w − w∗)‖2] ,

thus we have:

E[‖H1/2
F αK−1‖2] ≤ M1

µK

√√√√ 1

K

K−1∑
k=1

E[‖H1/2
F ηk−1‖2] +

3M2

µK2

K−1∑
k=1

E[‖H1/2
F ηk−1‖2] .
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Using Lemma S35 (with η0 = 0), we finally obtain:

E[‖H1/2
F αK−1‖2] ≤ 1

K

(
M1µ

−1

√
5Aγ

1− γ(R2
F + 2M2)

+
15AγM2µ

−1

1− γ(R2
F + 2M2)

)
.

In the end, we take the square root (and use that for any a, b in R+,
√
a+ b ≤ √a +

√
b)

which allows concluding:

E
[
‖H1/2

F (ηK − η0
K)‖2

]1/2
≤ 1√

K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

B.3 Final theorem

In this section, we gather the pieces of proof required to demonstrate Theorem 8.

Theorem S41 (Non-linear multiplicative noise) Under Assumptions 1 and 2, con-
sidering any constant step-size γ such that γ(R2

F + 2M2) ≤ 1/2, then for any K in N∗,
the sequence (wk)k∈N∗ produced by a setting such as in Definition 2 verifies the following
bound:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
‖H−1/2

F η0‖
γ
√
K

∧ ‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1 + (30Aγ)1/2

√
M2µ−1

)2

.

Proof

As explained in the discussion in Appendix B.1 (Equation (S12)), we define the sequence
(η0
k)k∈N∗ which involves only an additive noise η0

k = (Id − γHF )η0
k−1 + γξadd

k . Then, we

decompose E[‖H1/2
F ηK−1‖] using Minkowski’s inequality S6:

E
[
‖H1/2

F ηK−1‖2
]
≤
(

E
[
‖H1/2

F η0
K−1‖2

]1/2
+ E

[
‖H1/2

F (ηK−1 − η0
K−1)‖2

]1/2
)2

. (S18)

First term.

To bound the first term, we use Lemma S38 which gives:

E
[
‖H1/2

F η0
K−1‖2

]1/2
≤ 1√

K

(
‖H−1/2

F η0‖
γ
√
K

∧ ‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

))
.

Second term.
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From Lemma S39, we have:

E
[
‖H1/2

F (ηK − η0
K)‖2

]1/2
≤ 1√

K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

Final bound. Hence, back to Equation (S18), we get:

E
[
‖H1/2

F ηK−1‖2
]1/2
≤ 1√

K

(
‖H−1/2

F η0‖
γ
√
K

∧ ‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

)
+
√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
,

and considering γ(R2
F +2M2) ≤ 1/2, it concludes the proof because E[F (wK−1)−F (w∗)] =

E[‖H1/2
F ηK−1‖2]/2:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
‖H−1/2

F η0‖
γ
√
K

∧ ‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√
M2µ−1

)2

.

Appendix C. Generalisation of Bach and Moulines (2013) for linear
multiplicative noise.

In this Section, we give the demonstration of Theorem 12 which extends Theorem 1 from
Bach and Moulines (2013) to the case of linear multiplicative noise. The demonstration fol-
lows the same steps as the one given by Bach and Moulines (2013). The minor differences lie
in the generality of the form of the multiplicative noise in our approach. Bach and Moulines
(2013) only analyse LMS algorithm, while we here consider (LSA) with assumptions on the
linear multiplicative noise process. Moreover, our theorem decomposes into 3 terms instead
of 2.

C.1 Proof principle

For k in N∗, the proof relies on an expansion of ηk and ηk as polynomials in γ. Because we
consider a linear multiplicative noise, there exists a matrix Ξk in Rd×d s.t. for any z in Rd,
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ξmult
k (z) = Ξkz (Assumption 3); hence the recursion defined in Definition 2 can be rewritten

as:

ηk = ηk−1 − γ∇F (ηk−1) + γξmult
k (ηk−1) + γξadd

k = (Id − γHF + γΞk)ηk−1 + γξadd
k .

We denote Mk
i = (Id − γHF + γΞk) · · · (Id − γHF + γΞi) and M i−1

i = Id, then we have that

ηk = Mk
1 η0 + γ

∑k
i=1M

k
i+1ξ

add
k .

For K in N∗, it leads to ηK−1 = 1
K

∑K−1
k=0 Mk

1 η0 + γ
K

∑K−1
k=1

(∑K
i=kM

i
k+1

)
ξadd
k , and with

Minkowski’s inequality S6 to:√
E

[∥∥∥H1/2
F ηK−1

∥∥∥2
]
≤ E

∥∥∥∥∥H
1/2
F

K

K−1∑
k=0

Mk
1 η0

∥∥∥∥∥
2
1/2

+ E

∥∥∥∥∥γH
1/2
F

K

K−1∑
k=1

K∑
i=k

M i
k+1ξ

add
k

∥∥∥∥∥
2
1/2

.

(S19)

The left term depends only on initial conditions and the right term depends only on the
noise process.
This is why, in the proof, we expend ηk−1 and ηk−1 separately for the noise process (i.e.,
when assuming η0 = 0) and for the noise-free process that depends only on the initial
conditions (i.e. when assuming that the additive noise (ξadd

k )k∈N∗ is uniformly equal to
zero). In the end, the two bounds computed separately may be added.
To study the noise process, inspiring from Bach and Moulines (2013), we define the following
sequence: {

η0
k = (Id − γHF )η0

k−1 + γξadd
k

ηrk = (Id − γHF )ηrk−1 + γξmult
k

(
ηr−1
k−1

)
with ∀r ≥ 0 , ηr0 = 0 .

(S20)

Then, we decompose E[‖H1/2
F ηK−1‖2] in the following way using Minkowski’s inequality S6:√

E
[
‖H1/2

F ηK−1‖2
]
≤ E[‖H1/2

F

r∑
i=0

ηiK−1‖2]1/2 + E[‖H1/2
F (ηK−1 −

r∑
i=0

ηiK−1)‖2]1/2.

The goal is then to establish a bound for the two above quantities.

C.2 Lemmas for the noise process

In this Subsection, we provide lemmas for the noise process, and thus we suppose that
η0 = 0. The noise-free process is later considered in Appendix C.3 and puts together with
the results of the coming Subsection. The sketch of the proof relies on establishing two
bounds.

• For r, k in N×N∗, noting αrk = ηk−
∑r

i=0 η
i
k, the first one is a bound on E[‖H1/2

F αrK−1‖2]
that tends to zero when r tends to +∞.
• The second one is on

∑r
i=0 E[‖H1/2

F ηiK−1‖2] and is established using Lemma 2 from (Bach
and Moulines, 2013). It will correspond to the final variance term and it involves the
additive noise’s covariance Cania.

In the following, we provide Lemmas S42 to S44. Let r, k in N× N∗.
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Lemma S4 Lemma S5
Assumption 3Recursive expression
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k)k∈N,r∈N
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Figure S10: Proof principle of Theorem S45.
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• Lemma S42 builds a recursive expression of αrk = ηk −
∑r

i=0 η
i
k.

• Lemma S43 provides a bound on E[‖H1/2
F αrK−1‖2] which involves E‖ξmult

k

(
ηrk−1

)
‖2.

• Lemma S44 bounds the covariance of ηrk−1, this result will be necessary when computing

the expectation of ξmult
k

(
ηrk−1

)⊗2
.

Below, we provide the lemma that builds a recursive expression of ηk −
∑r

i=0 η
i
k, with k, r

in N∗.
Lemma S42 (A recursion on ηk −

∑r
i=0 η

i
k) Under the setting given in Definition 2,

considering that ξmult
k (·) is linear (Assumption 3), for any k in N∗ and any step-size γ >

0, considering (ηrk)r∈N as given by Equation (S20), denoting for r in N, αrk = ηk−
∑r

i=0 η
i
k,

we have the following recursive expression for the sequence of iterate (αrk)r∈N:

∀r ≥ 0, αrk = (Id − γHF )αrk−1 + ξmult
k

(
αrk−1

)
+ γξmult

k

(
ηrk−1

)
.

Proof Let k in N∗, the proof is done by recursion. For r = 0, by Definitions 2 and 4, we
have ηk = ηk−1− γ∇F (wk−1) + γξk(ηk−1) = (Id− γHF )ηk−1 + γξadd

k + γξmult
k (ηk−1), which

gives:

α0
k = ηk − η0

k =

{
(Id − γHF )ηk−1 + γξadd

k + γξmult
k (ηk−1)

}
−
{

(Id − γHF )η0
k−1 + γξadd

k

}
= (Id − γHF )(ηk−1 − η0

k−1) + γξmult
k (ηk−1)

= (Id − γHF )(ηk−1 − η0
k−1) + γξmult

k

(
ηk−1 − η0

k−1

)
+ γξmult

k

(
η0
k−1

)
,

which is possible because ξmult
k is linear (Assumption 3). To go from r to r + 1, we have

αr+1
k = ηk −

∑r+1
i=0 η

i
k = ηk −

∑r
i=0 η

i
k − ηr+1

k . Then by definition of ηr+1
k and using the

hypothesis:

αr+1
k = (Id − γHF )

(
ηk−1 −

r∑
i=0

ηik−1

)
+ ξmult

k

(
ηk−1 −

r∑
i=0

ηik−1

)
+ γξmult

k

(
ηrk−1

)
− (Id − γHF )ηr+1

k−1 − γξmult
k

(
ηrk−1

)
= (Id − γHF )

(
ηk−1 −

r+1∑
i=0

ηik−1

)
+ ξmult

k

(
ηk−1 −

r+1∑
i=0

ηik−1

)
+ γξmult

k

(
ηr+1
k−1

)
,

again by linearity. This concludes the proof.

The next lemma is the adaptation to our settings of Lemma 1 from Bach and Moulines

(2013). We give a bound on E[‖H1/2
F αrK−1‖2] with a quantity that tends to 0. This result

will be used in the final demonstration of Theorem S45.

Lemma S43 (Bound on ηK −
∑r

i=0 η
i
K) Under the setting given in Definition 2, con-

sidering that ξmult
k is linear (Assumption 3), for any r,K in N×N∗ and any step-size γ

s.t. γ(R2
F +M2) ≤ 1, the recursion αrK = ηK −

∑r
i=0 η

i
K verifies the following bound:

∀r ≥ 0, (1− γ(R2
F +M2))E

〈
αrK−1, HFα

r
K−1

〉
≤ γ

K

K∑
k=1

E‖ξmult
k

(
ηrk−1

)
‖2 .
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Proof Let r, k in N×N∗, we denote αrk = ηk−
∑r

i=0 η
i
k, then we have shown in Lemma S42

that:

αrk = (Id − γHF )αrk−1 + ξmult
k

(
αrk−1

)
+ γξmult

k

(
ηrk−1

)
.

Taking the squared norm and developing it:

‖αrk‖2 =
∥∥αrk−1

∥∥2
+ 2γ

〈
αrk−1, ξ

mult
k

(
αrk−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1

〉
+ γ2‖ξmult

k

(
αrk−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1‖2 ,

and developing the last term with Inequality 1 leads to:

‖αrk‖2 ≤
∥∥αrk−1

∥∥2
+ 2γ

〈
αrk−1, ξ

mult
k

(
αrk−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1

〉
+ 2γ2

{
‖ξmult
k

(
ηrk−1

)
‖2 + ‖HFα

r
k−1 − ξmult

k

(
αrk−1

)
‖2
}
.

Because αrk−1 is Fk−1-measurable and E[ξmult
k

(
αrk−1

)
| Fk−1] = 0 (expectation of ξmult

k (·)
is zero, see Definitions 2 and 4), taking expectation w.r.t. the σ-algebra Fk−1, using As-
sumption 3 and again Definition 2 gives:

E[‖HFα
r
k−1 − ξmult

k

(
αrk−1

)
‖2 | Fk−1] = E[‖HFα

r
k−1‖2 | Fk−1]

+ E[‖ξmult
k

(
αrk−1

)
‖2 | Fk−1]

≤ (R2
F +M2)‖H1/2

F αrk−1‖2 .

Hence:

E[‖αrk‖2 | Fk−1] ≤ ‖αrk−1‖2 − 2γ(1− γ(R2
F +M2))

〈
αrk−1, HFα

r
k−1

〉
+ 2γ2E[‖ξmult

k

(
ηrk−1

)
‖2 | Fk−1] ,

which gives when taking full expectation and averaging over K in N∗:

(1− γ(R2
F +M2))

1

K

K∑
k=1

E
〈
αrk−1, HFα

r
k−1

〉
≤ 1

2γ
(‖αr0‖2 −

∥∥αrk−1

∥∥2
)

+
γ

K

K∑
k=1

E[‖ξmult
k

(
ηrk−1

)
‖2] ,

and by convexity
〈
αrK−1, Hα

r
K−1

〉
6 1

K

∑K
k=1

〈
αrk−1, HFα

r
k−1

〉
, which allows to conclude as

αr0 = 0.

In below lemma, we bound E
[
ηrk−1 ⊗ ηrk−1

]
for r, k in N×N∗. It is required because we will

use Lemma 2 from Bach and Moulines (2013) and apply it to the sequence (ηrk−1)k∈N∗,r∈N.

The noise process of this sequence is equal to ξmult
k

(
ηr−1
k−1

)
; and computing the expectation

of its covariance involves knowing E
[
ηrk−1 ⊗ ηrk−1

]
.
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Lemma S44 (Bounding the covariance of ηrk−1) Under the setting in Definition 2,

under Assumptions 1, 3 and 4, i.e. considering that ξmult
k (·) is linear, for any K in N∗,

any step-size γ > 0, and for any r ≥ 0, we have the following bound on the covariance
of ηrk−1:

E
[
ηrk−1 ⊗ ηrk−1

]
4 γr+1XaddXr

multId .

Proof

Let r > 0, we first prove by recursion that we have:

∀k > 0 , ηr+1
k = γ

k∑
i=1

(Id − γHF )k−iξmult
i (ηri−1) .

For k = 0, we indeed have ηr+1
0 = 0. To go from k to k + 1:

ηr+1
k+1 = (Id − γHF )ηr+1

k + γξmult
k+1 (ηrk) by definition,

= γ

k∑
i=1

(Id − γHF )k−iξmult
i (ηri−1) + γ(Id − γHF )(k+1)−(k+1)ξmult

k+1 (ηrk) ,

by hypothesis, which allows concluding.

We now prove by recursion the main result of the lemma.

Initialization. For r = 0, by definition, we have η0
k = (Id − γHF )η0

k−1 + γξadd
k , unrolling the

sum gives η0
k = (Id− γHF )kη0

0 + γ
∑k

i=1(Id− γHF )k−iξadd
i . Because we consider η0

0 = 0 and
given that the sequence of noise (ξadd

i )i∈J1,kK is independent at each iterations, we have:

E
[
η0
k ⊗ η0

k

]
= γ2

k∑
i=1

(Id − γHF )k−iE
[
ξadd
i ⊗ ξadd

i

]
(Id − γHF )k−i .

Because the sequence of additive noise (ξadd
i )i∈N∗ is i.i.d., for any i in {1, · · · , k}, we have

that E
[
ξadd
i ⊗ ξadd

i

]
= Cania 4XaddHF (Assumption 4.1), hence:

E
[
η0
k ⊗ η0

k

]
4 γ2

k∑
i=1

(Id − γHF )k−iXaddHF (Id − γHF )k−i .

These matrices commute:

E
[
η0
k ⊗ η0

k

]
4 γ2Xadd

k∑
i=1

(Id − γHF )2k−2iHF , and because it is a geometric sum:

4 γ2Xadd

(
Id − (Id − γHF )2k−2

) (
Id − (Id − γHF )2

)−1
HF

4 γ2Xadd

(
Id − (Id − γHF )2k−2

) (
2γHF − γ2H2

F

)−1
HF

4 γXaddH
−1
F HF because γHF 4 Id,

4 γXaddId .
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Recursion. Let r ≥ 0, to go from r to r + 1, we start writing:

ηr+1
k ⊗ ηr+1

k = γ2
k∑
i=1

(Id − γHF )k−1−iξmult
i (ηri−1)⊗ ξmult

i (ηri−1)(Id − γHF )k−1−i .

Now we use linearity of the multiplicative noise (Assumption 3), thus there exists a matrix
Ξk in Rd×d s.t. for any z in Rd, we have ξmult

k (z) = Ξkz, and it leads to:

ηr+1
k ⊗ ηr+1

k = γ2
k∑
i=1

(Id − γHF )k−iΞi(ηri−1 ⊗ ηri−1)Ξ>i (Id − γHF )k−i .

Taking full expectation, we have:

E
[
ηr+1
k ⊗ ηr+1

k

]
= γ2

k∑
i=1

(Id − γHF )k−iE
[
E
[
Ξi(η

r
i−1 ⊗ ηri−1)Ξ>i

∣∣∣ σ(Ξi)
]]

(Id − γHF )k−i

= γ2
k∑
i=1

(Id − γHF )k−iE
[
ΞiE[ηri−1 ⊗ ηri−1 | σ(Ξi)]Ξ

>
i

]
(Id − γHF )k−i ,

and because for any i in {1, · · · , k}, ηri−1 is independent of Ξi, we have E
[
ηri−1 ⊗ ηri−1

∣∣ σ(Ξi)
]

=
E
[
ηri−1 ⊗ ηri−1

]
4 γr+1XaddXr

multId, where we use the hypothesis for r. We have in the
end:

E
[
ηr+1
k ⊗ ηr+1

k

]
4 γr+3XaddXr

mult

k∑
i=1

(Id − γHF )k−iE
[
ΞiΞ

>
i

]
(Id − γHF )k−i .

Furthermore, by Assumption 4.2 we have E
[
ΞiΞ

>
i

]
4XmultHF , thus:

E
[
ηr+1
k ⊗ ηr+1

k

]
4 γr+3XaddXr+1

mult

k∑
i=1

(Id − γHF )2k−2−2iHF

4 γr+3XaddXr+1
multγ

−1H−1
F HF ,

because
∑k

i=1(Id − γHF )2k−2−2i =
(
Id − (Id − γHF )2k

) (
2γHF − γ2H2

F

)−1
4 γ−1H−1

F . In
the end, we have E[ηr+1

k ⊗ ηr+1
k ] 4 γr+2XaddXr+1

multId, which concludes the proof.

C.3 Final theorem

In this section, we gather the pieces of proof required to demonstrate Theorem 12. As done
in Appendix B, we consider separately the noise process and the noise-free process, then
put them together to obtain the final result.
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Theorem S45 (Linear multiplicative noise, convex case) Under Assumption 1,
under Assumptions 3 and 4 i.e. with a linear multiplicative noise, considering any con-
stant step-size γ such that γ(R2

F +M2) ≤ 1 and 4γXmultR
2
F ≤ 1, then for any K in N∗,

the sequence (wk)k∈N∗ produced by a setting such as in Definition 2, verifies the following
bound:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√
γXmult

)2

.

Proof Let K in N∗, the proof relies on the proof presented by Bach and Moulines (2013) and
is done separately for the noise process and for the noise-free process that depends only on
the initial condition. The bounds may then be added (see the discussion in Appendix C.1).

Noise-free process. As in section A.3 from Bach and Moulines (2013), we assume here
that the additive noise (ξadd

k )k∈N∗ is uniformly equal to zero and that γ(R2
F+M2) ≤ 1. Using

Definitions 2 and 4, we thus have for any k in N∗ that ηk = ηk−1−γHF ηk−1 +γξmult
k (ηk−1),

it flows:

E[‖ηk‖2] = E[‖ηk−1‖2]− 2γE[〈ηk−1, HF ηk−1〉] + γ2E[‖HF ηk−1 − ξmult
k (ηk−1)‖2]

= E[‖ηk−1‖2]− 2γE[〈ηk−1, HF ηk−1〉] + γ2E[‖HF ηk−1‖2] + γ2E[‖ξmult
k (ηk−1)‖2] .

Considering that HF 4 Tr (HF ) Id 4 R2
F Id and using Assumption 3, we obtain:

E[‖ηk‖2] ≤ E[‖ηk−1‖2]− 2γE[‖H1/2
F ηk−1‖2] + γ2(R2

F +M2)E[‖H1/2
F ηk−1‖2] .

Because the step-size γ is s.t. γ(R2
F +M2) ≤ 1, we recover that in the absence of noise, we

have:

E[‖H1/2
F ηK−1‖2] ≤ ‖η0‖2

γK
. (S21)

Noise process. Now, all the following results comes from Appendix C.2 where we assume
that η0 = w0 − w∗ = 0, we start using Minkowski’s inequality S6:

E
[
‖H1/2

F ηK−1‖2
]1/2
≤ E

[
‖H1/2

F

r∑
i=0

ηiK−1‖2
]1/2

+ E

[
‖H1/2

F (ηK−1 −
r∑
i=0

ηiK−1)‖2
]1/2

.

(S22)

First term.

Let r ∈ N, again using Minkowski’s inequality S6, we have

E[‖H1/2
F

r∑
i=0

ηiK−1‖2]1/2 ≤
r∑
i=0

E[‖H1/2
F ηiK−1‖2]1/2

= E[‖H1/2
F η0

K−1‖2]1/2 +

r∑
i=1

E[‖H1/2
F ηiK−1‖2]1/2 . (S23)
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By Equation (S20), we have η0
k = (Id − γHF )η0

k−1 + γξadd
k , hence to bound the first term,

we have to apply Lemma 2 from Bach and Moulines (2013) to the sequence (η0
k−1)k∈N∗ and

we obtain

E[‖H1/2
F η0

K−1‖2] ≤ Tr
(
CaniaH

−1
F

)
/K . (S24)

Let i in {1, · · · , r}, to bound the second term, we have to apply Lemma 2 from Bach and
Moulines (2013) to the sequence (ηik−1)k∈N∗ . To do so, we bound the covariance of the noise

which is here equal to ξmult
k

(
ηi−1
k−1

)
(by definition of ηik−1, see Equation (S20)).

Because the multiplicative noise is linear, using Assumption 3, there exists a matrix Ξk
in Rd×d s.t. ξmult

k

(
ηi−1
k−1

)
= Ξkη

i−1
k−1. It follows that taking the expectation w.r.t to the

σ-algebra σ(Ξk), and because ηi−1
k−1 is independent of it, using Lemma S44, we have:

E
[
ηi−1
k−1 ⊗ ηi−1

k−1

∣∣ σ(Ξk)
]

= E
[
ηi−1
k−1 ⊗ ηi−1

k−1

]
4 γiXaddXi−1

multId .

Thus, the noise ξmult
k

(
ηi−1
k−1

)
is such that:

E[ξmult
k

(
ηi−1
k−1

)
⊗ ξmult

k

(
ηi−1
k−1

)
| σ(Ξk)] = ΞkE

[
ηi−1
k−1 ⊗ ηi−1

k−1

]
Ξ>k 4 γ

iXaddXi−1
multΞkΞ

>
k .

Taking full expectation, we furthermore consider Assumption 4.2 which gives that: E
[
ΞiΞ

>
i

]
4

XmultHF , hence:

E
[
ξmult
k

(
ηi−1
k−1

)
⊗ ξmult

k

(
ηi−1
k−1

)]
≤ γiXaddXi

multHF . (S25)

Using Lemma 2 from Bach and Moulines (2013) results to:

r∑
i=1

E[‖H1/2
F ηiK−1‖2]1/2 ≤

r∑
i=1

γiXaddXi
multTr

(
HFH

−1
F

)
/K . (S26)

In the end, we obtain from Equation (S23):

E[‖H1/2
F

r∑
i=0

ηiK−1‖2]1/2 ≤

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
dXadd√
K

r∑
i=1

γi/2Xi/2
mult

≤

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
γdXaddXmult

(
1− (γXmult)

r/2
)

√
K
(
1−√γXmult

) .

Second term.

If γ(R2
F +M2) ≤ 1, Lemma S43 gives:

E

〈
ηK−1 −

r∑
i=0

ηiK−1, H(ηK−1 −
r∑
i=0

ηiK−1)

〉
≤ γ

(1− γ(R2
F +M2))K

K∑
k=1

E
[
‖ξmult
k

(
ηrk−1

)
‖2
]
.

(S27)
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Furthermore,
∥∥ξmult
k

(
ηrk−1

)∥∥2
= Tr

(
ξmult
k

(
ηrk−1

)⊗2
)

, by reusing what has been written in

the previous paragraph (Equation (S25)), we obtain:

‖ξmult
k

(
ηrk−1

)
‖2 ≤ γr+1XaddXr+1

multTr (HF )

≤ γr+1XaddXr+1
multR

2
F (Definition 2).

It follows that we have:

E

〈
ηK−1 −

r∑
i=0

ηiK−1, H(ηK−1 −
r∑
i=0

ηiK−1)

〉
≤ γr+2XaddXr+1

multR
2
F

(1− γ(R2
F +M2))

. (S28)

Putting things together. In the end, from the Minkowski decomposition done in Equa-
tion (S22), we combine the two terms and it leads to:

E
[〈
ηK−1, HF ηK−1

〉]1/2 ≤ (γr+2XaddXr+1
multR

2
F

(1− γ(R2
F +M2))

)1/2

+

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
γdXaddXmult

(
1− (γXmult)

r/2
)

√
K
(
1−√γXmult

) .

This implies that for any γXmult ≤ 1, we obtain, by letting r tend to +∞:

E
[〈
ηK−1, HF ηK−1

〉]1/2 ≤ 1√
K

(√
Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√
γXmult

)
. (S29)

Final bound. We now take results derived from the part without noise, and the part with
noise, to get:

E[
〈
ηK−1, HF ηK−1

〉
]1/2 ≤ 1√

K

(
‖η0‖√
γ

+
√

Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√
γXmult

)
,

which leads to the desired result considering that 4γXmult ≤ 1.

Appendix D. Validity of the assumptions made on the random fields

In this section, we verify that all the assumptions on the random fields done in Subsection 2.1
are fulfilled in the setting of compressed least-squares regression analyzed in Section 3. To
do so, we first need to define the filtrations considered in this section.

For k in N∗, we note uk the noise that controls the randomization Ck(·) at round k. In
Section 2, we have denoted by Fk the σ-algebra generated by (x1, ε1, u1, · · · , xk, εk). In
particular, wk and wk are Fk-measurable. We also consider the following filtrations.

Definition S46 We note (Gk)k∈N the filtration associated with the features noise, (Hk)k∈N

the filtration associated with the output noise, and (Ik)k∈N the filtration associated with the

56



Distributed, compressed and averaged least-squares regression

stochastic gradient noise, which is the union of the two previous filtrations. Thus, we define
F0 = {∅} and for k ∈ N∗:

Gk = σ (Fk−1 ∪ {xk})
Hk = σ (Fk−1 ∪ {εk})
Ik = σ (Fk−1 ∪ {xk, εk})
Fk = σ (Fk−1 ∪ {xk, εk, uk}) .

Note that there are two filtrations G and H for the two independent noises that are both
involved to compute the stochastic gradient. This will help us to compute the scalar product
of these two quantities.

We start by providing a bound on the distance between two compressions, this lemma will
be used to prove Property S50.

Lemma S47 For any compressor C in C verifying Lemma 16, for all x, y in Rd, we
have:

E[‖C(x)− C(y)‖2] ≤ 2(ω + 1) ‖x‖2 + 2(ω + 1) ‖y‖2 .
Proof Let a compressor C in C and x, y in Rd, using Inequality 1, we have that:

‖C(x)− C(y)‖2 ≤ 2 ‖C(x)‖2 + 2 ‖C(y)‖2 .
Taking expectation and using Lemma 16 allows to conclude:

E
[
‖C(x)− C(y)‖2

]
≤ 2(ω + 1) ‖x‖2 + 2(ω + 1) ‖y‖2 .

Now we prove that all the assumptions done in Section 2 are correct.

Property S48 (Validity of the setting presented in Definition 2) Consider the Al-
gorithm 2 in the context of Model 2, we have that the setting presented in Definition 2 is
verified.

Proof From Algorithm 2, we have for any k in N∗ and any w in Rd ξk(w−w∗) = ∇F (w)−
Ck(gk(w)). Because (gk)k∈N∗ and (Ck)k∈N∗ are by definition two sequences of i.i.d. random
fields (Algorithm 2), it follows that their composition is also i.i.d., hence (ξk)k∈N∗ is a
sequence of i.i.d. random fields.
Taking expectation w.r.t. the σ-algebra Ik, we have E [Ck(gk(w)) | Ik] = gk(w) (Lemma 16),
next with the σ-algebra Fk−1, we have E [gk(w) | Fk−1] = ∇F (w) (Equation 2). Hence, the
random fields are zero-centered.
From Model 2, we have for any k in N∗ and any w in Rd that:

F (w) =
1

2
E
[
(〈xk, w〉 − yk)2

]
=

1

2
E
[
(w − w∗)>(xk ⊗ xk)(w − w∗)− 2εk 〈xk, w − w∗〉+ ε2

k

]
=

1

2
((w − w∗)>H(w − w∗) + σ2) ,

hence F is quadratic with Hessian equal to H whose trace is equal to R2.
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Property S49 (Validity of Assumption 1) Considering Algorithm 2 under the setting
of Model 2 with Lemma 16, for any iteration k in N∗, the second moment of the additive
noise ξadd

k can be bounded by (ω + 1)R2σ2, i.e., Assumption 1 is verified.

Proof Let k in N∗. Because we consider Algorithm 2, with Definitions 2 and 4, we first
have ξadd

k = −Ck(gk,∗), then with Lemma 16 we obtain E[‖Ck(gk,∗)‖2 | Ik] ≤ (ω+ 1) ‖gk,∗‖2.
Next, we first have from Model 2 and Equation (2) that gk,∗ = εkxk, secondly because(
(εk)k∈[K]

)
is independent from

(
(xk)k∈[K]

)
(Model 2), we have that E[‖εkxk‖2] ≤ σ2R2,

hence it results to:

E[‖ξadd
k ‖2 | Fk−1] = E[‖ξadd

k ‖2] ≤ (ω + 1)σ2R2 .

Property S50 (Validity of Assumption 2.1) Considering Algorithm 2, under the set-
ting of Model 2 with Lemma 16, for any iteration k in N∗, the second moment of the multi-

plicative noise ξmult
k (w) can be bounded for any w in Rd by 2(ω + 1)R2

∥∥H1/2(w − w∗)
∥∥2

+
4(ω + 1)σ2R2, i.e., Assumption 2.1 is verified.

Proof Let k in N∗, we note η = w − w∗. First, because we consider Algorithm 2, with
Definitions 2 and 4, we have ξk(η) = ∇F (w)− Ck(gk(w)) and ξadd

k = −Ck(gk,∗), hence:

ξmult
k (η) = ξk(η)− ξadd

k = ∇F (w)− Ck(gk(w)) + Ck(gk,∗) ,

thus developing the squared-norm of ξmult
k (η) gives:

‖ξmult
k (η)‖2 = ‖∇F (w)‖2 + 2 〈∇F (w), Ck(gk,∗)− Ck(gk(w))〉+ ‖Ck(gk,∗)− Ck(gk(w))‖2 .

On the first side we have E [E [Ck(gk,∗)− Ck(gk(w)) | Ik] | Fk−1] = −∇F (wk−1). On the
second side, we use Lemma S47; this allows us to write:

E
[
‖Ck(gk,∗)− Ck(gk(w))‖2

∣∣∣ Ik] ≤ 2(ω + 1) ‖gk(w)‖2 + 2(ω + 1) ‖gk,∗‖2 .

Note that this bound is far from being optimal when gk(w) = gk,∗ or if C is the identity.
Next, we decompose as follows:

E
[
‖Ck(gk,∗)− Ck(gk(w))‖2

∣∣∣ Ik] ≤ 2(ω + 1) ‖gk(w)− gk,∗‖2

+ 4(ω + 1) 〈gk(w)− gk,∗, gk,∗〉+ 4(ω + 1) ‖gk,∗‖2 .

Taking expectation w.r.t. the σ-algebra Gk, recalling that gk(w) − gk,∗ is Gk-measurable
(Definition S46) and considering Model 2 allows to write:

E
[
‖Ck(gk,∗)− Ck(gk(w)‖2

∣∣∣ Gk] ≤ 2(ω + 1) ‖gk,∗ − gk(w)‖2 + 4(ω + 1)σ2R2

≤ 2(ω + 1) ‖(xk ⊗ xk)ηk−1‖2 + 4(ω + 1)σ2R2 ,
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and now taking expectation w.r.t the σ-algebra Fk−1 concludes the proof:

E[‖Ck(gk,∗)− Ck(gk(w))‖2 | Fk−1] ≤ 2(ω + 1)R2‖H1/2(wk − w∗)‖2 + 4(ω + 1)σ2R2 .

Property S51 (Validity of Assumption 2.2) Considering Algorithm 2, under the set-
ting of Model 2 with Lemma 16, for any iteration k in N∗, the second moment of the
multiplicative noise ξmult

k (w) can be bounded for any w in Rd by ΩR2σ‖H1/2(w − w∗)‖ +
3(ω + 1)R2‖H1/2(w − w∗)‖2, i.e. Assumption 2.2 is verified.

Proof Let k in N∗, we note η = w−w∗. Because we consider Algorithm 2, with Definitions 2
and 4, we have the following decomposition:

ξmult
k (η) = ‖∇F (w)‖2 + 2 〈∇F (w), Ck(gk,∗)− Ck(gk(w))〉+ ‖Ck(gk,∗)− Ck(gk(w))‖2 .

We take expectation w.r.t. the σ-algebra Ik and use Item L.2 of Lemma 16:

E
[
ξmult
k (η)

∣∣∣ Ik] ≤ ‖∇F (w)‖2 + 2 〈∇F (w), gk,∗ − gk(w)〉
+ Ω min(‖gk,∗‖, ‖gk(w)‖)‖gk,∗ − gk(w)‖+ 3(ω + 1)‖gk,∗ − gk(w)‖2 .

Then, we have min(‖gk,∗‖, ‖gk(w)‖)‖gk,∗−gk(w)‖ ≤ ‖gk,∗‖‖gk,∗−gk(w)‖, taking expectation
conditionally to the σ-algebra Fk−1, applying the Cauchy-Schwarz’s Equation (S8) and
considering Model 2, we have:

E[‖gk,∗‖‖gk,∗ − gk(w)‖ | Fk−1]2 ≤ E[‖gk,∗‖2 | Fk−1]E[‖gk,∗ − gk(w)‖2 | Fk−1]

≤ σ2R4‖H1/2(w − w∗)‖2 .

Therefore, we can conclude:

E
[
ξmult
k (η)

∣∣∣ Fk−1

]
≤ −‖∇F (w)‖2 + σR2Ω‖H1/2(w − w∗)‖+ 3(ω + 1)R2‖H1/2(w − w∗)‖2 .

Property S52 (Validity of Assumption 3) Considering Algorithm 2, under the setting
of Model 2 with Lemma 16, if the compressor C is linear, then for any iteration k in N∗, the
multiplicative noise ξmult

k is linear, thus there exist a matrix Ξk in Rd×d such that for any
w in Rd, ξmult

k (w) = Ξkw. Furthermore, the second moment of the multiplicative noise can

be bounded for any w in Rd by (ω+ 1)R2
∥∥H1/2(w − w∗)

∥∥2
, hence Assumption 3 is verified.

Proof Let k in N∗, we note η = w − w∗. First, because we consider Algorithm 2, with
Definitions 2 and 4, we have ξk(η) = ∇F (w)− Ck(gk(w)) and ξadd

k = −Ck(gk,∗), hence:

ξmult
k (η) = ξk(η)− ξadd

k = ∇F (w)− Ck(gk(w)) + Ck(gk,∗) .
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Because the random mechanism Ck is linear, there exists a random matrix Πk in Rd×d such
that for any z in Rd, we have Ck(z) = Πkz, it follows that:

ξmult
k (η) = ∇F (w) + Ck(gk,∗ − gk(w)) = (H −Πk(xk ⊗ xk))η .

Hence, the first part of Assumption 3 is verified with Ξk = H − Πk(xk ⊗ xk). Now, we
compute the second moment of the multiplicative noise. We start by developing its squared
norm:

‖ξmult
k (η) ‖2 = ‖∇F (w)‖2 + 2 〈∇F (w), Ck(gk,∗ − gk(w))〉+ ‖Ck(gk,∗ − gk(w))‖2 .

Taking expectation conditionally to the σ-algebra Ik, and using Lemma 16 gives:

E
[
‖ξmult
k (η))‖2

∣∣∣ Ik] = ‖∇F (w)‖2 + 2 〈∇F (w), gk,∗ − gk(w)〉+ (ω + 1) ‖gk,∗ − gk(w)‖2 .

Finally, with σ-algebra Fk−1 and considering Model 2 we have:

E
[
‖ξmult
k (η) ‖2

∣∣∣ Fk−1

]
= −‖∇F (w)‖2 + (ω + 1)R2‖H1/2(w − w∗)‖2 ,

which allows to conclude.

Property S53 (Validity of Assumption 4) Considering Algorithm 2 under the setting
of Model 2 with Remark 1 and Lemma 16, if the compressor C is linear, then for any k
in N∗, there exists a constant XH > 0 s.t. Cania 4 σ2XHHF and E

[
ΞkΞ

>
k

]
4 R2XHH;

Assumption 4 is thus verified.

Proof
Let k in N∗, we note η = w−w∗. We first need to compute XH in Rd for each compressor C
in {Cq, Csq, Crd1, Cs, CΦ, CPP}, it comes from Proposition 21 which results having a constant
XH s.t.:

C(C , pH) = EE∼pH [C(E)⊗2] 4XHH . (S30)

Indeed, Diag (H) car be bounded by Tr (H) Id, and then Id by µ−1H. This constant XH

can be computed from Proposition 21 for any compressor:

Compressor Crdh Cs CPP CΦ

XH
h−1
p(d−1) + (1− h−1

d−1 ) τp 1 + (1−p)τ
p

1
p

α−β
p + βτ

p

XH (if H diagonal) 1
p

1
p

1
p

α−β
p + βτ

p

Where p = h/d, τ = Tr (H) /µ, and for sketching α = h+2
d+2 and β = d−h

(d−1)(d+2) .
We now show that the two inequalities given in Assumption 4 are valid.
First inequality.
By Definition 6, we have Cania = E

[
ξadd
k ⊗ ξadd

k

]
= E

[
Ck(εkxk)⊗2

]
, because

(
(εk)k∈[K]

)
is

independent from
(
(xk)k∈[K]

)
(Model 2) and using compressor linearity and Equation (S30),

it gives: Cania = σ2E
[
Ck(xk)⊗2

]
= σ2C(C , pH) 4 σ2XHH .
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Second inequality.
Using Property S53, because the compressor C is linear, there exists two matrices Πk,Ξk
in Rd×d s.t. for any z in Rd, we have Ck(z) = Πkz and ξmult

k (z) = Ξkz, which gives that
Ξk = H −Πk(xk ⊗ xk). It follows that:

ΞkΞ
>
k = HH> −HΠk(xk ⊗ xk)−Πk(xk ⊗ xk)H + Πk(xk ⊗ xk)(xk ⊗ xk)Π>k .

Given that the compression is unbiased (Lemma 16) we have E [Πk | Ik] = Id, hence:

E
[
ΞkΞ

>
k

∣∣∣ Ik] = HH> −H(xk ⊗ xk)− (xk ⊗ xk)H + E
[
Πk(xk ⊗ xk)(xk ⊗ xk)Π>k

∣∣∣ Ik] ,
and now taking expectation w.r.t the σ-algebra Fk−1:

E
[
ΞkΞ

>
k

∣∣∣ Fk−1

]
= −HH> + E

[
Πk(xk ⊗ xk)(xk ⊗ xk)Π>k

∣∣∣ Fk−1

]
.

In the end, we have that E
[
ΞkΞ

>
k

∣∣ Fk−1

]
4 E

[
Πk(xk ⊗ xk)(xk ⊗ xk)Π>k

∣∣ Fk−1

]
, and if

we consider that the second moment of the features (xk)k∈N∗ is almost surely bounded
(Remark 1), we obtain:

E
[
ΞkΞ

>
k

∣∣∣ Fk−1

]
4 R2E

[
Πk(xk ⊗ xk)Π>k

∣∣∣ Fk−1

]
4 R2E

[
Ck(xk)⊗2

∣∣ Fk−1

]
. (S31)

Thus, using Equation (S30), we can state that E
[
ΞkΞ

>
k

∣∣ Fk−1

]
4 R2XHH, which con-

cludes the second part of the verification of Assumption 4.

Appendix E. Compression operators

In this Section, we provide additional details about compression operators. First, we prove
in Appendix E.1 that Lemma 16 hold and compute the compressor’s covariance given
in Proposition 21. The specific computations for sketching are given separately in Ap-
pendix E.2 because they are more complex. Third, it allows to prove Propositions 24
and 25 in Appendix E.3. And finally, in Appendix E.4, we plot the covariance matrix
induced by quantization and sparsification for quantum and cifar-10.

E.1 Computation of the variance and covariance of the compression operators

In this Subsection, we first prove Lemma 16. Item L.1 is frequently established in the
literature and corresponds to the worst-case assumption, see the introduction for references.
On the other hand, Item L.2 is the Hölder-type bound, which is not used in the literature
up to our knowledge. Next, we compute the compressors’ covariances that have been given
in Proposition 21.

Lemma S54 For any compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, there exists constants
ω,Ω ∈ R∗+, such that the random operator C satisfies the following properties for all z, z′ ∈
Rd.
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L.1: E[C(z)] = z and E[‖C(z)−z‖2] ≤ ω‖z‖2 (unbiasedness and variance relatively bounded),
L.2: E[‖C(z)−C(z′)‖2] ≤ Ω min(‖z‖, ‖z′‖)‖z− z′‖+ 3(ω+ 1)‖z− z′‖2(Hölder-type bound),

with ω =
√
d and Ω = 12

√
d (resp. ω = (1− p)/p and Ω = 0) for Cq and Csq (resp. Crdh, Cs,

CΦ, CPP).

Proof

Value of ω (Item L.1 of Lemma 16). For projection-based compressors, the proof is
straightforward, for quantization-based, the proof can be found in Alistarh et al. (2017).

Value of Ω (Item L.2 of Lemma 16). For linear compressors, it is straightforward to
obtain Ω = 0.
For quantization, we take x, y in Rd, we note (ui)

d
i=1 the vector controlling the randomness

of compression, and we write Cq(x)− Cq(y) = A+B + C, with:

1. A := ‖x‖sign(x)Bern( |x|‖x‖)− ‖x‖sign(x)Bern( |x|‖y‖)

2. B := ‖x‖sign(x)Bern( |x|‖y‖)− ‖x‖sign(y)Bern( |y|‖y‖)

3. C := ‖x‖sign(y)Bern( |y|‖y‖)− ‖y‖sign(y)Bern( |y|‖y‖).

We note ‖ ·‖ the 2-norm and ‖ ·‖1 the 1-norm. By symmetry, we suppose that ‖y‖2 ≥ ‖x‖2.
First term. We have ‖A‖2 = ‖x‖2∑d

i=1(1
ui≤ |xi|‖x‖

− 1
ui≤ |xi|‖y‖

)2 = ‖x‖2∑d
i=1 12

|xi|
‖y‖≤ui≤

|xi|
‖x‖

because ‖y‖2 ≥ ‖x‖2. Taking expectation, it gives E[‖A‖2] = ‖x‖2∑d
i=1

|xi|
‖x‖ −

|xi|
‖y‖ =

‖x‖2‖x‖1 ‖y‖−‖x‖‖y‖‖x‖ . Now with triangular inequality, we have:

E[‖A‖2] ≤ ‖x‖‖y‖‖x‖1‖y − x‖ ≤ ‖x‖1‖y − x‖ ≤
√
d‖x‖‖y − x‖ ,

and by symmetry E[‖A‖2] ≤
√
dmin(‖x‖, ‖y‖)‖y − x‖.

Second term.
We have ‖B‖2 = ‖x‖2∑d

i=1(sign(xi)1ui≤ |xi|‖y‖
− sign(yi)1ui≤ |yi|‖y‖

)2. Let i in [d], if sign(xi) =

sign(yi), then:

E
[
‖B‖2

]
= ‖x‖2

d∑
i=1

E

[
12

min(|xi|,|yi|)
‖y‖ ≤ui≤max(|xi|,|yi|)

‖y‖

]
=
‖x‖2
‖y‖

d∑
i=1

|yi − xi| ≤ ‖x‖‖x− y‖1 .

If sign(xi) 6= sign(yi), developping (sign(xi)1ui≤ |xi|‖y‖
− sign(yi)1ui≤ |yi|‖y‖

)2, we have:

E
[
‖B‖2

]
= ‖x‖2

d∑
i=1

|xi|
‖y‖ +

|yi|
‖y‖ − 2sign(xi)sign(yi)

min(|xi|, |yi|)
‖y‖

=
‖x‖2
‖y‖

d∑
i=1

max(|xi|, |yi|) + 3 min(|xi|, |yi|) .

Next, we have max(|xi|, |yi|)+min(|xi|, |yi|) = |xi|+|yi|
sign(xi) 6=sign(yi)

= |xi−yi|, which results

to E
[
‖B‖2

]
≤ 3‖x‖

2

‖y‖
∑d

i=1 |yi − xi| ≤ 3‖x‖‖x− y‖1 ≤ 3
√
d‖x‖‖x− y‖.
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Third term. We have ‖C‖2 = (‖x‖ − ‖y‖)2
∑d

i=1 12

ui≤ |yi|‖y‖
, taking expectation, it gives:

E[‖C‖2] = (‖x‖ − ‖y‖)2
d∑
i=1

|yi|
‖y‖ ≤ ‖x− y‖

2 ‖y‖1
‖y‖ ≤

√
d‖x− y‖2 .

Overall, using Inequality 1, we have:

E[‖Cq(x)− Cq(y)‖2] ≤ 12
√
dmin(‖x‖, ‖y‖)‖x− y‖+ 3

√
d‖x− y‖2 ,

which allows to conclude as for 1-quantization, we have ω =
√
d.

We now compute the compressors’ covariance given in Proposition 21 and Corollary 22.
However, sketching requires more involved computations, they are provided in Appendix E.2.

Proposition S55 (Structure of the compressor’s covariance) The following for-
mulas of compressors’ covariance hold:

• C(C∅, pM) = M

• C(Cq, pM) 4M +
√

Tr (M)
√

Diag (M)−Diag (M)

• C(Cs, pM) = M + 1−p
p Diag (M)

• C(CΦ, pM) = 1
p ((α− β)M + βTr (M) Id) with α = h+2

d+2 and β = d−h
(d−1)(d+2)

• C(Crdh, pM) = d(h−1)
h(d−1)M +

(
d
h −

d(h−1)
h(d−1)

)
Diag (M)

• C(CPP, pM) = 1
pM .

Proof
In this proof, we denote F the σ-field generated by the random sampling of E ∼ pM ∈ PM ,
and G the σ-field generated by the noise from the compression process. Let E ∼ pM ∈ PM .

Quantization. By definition, we have Cq(E) = ‖E‖2sign(E)�χ, with χ =
(

Bern( |Ei|‖E‖2 )
)d
i=1

.

It follows that Cq(E)⊗2 = ‖E‖22sign(E)⊗2 � χ⊗2.
Because:

E
[
χ⊗2

∣∣ F] =


|Ei|
‖E‖2 if i = j

|Ei| |Ej |
‖E‖22

else,

and considering that sign(E)⊗2 =

 1 sign(Ei)sign(Ej)
. . .

sign(Ei)sign(Ej) 1

 , we have:

E
[
Cq(E)⊗2

∣∣ F] =

 ‖E‖2 |Ei| if i = j ,

EiEj else.

Taking the complete expectation gives:

E
[
Cq(E)⊗2

]
=

 E [‖E‖2 |Ei|] if i = j

Mij else.
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Changing the diagonal to make appear M , we obtain:

E
[
Cq(E)⊗2

]
= M + E

[
‖E‖2Diag (|Ei|)di=1

]
− E

[
Diag

(
E2
i

)d
i=1

]
.

Furthermore, we first have that E
[
Diag

(
E2
i

)d
i=1

]
= Diag (M) and secondly, by Cauchy-

Schwarz Equation (S8) that:

E
[
‖E‖2Diag (|Ei|)di=1

]2
4 E

[
‖E‖22

]
E
[
Diag

(
E2
i

)d
i=1

]
= Tr (M) Diag (M) ,

which finally gives E
[
Cq(E)⊗2

]
4M +

√
Tr (M)

√
Diag (M)−Diag (M) .

Sparsification. By definition, we have Cs(E) = 1
pB � E ∈ Rd, with B ∼ (Bern(p))di=1,

thus Cs(E)⊗2 = 1
p2
B⊗2 � E⊗2. Taking the expectation w.r.t. to the σ-filtration F , we

have E
[
Cs(E)⊗2

∣∣ F] = 1
p2
P � E⊗2 with P =

 p p2

. . .

p2 p

 , because for all i, j in

J1, dK, we have E
[
B2
i

∣∣ F] = p and E [BiBj | F ] = p2. This naturally gives: E
[
Cs(E)⊗2

]
=

1
p2
P �M .

Sketching. The proof is more complex and therefore is given separately, in Appendix E.2.3.

Rand-h. By definition, we have Crdh(E) := d
hB(S) � E with S ∼ Unif(Ph([d])) and

B(S)i = 1i∈S , thus Crdh(E)⊗2 = 1
p2
B⊗2 � E⊗2 (p = h/d). We have that for any i, j in

{1, . . . , d}, Bi and Bj are not independent and that Bi ∼ (Bern(p)), therefore we have that

E[B2
i ] = p and that: h2 =

(∑d
i=1Bi

)2
=
∑d

i=1B
2
i +

∑
i 6=j BiBj . Taking expectation, it

gives h2 = h+ d(d− 1)E[BiBj ] i.e. E[BiBj ] = h(h−1)
d(d−1) . Taking the expectation w.r.t. to the

σ-filtration F , we have :

E
[
Crdh(E)⊗2

∣∣ F] =
d(h− 1)

h(d− 1)
E⊗2 +

(
d

h
− d(h− 1)

h(d− 1)

)
Diag

(
E⊗2

)
.

And taking full expectation allows conclusion.

Partial Participation. This result is straightforward.

E.2 Variance and covariance of sketching

In this Subsection, we compute the expectation, the variance, and the covariance of sketch-
ing. In Appendix E.2.1, we give the proof principle of our computation, in Appendix E.2.2,
we compute the expectation and the variance, and in Appendix E.2.3, we compute the
covariance.

We thank Baptiste Goujaud (École polytechnique, CMAP) who greatly helped to prove the
following.
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E.2.1 Proof principle

Let y in Rd with ‖y‖2 = 1, and x in Rd. By Definition 13, for Φ in Rh×d, we have CΦ(x) =
1
pΦ†Φx with Φ† = Φ>(ΦΦT )−1 and p = h/d.
To compute the expectation, the variance, and the covariance of CΦ(x), the idea is to
compute E[y>CΦ(x)] and E[(y>CΦ(x))2] by establishing Equation (S32) which allows con-
trolling the randomness of sketching by using Equation (S33). To establish Equation (S32),
first observe that pCΦ(· · · ) is a projector into a subspace of dimension h, indeed we have
(pCΦ � pCΦ)(x) = pCΦ(x). Then there exists a random matrix P in Od s.t. pCΦ(x) =
P>JhPx. It leads to:

y>CΦ(x) =
1

p
y>P>JhPx =

1

p
(Py)>Jh(Px) .

Now we note X = Px/‖x‖ and Y = Py, hence y>CΦ(x) = ‖x‖
p Y

>JhX, and because P is
in Od, we have: 

‖X‖2 = 1

‖Y ‖2 = ‖y‖2 = 1
〈X,Y 〉 = 〈x, y〉 /‖x‖ .

Furthermore, P is a random projector, it follows that X and Y are sampled uniformly from
the zero-center sphere of radius 1; i.e. X ∼ Unif(Sd(0, 1)) and Y ∼ Unif(Sd(0, 1)). However,
X and Y are not independent, this is why, we consider that X ∼ Unif(Sd(0, 1)) and write
Y s.t. Y = aX + bu with u a random vector in Rd of norm 1 orthogonal to X, that is to
say, u|X is uniformly sampled on a zero-centered hyper-sphere of radius 1 orthogonal to the
vector X (see illustration on Figure S11). It comes that:

y>CΦ(x) =
‖x‖
p
Y >JhX =

‖x‖
p

(aX> + buT )JhX =
‖x‖
p

(aX>JhX + bu>JhX) . (S32)

Observe that for any i, j in {1, · · · , d}, Xi, Xj (resp. ui, uj) have the same law, it results
to:

∀(i, j) ∈ {1, · · · , d}2, ∀k ∈ N, E[Xk
i ] = E[Xk

j ] and E[uki ] = E[ukj ] . (S33)

This property is the key to compute the expectation, the variance, and the covariance of
sketching.

Figure S11: Sphere zero-
center with radius 1: X and
u are orthogonal.

We now compute a and b. First, by definition, we have:

〈x, y〉
‖x‖ = 〈X,Y 〉 = a ‖X‖2 = a ,

then we write that:

1 = ‖Y ‖2 =
〈x, y〉2
‖x‖4 ‖X‖

2 + b2 ‖u‖2 =
〈x, y〉2
‖x‖2 + b2 ,

which gives b =

√
1− 〈x,y〉

2

‖x‖2 .

At the end, we have: Y = aX + bu = 〈x,y〉
‖x‖ X +

√
1− 〈x,y〉

2

‖x‖2 u.
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E.2.2 Expectation and variance of sketching

In this Subsection, we prove that sketching verifies Item L.1 in Lemma 16; for this purpose,
we show that it is unbiased, then we compute its variance.

Proposition S56 Sketching is unbiased and its variance is relatively bounded, i.e., it ver-
ifies Item L.1 in Lemma 16 with ω = (1− p)/p where p = h/d.

Proof Starting from Equation (S32), we have y>CΦ(x) = ‖x‖
p (aX>JhX + bu>JhX). We

first compute the expectation w.r.t. the σ-algebra σ({X}) generated by the noise involved
in the random vector X, it gives:

E[y>CΦ(x) | σ({X})] =
‖x‖
p

h∑
i=1

aX2
i + bXiE [ui | σ({X})] .

Because u is sampled uniformly from the zero-center sphere of radius 1 s.t. it is orthogonal
to X, for any i in {1, · · · , d}, we have E[ui | σ({X})] = 0, hence taking full expectation, we
obtain:

E[y>CΦ(x)] =
‖x‖
p

h∑
i=1

aE[X2
i ] .

Using Equation (S33), we have E[X2
i ] = 1

d

∑d
j=1 E[X2

j ], next recalling that p = h/d and

‖X‖2 = 1, it leads to E[y>CΦ(x)] = a‖x‖E[
∑d

j=1X
2
j ] = a‖x‖E[‖X‖2] = a‖x‖. And because

a = 〈x, y〉 /‖x‖, we have at the end that E[CΦ(x)] = x. Now we compute the variance:

E[CΦ(x)>CΦ(x)] =
1

p2
E[x>P>JhPP

>JhPx] =
1

p2
E[x>P>JhPx] =

‖x‖2
p2

E[X>JhX] .

E[X>JhX] has been computed above and is equal to p, it results that E[CΦ(x)>CΦ(x)] =
‖x‖2 /p. In the end, sketching verifies Lemma 16 with ω = (1− p)/p.

E.2.3 Covariance of sketching.

In this Subsection, we compute the covariance of sketching. For the sake of demonstration,
we need to compute the 4th-moment of X1 and the 2nd-moment of u1. For any i in [d] and
any vector v in Rd, we note v−i = (vj)j∈[d],j 6=i in Rd−1.

Computing the 4th-moment of X1.
The marginal density of X1 is fX1 : x 7→ B(d−1

2 , 1
2)−1(1 − x2)(d−3)/2 where B is the beta

function defined as B : x, y 7→
∫ 1

0 t
x−1(1− t)y−1 = 2

∫ π/2
0 sin2x−1(t) cos2y−1(t)dt. This result

can be obtained either by an application of the formula for the surface area of a sphere (Li,
2010; Sidiropoulos, 2014), either by writing that X1 = Z1

‖Z‖ with Z a Gaussian vector with
d components. Therefore we have that:

E[X4
1 ] =

∫ 1
−1 x

4(1− x2)(d−3)/2dx

2
∫ π/2

0 sind−2(t)dt

(i)
=

2
∫ π/2

0 cos4(t) sind−2(t)dt

2
∫ π/2

0 sind−2(t)dt

(ii)
=
Wd−2 − 2Wd +Wd+2

Wd−2
,
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where at (i) we set x = cos(t) and at (ii) we make appears the Wallis’ integrals defined

for any n in N as Wn =
∫ π/2

0 sinn(t)dt. Furthermore, we have the following recursion using

integration by parts: Wd+2 = d+1
d+2Wd, therefore, we have:

E[X4
1 ] =

(
1− 2(d− 1)

d
+

(d− 1)(d+ 1)

d(d+ 2)

)
=

3

d(d+ 2)
. (S34)

Computing the 2nd-moment of u1 w.r.t the σ-algebra σ(X).

Figure S12: Parallel hyperplanes P and P ′ with
the sphera S.

We define three (d − 2)–dimensional
manifolds, two parallel hyperplanes
P, P ′ and a sphere S, as follows:

P = {ũ ∈ Rd−1 | 〈ũ, X−i〉 = −Xiui}
P ′ = {ũ ∈ Rd−1 | 〈ũ, X−i〉 = 0}
S = Sd−1(0,

√
1− u2

1)

Obviously u−i is in P ∩ S; then we
decompose u−i in two terms n + v,
with v ∼ Unif(P ′) orthogonal to X
and independent of ui: n is the cen-
ter of the sphere S ∩ P and v is its radius, n corresponds also to the normal vec-
tor of both P, P ′ with norm equal to the distance between the two hyperplanes, hence
n = 〈u−i,X−i〉

‖X−i‖2 X−i = − uiXi
‖X−i‖2X−i.

First, because u−1 ∈ S, we have ‖n + v‖2 = 1 − u2
1, next by Pythagorean theorem this

is equivalent to ‖v‖2 = 1 − u2
1 − ‖n‖2 = 1 − u21

‖X−1‖2 . Second, because u−1 ∈ P , we have

u1 = −〈u−1,X−1〉
X1

, that is to say the probability density function of u1 | X is proportional
to the number of possible values for u−1, which corresponds to the surface area of the

hypersphere P ∩ S. This surface is proportional to the radius ‖v‖d−4 = (1− u21
‖X−1‖2 )(d−4)/2

given that P ∩ S is a (d− 3)–dimensional manifold, therefore:

E[u2
1 | σ({X})] =

∫ ‖X−1‖
−‖X−1‖ x

2
(

1− x2

‖X−i‖2
)(d−4)/2

dx∫ ‖X−1‖
−‖X−1‖

(
1− x2

‖X−i‖2
)(d−4)/2

dx

(i)
=
‖X−1‖2

∫ 1
−1 y

2
(
1− y2

)(d−4)/2
dy∫ 1

−1 (1− y2)(d−4)/2 dy

(ii)
= ‖X−1‖2

Wd−3 −Wd−1

Wd−3
,

where at (i) we set y = x
‖X−1‖ and at (ii) we reuse the previous computations to make

appear the Wallis’ integral. In the end, we obtain:

E[u2
1 | σ({X})] = (1− d− 2

d− 1
)‖X−1‖2 =

‖X−1‖2
d− 1

. (S35)

Note that this result is consistent with the fact that
∑d

i=1 E[u2
i | σ({X})] =

d−∑d
i=1X

2
i

d−1 = 1.
Now we can compute the covariance of the sketching operator.
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Proposition S57 Let x in pM , the covariance of sketching is equal to:

E[CΦ(x)⊗2] =
1

p
((α− β)M + βTr (M) Id) ,

with α = h+2
d+2 and β = d−h

(d−1)(d+2) .

Proof
Let x in Rd and y in Rd with ‖y‖2 = 1, starting from Equation (S32), we have:

(y>CΦ(x))2 =
‖x‖2
p2

(aX>JhX + bu>JhX)2

=
‖x‖2
p2

(
a2(X>JhX)2 + 2ab(X>JhXu

>JhX) + b2(u>JhX)2

)
.

First term. Taking expectation, we have E[(X>JhX)2] =
∑h

i=1

(
E[X4

i ] +
∑h

j=1,j 6=i E[X2
iX

2
j ]
)

.

However:

h∑
j=1,j 6=i

E[X2
iX

2
j ] = E

X2
i

h∑
j=1,j 6=i

X2
j

 (i)
= E

X2
i

h∑
j=1,j 6=i

1

d− 1

d∑
k=1,k 6=i

X2
k


(ii)
=
h− 1

d− 1
E
[
X2
i (1−X2

i )
]
,

where we use at line (i) Equation (S33) and at line (ii)
∑d

i=1X
2
i = 1. It follows that:

E[(X>JhX)2] =
h∑
i=1

(
d− h
d− 1

E[X4
i ] +

h− 1

d− 1
E
[
X2
i

])
(i)
=
h(d− h)

d− 1
E[X4

1 ] +
h− 1

d− 1

h∑
i=1

E
[
X2
i

]
(iii)
=

h(d− h)

d− 1
E[X4

1 ] +
h(h− 1)

d(d− 1)

eq. S34
=

3h(d− h)

d(d− 1)(d+ 2)
+
h(h− 1)

d(d− 1)
=
h(h+ 2)

d(d+ 2)
:= α′ .

Where we considered at line (i) that for any i in {1, · · · , h}, E[X4
i ] = E[X4

1 ], and at line (ii)

that
∑h

i=1 E
[
X2
i

]
= h

dE[‖X‖2] = h/d.
Second term. We compute the expectation w.r.t. the σ-algebra σ({X}) generated by the
noise involved in the random vector X. It gives E

[
X>JhXu>JhX

∣∣ σ({X})
]

= 0, because
u|X is uniformly sampled on a zero-centered hyper-sphere, and thus for any i in {1, · · · , d},
we have E[ui | σ({X})] = 0.
Third term. We have (u>JhX)2 =

∑h
i=1 u

2
iX

2
i +

∑h
j=1,j 6=i uiujXiXj . On one side, we

compute the expectation w.r.t. the σ-algebra σ({X}) generated by the noise involved in
the random vector X:

h∑
i=1

E
[
u2
iX

2
i

∣∣ σ({X})
]

=

h∑
i=1

X2
i E
[
u2
i

∣∣ σ({X})
] eq. S35

=
1

d− 1

h∑
i=1

X2
i ‖X−i‖2 .
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Taking full expectation, we have
∑h

i=1 E[u2
iX

2
i ] = 1

d−1

∑h
i=1 E[X2

i (1−X2
i )] = h

d−1(1
d−E[X4

1 ]),

because for any i in {1, . . . , h}, E[X4
i ] = E[X4

1 ] and
∑h

i=1 E
[
X2
i

]
= h

dE[‖X‖2] = h/d.
Let i in [d], on the other side, we compute the expectation w.r.t. the σ-algebra σ({X,ui})
generated by the noise involved in the random vector X and the random variable ui, hence
we requires to compute E [uj | σ({X,ui})]. To do so, as before, we decompose u−i in two
terms n + v (see Figure S12), with v ∼ Unif(P ′) orthogonal to X and independent of ui,
hence E [v | σ({X,ui})] = 0. It gives that E [u−i | σ({X,ui})] = − uiXi

‖X−i‖2X−i. Thereby,

replacing for any coordinate j 6= i in [d] the value of u−i and taking expectation w.r.t. the
σ-algebra σ({X}), we obtain:

h∑
i=1

h∑
j=1,j 6=i

XiXjE [uiuj | σ({X})] = −
h∑
i=1

h∑
j=1,j 6=i

1

‖X−i‖2
X2
iX

2
j E
[
u2
i

∣∣ σ({X})
]

eq. S35
= − 1

d− 1

h∑
i=1

h∑
j=1,j 6=i

X2
iX

2
j

= − 1

d− 1

h∑
i=1

h∑
j=1,j 6=i

X2
i

1−X2
i

d− 1
.

Finally, we have:
∑h

i=1

∑h
j=1,j 6=i E[XiXjuiuj ] = − h(h−1)

d(d−1)2
(1−∑d

i=1 E[X4
i ]). Putting together

the two terms, we have that:

E
[
(u>JhX)2

]
=

h

d− 1
(
1

d
− E[X4

i ])− h(h− 1)

d(d− 1)2
(1− dE[X4

1 ])
eq. S34

=
h(d− h)

d(d− 1)(d+ 2)
:= β′ .

In the end, we have E[(y>CΦ(x))2] = ‖x‖2
p2

(a2α′ + b2β′). And because ‖y‖2 = 1, a =

〈x, y〉 /‖x‖ and b =
√

1− 〈x, y〉2 /‖x‖2, replacing them by their values gives:

y>E[CΦ(x))⊗2]y =
‖x‖2
p2

(
α′
〈x, y〉2
‖x‖2 + β′

(
y>y − 〈x, y〉

2

‖x‖2

))
,

hence E[CΦ(x))⊗2] = 1
p2

(
(α′ − β′)xx> + β′ ‖x‖2 Id

)
. To conclude, we consider that x is

a random variable sampled from a distribution pM , then taking expectation on this ran-
dom variable we have: ECΦ(x)⊗2 = 1

p ((α− β)M + βTr (M) Id), with α = α′
p = h+2

d+2 and

β = β′
p = d−h

(d−1)(d+2) .

E.3 Proof of Propositions 24 and 25

In this Subsection, we give the proof of Propositions 24 and 25 which provides generic
comparisons between the asymptotic convergence rate of compressors. We first give a
lemma resulting from the Cauchy-Schwarz’s inequality necessary to establish these proofs.

Lemma S58 (Cauchy-Schwarz’s inequality on matrices’ traces) For any matrix M
in Rd×d, we have Tr (M) Tr

(
M−1

)
≥ d2, with strict inequalities if M is not proportional

to Id. And if M is with constant diagonal equal to c in R, we have cTr
(
M−1

)
≥ d.
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Figure S13: H not diagonal, scenario using features standardization. Scatter plot of (xk)
K
i=1/

(C(xk))Ki=1 with its ellipse ECov[xk]/ECov[C(xk)].

Proof Let M in Rd×d, using the Cauchy-Schwarz inequality, we have:

d2 = Tr (Id)
2 = Tr

(
M1/2M−1/2

)2 C.S
≤ Tr (M) Tr

(
M−1

)
,

and we have equality if M is proportional to Id.

Now we give the demonstration of Propositions 24 and 25. On Figure S13, we complete the
numerical illustration provided in Subsection 3.3.1 by illustrating the scenario of standard-
ized features, i.e., when the diagonal of M is the identity.

Proposition S59 (Comparison between CPP, Cs, Crdh, CΦ, ω = d/h− 1) We consider C
in {CPP, Cs, Crdh, CΦ} with p = h/d, such that C always satisfies Lemma 16 with ω = d/h−1.
For any matrix M ∈ Rd×d:

1. If M is diagonal, then:

• C(CPP, pM) = C(Cs, pM) = C(Crdh, pM) = d
hM ,

• Tr
(
C(CPP/s/rdh, pM)M−1

)
≤ Tr

(
C(CΦ, pM)M−1

)
.

2. Moreover, for any matrix M with a constant diagonal (e.g., after standardization), we
have:

Tr(C(CPP, pM)M−1) ≤ Tr(C(CΦ, pM)M−1) ≤ Tr(C(Cs, pM)M−1) ≤ Tr(C(Crdh, pM)M−1) ,

with strict inequalities if M is not proportional to Id.

Proof
Let M in Rd×d and take p = h/d.

Proof of Item 1 in Proposition 24. In the diagonal case, the first equalities are straight-
forward as we have C(CPP, pM) = C(Cs, pM) = C(Crd1, pM) = d

hM . Next, we have (regardless
if M is diagonal or not):

Tr
(
(C(CΦ, pM)− C(CPP, pM))M−1

)
= (

h+ 1

d+ 2
+ δhd − 1)

Tr (Id)

p
+ (1− h− 1

d− 1
)
Tr (M) Tr

(
M−1

)
p(d+ 2)

Lemma S58
≥ d

p

(
h+ 1

d+ 2
+ δhd − 1 +

d

d+ 2
(1− h− 1

d− 1
)

)
= 0 .
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Proof of Item 2 in Proposition 24. Suppose now that Diag (M) = cId, then we have

C(CPP, pM) = d
hM , C(Cs, pM) = M +( dh −1)cId, C(Crdh, pM) = d(h−1)

h(d−1)M + d
h(1− h−1

d−1 )cId and

C(CΦ, pM) = d
h

(
(h+1
d+2 − δhd)M +

(
1− h−1

d−1

)
Tr(M)
d+2 Id

)
. Firstly, from previous item, we have

Tr
(
C(CPP, pM)M−1

)
≤ Tr (C(CΦ, pM))M−1 .

Secondly, we write:

Tr
(
(C(CΦ, pM)− C(Cs, pM))M−1

)
=
d

p

(
h+ 1

d+ 2
+ δhd −

h

d

)
+
cTr

(
M−1

)
p

(
d

d+ 2
(1− h− 1

d− 1
)− (1− h

d
)

)
=
d

p

(
h+ 1

d+ 2
+ δhd −

h

d

)
− cTr

(
M−1

)
p

· (d− 2)(d− h)

d(d− 1)(d+ 2)
Lemma S58
≤ d

p

(
h+ 1

d+ 2
+ δhd −

h

d
− (d− 2)(d− h)

d(d− 1)(d+ 2)

)
= 0 .

Thirdly, we have:

Tr
(
(C(Crdh, pM)− C(Cs, pM))M−1

)
=

h− d
h(d− 1)

Tr (Id) +
d− h
h(d− 1)

cTr
(
M−1

)
Lemma S58
≥ d

h

(
h− d
d− 1

+
d− h
d− 1

)
= 0 .

Proposition S60 (Comparison between CPP, Cq, Cs, ω =
√
d ) We consider C in

{CPP, Cq, Cs} with p = (
√
d+ 1)−1, such that C always satisfies Lemma 16 with ω =

√
d.

1. For any symmetric matrix M diagonal, we have:

Tr
(
C(CPP, pM)M−1

)
= Tr

(
C(Cs, pM)M−1

) possib. �
≤

(
1 +

1√
d

)
Tr
(
C̃(Cq,M)M−1

)
.

2. If M is not necessarily diagonal but with a constant diagonal (e.g., after standardization),
then

• C̃(Cq,M) 4 C(Cs, pM)

• Tr
(
C(CPP, pM)M−1

)
≤
(

1 + 1√
d

)
Tr
(
C̃(Cq,M)M−1

)
.

Proof

Let M in Rd×d and take p = 1
1+
√
d
.
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Proof of Item 1 in Proposition 25. In the diagonal case with p = 1
1+
√
d
, we have

C̃(Cq,M) =
√

Tr (M)
√
M and C(CPP, pM) = (1 +

√
d)M , hence Tr

(
C̃(Cq,M)M−1

)
=√

Tr (M)Tr
(√

M−1
)

and Tr
(
C(CPP, pM)M−1

)
= (1 +

√
d)d. Noting (λi)i∈[d] the eigenval-

ues of M , and using the Cauchy-Schwarz inequality’s, we have:

d2 =

(
d∑
i=1

1

)2

=

(
d∑
i=1

λ
1/4
i λ

−1/4
i

)2
C.S
≤
(

d∑
i=1

λ
1/2
i

)(
d∑
i=1

λ
−1/2
i

)

C.S
≤

√√√√ d∑
i=1

λi

√√√√ d∑
i=1

1

(
d∑
i=1

λ
−1/2
i

)
=
√
dTr (M)Tr

(
M−1/2

)
=
√
dTr

(
C̃(Cq,M)M−1

)
.

Which follows that Tr
(
C̃(Cq,M)M−1

)
≥ d3/2 =

√
d(1 +

√
d)−1Tr

(
C(CPP, pM)M−1

)
and it

allows to conclude.

Proof of Item 2 in Proposition 25. Suppose now that Diag (M) = cId, then we have
C(CPP, pM) = (

√
d+1)M , C̃(Cq,M) = M+(

√
d−1)cId, and C(Cs, pM) = M+c

√
dId. Firstly,

it follows that:

C(Cs, pM)− C̃(Cq,M) =
(
M +

√
dcId

)
−
(
M + (

√
d− 1)cId

)
= cId < 0 ,

Secondly, we have (1 + 1√
d
)C̃(Cq,M) − C(CPP, pM) = −(1 − 1√

d
)M + (

√
d − 1√

d
)cId, which

gives:

Tr

((
(
√
d− 1√

d
)C̃(Cq,M)− C(CPP, pM)

)
M−1

)
= (
√
d− 1√

d
)cTr

(
M−1

)
− (1− 1√

d
)Tr (Id)

≥ (
√
d− 1√

d
)d− (1− 1√

d
)d (Lemma S58)

≥ d(
√
d− 1) ≥ 0 .

And the proof is concluded.

E.4 Empirical covariances computed on quantum and cifar10

On Table S3, for both quantum and cifar-10, we first plot the covariance matrix (1)
without any processing and (2) with standardization. In this latter case, we then plot
the covariances induced by quantization and sparsification for ω = 1 and 8. For quantum,
without standardization, only four points are visible; it is caused by some rows having
extremely large values at features 27 and 43, resulting in a feature mean 100 times greater
than the others.
Looking at the covariance induced by the compressors, we observe that for small ω, quantiza-
tion better preserves the matrix structure compared to sparsification. This fact is consistent
with Figure 6 where is given the trace of C(CM , pH)M−1 for these eight covariances: the
traces for quantization are indeed smaller than for sparsification. This is also consistent
with Figures 7c and 7f where ω = 1 and where quantization outperforms sparsification.
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Table S3: (1) Data covariances for quantum and cifar-10. (2) Covariance C(CM , pH)
w./w.o. standardization for quantization and sparsification; see Figure 6 to have the corre-
sponding trace of C(CM , pH)M−1.

M Quantization Sparsification
raw-data standardized ω = 1 ω = 8 ω = 1 ω = 8

q
u
a
n
t
u
m

c
i
f
a
r
-
1
0

Appendix F. Technical results on federated learning.

F.1 Validity of the assumptions made on the random fields in the case of
covariate-shift

In this Subsection, we examine the setting of federated and compressed LSR under the
scenario of covariate-shift (Subsection 4.1). Specifically, we consider the case where for any
i, j in J1, NK, we have heterogeneous covariances, i.e., Hi 6= Hj , but a unique optimal model
i.e. wi∗ = w∗. We verify that all the assumptions on the random fields done in Subsection 2.1
are fulfilled in the setting. For this purpose, we redefine the filtration given in Appendix D
to align them with the FL setting. For k in N∗ and for i in [N ], we note uik the noise that
controls the compression Cik(·) at round k.

Definition S61 We note (Gk)k∈N the filtration associated with the features noise, (Hk)k∈N

the filtration associated with the label noise, and (Ik)k∈N the filtration associated to the
stochastic gradient noise, which is the union of the two previous filtrations. For k ∈ N∗, we
define F0 = {∅} and

Gk = σ
(
Fk−1 ∪ {(xik)Ni=1}

)
Hk = σ

(
Fk−1 ∪ {(εik)Ni=1}

)
Ik = σ

(
Fk−1 ∪ {(xik, εik)Ni=1}

)
Fk = σ

(
Fk−1 ∪ {(xk, εik, uik)Ni=1}

)
.

Now we prove that all assumptions done in Section 2 are correct in this setting.

Property S62 (Validity of the setting presented in Definition 2) For Algorithm 3
in the context of Model 1, we have that the setting presented in Definition 2 is verified.

Proof From Algorithm 3, we have for any k in N∗ and any w in Rd, ξk(w − w∗) =
∇F (w) − 1

N

∑N
i=1 Cik(gik(w)). Because (gik)k∈N∗,i∈J1,NK and (Cik)k∈N∗,i∈J1,NK are by defini-

tion two sequences of i.i.d. random fields (Algorithm 3), it follows that their composition
is also i.i.d., hence (ξk)k∈N∗ is a sequence of i.i.d. random fields.
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Taking expectation w.r.t. the σ-algebra Ik we have E
[
Cik(gik(w))

∣∣ Ik] = gik(w) (Lemma 16),
next with the σ-algebra Fk−1, we have E

[
gik(w)

∣∣ Fk−1

]
= ∇Fi(w) (Equation (2)). And

because 1
N

∑N
i=1∇Fi(w) = ∇F (w), we obtain that the random fields are zero-centered.

From Model 1, we have for any k in N∗ and any w in Rd that:

F (w) =
1

2N

N∑
i=1

E
[
(
〈
xik, w

〉
− yik)2

]
=

1

2N

N∑
i=1

E
[
(w − w∗)>(xik ⊗ xik)(w − w∗)− 2εik

〈
xik, w − w∗

〉
+ (εik)

2
]

=
1

2N

N∑
i=1

(w − w∗)>Hi(w − w∗) + σ2 =
1

2
((w − w∗)>H(w − w∗) + σ2) .

And we have from Model 1: Tr
(
H
)

= 1
N

∑N
i=1 Tr (Hi) = 1

N

∑N
i=1R

2
i =: R

2
, which con-

cludes the verification.

Property S63 (Validity of Assumption 1) Consider Algorithm 3 and Model 1 with
Lemma 16, for any iteration k in N∗, the second moment of the additive noise ξadd

k can

be bounded by (ω + 1)R
2
σ2/N i.e. Assumption 1 is verified.

Proof Let k in N∗. Because we consider Algorithm 3, with Definitions 2 and 4, we first
have ξadd

k = − 1
N

∑N
i=1 Cik(gik,∗), hence taking expectation w.r.t the σ-algebra Ik and because

the N compressions are independent (Algorithm 3), using Lemma 16, we have that:

E
[
‖ξadd
k ‖2

∣∣∣ Ik] =
1

N2

N∑
i=1

E
[∥∥Cik(gik,∗)∥∥2

∣∣∣ Ik]+
1

N2

∑
i 6=j

〈
gik,∗, g

j
k,∗

〉

≤ ω + 1

N2

N∑
i=1

∥∥gik,∗∥∥2
+

1

N2

∑
i 6=j

〈
gik,∗, g

j
k,∗

〉
.

Next, we first have from Model 1 and Equation (2) that for any i in [N ], gik,∗ = −εikxik,
secondly because

(
(εik)k∈[K],i∈[N ]

)
are independent from

(
(xik)k∈[K],i∈[N ]

)
(Model 1), we have

that E[‖εikxik‖2] ≤ σ2R2
i , hence E

[
‖ξadd
k ‖2

∣∣ Fk−1

]
= E[‖ξadd

k ‖2] = ω+1
N2

∑N
i=1 σ

2R2
i .

Property S64 (Validity of Assumption 2.1) Consider Algorithm 3 in the context of
Model 1 with Lemma 16, for any iteration k in N∗, the second moment of the multiplicative

noise ξmult
k (w) can be bounded for any w in Rd by 2(ω+1) maxi∈[N ](R

2
i )
∥∥∥H1/2

(w − w∗)
∥∥∥2
/N+

4(ω + 1)R
2
σ2/N i.e. Assumption 2.1 is verified.
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Proof Let k in N∗, we note η = w−w∗. Because we consider Algorithm 3, with Definitions 2
and 4, we write ξmult

k (η) = 1
N

∑N
i=1 ξ

i,mult
k (η), where ξi,mult

k (η) = Hiη−C(gik(w)) + C(gik,∗) is
the multiplicative noise on client i in [N ], hence developing the squared norm gives:

∥∥∥ξmult
k (η)

∥∥∥2
=

∥∥∥∥∥ 1

N

N∑
i=1

ξi,mult
k (η)

∥∥∥∥∥
2

=
1

N2

N∑
i=1

∥∥∥ξi,mult
k (η)

∥∥∥2
+

1

N2

∑
i 6=j

〈
ξi,mult
k (η), ξj,mult

k (η)
〉
.

Taking expectation w.r.t. the σ-algebra Fk−1, using that the N compressions are indepen-
dent (Algorithm 3) and that for any i in [N ], E[ξi,mult

k (η) | Fk−1] = 0 (Lemma 16) results
to have:

E[‖ξmult
k (η) ‖2 | Fk−1] =

1

N2

N∑
i=1

E[‖ξi,mult
k (η)‖2 | Fk−1] .

Next, we use the result of Property S50 for each client i in [N ] and we obtain:

E
[
‖ξmult
k (η) ‖2

∣∣∣ Fk−1

]
≤ 1

N2

N∑
i=1

(
2(ω + 1)R2

i ‖H1/2
i (w − w∗)‖2 + 4(ω + 1)R2

i σ
2
)

≤
2(ω + 1) maxi∈[N ](R

2
i )

N
‖H1/2

(w − w∗)‖2 +
4(ω + 1)R

2
σ2

N
,

which allows concluding.

Property S65 (Validity of Assumption 2.2) Consider Algorithm 3 in the context of
Model 1 with Lemma 16, for any iteration k in N∗, the second moment of the multiplicative

noise ξmult
k (w) can be bounded for any w in Rd by (Ωσmaxi∈[N ](R

2
i )‖H

1/2
(w−w∗)‖+ (ω+

1) maxi∈[N ](R
2
i )‖H

1/2
(w − w∗)‖2)/N i.e. Assumption 2.2 is verified.

Proof Let k in N∗, we note η = w−w∗. From Property S64, taking expectation w.r.t. the
σ-algebra Fk−1, decomposing the multiplicative noise results to have:

E[‖ξmult
k (η) ‖2 | Fk−1] =

1

N2

N∑
i=1

E[‖ξi,mult
k (η)‖2 | Fk−1] .

Next we use the result of Property S51 for each client i in [N ] and we obtain:

E[‖ξmult
k (η) ‖2 | Fk−1] ≤ 1

N2

N∑
i=1

ΩR2
i σ

√
‖H1/2

i (w − w∗)‖2 + (ω + 1)R2
i ‖H1/2

i (w − w∗)‖2 .
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With Jensen’s inequality S7 used for concave function:

E

[∥∥∥ξmult
k (η)

∥∥∥2
∣∣∣∣ Fk−1

]
≤

Ωσmaxi∈[N ](R
2
i )

N

√√√√ 1

N

N∑
i=1

‖H1/2
i (w − w∗)‖2

+
(ω + 1) maxi∈[N ](R

2
i )

N2

N∑
i=1

‖H1/2
i (w − w∗)‖2

≤
Ωσmaxi∈[N ](R

2
i )

N

√
‖H1/2

(w − w∗)‖2

+
1

N
(ω + 1) max

i∈[N ]
(R2

i )‖H
1/2

(w − w∗)‖2 ,

which allows concluding.

Property S66 (Validity of Assumption 3) Consider Algorithm 3 and Model 1 with
Lemma 16, if the compressor C is linear, then for any iteration k in N∗, the multiplica-
tive noise ξmult

k is linear, thus there exist a matrix Ξk in Rd×d such that for any w in
Rd, ξmult

k (w) = Ξkw. Furthermore the second moment of the multiplicative noise can be

bounded for any w in Rd by (ω+1) maxi∈[N ](R
2
i )
∥∥∥H1/2

(w − w∗)
∥∥∥2
/N , hence Assumption 3

is verified.

Proof Let k in N∗, we note η = w−w∗. Because we consider Algorithm 3, with Definitions 2
and 4, we write ξmult

k (η) = 1
N

∑N
i=1 ξ

i,mult
k (η), where ξi,mult

k (η) = Hiη − C(gik(w)) + C(gik,∗)
is the multiplicative noise on client i in [N ]. And because for any clients i in {1, · · ·N} the
random mechanism Cik is linear, there exists a random matrix Πi

k in Rd×d s.t. for any z
in Rd, we have Cik(z) = Πi

kz, it follows that:

ξmult
k (η) = ∇F (w)− 1

N

N∑
i=1

Cik(gik(w)) + Cik(gik,∗) =

(
H − 1

N

N∑
i=1

Πi
k(x

i
k ⊗ xik)

)
η .

Hence, the first part of Assumption 2.2 is verified with Ξk = 1
N

∑N
i=1Hi−Πi

k(x
i
k⊗xik). From

Property S64, taking expectation w.r.t. the σ-algebra Fk−1, decomposing the multiplicative
noise results to have:

E

[∥∥∥ξmult
k (η)

∥∥∥2
∣∣∣∣ Fk−1

]
=

1

N2

N∑
i=1

E

[∥∥∥ξi,mult
k (η)

∥∥∥2
∣∣∣∣ Fk−1

]
.

Next we use the result of Property S52 for each client i in [N ] and we obtain:

E

[∥∥∥ξmult
k (η)

∥∥∥2
∣∣∣∣ Fk−1

]
≤ 1

N

N∑
i=1

(ω + 1)R2
i

∥∥∥H1/2
i (w − w∗)

∥∥∥2

≤
(ω + 1) maxi∈[N ](R

2
i )

N2

∥∥∥∥∥ 1

N

N∑
i=1

H
1/2
i (w − w∗)

∥∥∥∥∥
2

,
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which allows concluding.

Property S67 (Validity of Assumption 4) Considering Algorithm 3 under the setting
of Model 2 with Remark 1 and Lemma 16, if the compressor C is linear, then for any k in
N∗, we have Cania 4 σ2 maxi∈[N ](XHi)H/N and E

[
ΞkΞ

>
k

]
4 maxi∈[N ](R

2
iXHi)H/N , with

(XHi)i∈[N ] given in Corollary 18. Overall, Assumption 4 is thus verified.

Proof
First inequality.
By Definition 6, we have Cania = E[ξadd

k ⊗ ξadd
k | Fk−1] = 1

N2

∑N
i=1 E[Cik(gik,∗)⊗2 | Fk−1],

because for any client i in [N ]
(
(εik)k∈[K]

)
is independent from

(
(xik)k∈[K]

)
(Model 1) and

using compressor linearity and Equation (S30), it gives:

Cania = σ2 1

N2

N∑
i=1

E
[
Cik(xik)⊗2

]
=

σ2

N2

N∑
i=1

C(Ci, pHi) 4
σ2

N2

N∑
i=1

XHiH

4
σ2 maxi∈[N ](XHi)

N
H .

Second inequality.
Using Property S66, because the random mechanism Ci is linear, there exists two matrices
Πi
k,Ξ

i
k in Rd×d s.t. for any z in Rd, we have Cik(z) = Πi

kz and ξmult,i
k (z) = Ξikz = (Hi −

Πi
k(x

i
k ⊗ xik)z, which gives that Ξk = 1

N

∑N
i=1Hi −Πi

k(x
i
k ⊗ xik). It follows that:

ΞkΞ
>
k =

1

N2

N∑
i=1

(Ξik)(Ξ
i
k)
> +

1

N2

∑
i 6=j

(Ξik)(Ξ
j
k)
> .

Taking the σ-algebra Fk−1, using that the N compressions are independent (Algorithm 3)

and that for any i in [N ], E
[
ξi,mult
k

∣∣∣ Fk−1

]
= 0 (Lemma 16) results to have E[ΞkΞ

>
k | Fk−1] =

1
N2

∑N
i=1 E

[
(Ξik)(Ξ

i
k)
> ∣∣ Fk−1

]
. Now, we can reuse the computations given in Property S53

to obtain E
[
(Ξik)(Ξ

i
k)
> ∣∣ Fk−1

]
4 R2

iXHiHi. Therefore, we have E
[
ΞkΞ

>
k

∣∣ Fk−1

]
4

maxi∈[N ](R
2
iXHi)H/N , which concludes the second part of the verification of Assump-

tion 4.

F.2 Heterogeneous optimal point

In this section, we explore further the scenario of concept-shift by adding a memory mech-
anism (Mishchenko et al., 2019). This mechanism has been shown by Philippenko and
Dieuleveut (2020) to improve the convergence in the case of heterogeneous clients. We give
below the updates equation defining the algorithm of distributed compressed LSR with
memory.
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Algorithm 4 (Distributed compressed LMS with control variates) Each client i ∈
[N ] maintains a sequence (hik)i∈[N ] in Rd, observes at any step k ∈ [K] an oracle gik(·) on the
gradient of the local objective function Fi and applies an independent random compression
mechanism Cik(·) to the difference gik − hik. And for any step-size γ > 0, any k ∈ N∗, the
sequence of iterates (wk)k∈N satisfies:

wk = wk−1 −
γ

N

N∑
i=1

Cik(gik(wk−1)− hik−1) + hik−1

hik = hik−1 + αCik(gik(wk−1)− hik−1) ,

(S36)

with α = 1/2(ω + 1).

The counterpart of adding memory is that the random fields are no more identically dis-
tributed, thus Definition 2 is not fulfilled, and results from Section 2 cannot be applied,
especially because E

[
ξadd
k ⊗ ξadd

k

]
changes along iterations. To remedy this problem, we de-

fine here the limit of the covariance of the additive noise i.e. C∞ania = lim
k→+∞

E
[
ξadd
k ⊗ ξadd

k

]
.

In the following result, we establish an asymptotic result on the convergence, similar to
Theorem 8.

Theorem S68 (CLT for concept-shift heterogeneity) Consider Algorithm 4 under
Model 1 with µ > 0 and Lemma 16, for any step-size (γk)k∈N∗ s.t. γk = 1/

√
k. Then

1. (
√
KηK−1)K>0

L−−−−−→
K→+∞

N (0, H−1
F C∞aniaH

−1
F ),

2. C∞ania = C((Ci, pΘ′i
)Ni=1), where pΘ′i

is the distribution of gik,∗ −∇Fi(w∗).

Theorem S68 shows that when using memory, in the settings of heterogeneous optimal
points (wi∗)

N
i=1, convergence is still impacted by heterogeneity but with a smaller additive

noise’s covariance as Θ′i ≺ Θi. In particular, in the case of deterministic gradients (batch
case), we case Θ′i ≡ 0. From a technical standpoint, it shows that we recover asymp-
totically the results stated by Theorems 8 and 12 in the general setting of i.i.d. random
fields (ξk(ηk−1))k∈N∗ . To prove this theorem, we show that the assumptions required by
Theorem S36 are fulfilled by this framework.

Proof

For the sake of demonstration, we define a Lyapunov function Vk (as in Mishchenko et al.,
2019; Liu et al., 2020; Philippenko and Dieuleveut, 2020), with k in J1,KK:

Vk = ‖ηk‖2 + 2γ2
kC

1

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2

,

with C in R∗ being a Lyapunov constant that verifies some conditions given in Theorem S6
in Philippenko and Dieuleveut (2020). For any k in N, the Lyapunov function is defined
combining two terms: (1) the distance from parameter wk to the optimal parameter w∗, (2)
for any client i in [N ], the distance between the memory term hik−1 and the true gradient
∇Fi(w∗).
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First, we have that in the case of decreasing step size s.t. for any k in N, γk = k−α,

we have ηK
L2

−−−−−→
K→+∞

0 and hiK
L2

−−−−−→
K→+∞

∇Fi(w∗).
Let k in N∗, from the demonstration of the Artemis algorithm with memory, we have from
Theorem S6 in Philippenko and Dieuleveut (2020) (see page 41-45) that (1) combining
Equations (S14) and (S15) in the form (S14)+2γ2

kC(S15), (2) and applying strong-convexity,
allows to obtain Equation (S17) but adapted to decreasing step-size:

E [Vk | Fk−1] ≤ (1− 2γkµ�k) ‖wk−1 − w∗‖2 +
2γ2

kC♦
N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2

+
2γ2

kσ4
N

,

with �k,♦,4 being three constants in R whose exact expression can be found on pages
42-43 in Philippenko and Dieuleveut (2020). Furthermore, in the same article, they verify
that to obtain a (1− γkµ) convergence, the following condition on �k,♦,4 are fulfilled for
any k in N∗: �k ≤ 1/2 and ♦ ≤ 1− γkµ.
These properties are valid under some conditions on the Lyapunov constant C, the step-size
γk, and the learning rate α; these conditions are provided in the statement of Theorem S6
from (Philippenko and Dieuleveut, 2020) and we don’t recall them here. Hence, we can
write that we have:

E [Vk | Fk−1] ≤ (1− γkµ)

(
‖wk−1 − w∗‖2 +

2γ2
kC

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2

)
+

2γ2
kσ

24
N

,

and because for any k in N , the step-size is decreasing, we have γk ≤ γk−1, which makes to

recover the Lyapunov function Vk−1 at step k− 1: E [Vk | Fk−1] ≤ (1− γkµ)Vk−1 +
2γ2kσ

24
N .

Taking full expectation and unrolling the sequence (Vk)k∈N, we obtain:

EVk ≤
k∏
i=1

(1− γiµ)V0 +
2σ24
N

k∑
j=1

γ2
j

k∏
i=j+1

(1− γiµ) .

To show that each part of the bound given in the above equation tends to zero when k
grows to infinity is classical computations and can be find for instance in lectures notes of
Bach (2022, pages 164-167 and 182), and Kushner and Yin (2003).
To apply Theorem 1 from Polyak and Juditsky (1992, recalled in Theorem S36), which gives
the desired result, it suffices to prove the convergence in probability of the covariance of the
noise ξk(ηk−1) towards Cania, as k →∞.

In the following, we show that lim
k→+∞

E
[
ξk(ηk−1)ξk(ηk−1)>

∣∣ Fk−1

] P
= C∞ania. Let k in

N∗, for this purpose, we consider the following additive/multiplicative noise decomposition:


ξA
k,∗ = − 1

N

N∑
i=1

Cik(gik,∗ −∇Fi(w∗))

ξM
k (ηk) = HF ηk −

1

N

N∑
i=1

Cik(gik(wk−1)− hik−1) +
1

N

N∑
i=1

Cik(gk,∗ −∇Fi(w∗)) + hik−1 .

(S37)
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Furthermore, we have that ξadd
k

L2

−−−−→
k→+∞

ξA
k,∗ because of the Hölder-inequality (Lemma 16)

and because we shown that hiK
L2

−−−−−→
K→+∞

∇Fi(w∗); thereby E[ξadd
k ⊗ξadd

k ]
L1

−−−−→
k→+∞

C∞ania. Next,

from Equation (S37), we write:

ξk(ηk−1)ξk(ηk−1)> = (ξA
k,∗ − ξM

k (ηk−1))(ξA
k,∗ − ξM

k (ηk−1))>

= ξA
k,∗ ⊗ ξA

k,∗ − ξA
k,∗ξ

M
k (ηk−1)> − ξM

k (ηk−1)(ξA
k,∗)
> + ξM

k (ηk−1)⊗ ξM
k (ηk−1) .

(i) Developing the covariance of the additive noise and considering Model 1 and Algorithm 3
results to E[ξA

k,∗⊗ξA
k,∗ | Fk−1] = 1

N2

∑N
i=1 E[Cik(gik,∗−∇Fi(w∗))⊗2 | Fk−1]. For any iteration k

in N∗ and any client i in [N ], we note Θ′i the covariance of gik,∗−∇Fi(w∗), then gik,∗−∇Fi(w∗)
is an i.i.d. zero-centered random vectors draw from a distribution pΘ′i

, hence we have for

any iteration k in N∗, C∞ania = E[ξA
k,∗ ⊗ ξA

k,∗ | Fk−1] = C(Ci, (pΘ′i
)Ni=1) .

(ii) Second, we show that E
[
ξM
k (ηk−1)⊗2

∣∣ Fk−1

]
converge to 0 in probability: it is sufficient

to show that ‖ξM
k (ηk−1)⊗2‖F tends to 0. To do so, we use the fact that ‖ξM

k (ηk−1)⊗2‖F =
‖ξM
k (ηk−1)‖22, it results to the following decomposition:

‖ξM
k (ηk−1)⊗2‖ ≤ 3 ‖Hηk−1‖2 + 3

∥∥∥∥∥ 1

N

N∑
i=1

Cik(gik(wk−1)− hik−1)− Cik(gik,∗ −∇Fi(w∗))
∥∥∥∥∥

2

+ 3

∥∥∥∥∥ 1

N

N∑
i=1

hik−1 −∇Fi(w∗)
∥∥∥∥∥

2

.

Considering the Hölder inequality given in Item L.2 from Lemma 16, because ηk
L2

−−−−→
k→+∞

0

and hik
L2

−−−−→
k→+∞

∇Fi(w∗), we deduce that E
[
ξM
k (ηk−1)⊗2

∣∣ Fk−1

]
tends to 0 in L1-norm.

(iii) Third, it remains to show that E[ξM
k (ηk−1)(ξA

k,∗)
> | Fk−1]

P−−−−→
k→+∞

0. We use the Cauchy-

Schwarz inequality’s S8 for conditional expectation:

E
[
ξM
k (ηk−1)(ξA

k,∗)
>‖F

∣∣∣ Fk−1

]2
= E

[
ξM
k (ηk−1)‖2‖(ξA

k,∗)
>‖2

∣∣∣ Fk−1

]2

≤ ‖E
[
ξM
k (ηk−1)‖22

∣∣ Fk−1

]
E
[
‖(ξA

k,∗)
>‖22

∣∣∣ Fk−1

]
.

The sequence of random vectors (ξA
k,∗)k∈N is i.i.d., and moreover we have shown previously

that ξM
k (ηk−1)⊗2 tends to 0, hence E[ξM

k (ηk−1)(ξA
k,∗)
> | Fk−1] converges to 0 in distribution.

Consequently, noting Θ′i = E[gik,∗ −∇Fi(w∗))⊗2] we can state that:

E
[
ξk(ηk−1)⊗2

∣∣ Fk−1

] P−−−−→
k→+∞

C∞ania = C(Ci, (pΘ′i
)Ni=1) .
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