
Journal of Machine Learning Research 25 (2024) 1-52 Submitted 8/23; Published 10/24

Spectral Regularized Kernel Goodness-of-Fit Tests

Omar Hagrass oih3@psu.edu

Bharath K. Sriperumbudur bks18@psu.edu

Bing Li bxl9@psu.edu

Department of Statistics

Pennsylvania State University

University Park, PA, 16802 USA

Editor: Krishnakumar Balasubramanian

Abstract

Maximum mean discrepancy (MMD) has enjoyed a lot of success in many machine learn-
ing and statistical applications, including non-parametric hypothesis testing, because of its
ability to handle non-Euclidean data. Recently, it has been demonstrated in Balasubra-
manian et al. (2021) that the goodness-of-fit test based on MMD is not minimax optimal
while a Tikhonov regularized version of it is, for an appropriate choice of the regulariza-
tion parameter. However, the results in Balasubramanian et al. (2021) are obtained under
the restrictive assumptions of the mean element being zero, and the uniform boundedness
condition on the eigenfunctions of the integral operator. Moreover, the test proposed in
Balasubramanian et al. (2021) is not practical as it is not computable for many kernels.
In this paper, we address these shortcomings and extend the results to general spectral
regularizers that include Tikhonov regularization.

Keywords: Goodness-of-fit test, maximum mean discrepancy, reproducing kernel Hilbert
space, covariance operator, U-statistics, Bernstein’s inequality, minimax separation, adap-
tivity, permutation test, spectral regularization

1. Introduction

Given Xn := (Xi)
n
i=1

i.i.d∼ P , where P is defined on a measurable space X , a goodness-of-
fit test involves testing H0 : P = P0 against H1 : P 6= P0, where P0 is a fixed known
distribution. This is a classical and well-studied problem in statistics for which many
tests have been proposed, including the popular ones such as the χ2-test and Kolmogorov-
Smirnoff test (Lehmann and Romano, 2006). However, many of these tests either rely on
strong distributional assumptions or cannot handle non-Euclidean data that naturally arise
in many modern applications.

A non-parametric testing framework that has gained a lot of popularity over the last
decade is based on the notion of reproducing kernel Hilbert space (RKHS) (Aronszajn,
1950) embedding of probability distributions (Smola et al. 2007, Sriperumbudur et al. 2009,
Muandet et al. 2017). The power of this framework lies in its ability to handle data that
is not necessarily Euclidean. This framework involves embedding a probability measure P
into an RKHS, H through the corresponding mean element, i.e.,

µP =

∫
X
K(·, x) dP (x) ∈H ,
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where K : X × X → R is the unique reproducing kernel (r.k.) associated with H , with
P satisfying

∫
X
√
K(x, x) dP (x) < ∞. Using this embedding, a pseudo-metric can be

defined on the space of probability measures, called the maximum mean discrepancy (MMD)
(Gretton et al. 2012, Gretton et al. 2006), as

DMMD(P,Q) = ‖µP − µQ‖H ,

which has the following variational representation (Gretton et al. 2012, Sriperumbudur et al.
2010),

DMMD(P,Q) := sup
f∈H :‖f‖H ≤1

∫
X
f(x) d(P −Q)(x).

We refer the interested reader to (Sriperumbudur et al. 2010, Sriperumbudur 2016, Simon-
Gabriel and Schölkopf 2018) for more details about DMMD. Thus given some fixed P0, a
consistent goodness-of-fit test can be conducted by using the following estimator of D2

MMD

as a test statistic, i.e.,

D̂2
MMD(P, P0) :=

1

n(n− 1)

∑
i 6=j
〈K(·, Xi)− µ0,K(·, Xj)− µ0〉H

=
1

n(n− 1)

∑
i 6=j

K(Xi, Xj)−
2

n

n∑
i=1

µ0(Xi) + ‖µ0‖2H ,

and using the 1 − α quantile of the asymptotic null distribution of D̂2
MMD(P, P0) as the

critical level (Balasubramanian et al., 2021, Theorem 1), while assuming µ0 := µP0 and
‖µ0‖2H are computable in closed form. The asymptotic null distribution of D̂2

MMD(P, P0)
does not have a simple closed form—the distribution is that of an infinite sum of weighted
chi-squared random variables with the weights being the eigenvalues of an integral operator
associated with the kernel K w.r.t. the distribution P0 (Serfling, 2009). Assuming µ0 = 0,
recently, (Balasubramanian et al., 2021) showed this test based on D̂MMD to be not optimal
in the minimax sense and modified it to achieve a minimax optimal test. Li and Yuan
(2019) constructed an optimal test by using the Gaussian kernel on X = Rd (the test and
analysis can be extended to translation invariant kernels on Rd using the ideas in Schrab
et al., 2021) by allowing the bandwidth of the kernel to shrink to zero as n → ∞—this is
in contrast to the D̂MMD test where the bandwidth or the kernel parameter is fixed and
does not depend on n. By relaxing the requirement of X = Rd, Balasubramanian et al.
(2021) studied the question of optimality for general domains by proposing a regularized
test statistic,

D2
λ(P, P0) =

∑
j≥1

λj
λj + λ

(EPφj)2 , (1)

assuming EP0φj = 0 for all j, where (λj)j≥1 and (φj)j≥1 are the eigenvalues and eigenfunc-
tions of an integral operator associated with the kernel K w.r.t. the distribution P0, and
λ > 0 is the regularization parameter. Under some regularity conditions, they showed the
asymptotic null distribution of an appropriately normalized version of (1) to be the standard
normal distribution, using which a minimax optimal goodness-of-fit test was constructed
(Balasubramanian et al. 2021, Theorems 2–4). However, this test is impractical and limited
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for two reasons: (i) The test requires knowledge of the eigenvalues and eigenfunctions which
are only known for a few (K,P0) pairs, and (ii) EP0φj = 0 for all j implies that µ0 = 0,
a condition that is not satisfied by any characteristic translation invariant kernels on Rd,
including the Gaussian kernel (Sriperumbudur et al., 2010, 2011). To address these issues,
in this paper, we follow an operator theoretic approach and construct a generalized version
of (1) based on the idea of spectral regularization that includes (1) as a special case while
relaxing the requirement of EP0φj = 0 for all j—hence resolving (ii)—, and establish its
minimax optimality. Moreover, under an additional assumption of P0 being samplable, i.e.,
extra samples are available from P0, we propose a practical test (i.e., computable) that is
also minimax optimal, thereby resolving the issue mentioned in (i).

Before introducing our contributions, we will first introduce the minimax framework
pioneered by Burnashev (1979) and Ingster (1987, 1993) to study the optimality of tests,
which is essential to understand our contributions and their connection to the results of
(Balasubramanian et al., 2021; Li and Yuan, 2019). Let φ(Xn) be any test that rejects H0

when φ = 1 and fails to reject H0 when φ = 0. Denote the class of all such asymptotic
(resp. exact) α-level tests to be Φα (resp. Φn,α). The Type-II error of a test φ ∈ Φα (resp.
∈ Φn,α) w.r.t. P∆ is defined as

R∆(φ) = sup
P∈P∆

EPn [1− φ],

where
P∆ :=

{
P ∈ C : ρ2(P, P0) ≥ ∆

}
,

is the class of ∆-separated alternatives in the probability metric (or divergence) ρ, with
∆ being referred to as the separation boundary or contiguity radius. Of course, the in-
terest is in letting ∆ → 0 as n → ∞ (i.e., shrinking alternatives) and analyzing R∆

for a given test, φ, i.e., whether R∆(φ) → 0. In the asymptotic setting, the minimax
separation or critical radius ∆∗ is the fastest possible order at which ∆ → 0 such that
lim infn→∞ infφ∈Φα R∆∗(φ) → 0, i.e., for any ∆ such that ∆/∆∗ → ∞, there is no test
φ ∈ Φα that is consistent over P∆. A test is asymptotically minimax optimal if it is
consistent over P∆ with ∆ � ∆∗. On the other hand, in the non-asymptotic setting,
the minimax separation ∆∗ is defined as the minimum possible separation, ∆ such that
infφ∈Φn,α R∆(φ) ≤ δ, for 0 < δ < 1 − α. A test φ ∈ Φn,α is called minimax optimal if
R∆(φ) ≤ δ for some ∆ � ∆∗. In other words, there is no other α-level test that can achieve
the same power with a better separation boundary.

Balasubramanian et al. (2021) consider P∆ as

P∆ =

{
P :

dP

dP0
− 1 ∈ F(ν;M), χ2(P, P0) =

∥∥∥∥ dPdP0
− 1

∥∥∥∥2

L2(P0)

≥ ∆

}
, (2)

where ν > 0, and

F(ν;M) :=
{
f ∈ L2(P0) : for any R > 0, ∃fR ∈H such that ‖fR‖H ≤ R,

and ‖f − fR‖L2(P0) ≤MR−1/ν
}
.

P∆ in (2) denotes the class of alternatives that are ∆-separated from P0 in the χ2-divergence—
alternately, the squared L2(P0) norm of the likelihood ratio, dP/dP0 − 1 is lower bounded
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by ∆—, while satisfying a smoothness condition. The smoothness condition is imposed on
the likelihood ratio and is defined through the rate of approximation of a function in L2(P0)
by an element in an RKHS ball of radius R. The faster the approximation rate—controlled
by ν—, the smoother the function being approximated. F(ν;M) is a subspace of a real
interpolation space obtained by interpolating H and L2(P0). Particularly, ν = 0 corre-
sponds to an RKHS ball of radius R. Note that (2) requires P � P0 (i.e., P is absolutely
continuous w.r.t. P0) so that the Radon-Nikodym derivative dP/dP0 is well defined. Define

P̃∆ :=

{
P :

dP

dP0
− 1 ∈ Ran(L

1
2ν+2

K ), χ2(P, P0) =

∥∥∥∥ dPdP0
− 1

∥∥∥∥2

L2(P0)

≥ ∆

}
, (3)

where LK : L2(P0) → L2(P0), f 7→
∫
X K(·, x)f(x) dP0(x) is an integral operator defined

by K, and Ran(A) denotes the range space of A. It follows from (Cucker and Zhou, 2007,
Theorem 4.1) that

Ran(L
1

2ν+2

K ) ⊂ F
(
ν; 2

2ν+2
ν ‖L

− 1
2ν+2

K (dP/dP0 − 1) ‖
2ν+2
ν

L2(P0)

)
,

and if P0 is non-degenerate, then

F(ν;M) ⊂ Ran(L
1

2ν+2
−ε

K ), ∀ ε > 0, i.e., F(ν;M) ⊂ Ran(LηK), ∀ 0 ≤ η < 1

2ν + 2
.

In this work, we employ an operator theoretic perspective to the goodness-of-fit test
problem involving T (see Section 4 for details), which is a centered version of the integral
operator LK . The centered version is needed to do away with the assumption of µ0 = 0,
which is assumed in Balasubramanian et al., 2021. Therefore, we choose P∆ similar to the
form in (3) but with LK replaced by T . We write it as

P := Pθ,∆ :=

{
P :

dP

dP0
− 1 ∈ Ran(T θ), χ2(P, P0) =

∥∥∥∥ dPdP0
− 1

∥∥∥∥2

L2(P0)

≥ ∆

}
, (4)

for θ > 0. Note that θ and ν are in inverse proportion to each other and θ = 1
2 yields

Ran(T θ) = H̃ , with 0 < θ < 1
2 yielding interpolation spaces and θ = 0 corresponds to

L2(P0), where H̃ is the RKHS induced by the centered kernel,

K̄(x, y) = 〈K(·, x)− µ0,K(·, y)− µ0〉H .

The explicit representation of Ran(T θ) typically relies on the kernel K and the distribution
P0. If the kernel K has a Mercer decomposition with respect to eigenfunctions that consti-
tute an orthonormal basis for L2(P0), then Ran(T θ) comprises functions within the span of
these orthonormal basis functions. For instance, in the following examples, we present an
explicit representation of Ran(T θ) when P0 is a uniform distribution on (i) [0, 1], (ii) S2, a
unit sphere, and (iii) when P0 is a standard Gaussian distribution on R. In this context,
Ran(T θ) can be expressed in terms of Fourier basis in Example 1, spherical harmonic basis
in Example 2 and Hermite polynomials basis in Example 3.
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Example 1 (Uniform distribution on [0, 1]) Let P0 be the uniform distribution defined
on [0, 1] with

K(x, y) = a0 +
∑
k 6=0

|k|−βe
√
−12πkxe−

√
−12πky, a0 ≥ 0, β > 1. (5)

Then

Ran(T θ) =

∑
k 6=0

ake
√
−12πkx :

∑
k 6=0

a2
kk

2θβ <∞

 .

Note that the s-order Sobolev space defined on [0, 1] is given by

Ws,2 :=

{
f(x) =

∑
k∈Z

ake
√
−12πkx, x ∈ [0, 1] :

∑
k∈Z

(1 + k2)sa2
k <∞

}
.

Since
∑

k 6=0 k
2θβa2

k ≤
∑

k∈Z(1 + k2)θβa2
k, it follows that Ws,2 ⊂ Ran(T θ). This means, if

u := dP
dP0
− 1 ∈ Ws,2, then u ∈ Ran(T θ) with θ = s

β . An example of a kernel that follows

the form in (5) is the periodic spline kernel, represented as K̃(x, y) = (−1)r−1

(2r)! B2r([x − y]),
where Br denotes the Bernoulli polynomial, which is generated by the generating func-
tion tetx

et−1 =
∑∞

r=0Br(x) t
r

r! , and [t] denotes the fractional part of t. Then using the for-

mula B2r(x) = (−1)r−1(2r)!
(2π)2r

∑∞
k 6=0 |k|−2re

√
−12πkx, it can be demonstrated that K̃(x, y) =∑

k 6=0(2π|k|)−2re
√
−12πkxe−

√
−12πky (see Wahba, 1990, page 21 for details).

Example 2 (Uniform distribution on S2) Let P0 be a uniform distribution on X = S2,
where S2 denotes the unit sphere. Let

K(x, y) :=
∞∑
k=1

k∑
j=−k

λkY
j
k (θx, φx)Y j

k (θy, φy). (6)

where x = (sin θx cosφx, sin θx sinφx, cos θx), y = (sin θy cosφy, sin θy sinφy, cos θy) with 0 <
θx, θy < π, 0 < φx, φy < 2π, and

Y j
k (θ, φ) :=

√
(2k + 1)(k − j)!

4π(k + j)!
pjk(cos θ)e

√
−1jφ,

with pjk(x) := (−1)j(1−x2)
j
2
djpk(x)
dxj

and pk(x) := 1
k!2k

dk(x2−1)k

dxk
. Here (Y j

k (θ, φ))j,k denote the
spherical harmonics which form an orthonormal basis in L2(S2). If

∑∞
k=1(2k + 1)λk <∞,

then

Ran(T θ) =


∞∑
k=1

k∑
j=−k

akjY
j
k (θx, φx) :

∞∑
k=1

k∑
j=−k

a2
kjλ
−2θ
k <∞

 .

Many common kernels take the form in (6). For example, Minh et al. (2006, Theorem
2 and 3) provide explicit expressions for the eigenvalues corresponding to Gaussian and
polynomial kernels on the sphere.
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Example 3 (Gaussian distribution with Mehler kernel on R) Let P0 be a standard
Gaussian distribution on R and K be the Mehler kernel, i.e.,

K(x, y) :=
1√

1− ρ2
exp

(
−ρ

2(x2 + y2)− 2ρxy

2(1− ρ2)

)
,

for 0 < ρ < 1. Then

Ran(T θ) =

{ ∞∑
k=1

akγk(x) :

∞∑
k=1

a2
ke
−2kθ log ρ <∞

}
,

where γk(x) = Hk(x)√
k!
, and Hk(x) = (−1)kex

2/2 dk

dxk
e−x

2/2 is the Hermite polynomial. Stein-

wart and Scovel (2012, Theorem 4.6) provides an interpretation of Ran(T θ) as a real in-
terpolation of L2(P0) and H̃ . Therefore, with the kernel being fixed, the influence of P0

on Ran(T θ) can be understood as follows. Suppose P0,σi := N(0, σ2
i ), i = 1, 2. It is easy

to verify that L2(P0,σ1) ⊂ L2(P0,σ2) if σ2 < σ1, which implies that Ran(T θ1 ) ⊆ Ran(T θ2 ),
where Ti is the integral operator defined w.r.t. P0,σi, i = 1, 2. Based on this intuition, in the
context of this example, choosing P0 as a Gaussian distribution with variance larger ( resp.
smaller) than 1 yields a smaller ( resp. larger) range space than that mentioned above.

With this background, we now present our contributions.

1.1 Contributions

The main contributions of the paper are as follows:

(i) First, in Theorem 1, we show that the test based on D̂2
MMD (we refer to it as the MMD

test) cannot achieve a separation boundary better than n
−2θ
2θ+1 w.r.t. P defined in (4). This

is an extension and generalization of (Balasubramanian et al., 2021, Theorem 1), which
only shows such a claim for θ = 1

2 in an asymptotic setting, assuming µ0 = 0 and the
uniform boundedness condition, supi ‖φi‖∞ < ∞, where (φi)i are the eigenfunctions of T .
In contrast, Theorem 1 presents the result both by assuming and not assuming the uniform
boundedness condition. Note that the uniform boundedness condition supi ‖φi‖∞ < ∞ is
not satisfied in many scenarios (of course, it is satisfied in Example 1). For example, as illus-
trated in Minh et al. (2006, Theorem 5), for X = Sd−1, representing the d-dimensional unit
sphere, supi ‖φi‖∞ =∞ for all d ≥ 3 when using any kernel of the form K(x, y) = f(〈x, y〉2),
where x, y ∈ X and f is continuous (see Example 2). The Gaussian kernel on Sd−1 serves
as an instance of such a kernel. Moreover, the condition µ0 = 0 is not satisfied by any
characteristic kernel on general domain X and therefore excludes popular kernels such as
Gaussian, Matérn, and inverse multiquadric on Rd. Relaxing these two assumptions allows
a large class of (K,P0) pairs to be handled by Theorem 1.

(ii) Note that the separation boundary of the MMD test depends only on the smoothness
of dP/dP0 − 1, which is determined by θ but is completely oblivious to the intrinsic di-
mensionality of the RKHS, H̃ , which is controlled by the decay rate of the eigenvalues
of T . To this end, by taking into account the intrinsic dimensionality of H̃ , we show in

Theorem 2 that the minimax separation w.r.t. P is n
− 4θβ

4θβ+1 for θ > 1
2 if λi � i−β, β > 1,
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i.e., the eigenvalues of T decay at a polynomial rate β, and is
√

log n/n if λi � e−i, i.e.,
exponential decay. These results clearly establish the non-optimality of the MMD-based
test. Theorem 2, which is non-asymptotic, generalizes the asymptotic version of (Balasub-
ramanian et al., 2021, Theorem 4) without requiring the uniform boundedness condition
and also recovers it under the uniform boundedness condition, while not requiring µ0 = 0
for both these results. Moreover, even under the uniform boundedness condition, while
(Balasubramanian et al., 2021, Theorem 4) provides a bound on the minimax separation
for 1

2 > θ > 1
2β , we improve this range in Theorem 2 by showing the minimax separation

for θ > 1
4β .

(iii) In Section 4, we employ an operator theoretic perspective to the regularization idea
presented in Balasubramanian et al. (2021) that allows us to generalize the idea to handle
general spectral regularizers, without requiring µ0 = 0. More precisely, we propose a statis-

tic of the form ηλ(P, P0) :=
∥∥∥g1/2

λ (Σ0)(µP − µP0)
∥∥∥2

H
, which when gλ(x) = (x + λ)−1, i.e.,

Tikhonov regularization, and µ0 = 0 reduces to the regularized statistic in (1). Here Σ0

corresponds to the centered covariance operator w.r.t. P0.

Assuming µ0 and Σ0 are computable, we propose a spectral regularized test based on
ηλ and provide sufficient conditions on gλ for the test to be minimax optimal w.r.t. P (see
Theorems 3, 4 and Corollaries 5, 6). Compared to the results in (Balasubramanian et al.,
2021), we provide general sufficient conditions on the separation boundary for any bounded
kernel and show the minimax optimality in the non-asymptotic setting for a wider range of
θ, both with and without the uniform boundedness condition (see Theorem 4). However,
the drawback of the test is that one needs first to compute the eigenvalues and eigenfunc-
tions of Σ0 which is not possible for many (K,P0) pairs. Thus we refer to this test as the
Oracle test.

(iv) To address the shortcomings with the Oracle test, in Section 4.2, we assume that P0

is samplable, i.e., P0 can be sampled to generate new samples. Based on these samples, we
propose a test statistic defined in (11) that involves using the estimators of µ0 and Σ0 in ηλ.
We show that such a test statistic can be computed only through matrix operations and by
solving a finite-dimensional eigensystem (see Theorem 7). We present two approaches to
compute the critical level of the test. In Section 4.3, we compute the critical level based on
a concentration inequality and refer to the corresponding test as spectral regularized concen-
tration test (SRCT), and in Section 4.4, we employ permutation testing (e.g., Lehmann and
Romano 2006, Pesarin and Salmaso 2010, Kim et al. 2022), which we refer to as the spectral
regularized permutation test (SRPT), leading to a critical level that is easy to compute (see
Theorems 8 and 10). We show that both these tests are minimax optimal w.r.t. P (see
Theorems 9 and 11). Note that under these additional samples from P0, a goodness-of-fit
test can be seen as a two-sample test, and therefore SRCT and SRPT can be interpreted
as two-sample tests. Recently, Hagrass et al. (2024) developed a spectral regularized kernel
two-sample test (SR2T) and showed it to be minimax optimal for a suitable class of alter-
natives. In this work, we show that SRCT and SRPT have better separation rates than
those of SR2T for the range of θ, where all these tests are not minimax.

(v) The minimax optimal separation rate in the proposed tests (SRCT and SRPT) is tightly
controlled by the choice of the regularization parameter, λ, which in turn depends on the
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unknown parameters, θ and β (in the case of the polynomial decay of the eigenvalues of
T ). Therefore, to make these tests completely data-driven, in Section 4.5, we present an
adaptive version of both tests by aggregating tests over different λ (see Theorems 14 and
16) and show the resulting tests to be minimax optimal up to a

√
log n factor in case of

the SRCT (see Theorem 15) and log log n factor in case of SRPT (see Theorem 17). In
contrast, (Balasubramanian et al., 2021, Theorem 5) considers an adaptive and asymptotic
version of the Oracle test under µ0 = 0 and the uniform boundedness condition, where it
only adapts over θ assuming β is known, with β being the polynomial decay rate of the
eigenvalues of T .

(vi) Through numerical simulations on benchmark data, in Section 5, we demonstrate the
superior performance of the proposed spectral regularized tests in comparison to the MMD
test based on D̂MMD(P, P0), Energy test (Szekely and Rizzo, 2004) based on the energy dis-
tance, Kolmogorov-Smirnov (KS) test (Puritz et al., 2022; Fasano and Franceschini, 1987),
and SR2T.

1.2 Comparison to Hagrass et al. (2024)

As mentioned in (iv) of Section 1.1, the proposed goodness-of-fit tests (SRCT and SRPT)
can be seen as two-sample tests because of access to additional samples from P0. Similar
to the two-sample test SR2T proposed in Hagrass et al. (2024), these tests also employ
the spectral regularization approach of Hagrass et al. (2024) and their analysis uses many
technical results developed in Hagrass et al. (2024). Therefore, to emphasize the conceptual
and technical novelty of our work, in this section, we compare and contrast our setup and
results to that of Hagrass et al. (2024).

(i) Alternative space: In this paper, the alternative space, P∆ shown in (4) involves
a smoothness condition that is defined with respect to the function u := dP

dP0
− 1. In

contrast, the smoothness condition in Hagrass et al. (2024) was defined through dP
dR − 1,

where R = P+P0
2 . The separation boundary in this paper is measured in χ2-distance, i.e.,

χ2(P, P0) compared to the Hellinger distance between P and P0 (which is topologically
equivalent to χ2(P,R)) as in Hagrass et al. (2024). Since the χ2-divergence dominates the
Hellinger distance, the notion of separation considered in this paper is stronger than the
one considered in Hagrass et al. (2024).

These changes were made to leverage the knowledge of P0 in the goodness-of-fit problem
(which is not available in the two-sample problem), resulting in a better separation boundary
than that achieved by the test proposed in Hagrass et al. (2024).

(ii) Estimation of the covariance operator, Σ0: In Hagrass et al. (2024), the covariance
operator Σ0 is defined with respect to the average probability measure R := P+P0

2 , which
means two sets of samples are required to estimate it and therefore, the estimation error
is controlled by the minimum of sizes of two sets of samples. However, in this paper,
since we are considering a goodness-of-fit problem where the null distribution P0 is known,
we can utilize this knowledge by defining the covariance operator Σ0 with respect to P0,
which means the estimation error is controlled only by the samples from P0. Since we do
not have any budget constraints on sampling from P0, the estimation error of Σ0 can be
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controlled at a desired level for a large enough sample size. Therefore, we investigate the
required number of i.i.d. samples s to be drawn from P0 to estimate Σ0 to achieve a similar
separation boundary as the oracle test, which assumes Σ0 is exactly known in closed form.
Both in this work and Hagrass et al. (2024), while the separation rates are determined by
the minimum size of the two sets of samples, since the sample size associated with P0 in this
work can be chosen to be large enough, the separation rate will be controlled only by the one
sample size. Therefore this work yields better separation rates than those in Hagrass et al.
(2024)—also see (iv) in Section 1.1—as it should be since a goodness-fit-testing problem is
simpler than a two-sample testing problem.

(iii) Spectral regularized concentration test (SRCT): While SRPT proposed in this
paper shares in principle the similar ideas of permutation testing as in Hagrass et al. (2024),
the proposed SRCT involves a concentration inequality based test threshold that was not
considered in Hagrass et al. (2024). While the analysis of SRPT uses multiple technical
results developed in Hagrass et al. (2024)—of course, with some deviations because of a
different alternate space and estimator for the covariance operator—the analysis of SRCT
requires establishing new technical results for the estimation error bounds between Σ0 and
Σ̂0 (see Lemmas A.4 and A.5), and the estimation error between N̂2(λ) and N2(λ), where

N2(λ) := ‖Σ−1/2
0,λ Σ0Σ

−1/2
0,λ ‖L2(H ) and Σ0,λ := Σ0 + λI (see Lemmas A.6 and A.7).

2. Definitions & Notation

For a topological space X , Lr(X , µ) denotes the Banach space of r-power (r ≥ 1) µ-
integrable function, where µ is a finite non-negative Borel measure on X . For f ∈ Lr(X , µ) =:
Lr(µ), ‖f‖Lr(µ) := (

∫
X |f |

r dµ)1/r denotes the Lr-norm of f . µn := µ× n... ×µ is the n-fold
product measure. H denotes a reproducing kernel Hilbert space with a reproducing kernel
K : X × X → R. [f ]∼ denotes the equivalence class associated with f ∈ Lr(X , µ), that
is the collection of functions g ∈ Lr(X , µ) such that ‖f − g‖Lr(µ) = 0. For two measures
P and Q, P � Q denotes that P is dominated by Q which means, if Q(A) = 0 for some
measurable set A, then P (A) = 0. Let H1 and H2 be abstract Hilbert spaces. L(H1, H2)
denotes the space of bounded linear operators from H1 to H2. For S ∈ L(H1, H2), S∗ de-
notes the adjoint of S. S ∈ L(H) := L(H,H) is called self-adjoint if S∗ = S. For S ∈ L(H),
Tr(S), ‖S‖L2(H), and ‖S‖L∞(H) denote the trace, Hilbert-Schmidt and operator norms of
S, respectively. For x, y ∈ H, x ⊗H y is an element of the tensor product space of H ⊗H
which can also be seen as an operator from H → H as (x⊗H y)z = x〈y, z〉H for any z ∈ H.

For constants a and b, a . b (resp. a & b) denotes that there exists a positive constant c
(resp. c′) such that a ≤ cb (resp. a ≥ c′b). a � b denotes that there exists positive constants
c and c′ such that cb ≤ a ≤ c′b. We denote [`] for {1, . . . , `}.

3. Non-optimality of D̂2
MMD test

Assuming µ0 = 0, (Balasubramanian et al., 2021) established the non-optimality of the
MMD-based goodness-of-fit test. In this section, we extend this result in two directions by
not assuming µ0 = 0 and by considering the setting of non-asymptotic minimax compared
to the asymptotic minimax setting of Balasubramanian et al. (2021). The key to achieving
these extensions is an operator representation of D2

MMD, which we obtain below. To this

9
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end, we make the following assumption throughout the paper.

(A0) (X ,B) is a second countable (i.e., completely separable) space endowed with Borel
σ-algebra B. (H ,K) is an RKHS of real-valued functions on X with a continuous repro-
ducing kernel K satisfying supxK(x, x) ≤ κ.

The continuity of K ensures that K(·, x) : X → H is Bochner-measurable for all
x ∈ X , which along with the boundedness of K ensures that µP and µP0 are well-defined
(Dinculeanu, 2000). Also, the separability of X along with the continuity of K ensures that
H is separable (Steinwart and Christmann 2008, Lemma 4.33). Therefore,

D2
MMD(P, P0) = ‖µP − µP0‖

2
H =

〈∫
X
K(·, x) d(P − P0)(x),

∫
X
K(·, x) d(P − P0)(x)

〉
H

=

〈∫
X
K(·, x)u(x) dP0(x),

∫
X
K(·, x)u(x) dP0(x)

〉
H

, (7)

where u = dP
dP0
− 1. As done in (Hagrass et al., 2024), by defining I : H → L2(P0),

f 7→ [f−EP0f ]∼, where EP0f =
∫
X f(x) dP0(x), it follows from (Sriperumbudur and Sterge,

2022, Proposition C.2) that I∗ : L2(P0) → H , f 7→
∫
K(·, x)f(x) dP0(x) − µP0EP0f .

Also, it follows from (Sriperumbudur and Sterge, 2022, Proposition C.2) that T = Υ −
(1⊗L2(P0) 1)Υ−Υ(1⊗L2(P0) 1) + (1⊗L2(P0) 1)Υ(1⊗L2(P0) 1), where Υ : L2(P0)→ L2(P0),
f 7→

∫
K(·, x)f(x) dP0(x) and T := II∗ : L2(P0) → L2(P0). Note that T is a trace class

operator, and thus compact since K is bounded. Also, T is self-adjoint and positive, and
therefore spectral theorem (Reed and Simon, 1980, Theorems VI.16, VI.17) yields that

T =
∑
i∈I

λiφ̃i ⊗L2(P0) φ̃i,

where (λi)i ⊂ R+ are the eigenvalues and (φ̃i)i are the orthonormal system of eigenfunctions
(strictly speaking classes of eigenfunctions) of T that span Ran(T ) with the index set I being
either countable in which case λi → 0 or finite. In this paper, we assume that the set I
is countable, i.e., infinitely many eigenvalues. Since φ̃i represents an equivalence class in

L2(P0), by defining φi := I∗φ̃i
λi

, it is clear that Iφi = [φi − EP0φi]∼ = φ̃i and φi ∈ H .
Throughout the paper, φi refers to this definition.

Using these definitions, it follows from (7) that

D2
MMD(P, P0) = 〈I∗u, I∗u〉H = 〈T u, u〉L2(P0) =

∑
i≥1

λi〈u, φ̃i〉2L2(P0).

The above expression was already obtained by (Balasubramanian et al., 2021, p. 6) but
through Mercer’s representation of K. Here we obtain it alternately through the operator
representation, which will turn out to be crucial for the rest of the paper. This representation
also highlights the limitation of DMMD that DMMD might not capture the difference between
between P and P0 if they differ in the higher Fourier coefficients of u, i.e., 〈u, φ̃i〉L2(P0) for
large i, since (λi)i is a decreasing sequence.

10
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On the other hand, χ2(P ||P0) = ‖u‖2L2(P0) =
∑

i≥1〈u, φ̃i〉2L2(P0) if u ∈ span{φ̃i : i ∈ I},
does not suffer from such an issue.

The following result shows that the test based on D̂2
MMD cannot achieve a separation

boundary of order better than n
−2θ
2θ+1 .

Theorem 1 (Separation boundary of MMD test) Let n ≥ 2 and

sup
P∈P

∥∥∥T −θu∥∥∥
L2(P0)

<∞.

Then for any α > 0, δ > 0, PH0{D̂2
MMD ≥ γ} ≤ α,

inf
P∈P

PH1{D̂2
MMD ≥ γ} ≥ 1− δ,

where γ = 4κ√
αn
,

∆n := ∆ = c(α, δ)n
−2θ
2θ+1 ,

and c(α, δ) � max{α−1/2, δ−1}. Furthermore if ∆n < dαn
−2θ
2θ+1 for some dα > 0 and one of

the following holds: (i) θ ≥ 1
2 , (ii) supi ‖φi‖∞ <∞, θ > 0, then for any decay rate of (λi)i,

there exists k̃δ such that for all n ≥ k̃δ,

inf
P∈P

PH1{D̂2
MMD ≥ γ} < δ.

Remark 1 Note that the above theorem also holds asymptotically if the testing threshold γ
is chosen as the (1−α)-quantile of the asymptotic distribution of D̂2

MMD under H0, thereby
extending (Balasubramanian et al., 2021, Theorem 1), which only considers θ = 1

2 but
assuming µ0 = 0. In fact, the result holds for any threshold that converges in probability to
such an asymptotic quantile.

By providing the minimax separation rate w.r.t. P, the following result demonstrates
the non-optimality of the MMD test presented in Theorem 1.

Theorem 2 (Minimax separation boundary) If λi � i−β, β > 1, then there exists
c(α, δ) such that if

∆n ≤ c(α, δ)n
−4θβ
4θβ+1 , 0 ≤ δ ≤ 1− α,

then R∗∆n
:= infφ∈Φn,α R∆N,M

(φ) ≥ δ, provided one the following holds: (i) θ ≥ 1
2 , (ii)

supi ‖φi‖∞ <∞, θ ≥ 1
4β , where R∆n(φ) := supP∈P EPn [1− φ].

Suppose λi � e−τi, τ > 0, θ > 0. Then there exists c(α, δ, θ) and k such that if

∆n ≤ c(α, δ, θ)
√

log n

n
,

and n ≥ k, then for any 0 ≤ δ ≤ 1− α, R∗∆n
≥ δ.

11
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Remark 2 (i) Since infβ>1
4θβ

4θβ+1 = 4θ
4θ+1 >

2θ
2θ+1 and 1 > 2θ

2θ+1 for any θ > 0, it follows that
the separation boundary of MMD is larger than the minimax separation boundary w.r.t. P
irrespective of the decay rate of the eigenvalues of T .

(ii) In the setting of polynomial decay, Theorem 2 generalizes (Balasubramanian et al., 2021,
Theorem 4) in two ways: (a) When the uniform boundedness condition holds, the range of θ
for which the minimax separation rate holds is extended from 1

2β < θ < 1
2 to θ > 1

4β , and (b)
minimax separation is also obtained without assuming the uniform boundedness condition.

(iii) The uniform boundedness condition, supi ‖φi‖∞ < ∞ does not hold in general. For
example, the Gaussian kernel on Sd−1, d ≥ 3, does not satisfy the uniform boundedness
condition (Minh et al., 2006, Theorem 5), while the Gaussian kernel on Rd for any d
satisfies the uniform boundedness condition (Steinwart et al., 2006).

In this paper, we provide results both with and without the uniform boundedness condition
to understand its impact on the behavior of the test. Such a condition has also been used in
the analysis of the impact of regularization in kernel learning (see Mendelson and Neeman
2010, p. 531).

4. Spectral regularized MMD test

In this section, we propose a spectral regularized version of the MMD test and show it to be
minimax optimal w.r.t. P. The proposed test statistic is based on the spectral regularized
discrepancy, which is defined as

ηλ(P, P0) := 〈T gλ(T )u, u〉L2(P0), (8)

where u = dP
dP0
−1, gλ : (0,∞)→ (0,∞) is a spectral regularizer that satisfies limλ→0 xgλ(x) �

1 (more concrete assumptions on gλ will be introduced later), and

gλ(B) :=
∑
i≥1

gλ(τi)(ψi ⊗H ψi) + gλ(0)

I −
∑
i≥1

ψi ⊗H ψi

 ,

with B being any compact, self-adjoint operator defined on a separable Hilbert space, H.
Here (τi, ψi)i are the eigenvalues and eigenfunctions of B which enjoys the spectral represen-
tation, B =

∑
i τiψi⊗H ψi. The well known Tikhonov regularizer, (B+λI)−1, which is used

in Balasubramanian et al. (2021), is obtained as a special case by choosing gλ(x) = (x+λ)−1.
The key idea in proposing ηλ is based on the intuition that T gλ(T ) ≈ I for sufficiently

small λ so that ηλ(P, P0) ≈ ‖u‖2L2(P0), and therefore does not suffer from the limitation of

D2
MMD(P, P0) as aforementioned in Section 3 (see Lemma A.2).

Using ηλ, in the following, we present details about the construction of the test statistic
and the test. First, we provide an alternate representation for ηλ which is useful to construct
the test statistic. Define the covariance operator,

Σ0 := ΣP0 =

∫
X

(K(·, x)− µP0)⊗H (K(·, x)− µP0) dP0(x)

=
1

2

∫
X×X

(K(·, x)−K(·, y))⊗H (K(·, x)−K(·, y)) dP0(x) dP0(y),

12
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which is a positive, self-adjoint, trace-class operator. It can be shown (Sriperumbudur and
Sterge, 2022, Proposition C.2) that Σ0 = I∗I : H → H . Using this representation in (8)
yields

ηλ(P, P0) = 〈T gλ(T )u, u〉L2(P0) = 〈II∗gλ(II∗)u, u〉L2(P0)
(†)
= 〈Igλ(I∗I)I∗u, u〉L2(P0)

= 〈gλ(Σ0)I∗u, I∗u〉H = 〈gλ(Σ0)(µP − µP0), µP − µP0〉H

=
∥∥∥g1/2

λ (Σ0)(µP − µP0)
∥∥∥2

H
, (9)

where (†) follows from (Hagrass et al. (2024), Lemma A.8(i) by replacing ΣPQ by Σ0) that
T gλ(T ) = Igλ(Σ0)I∗. Throughout the paper, we assume that gλ satisfies the following:

(A1) sup
x∈Γ
|xgλ(x)| ≤ C1, (A2) sup

x∈Γ
|λgλ(x)| ≤ C2,

(A3) sup
{x∈Γ:xgλ(x)<B3}

|B3 − xgλ(x)|x2ϕ ≤ C3λ
2ϕ, (A4) inf

x∈Γ
gλ(x)(x+ λ) ≥ C4,

where Γ := [0, κ], ϕ ∈ (0, ξ] and the constant ξ is called the qualification of gλ. C1, C2,
C3, B3 and C4 are finite positive constants (all independent of λ > 0). Note that these
assumptions are quite standard in the inverse problem literature (see e.g., Engl et al., 1996)
and spectral regularized kernel ridge regression (Bauer et al., 2007), except for (A3), which
is replaced by a stronger version—the stronger version of (A3) takes supremum over whole
Γ. Recently, however, in a two-sample testing scenario, (Hagrass et al., 2024, Section 4.2)
use (A3). The less restrictive assumption (A3) implies that higher qualifications are possible
for the same function gλ in the testing problem compared to the known qualifications in the
literature of inverse problems and spectral regularized kernel ridge regression. For instance,
consider the function gλ(x) = 1

x+λ corresponding to Tikhonov regularization. In this case,

the stronger condition used in literature supx∈Γ |1 − xgλ(x)|x2ϕ ≤ C3λ
2ϕ is satisfied only

for ϕ ∈ (0, 1
2 ]. However, (A3) holds for any ϕ > 0, indicating infinite qualification with no

saturation at ϕ = 1
2 with B3 = 1

2 and C3 = 1.
Define Σ0,λ := Σ0 + λI,

N1(λ) := Tr(Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ ), and N2(λ) :=

∥∥∥Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ

∥∥∥
L2(H )

,

which capture the intrinsic dimensionality (or degrees of freedom) of H , with N1(λ) being
quite heavily used in the analysis of kernel ridge regression (e.g., Caponnetto and Vito
2007). Based on these preliminaries, in the following, we present an Oracle goodness-of-fit
test.

4.1 Oracle Test

Using the samples (Xi)
n
i=1, a U -statistic estimator of ηλ defined in (9) can be written as

η̂λ =
1

n(n− 1)

∑
i 6=j

〈
g

1/2
λ (Σ0)(K(·, Xi)− µ0), g

1/2
λ (Σ0)(K(·, Xj)− µ0)

〉
H
,

which when µ0 = 0 and gλ(x) = (x+λ)−1 reduces to the moderated MMD statistic proposed
in Balasubramanian et al. (2021). The following result provides an α-level test based on η̂λ.

13
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Theorem 3 (Critical region–Oracle) Let n ≥ 2. Suppose (A0)–(A2) hold. Then for
any α > 0 and any λ > 0,

PH0{η̂λ ≥ γ} ≤ α,

where γ = 2(C1+C2)N2(λ)
n
√
α

.

Unfortunately, the test is not practical as the critical value, γ, and the test statistic depend
on the eigenvalues and eigenfunctions of Σ0, which are not easy to compute for many (K,P0)
pairs. Therefore, we call the above test the Oracle test. The following result analyzes the
power of the Oracle test and presents sufficient conditions on the separation boundary to
achieve the desired power.

Theorem 4 (Separation boundary–Oracle) Suppose (A0)–(A3). Let

sup
P∈P

∥∥∥T −θu∥∥∥
L2(P0)

<∞,

‖Σ0‖L∞(H ) ≥ λ = dθ∆
1
2θ̃
n , dθ > 0, where dθ is a constant that depends on θ. For any

0 < δ ≤ 1, if ∆n satisfies

∆
2θ̃+1

2θ̃
n

N2

(
dθ∆

1
2θ̃
n

) & d−1
θ δ−2

n2
,

∆n

N2

(
dθ∆

1
2θ̃
n

) & (α−1/2 + δ−1)

n
.

then
inf
P∈P

PH1 {η̂λ ≥ γ} ≥ 1− δ, (10)

where γ = 2(C1+C2)N2(λ)
n
√
α

, and θ̃ = min(θ, ξ). Furthermore, suppose C := supi ‖φi‖∞ < ∞.

Then (10) holds when the above conditions on ∆n are replaced by

∆n

N1

(
dθ∆

1
2θ̃
n

) & δ−2

n2
,

∆n

N2

(
dθ∆

1
2θ̃
n

) & (α−1/2 + δ−1)

n
.

The following corollaries to Theorem 4 investigate the separation boundary of the test under
the polynomial and exponential decay condition on the eigenvalues of Σ0.

Corollary 5 (Polynomial decay–Oracle) Suppose λi � i−β, β > 1. Then for any δ >
0,

inf
P∈P

PH1 {η̂λ ≥ γ} ≥ 1− δ,

when

∆n =

 c(α, δ)n
−4θ̃β

4θ̃β+1 , θ̃ > 1
2 −

1
4β

c(α, δ)n
− 8θ̃β

4θ̃β+2β+1 , θ̃ ≤ 1
2 −

1
4β

,

with c(α, δ) & (α−1/2 + δ−2). Furthermore, if supi ‖φi‖∞ <∞, then

∆n = c(α, δ)n
−4θ̃β

4θ̃β+1 .

14



Regularized Kernel Goodness-of-Fit Tests

Corollary 6 (Exponential decay–Oracle) Suppose λi � e−τi, τ > 0. Then for any
δ > 0, there exists kα,δ such that for all n ≥ kα,δ,

inf
P∈P

PH1 {η̂λ ≥ γ} ≥ 1− δ,

when

∆n =

 c(α, δ, θ)
√

logn
n , θ̃ > 1

2

c(α, δ, θ)
(√

logn
n

) 4θ̃
2θ̃+1 , θ̃ ≤ 1

2

,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1
}

(α−1/2 + δ−2). Furthermore, if supi ‖φi‖∞ <∞, then

∆n = c(α, δ, θ)

√
log n

n
,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1

2θ̃
, 1
}

(α−1/2 + δ−2).

Remark 3 (i) Observe that larger qualification ξ (defined in Assumption (A3) in Section
4) corresponds to a smaller separation boundary. Therefore, it is important to work with
regularizers with infinite qualification, such as Tikhonov and Showalter. It has to be noted
that the Tikhonov regularizer has infinite qualification as per (A3) but has a qualification of
1
2 w.r.t. the stronger version of (A3).

(ii) Suppose gλ has infinite qualification, ξ =∞, then θ̃ = θ. Comparing Corollary 5 ( resp.
Corollary 6) and Theorem 2 shows that the spectral regularized test based on η̂λ is minimax
optimal w.r.t. P in the ranges of θ as given in Theorem 2 if the eigenvalues of T decay
polynomially ( resp. exponentially).

Outside these ranges of θ, the optimality of the test remains an open question since we
do not have a minimax separation covering these ranges of θ.

(iii) Corollary 5 recovers the minimax separation rate in Balasubramanian et al. (2021)
under the uniform boundedness condition but without assuming µ0 = 0. Furthermore, it
also presents the separation rate for the regularized MMD test without assuming both the
uniform boundedness condition and µ0 = 0, and shows a phase transition in the separation
rate depending on the value of θ̃.

4.2 Two-sample statistic

The Oracle test statistic requires the knowledge of µ0 and Σ0 for it to be computable.
Though P0 is known, Σ0 and µ0 are not known in closed form in general for many (K,P0)
pairs. To address this issue, in this section, we assume that P0 is samplable, i.e., a set
of i.i.d. samples from P0 are available or can be generated. To this end, let us say m + s

i.i.d. samples are available from P0 of which (Y 0
i )si=1

i.i.d∼ P0 are used to estimate Σ0 and

(X0
i )mi=1

i.i.d∼ P0 are used to estimate µ0, with (Y 0
i )si=1

i.i.d.
= (X0

i )mi=1. Note that we do not use
all m+ s samples to estimate both µ0 and Σ0. Instead, we do sample splitting so that the
estimators of Σ0 and µ0 are decoupled, which will turn out to be critical for the analysis.
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Based on this, ηλ can be estimated as a two-sample U -statistic (Hoeffding, 1992) as

η̂TSλ :=
1

n(n− 1)

1

m(m− 1)

∑
1≤i 6=j≤n

∑
1≤i′ 6=j′≤N

h(Xi, Xj , X
0
i′ , X

0
j′), (11)

where

h(Xi, Xj , X
0
i′ , X

0
j′) :=

〈
g

1/2
λ (Σ̂0)(K(·, Xi)−K(·, X0

i′)), g
1/2
λ (Σ̂0)(K(·, Xj)−K(·, X0

j′))
〉

H
,

and

Σ̂0 :=
1

2s(s− 1)

s∑
i 6=j

(K(·, Y 0
i )−K(·, Y 0

j ))⊗H (K(·, Y 0
i )−K(·, Y 0

j )),

is a one-sample U -statistic estimator of Σ0 based on (Y 0
i )si=1. Note that η̂TSλ is not exactly

a U -statistic since it involves Σ̂0, but conditioned on (Y 0
i )si=1, one can see that it is exactly

a two-sample U -statistic. By expanding the inner product in h and writing (11) as

η̂TSλ =
1

n(n− 1)

∑
i 6=j

〈
g

1/2
λ (Σ̂0)K(·, Xi), g

1/2
λ (Σ̂0)K(·, Xj)

〉
H

+
1

m(m− 1)

∑
i 6=j

〈
g

1/2
λ (Σ̂0)K(·, X0

i ), g
1/2
λ (Σ̂0)K(·, X0

j )
〉

H

− 2

nm

∑
i,j

〈
g

1/2
λ (Σ̂0)K(·, Xi), g

1/2
λ (Σ̂0)K(·, X0

j )
〉

H
,

the following result shows that η̂TSλ can be computed only through matrix operations and
by solving a finite-dimensional eigensystem.

Theorem 7 Let (λ̂i, α̂i)i be the eigensystem of 1
sH̃

1/2
s KsH̃

1/2
s where Ks := [K(Y 0

i , Y
0
j )]i,j∈[s],

Hs = Is − 1
s1s1

>
s , and H̃s = s

s−1Hs. Define

G :=
∑
i

(
gλ(λ̂i)− gλ(0)

λ̂i

)
α̂iα̂

>
i .

Then

η̂TSλ =
1

n(n− 1)

(
1 − 2

)
+

1

m(m− 1)

(
3 − 4

)
− 2

nm
5 ,

where

1 = 1>n

(
gλ(0)Kn +

1

s
KnsH̃

1/2
s GH̃

1/2
s K>ns

)
1n,

2 = Tr

(
gλ(0)Kn +

1

s
KnsH̃

1/2
s GH̃

1/2
s K>ns

)
,

3 = 1>m

(
gλ(0)Km +

1

s
KmsH̃

1/2
s GH̃

1/2
s K>ms

)
1m,

4 = Tr

(
gλ(0)Km +

1

s
KmsH̃

1/2
s GH̃

1/2
s K>ms

)
, and

5 = 1>m

(
gλ(0)Kmn +

1

s
KmsH̃

1/2
s GH̃

1/2
s K>ns

)
1n,
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with Kn := [K(Xi, Xj)]i,j∈[n], Km := [K(X0
i , X

0
j )]i,j∈[m], Kns := [K(Xi, Y

0
j )]i∈[n],j∈[s],

Kms := [K(X0
i , Y

0
j )]i∈[m],j∈[s], and Kmn := [K(X0

i , Xj)]i∈[m],j∈[n].

Note that in the case of Tikhonov regularization, G = −1
λ (1

sH̃
1/2
s KsH̃

1/2
s + λIs)

−1. The
complexity of computing η̂TSλ is given by O(s3 + m2 + n2 + ns2 + ms2). We would like to
mention that since η̂TSλ is based on two sets of samples, a result very similar to Theorem 7
is presented in (Hagrass et al., 2024, Theorem 3) in the context of two-sample testing.

4.3 Spectral regularized concentration test (SRCT)

By applying Chebyshev inequality to η̂TSλ under H0, the following result provides an α-level
test, which we refer to as SRCT.

Define N̂2(λ) :=
∥∥∥Σ̂
−1/2
0,λ Σ̂0Σ̂

−1/2
0,λ

∥∥∥
L2(H )

.

Theorem 8 (Critical region–SRCT) Let n ≥ 2 and m ≥ 2. Suppose (A0)–(A2) hold.
Then for any α > 0, c1 ≥ 65 and 4c1κ

s max{log 96κs
α , log 12

α } ≤ λ ≤ ‖Σ0‖L∞(H ),

PH0

{
η̂TSλ ≥ γ

}
≤ α,

where γ = 12(C1+C2)N̂2(λ)
b1
√
α

(
1
n + 1

m

)
, b1 =

√
4
9 −

16
3
√

3c1
− 32

9c1
. Furthermore, if C := supi ‖φi‖∞ <

∞, the above bound holds for 4c1C
2N1(λ) log 48N1(λ)

α ≤ s.

Note that unlike in the Oracle test, the threshold γ and the test statistic η̂TSλ in the above

result is completely data-driven and computable, with N̂2(λ) being computed based on
(λ̂i)i from Theorem 7. The following result provides sufficient conditions on the separation
boundary to achieve the desired power.

Theorem 9 (Separation boundary-SRCT) Suppose (A0)–(A4) and m ≥ n. Let

sup
P∈P

∥∥∥T −θu∥∥∥
L2(P0)

<∞,

‖Σ0‖L∞(H ) ≥ λ = dθ∆
1
2θ̃
n , dθ > 0, where dθ is a constant that depends on θ. For any

0 < δ ≤ 1, if s ≥ 32c1κλ
−1 log(max{17920κ2λ−1, 6}δ−1) and ∆n satisfies

∆
2θ̃+1

2θ̃
n

N2

(
dθ∆

1
2θ̃
n

) & d−1
θ δ−2

n2
,

∆n√
N1

(
dθ∆

1
2θ̃
n

) & (α−1/2 + δ−1)

n
,

then
inf
P∈P

PH1

{
η̂TSλ ≥ γ

}
≥ 1− 4δ, (12)

where γ = 12(C1+C2)N̂2(λ)
b1
√
α

(
1
n + 1

m

)
, b1 =

√
4
9 −

16
3
√

3c1
− 32

9c1
, c1 ≥ 65 and θ̃ = min(θ, ξ). Fur-

thermore, suppose C := supi ‖φi‖∞ < ∞. Then (12) holds if s ≥ 32c1C
2N1(λ) log 32N1(λ)

δ
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and when the above conditions on ∆n are replaced by

∆n

N1

(
dθ∆

1
2θ̃
n

) & δ−2

n2
,

∆n√
N1

(
dθ∆

1
2θ̃
n

) & (α−1/2 + δ−1)

n
.

Remark 4 (i) Comparing the conditions on the separation boundary in Theorem 9 to those
of Theorem 4, it is easy to verify that the claims in Corollaries 5 and 6 also hold for SRCT.
Therefore, SRCT achieves minimax optimality in the same ranges of θ as the Oracle test.

(ii) In the case of polynomial decay, when θ̃ > 1
2 −

1
4β , the condition on s—the number of

samples needed to estimate the covariance operator Σ0—reduces to s & n
2β

4θβ+1 log n, which is
of sub-linear order and is implied if s & n log n. When θ̃ ≤ 1

2−
1

4β , the condition becomes s &

n
4β

4θβ+2β+1 log n which is implied for any θ and β if s & n2 log n. Furthermore, under uniform

boundedness, the condition on s becomes s & n
2

4θβ+1 log n which is of sublinear order for

θ > 1
4β . In case of exponential decay, for θ > 1

2 , the condition is s & n
1
2θ (log n)1− 1

4θ , which

is implied for any θ > 1
2 , if s & n

√
log n. For θ < 1

2 , the condition is s & n
2

2θ+1 (log n)
2θ

2θ+1

which is implied if s & n2. Furthermore, if supi ‖φi‖∞ < ∞ holds, then the condition is
s & (log n)(log logn).

4.4 Spectral regularized permutation test (SRPT)

Instead of using a concentration inequality-based test threshold as in SRCT, in this section,
we study the permutation approach to compute the test threshold (Lehmann and Romano,
2006; Pesarin and Salmaso, 2010; Kim et al., 2022). We refer to the resulting test as
SRPT. We show that SRPT achieves a minimax optimal separation boundary with a better
constant compared to that of SRCT.

Recall that our test statistic defined in Section 4.2 involves three sets of independent

samples, (Xi)
n
i=1

i.i.d.∼ P , (X0
j )mj=1

i.i.d.∼ P0, (Y 0
i )si=1

i.i.d.∼ P0. Define (Ui)
n
i=1 := (Xi)

n
i=1, and

(Un+j)
m
j=1 := (X0

j )mj=1. Let Πn+m be the set of all possible permutations of {1, . . . , n+m}
with π ∈ Πn+m being a randomly selected permutation from the D possible permutations,
where D := |Πn+m| = (n+m)!. Define (Xπ

i )ni=1 := (Uπ(i))
n
i=1 and (X0π

j )mj=1 := (Uπ(n+j))
m
j=1.

Let η̂πλ := η̂TSλ (Xπ, X0π, Y 0) be the statistic based on the permuted samples, and (πi)Bi=1 be

B randomly selected permutations from Πn+m. For simplicity, define η̂iλ := η̂π
i

λ to represent
the statistic based on permuted samples w.r.t. the random permutation πi. Given the
samples (Xi)

n
i=1, (X0

j )mj=1 and (Y 0
i )si=1, define

Fλ(x) :=
1

D

∑
π∈Πn+m

1(η̂πλ ≤ x)

to be the permutation distribution function, and define

qλ1−α := inf{q ∈ R : Fλ(q) ≥ 1− α}.
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Furthermore, we define the empirical permutation distribution function based on B random
permutations as

F̂Bλ (x) :=
1

B + 1

B∑
i=0

1(η̂iλ ≤ x),

where η̂0
λ = η̂TSλ and define

q̂B,λ1−α := inf{q ∈ R : F̂Bλ (q) ≥ 1− α}.

Based on these notations, the following result presents an α-level test with a completely
data-driven critical level.

Theorem 10 (Critical region–SRPT) For any 0 < α ≤ 1, PH0{η̂TSλ ≥ q̂B,λ1−α} ≤ α.

It is well known that the permutation approach exactly controls the type-I error. This
follows from the exchangeability of samples under H0 and the definition of qλ1−α. Next,
similar to Theorem 9, the following result provides general conditions under which the
power can be controlled.

Theorem 11 (Separation boundary–SRPT) Suppose (A0)–(A4) hold. Let m ≥ n,

sup
P∈P

∥∥∥T −θu∥∥∥
L2(P0)

<∞,

‖Σ0‖L∞(H ) ≥ λ = dθ∆
1
2θ̃
n , for some dθ > 0, where dθ is a constant that depends on θ.

For any 0 < δ ≤ 1, if n ≥ d3δ
−1/2 log 1

α for some d3 > 0, B ≥ 3
α2

(
log 2δ−1 + α(1− α)

)
,

s ≥ 280κλ−1 log(17920κ2λ−1δ−1) and ∆n satisfies

∆
2θ̃+1

2θ̃
n

N2

(
dθ∆

1
2θ̃
n

) & d−1
θ (δ−1 log(1/α̃))2

n)2
,

∆n

N2

(
dθ∆

1
2θ̃
n

) & δ−1 log(1/α̃)

n
,

then

inf
P∈P

PH1

{
η̂TSλ ≥ q̂B,λ1−α

}
≥ 1− 5δ, (13)

where θ̃ = min(θ, ξ). Furthermore, suppose C := supi ‖φi‖∞ < ∞. Then (13) holds if

s ≥ 136C2N1(λ) log 32N1(λ)
δ and when the above conditions on ∆n are replaced by

∆n

N1

(
dθ∆

1
2θ̃
n

) & (δ−1 log(1/α̃))2

n2
,

∆n

N2

(
dθ∆

1
2θ̃
n

) & δ−1 log(1/α̃)

n
.

Corollary 12 Suppose λi � i−β, β > 1. Then for any δ > 0,

inf
P∈P

PH1

{
η̂TSλ ≥ q̂B,λ1−α

}
≥ 1− 5δ,
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when

∆n =

 c(α, δ)n
−4θ̃β

4θ̃β+1 , θ̃ > 1
2 −

1
4β

c(α, δ)n
− 8θ̃β

4θ̃β+2β+1 , θ̃ ≤ 1
2 −

1
4β

,

with c(α, δ) & δ−2(log 1
α)2. Furthermore, if supi ‖φi‖∞ <∞, then

∆n = c(α, δ)n
−4θ̃β

4θ̃β+1 .

Corollary 13 Suppose λi � e−τi, τ > 0. Then for any δ > 0, there exists kα,δ such that
for all n ≥ kα,δ,

inf
(P,Q)∈P

PH1

{
η̂TSλ ≥ q̂B,λ1−α

}
≥ 1− 2δ,

when

∆n =

 c(α, δ, θ)
√

logn
n , θ̃ > 1

2

c(α, δ, θ)
(√

logn
n

) 4θ̃
2θ̃+1 , θ̃ ≤ 1

2

,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1
}
δ−2(log 1

α)2. Furthermore, if supi ‖φi‖∞ <∞, then

∆n = c(α, δ, θ)

√
log n

n
,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1

2θ̃
, 1
}
δ−2(log 1

α)2.

The above results demonstrate the minimax optimality w.r.t. P of the permutation-based
test constructed in Theorem 10. Since the conditions on s in Theorem 11 match those of
Theorem 9, the discussion in Remark 4(ii) also applies for SRPT.

Remark 5 Recently, Hagrass et al. (2024) proposed a spectral regularized two-sample test
( SR2T) where the test statistic has a close resemblance to η̂TSλ . Since we are solving a
goodness-of-fit test question as a two-sample test, one could simply address it using SR2T,
and therefore one may wonder about the need for the proposal of SRCT and SRPT, given
their similarity to SR2T. While this is a valid question, comparing Corollaries 12 and 13 to
that of (Hagrass et al., 2024, Corollaries 6, 7), we observe that while all these tests enjoy
minimax separation rates over the same range of θ̃, for the range of θ̃ where the minimaxity
of separation rate is not established, the proposed tests have faster convergence rate than
that of SR2T, thereby demonstrating the advantage of the proposed tests over SR2T (see
Section 1.2 for details).

4.5 Adaptation

In the previous sections, we have discussed two ways of constructing a test based on the
statistic η̂TSλ .

In both these tests, the optimal λ to achieve the minimax separation boundary depends
on unknown θ and β. In this section, we construct a test based on the union (aggregation)
of multiple tests constructed for different values of λ taking values in a finite set, Λ. It turns
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out that the resultant test is guaranteed to be minimax optimal (up to log factors) for a
wide range of θ (and β in the case of polynomially decaying eigenvalues). The aggregation
method is quite classical and we employ the technique as used in Hagrass et al. (2024).

Define Λ := {λL, 2λL, ... , λU}, where λU = 2bλL, for b ∈ N so that |Λ| = b + 1 =
1 + log2

λU
λL

, where |Λ| is the cardinality of Λ.
Let λ∗ be the optimal λ that yields minimax optimality. The key idea is to choose

λL and λU such that there is an element in Λ that is close to λ∗ for any θ (and β in the
case of polynomially decaying eigenvalues). Define v∗ := sup{x ∈ Λ : x ≤ λ∗}. Then
it is easy to verify that v∗ � λ∗, i.e., v∗ is also an optimal choice for λ that belongs to
Λ, since for λL ≤ λ∗ ≤ λU , we have λ∗

2 ≤ v∗ ≤ λ∗. Motivated by this, in Theorems 14
and 16, we construct α-level tests that are adaptive versions of SRCT and SRPT, based
on the union of corresponding tests over λ ∈ Λ that rejects H0 if one of the tests rejects
H0. The separation boundary of these tests are analyzed in Theorems 15 and 17 under
the polynomial and exponential decay rates of the eigenvalues of T . These results show
that the adaptive versions achieve the same performance (up to log factors) as that of the
Oracle test, i.e., minimax optimal w.r.t. P over the range of θ mentioned in Theorem 2,
without requiring the knowledge of λ∗. In contrast, (Balasubramanian et al., 2021, Theorem
5) considers an adaptive and asymptotic version of the Oracle test under µ0 = 0 and the
uniform boundedness condition, where it only adapts over θ assuming β is known.

The following results relate to the adaptive version of SRCT.

Theorem 14 (Critical region–adaptation–SRCT) Suppose (A0)–(A2). Then for any
α > 0, 32c1κ

s max{log 96κs
α̃ , log 12

α̃ } ≤ λL ≤ λU ≤ ‖Σ0‖L∞(H ), where α̃ = α
|Λ| , c1 ≥ 65.

PH0

{
sup
λ∈Λ

η̂TSλ

N̂2(λ)
≥ γ

}
≤ α,

where γ = 12(C1+C2)

b1
√
α̃

(
1
n + 1

m

)
, b1 =

√
4
9 −

16
3
√

3c1
− 32

9c1
. Furthermore if C := supi ‖φi‖∞ <

∞, the above bound holds for 4c1C
2N1(λL) log 48N1(λL)

δ ≤ s.

Theorem 15 (Separation boundary–adaptation–SRCT) Suppose (A0)–(A4) hold, θ̃ =
min(θ, ξ), ξ̃ = max(ξ, 1

4), supθ>0 supP∈P
∥∥T −θu∥∥

L2(P0)
< ∞, ‖Σ0‖L∞(H ) ≥ λU , θl > 0,

m ≥ n, and 0 < α ≤ 1. Then for any δ > 0 and γ defined as in Theorem 14,

inf
θ≥θl

inf
P∈P

PH1

{
sup
λ∈Λ

η̂TSλ

N̂2(λ)
≥ γ

}
≥ 1− 4δ,

provided one of the following cases holds:

(i) λi � i−β, 1 < β ≤ βU , λL = r1n
−4βU
1+2βU , λU = r2

(
n√

logn

) −2

4ξ̃+1 for r1, r2 > 0, s ≥
32c1κλ

−1
L log(max{17920κ2λ−1

L , 6}δ−1), and

∆n = c(α, δ) max

n −8θ̃β

1+2β+4θ̃β ,

(
n√

log n

) −4θ̃β

4θ̃β+1

 .
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Furthermore if C := supi ‖φi‖
2
∞ < ∞, then the above conditions on λL, λU and

s can be replaced by λL = r3

(
n√

logn

) −2βU
4θlβU+1

, λU = r4

(
n√

logn

) −2
4ξ+1

for r3, r4 > 0,

s ≥ 32c1C
2N1(λL) log 32N1(λL)

δ , and

∆n = c(α, δ)

(
n√

log n

) −4θ̃β

4θ̃β+1

,

where c(α, δ) & (α−1/2 + δ−2).

(ii) λi � e−τi, τ > 0, λL = r5

(
n√

logn

)−2
, λU = r6

(
n

logn

)−1/2ξ̃
for some r5, r6 > 0,

s ≥ 32c1κλ
−1
L log(max{17920κ2λ−1

L , 6}δ−1), and

∆n & c(α, δ, θ) max


(

n

log n

)−1

,

(
n√

log n

)− 4θ̃
2θ̃+1

 ,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1
}

(α−1/2 + δ−2). Furthermore if C := supi ‖φi‖
2
∞ <∞,

then the above conditions on λL, λU and s can be replaced by λL = r7

(
n

log logn

)−1/2θl
,

λU = r8

(
n

log logn

)−1/2ξ
for some r7, r8 > 0, s ≥ 32c1C

2N1(λL) log 32N1(λL)
δ and

∆n = c(α, δ, θ)
log n

n
,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1

2θ̃
, 1
}

(α−1/2 + δ−2).

The following results handle the adapted version of SRPT, which show that the adapted
test is minimax optimal w.r.t. P up to a log log n factor.

Theorem 16 (Critical region–adaptation–SRPT) For any 0 < α ≤ 1,

PH0

{⋃
λ∈Λ

η̂TSλ ≥ q̂B,λ1− α
|Λ|

}
≤ α.

Theorem 17 (Separation boundary–adaptation–SRPT) Suppose (A0)–(A4) hold, θ̃ =
min(θ, ξ), ξ̃ = max(ξ, 1

4), supθ>0 supP∈P
∥∥T −θu∥∥

L2(P0)
< ∞, and m ≥ n. Then for any

δ > 0, B ≥ 3
α̃2

(
log 2δ−1 + α̃(1− α̃)

)
, 0 < α ≤ e−1, α̃ = α

|Λ| , θl > 0, we have

inf
θ>θl

inf
P∈P

PH1

{⋃
λ∈Λ

η̂TSλ ≥ q̂B,λ1− α
|Λ|

}
≥ 1− 5δ,

provided one of the following cases holds:
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(i) λi � i−β, 1 < β ≤ βU , λL = r1

(
n

log logn

) −4βU
1+2βU , λU = r2

(
n

log logn

) −2

4ξ̃+1 for r1, r2 > 0,

s ≥ 32c1κλ
−1
L log(max{17920κ2λ−1

L , 6}δ−1), and

∆n = c(α, δ) max


(

n

log log n

) −8θ̃β

1+2β+4θ̃β

,

(
n

log logn

) −4θ̃β

4θ̃β+1

 .

Furthermore if C := supi ‖φi‖
2
∞ < ∞, then the above conditions on λL, λU and s

can be replaced by λL = r3

(
n

log logn

) −2βU
4θlβU+1

, λU = r4

(
n

log logn

) −2
4ξ+1

for r3, r4 > 0,

s ≥ 32c1C
2N1(λL) log 32N1(λL)

δ , and

∆n = c(α, δ)

(
n

log logn

) −4θ̃β

4θ̃β+1

,

where c(α, δ) & δ−2(log 1
α)2.

(ii) λi � e−τi, τ > 0, λL = r5

(
n√

logn log logn

)−2
, λU = r6

(
n√

logn log logn

)−1/2ξ̃
for some

r5, r6 > 0, s ≥ 32c1κλ
−1
L log(max{17920κ2λ−1

L , 6}δ−1), and

∆n & c(α, δ, θ) max


(

n√
log n log logn

)−1

,

(
n√

log n log log n

)− 4θ̃
2θ̃+1

 ,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1
}
δ−2(log 1

α)2. Furthermore if C := supi ‖φi‖
2
∞ < ∞,

then the above conditions on λL, λU and s can be replaced by

λL = r7

(
n√

log n log log n

)−1/2θl

, λU = r8

(
n√

log n log log n

)−1/2ξ

for some r7, r8 > 0, s ≥ 4c1C
2N1(λL) log 8N1(λL)

δ and

∆n = c(α, δ, θ)

√
log n log logn

n
,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1

2θ̃
, 1
}
δ−2(log 1

α)2.

The discussion so far has dealt with adapting to unknown θ and β associated with a
given kernel. The natural question is how to choose the kernel, for example, suppose the
kernel is a Gaussian kernel, then what is the right choice of bandwidth? This is an important
question because it is not easy to characterize the class of kernels that satisfy the range
space and eigenvalue decay conditions for a given P0. This question can be addressed by
starting with a family of kernels, K and constructing an adaptive test by taking the union
of tests jointly over λ ∈ Λ and K ∈ K, so that the resulting test is jointly adaptive over
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λ and the kernel class K. This idea has been explored recently in (Hagrass et al., 2024,
Section 4.5) to construct a minimax optimal (up to a log factor) test that is jointly adaptive
to both λ and K (K is assumed to be finite). Since the same idea can be explored for SRCT
and SRPT to create kernel adaptive tests that yield results that are similar to those of
Theorems 14–17 along with their proofs, we skip the details here and encourage the reader
to refer to Hagrass et al. (2024).

5. Experiments

In this section, we investigate the empirical performance of the proposed regularized goodness-
of-fit tests, SRCT and SRPT with adaptation to λ and the kernel. Note that SRCT and
SRPT are approximations to the Oracle test, since the latter is not easy to compute in gen-
eral. In Section 5.1, using a periodic spline kernel, we compare the performance of SRPT to
the moderated MMD (M3D) test (i.e., Oracle test) of Balasubramanian et al. (2021), which
requires the knowledge of the eigenvalues and eigenfunctions of the kernel with respect to P0.
Since SRCT and SRPT can be treated as two-sample tests, in Sections 5.2–5.4, we compare
their performance to other popular two-sample tests in the literature such as adaptive MMD
test (MMDAgg) (Schrab et al., 2021), Energy test (Szekely and Rizzo, 2004), Kolmogorov-
Smirnov (KS) test (Puritz et al., 2022; Fasano and Franceschini, 1987) and the spectral regu-
larized two sample test (SR2T) proposed in Hagrass et al. (2024) with Showalter regulariza-

tion. For these experiments we used Gaussian kernel, defined as K(x, y) = exp
(
−‖x−y‖

2
2

2h

)
,

where h is the bandwidth. For our tests, we construct adaptive versions by taking the
union of tests jointly over λ ∈ Λ and h ∈ W . Let η̂λ,h be the test statistic based on λ

and bandwidth h. We reject H0 if η̂λ,h ≥ q̂B,λ,h1− α
|Λ||W |

for any (λ, h) ∈ Λ × W . We per-

formed such a test for Λ := {λL, 2λL, ... , λU}, and W := {wLhm, 2wLhm, ... , wUhm}, where
hm := median{‖q − q′‖22 : q, q′ ∈ X ∪X0}, X := (X1, . . . , Xn) and X0 := (X0

1 , . . . , X
0
m). In

our experiments, we set λL = 10−6, λU = 5, wL = 0.01 and wU = 100. All tests are repeated
200 times and the average power is reported. For all experiments, we set α = 0.05. For the
tests SRPT and SR2T, we set the number of permutations to B = 60 and the number of
samples used to estimate the covariance operator to s = 100.

5.1 Periodic spline kernel & perturbed uniform distribution: Oracle test

In this section, we compare the power of SRPT to that of M3D Balasubramanian et al.
(2021). To be able to compute the M3D test, we use the periodic spline kernel, defined as

K(x, y) = (−1)r−1

(2r)! B2r([x− y]), where Br is the Bernoulli polynomial and [t] is the fractional

part of t. We set r = 1 and consider testing uniformity on the unit interval X = [0, 1].
Under this setting, the eigenvalues and eigenfunctions of K are known explicitly (see Bal-
asubramanian et al., 2021, Section 5 for details) so that the test statistic can be exactly
computed. We examine testing the null hypothesis of uniform distribution against per-
turbed uniform distribution (see Hagrass et al., 2024, Section 5.1.1 for details), where the
perturbed uniform distribution is indexed by a parameter P that characterizes the degree of
perturbation. The larger the P is, the associated distribution is closer to uniform, implying
that it becomes more difficult to distinguish between the null and the alternative. Figure 1
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Figure 1: Oracle test (M3D) and SRPT to test for uniformity using periodic spline kernel on
[0, 1]. P denotes the degree of perturbation where large P makes the alternative
distribution (i.e., the perturbed uniform distribution) to be closer to the null
(uniform distribution).

shows the power of SRPT in comparison to M3D for varying sample sizes n. SRPT(m = n)
and SRPT(m = 3n) refer to our proposed permutation test while setting m = n, and
m = 3n respectively (recall that m is the number of samples from P0 used to estimate the
mean function µP0). We can observe that SRPT with enough samples from P0 can yield
power almost as good as M3D (Oracle test), while not requiring the exact eigenvalues and
eigenfunctions of T . We also observe that s (the number of samples used to estimate the
covariance operator, Σ0) does not have much significance on the power and the choice of
s = 100 seems to be good enough to accurately estimate Σ0.

Other than this experiment, unfortunately, we are not able to replicate any other ex-
periment from (Balasubramanian et al., 2021) since no details about the parameter settings
of the null and the alternative distributions are provided (i.e., if P0 is normal, its mean
and variance are not mentioned). Moreover, the exact details about the computation of the
eigenvalues and eigenfunctions of T are not provided.

Remark 6 Theorem 17 states that choosing any m ≥ n should be enough to achieve the
same separation boundary up to constants as the Oracle test. Using m = 3n as compared
to m = n will theoretically yield the same separation boundary in terms of n but with a
better constant closer to that of the Oracle test. To demonstrate this point, for the rest of
the experiments, we used m = 3n.

5.2 Gaussian distribution

In this section, we examine the Gaussian location shift and covariance scale problems, where
the observed samples are generated from a Gaussian distribution with a shifted mean or
scaled covariance matrix (by scaling the diagonal elements of the identity matrix). The
goal is to test the null hypothesis of standard Gaussian distribution. Figure 2(a) shows the
power for different mean shifts and different dimensions from which we note that the Energy
test gives the best power closely followed by the SRPT test. Figure 2(b) shows the result
for different choices of s for both SRCT and SRPT tests with Showalter regularization. We
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Figure 2: Power for Gaussian shift experiments with different d and s using n = 200.

can see that SRPT is not very sensitive to the choice of s as opposed to SRCT, which seems
to give higher power for lower values of s, however with the cost of a worse Type-I error
(shown at mean shift = 0). We can see that the choice of s = 100 controls both power and
Type-I error for SRCT and for this choice of s = 100, the permutation test SRPT yields a
higher power while still controlling the Type-I error. Similarly, Figure 3 shows the power for
different scaling factors with different dimensions and different choices of s, demonstrating
similar results.

5.3 Perturbed uniform distribution

In this part, we examine testing the null hypothesis of uniform distribution against per-
turbed uniform distribution for different values of perturbation, P (see Hagrass et al., 2024,
Section 5.1.1 for details). Figure 4(a) shows the result for d ∈ {1, 2} for different perturba-
tions, wherein we can see that the highest power is achieved by SRPT. Figure 4(b) shows
the power for SRCT and SRPT for different choices of s, with P = 0 corresponding to no
perturbations and thus showing Type-I error. Similar to the observation from the previous
section, SRPT is not very sensitive to the choice of s, while SRCT is sensitive to s, with
s = 50 and s = 200 being the reasonable choices, respectively for d = 1 and d = 2 that
controls both power and Type-I error.

5.4 Directional data

In this section, we investigate two experiments involving directional domains, where we focus
on testing for a multivariate von Mises-Fisher distribution, which serves as the Gaussian

analog on the unit sphere defined by the density f(x, µ, k) = kd/2−1

2πd/2Id/2−1(k)
exp(kµTx), x ∈
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Figure 3: Power for Gaussian covariance scale experiments with different d and s using
n = 200.

Figure 4: Power for perturbed uniform distributions for d = 1 (n = 500) and d = 2 (n =
2000).

Sd−1, with k ≥ 0 being the concentration parameter, µ being the mean parameter and
I being the modified Bessel function. Figure 5(a) shows the results for testing von Mises-
Fisher distribution against spherical uniform distribution (k = 0) for different concentration
parameters. We can see from Figure 5(a) that the best power is achieved by the Energy
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Figure 5: Power for von Mises-Fisher distribution with different concentration parameter k
and s using n = 500.

test followed closely by SRPT. Figure 5(b) shows that SRPT is less sensitive to the choice
of s as opposed to SRCT which achieves its best power at s = 100 while still controlling
the Type-I error. In the second experiment, we explore a mixture of two multivariate
Watson distributions, representing axially symmetric distributions on a sphere, given by
f(x, µ, k) = Γ(d/2)

2πd/2M(1/2,d/2.κ)
exp(k(µTx)2), x ∈ Sd−1, where k ≥ 0 is the concentration

parameter, µ is the mean parameter and M is Kummer’s confluent hypergeometric function.
Using equal weights we drew 500 samples from a mixture of two Watson distributions
with similar concentration parameter k and mean parameter µ1, µ2 respectively, where
µ1 = (1, . . . , 1) ∈ Rd and µ2 = (−1, 1 . . . , 1) ∈ Rd. Figure 6(a) shows the power against
spherical uniform distribution for different concentration parameters. We can see that SRPT
outperforms all the other methods. Figure 6(b) shows how the power and Type-I error are
affected by the choice of s, which similar to the previous sections shows that SRPT is not
very sensitive to s, while SRCT achieves its best power while still controlling for Type-I
error at s = 100.

6. Discussion

To summarize, in this work, we have extended and generalized the theoretical properties of
the Oracle test proposed by Balasubramanian et al. (2021) by employing a general spectral
regularization approach, wherein we obtained sufficient conditions for the separation bound-
ary under weaker assumptions and for a wider range of alternatives. Under the assumption
that we have access to samples from P0, we addressed the problem of the practicality of the
Oracle test by proposing two completely data-driven tests (SRCT and SRPT) that adapt to
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Figure 6: Power for mixture of Watson distributions with different concentration parameter
k and s using n = 500.

the choice of the kernel, the eigenvalue decay rate and the smoothness of the likelihood ratio,
while still being minimax optimal (up to logarithmic factors) w.r.t. P. Through numerical
experiments, we established the superior performance of the proposed spectral regularized
tests over the MMD-based test and the closely related two-sample test proposed in Hagrass
et al. (2024).

However, there are still some open questions for future consideration: (i) Improving the
computational complexity of the proposed tests using approximation schemes like random
Fourier features (Rahimi and Recht, 2008), Nyström method (e.g., Williams and Seeger
2001; Drineas and Mahoney 2005) or sketching (Yang et al., 2017), and studying the com-
putational vs. statistical trade-off for the approximate test. (ii) The proposed test requires
access to i.i.d. samples from P0, which might not be easy to generate or easily available.
As an alternative, instead of regularizing w.r.t. Σ̂P0 (i.e., the empirical covariance operator
estimated based on the samples from P0), one can regularize with respect to Σ̂P (i.e., the
empirical covariance operator estimated from the available samples drawn from P ). How-
ever, even this approach is not practical unless the mean element µ0 is computable, which
need not be the case. To completely get around this issue, we can consider applying the idea
of spectral regularization to Kernel Stein Discrepancy (KSD) (Chwialkowski et al., 2016;
Liu et al., 2016) which does not require computing any integrals with respect to P0, and
study its minimax optimality.
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7. Proofs

In this section, we present the proofs of the main results of the paper.

7.1 Proof of Theorem 1

Define b(x) = K(·, x)−µP and a(x) = b(x) + (µP −µ0) = K(·, x)−µ0,. Thus we can write,

D̂2
MMD =

1

n(n− 1)

∑
i 6=j
〈a(Xi), a(Xj)〉H

=
1

n(n− 1)

∑
i 6=j
〈b(Xi), b(Xj)〉H +

2

n

n∑
i=1

〈b(Xi), (µP − µ0)〉H +D2
MMD

= I1 + I2 +D2
MMD,

where

I1 =
1

n(n− 1)

∑
i 6=j
〈b(Xi), b(Xj)〉H , and I2 =

2

n

n∑
i=1

〈b(Xi), (µP − µ0)〉H .

so that E[(D̂2
MMD −D2

MMD)2] = EP (I1 + I2)2 ≤ 2EP (I2
1 ) + 2EP (I2

2 ). Next, following similar
ideas as in the proofs of (Hagrass et al., 2024, Lemmas A.4, A.5), we can bound I1 and I2

as

E
(
I2

1

)
≤ 4

n2
‖ΣP ‖2L2(H ) , and E

(
I2

2

)
≤ 4

n
‖ΣP ‖L∞(H ) ‖µP − µ0‖2H ,

respectively. Combining these bounds yields that

E[(D̂2
MMD −D2

MMD)2] .
1

n2
+
D2

MMD

n
. (14)

When P = P0, we have D2
MMD = 0. Therefore under H0,

E[(D̂2
MMD)2] ≤

4 ‖Σ0‖2L2(H )

n2

(∗)
≤ 16κ2

n2
, (15)

where in (∗) we used where in (∗) we used ‖Σ0‖2L2(H ) ≤ 4κ2. Thus using (15) and Cheby-
shev’s inequality yields

PH0{D̂2
MMD ≥ γ} ≤ α,

where γ = 4κ√
αn
.

Next, we use the bound in (14) to bound the power. Let γ1 = 1√
δn

+

√
D2

MMD√
δ
√
n

. Then

PH1{D̂2
MMD ≥ γ}

(∗)
≥ PH1{D̂2

MMD > D2
MMD − γ1}

≥ PH1{|D̂2
MMD −D2

MMD| ≤ γ1}
(∗∗)
≥ 1− δ,
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where (∗) holds when D2
MMD ≥ γ + γ1, which is implied if D2

MMD &
1
n , which in turn is

implied if ‖u‖2L2(P0) & n
−2θ
2θ+1 , where the last implication follows from (Hagrass et al., 2024,

Lemma A.19). (∗∗) follows from (14) and an application of Chebyshev’s inequality. The
desired result, therefore, holds by taking infimum over P ∈ P.

Finally, we will show that we cannot achieve a rate better than n
−2θ
2θ+1 over P. Recall

that T =
∑

i∈I λiφ̃i ⊗L2(P0) φ̃i. Let φ̄i = φi − EP0φi, where φi = I∗φ̃i
λi

. Then Iφ̄i = Iφi =
T φ̃i
λi

= φ̃i. Assuming λi = h(i), where h is an invertible, continuous function (for example

h = i−β and h = e−τi correspond to polynomial and exponential decays respectively), let

k = bh−1(n
−1

2θ+1 )c, hence λk = n
−1

2θ+1 . Define

f := bφ̄k,

where b <
√

4κ
4
√
α

. Then ‖f‖2L2(P0) = b2 . 1, and thus f ∈ L2(P0). Define

ũ := T θf = bλθkφ̃k, and u := bλθkφ̄k.

Note that EP0u = bλθkEP0 φ̄k = 0. Since Iu = ũ, we have u ∈ [ũ]∼ ∈ Ran(T θ), ‖u‖2L2(P0) =

b2λ2θ
k > ∆n. Next we bound |u(x)| in the following two cases.

Case I: θ ≥ 1
2 and supi ‖φi‖∞ is not finite.

Note that

|u(x)| = bλθk |〈k(·, x)− µ0, φk〉H | ≤ bλ
θ
k ‖k(·, x)− µ0‖H ‖φk‖H

(∗)
≤ 2b

√
κλ

θ− 1
2

k

(†)
≤ 1,

where in (∗) we used ‖φk‖2H = λ−2
k

〈
I∗φ̃k, I

∗φ̃k

〉
= λ−1

k . In (†) we used θ > 1
2 .

Case II: supi ‖φi‖∞ <∞.

In this case,

|u(x)| ≤ 2b sup
k
‖φk‖∞ λ

θ
k ≤ 1,

for n large enough. This implies that we can find P ∈ P such that dP
dP0

= u + 1. Then for

such P , we have D2
MMD =

∥∥T 1/2u
∥∥2

L2(P0)
= b2λ2θ+1

k = b2

n < 4κ√
αn

= γ. Therefore there exists

some ε > 0 such that D2
MMD < γ − ε. Hence, we have

PH1{D̂2
MMD ≥ γ} < PH1{D̂2

MMD ≥ D2
MMD + ε} < PH1{|D̂2

MMD −D2
MMD| ≥ ε}

(∗)
.

1

ε2n2
≤ δ,

where we used (14) along with Chebyshev’s inequality in (∗), and the last inequality holds
for n > 1

ε
√
δ
.
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7.2 Proof of Theorem 2

As shown in (Kim et al., 2022, Lemma G.1), in order to show that a separation boundary
∆n will imply R∗∆n

≥ δ, it is sufficient to find a set of distributions {Pk}Lk=1 ⊂ P, such that

EPn0

( 1

L

L∑
k=1

dPnk
dPn0

)2
 ≤ 1 + 4(1− α− δ)2. (16)

Then the proof follows the same ideas as used in the proof of (Hagrass et al., 2024, Theorem
2) as shown briefly below.

Recall T =
∑

i∈I λiφ̃i ⊗L2(P0) φ̃i. Let φ̄i = φi − EP0φi, where φi = I∗φ̃i
λi

. Then

Iφ̄i = Iφi = T φ̃i
λi

= φ̃i.

Polynomial decay (Case I): λi � i−β, β > 1, supi ‖φi‖∞ <∞ and θ ≥ 1
4β .

Let

Bn =

⌊
∆
−1/2θβ
n

16(supi ‖φi‖∞)2

⌋
,

Cn = b
√
Bnc and an =

√
∆n
Cn

. For k ∈ {1, . . . , L}, define

un,k := aN

Bn∑
i=1

εkiφ̄i,

where εk := {εk1, εk2, . . . , εkBn} ∈ {0, 1}Bn such that
∑Bn

i=1 εki = Cn, thus L =
(
Bn
Cn

)
. Then

it can be shown (see the proof of Hagrass et al. 2024, Theorem 2) that we can find Pk ∈ P
such that dPk

dP0
= un,k + 1, and that (16) holds for θ > 1

4β when ∆n ≤ c(α, δ)n
−4θβ
4θβ+1 for some

c(α, δ).

Polynomial decay (Case II): λi � i−β, β > 1, θ ≥ 1
2 and supi ‖φi‖∞ is not finite.

Since λi � i−β, β > 1, there exists constants A > 0 and Ā > 0 such that Ai−β ≤ λi ≤ Āi−β.

Let Bn = b
(

A∆−1
n

4κ

) 1
2θβ c, Cn = b

√
Bnc and an =

√
∆n
Cn

. Then similar to Case I, it can be

shown that (see the proof of Hagrass et al. 2024, Theorem 2) we can find Pk ∈ P such that
dPk
dP0

= un,k + 1, and that (16) holds for θ > 1
2 when ∆n ≤ c(α, δ)n

−4θβ
4θβ+1 for some c(α, δ).

Exponential decay: λi � e−τi, τ > 0.

Since λi � e−τi, τ > 0, there exists constants A > 0 and Ā > 0 such that Ae−τi ≤ λi ≤
Āe−τi. Let Bn = b(2τ max{θ, 1

2})
−1 log( A

4κ∆n
)c, Cn = b

√
Bnc and an =

√
∆n
Cn

, where θ > 0.

Then similar to the previous cases it can shown that (16) holds when ∆n ≤ c(α, δ, θ) (logn)b

n
for any b < 1

2 . Thus the desired bound holds by taking supremum over b < 1
2 .
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7.3 Proof of Theorem 3

By defining B := g
1/2
λ (Σ0)Σ

1/2
0,λ and a(x) = BΣ

−1/2
0,λ (K(·, x)− µ0), we have

η̂λ =
1

n(n− 1)

∑
i 6=j
〈a(Xi), a(Xj)〉H .

By replacing ΣPQ with Σ0 in the proof of (Hagrass et al., 2024, Lemma A.4), we have

EP0(η̂2
λ) ≤ 4

n2
‖B‖4L∞(H )N

2
2 (λ).

The result therefore follows by applying Chebyshev’s inequality and noting from (Hagrass
et al., 2024, Lemma A.8(ii)) that ‖B‖2L∞(H ) ≤ (C1 + C2).

7.4 Proof of Theorem 4

Define B := g
1/2
λ (Σ0)Σ

1/2
0,λ , b(x) = BΣ

−1/2
0,λ (K(·, x) − µP ), and a(x) = b(x) + BΣ

−1/2
0,λ (µP −

µ0) = BΣ
−1/2
0,λ (K(·, x)− µ0).

Thus we can write,

η̂λ =
1

n(n− 1)

∑
i 6=j
〈b(Xi), b(Xj)〉H +

2

n

n∑
i=1

〈
b(Xi),BΣ

−1/2
0,λ (µP − µ0)

〉
H

+ ηλ

= I1 + I2 + ηλ,

where

I1 =
1

n(n− 1)

∑
i 6=j
〈b(Xi), b(Xj)〉H , and I2 =

2

n

n∑
i=1

〈
b(Xi),BΣ

−1/2
0,λ (µP − µ0)

〉
H
.

Thus, VarP [η̂λ] = EP (I1 + I2)2 ≤ 2EP (I2
1 ) + 2EP (I2

2 ). Next we bound EP (I2
1 ) and EP (I2

2 )
using (Hagrass et al., 2024, Lemmas A.4 and A.5) by replacing ΣPQ with Σ0, which yields

VarP [η̂λ] ≤ 8

n2
‖B‖4L∞(H )

∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥2

L2(H )

+
8

n
‖B‖4L∞(H )

∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥
L∞(H )

∥∥∥Σ
−1/2
0,λ (µP − µ0)

∥∥∥2

H

(∗)
≤ 8

n2
‖B‖4L∞(H ) (4Cλ ‖u‖2L2(P0) + 2N 2

2 (λ))

+
8

n
‖B‖4L∞(H ) (2

√
Cλ ‖u‖L2(P0) + 1) ‖u‖2L2(P0) ,

where Cλ as defined in Lemma A.3 and in (∗), we used Lemmas A.2 and A.3. Then we
can easily deduce by using Chebyshev’s inequality that PH1{η̂λ ≥ γ} ≥ 1 − δ holds if

ηλ ≥ γ +

√
VarP [η̂λ]

δ . Using Lemma A.2, we have ηλ ≥ B3
4 ‖u‖

2
L2(P0) under the assumptions

u ∈ Ran(T θ), and

‖u‖2L2(P0) ≥
4C3

3B3
‖T ‖2 max(θ−ξ,0)

L∞(H ) λ2θ̃
∥∥∥T −θu∥∥∥2

L2(P0)
. (17)
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Note that u ∈ Ran(T θ) is guaranteed since P ∈ P and

‖u‖2L2(P0) ≥ c4λ
2θ̃ (18)

guarantees (17) since ‖T ‖L∞(H ) = ‖Σ0‖L∞(H ) ≤ 2κ and c1 := supP∈P
∥∥T −θu∥∥

L2(P0)
<∞,

where c4 =
4c21C3(2κ)2 max(θ−ξ,0)

3B3
. Thus,

B3

2
‖u‖2L2(P0) ≥ γ +

√
VarP [η̂λ]

δ
(19)

guarantees ηλ ≥ γ+

√
VarP [η̂λ]

δ . Hence it remains to verify (18) and (19). Using ‖u‖2L2(P0) ≥
∆n, it is easy to see that (18) is implied when λ = (c−1

4 ∆n)1/2θ̃. Using ‖B‖4L∞(H ) ≤
(C1 + C2)2, which follows from (Hagrass et al., 2024, Lemma A.8 (ii)) by replacing ΣPQ

with Σ0, and substituting the expressions of γ and VarP [η̂λ] in (19), we can verify that (19)

is implied if ∆n ≥ r1N2(λ)
n
√
α

, ∆n ≥ r2Cλ
δ2n2 and ∆n ≥ r3N2(λ)

δn for some constants r1, r2, r3 > 0.

Hence the desired result follows by taking infimum over P ∈ P.

7.5 Proof of Corollary 5

When λi � i−β, we have N2(λ) ≤
∥∥∥Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ

∥∥∥1/2

L∞(H )
N 1/2

1 (λ) . λ−1/2β (see Sripe-

rumbudur and Sterge 2022, Lemma B.9). Using this bound in the conditions mentioned in
Theorem 4, ensures that these conditions on the separation boundary hold if

∆n & max


(

n

α−1/2 + δ−1

)− 4θ̃β

4θ̃β+1

, (δn)
− 8θ̃β

4θ̃β+2β+1

 , (20)

which in turn is implied if

∆n =

 c(α, δ)n
−4θ̃β

4θ̃β+1 , θ̃ > 1
2 −

1
4β

c(α, δ)n
− 8θ̃β

4θ̃β+2β+1 , θ̃ ≤ 1
2 −

1
4β

,

where c(α, δ) & (α−1/2 + δ−2) and we used that θ̃ > 1
2 −

1
4β ⇔

4θ̃β

4θ̃β+1
< 8θ̃β

4θ̃β+2β+1
. On the

other hand when C := supi ‖φi‖∞ <∞, we obtain the corresponding condition as

∆n & max


(

n

α−1/2 + δ−1

)− 4θ̃β

4θ̃β+1

, (δn)
− 4θ̃β

2θ̃β+1

 , (21)

which is implied if

∆n = c(α, δ)n
−4θ̃β

4θ̃β+1 .
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7.6 Proof of Corollary 6

When λi � e−τi, we have N2(λ) ≤
∥∥∥Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ

∥∥∥1/2

L∞(H )
N 1/2

1 (λ) .
√

log 1
λ (see Sripe-

rumbudur and Sterge 2022, Lemma B.9). Thus, substituting this in the conditions from
Theorem 4 and using n ≥ max{e2, α−1/2 + δ−1}, we can write the separation boundary as

∆n & max


(√

2θ̃(α−1/2 + δ−1)−1n√
log n

)−1

,

(
δn√
log n

)− 4θ̃
2θ̃+1

 , (22)

which is implied if

∆n =

 c(α, δ, θ)
√

logn
n , θ̃ > 1

2

c(α, δ, θ)
(√

logn
n

) 4θ̃
2θ̃+1 , θ̃ ≤ 1

2

,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1
}

(α−1/2 + δ−2) and we used that θ̃ > 1
2 ⇔ 1 < 4θ̃

2θ̃+1
.

On the other hand when C := supi ‖φi‖∞ <∞, we obtain

∆n & max


√

1

2θ̃

(
(α−1/2 + δ−1)−1n√

log n

)−1

,
1

2θ̃

(
δn√
log n

)−2
 ,

which in turn is implied if

∆n = c(α, δ, θ)

√
log n

n
,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1

2θ̃
, 1
}

(α−1/2 + δ−2).

7.7 Proof of Theorem 7

The proof is exactly similar to that of (Hagrass et al., 2024, Theorem 3) by replacing ΣPQ

with Σ0.

7.8 Proof of Theorem 8

Since E(η̂TSλ |(Y 0
i )si=1) = 0, an application of Chebyshev’s inequality via Lemma A.8 yields,

PH0

{
|η̂TSλ | ≥

√
6(C1 + C2) ‖M‖2L∞(H )N2(λ)

√
δ

(
1

n
+

1

m

) ∣∣∣(Y 0
i )si=1

}
≤ δ.

Let γ1 := 2
√

6(C1+C2)N2(λ)√
δ

(
1
n + 1

m

)
, and γ2 :=

√
6(C1+C2)‖M‖2L∞(H )N2(λ)

√
δ

(
1
n + 1

m

)
. Then

PH0{η̂TSλ ≤ γ1} ≥ PH0{{η̂TSλ ≤ γ2} ∩ {γ2 ≤ γ1}}

≥ 1− PH0{η̂TSλ ≥ γ2} − PH0{γ2 ≥ γ1}
(∗)
≥ 1− 3δ,
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where (∗) follows using

PH0{η̂TSλ ≥ γ2} ≤ PH0{|η̂TSλ | ≥ γ2} = EPm0
[
PH0{|η̂TSλ | ≥ γ2|(Y 0

i )si=1}
]
≤ δ,

and

PH0{γ2 ≥ γ1} = PH0{‖M‖
2
L∞(H ) ≥ 2}

(†)
≤ 2δ,

where (†) follows from (Sriperumbudur and Sterge, 2022, Lemma B.2(ii)), under the con-
dition that 140κ

s log 16κs
δ ≤ λ ≤ ‖Σ0‖L∞(H ). When C := supi ‖φi‖∞ < ∞, using (Ha-

grass et al., 2024, Lemma A.17), we can obtain an improved condition on λ satisfying

136C2N1(λ) log 8N1(λ)
δ ≤ s and λ ≤ ‖Σ0‖L∞(H ) . Thus setting δ = α

6 , yields that

PH0

{
η̂TSλ ≥ 12(C1 + C2)N2(λ)√

α

(
1

n
+

1

m

)}
≤ α

2
. (23)

Finally, the desired result follows by writing

PH0

{
η̂TSλ ≤ 12(C1 + C2)N̂2(λ)

b1
√
α

(
1

n
+

1

m

)}

≥ PH0

{{
η̂TSλ ≤ 12(C1 + C2)N2(λ)√

α

(
1

n
+

1

m

)}
∩ {N̂2(λ) ≥ b1N2(λ)}

}
≥ 1− PH0

{
η̂TSλ ≥ 12(C1 + C2)N2(λ)√

α

(
1

n
+

1

m

)}
− PH0{N̂2(λ) ≤ b1N2(λ)}

(‡)
≥ 1− α,

where (‡) follows using (23) and Lemma A.7 under the condition that

4c1κ

s
max{log

96κs

α
, log

12

α
} ≤ λ ≤ ‖Σ0‖L∞(H ) .

The above condition can be replaced with 4c1C
2N1(λ) log 48N1(λ)

α ≤ s if C := supi ‖φi‖∞ <
∞.

7.9 Proof of Theorem 9

Let M = Σ̂
−1/2
0,λ Σ

1/2
0,λ , γ1 = 1√

δ

(√
Cλ‖u‖L2(P0)+N2(λ)

n +
C

1/4
λ ‖u‖3/2

L2(P0)
+‖u‖L2(P0)√
n

)
, where Cλ is

defined in Lemma A.3. Then Lemma A.8 implies C̃ ‖M‖2L∞(H ) γ1 ≥
√

Var(η̂TSλ |(Y
0
i )si=1)

δ for

some constant C̃ > 0. By (Hagrass et al., 2024, Lemma A.1), if

P
{
γ ≥ ζ − C̃ ‖M‖2L∞(H ) γ1

}
≤ δ, (24)

for any P ∈ P, then we obtain P{η̂TSλ ≥ γ} ≥ 1 − 2δ. The result follows by taking
the infimum over P ∈ P. Therefore, it remains to verify (24), which we do below. Define
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dλ := N2(λ)+
(√

2
c1

+ 1√
2c1

)√
N1(λ), γ3 := 12dλ(C1+C2)

b1
√
α

(
1
n + 1

m

)
and c2 := B3C4(C1+C2)−1.

Consider

PH1

{
γ ≤ ζ − C̃ ‖M‖2L∞(H ) γ1

}
(∗∗)
≥ PH1

{{
‖M‖2L∞(H ) γ3 ≤ c2

∥∥M−1
∥∥−2

L∞(H )
‖u‖2L2(P0) − C̃ ‖M‖

2
L∞(H ) γ1

}
∩
{
γ ≤ ‖M‖2L∞(H ) γ3

}}
≥ 1− PH1

‖M‖
2
L∞(H )

∥∥M−1
∥∥2

L∞(H )
(C̃γ1 + γ3)

c2 ‖u‖2L2(P0)

≥ 1

− PH1

{
γ ≥ ‖M‖2L∞(H ) γ3

}
(∗)
≥ PH1

‖M‖
2
L∞(H )

∥∥M−1
∥∥2

L∞(H )
(C̃γ1 + γ3)

c2 ‖u‖2L2(P0)

≤ 1

− δ
(†)
≥ 1− P

{{∥∥M−1
∥∥2

L∞(H )
≤ 3

2

}
∩
{
‖M‖2L∞(H ) ≤ 2

}}
− δ

≥ 1− P
{∥∥M−1

∥∥2

L∞(H )
≥ 3

2

}
− P

{
‖M‖2L∞(H ) ≥ 2

}
− δ

(‡)
≥ 1− 2δ,

where (∗∗) follows by using ζ ≥ c2

∥∥M−1
∥∥−2

L∞(H )
‖u‖2L2(P0), which is obtained by combining

(Hagrass et al. 2024, Lemma A.11 by replacing ΣPQ and µQ with Σ0 and µ0, respectively)
with Lemma A.2 under the assumptions of u ∈ Ran(T θ), and (17). Note that u ∈ Ran(T θ)
is guaranteed since P ∈ P and (18) guarantees (17) as discussed in the proof of Theorem 4.
(∗) follows by Lemma A.6 under the condition s ≥ 32c1κλ

−1 log(max{17920κ2λ−1, 6}δ−1)
and ‖Σ0‖L∞(H ) ≥ λ (when C := supi ‖φi‖∞ < ∞, the condition can be replaced by

s ≥ 32c1C
2N1(λ) log 6

δ ). (†) follows when

‖u‖2L2(P0) ≥
3(C̃γ1 + γ3)

c2
. (25)

(‡) follows from (Sriperumbudur and Sterge, 2022, Lemma B.2(ii)) under the assumption
that

140κ

s
log

64κs

δ
≤ λ ≤ ‖Σ0‖L∞(H ) , (26)

which is implied by s ≥ 280κλ−1 log(17920κ2λ−1δ−1). When C := supi ‖φi‖∞ < ∞, (‡)
follows from (Hagrass et al., 2024, Lemma A.17) by replacing (26) with

136C2N1(λ) log
32N1(λ)

δ
≤ s, and λ ≤ ‖Σ0‖L∞(H ) . (27)

Thus it remains only to verify (25). Using m ≥ n and

N2(λ) ≤
∥∥∥Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ

∥∥∥1/2

L∞(H )
N 1/2

1 (λ),

it can be checked that (25) is implied by ∆n ≥
r1N 1/2

1 (λ)

n
√
α

, ∆n ≥ r2Cλ
δ2n2 and ∆n ≥

r3N 1/2
1 (λ)
δn

for some constants r1, r2, r3 > 0.
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7.10 Proof of Theorem 10

The proof is exactly similar to that of (Hagrass et al., 2024, Theorem 8).

7.11 Proof of Theorem 11

Let M = Σ̂
−1/2
0,λ Σ

1/2
0,λ and γ1 = 1√

δ

(√
Cλ‖u‖L2(P0)+N2(λ)

n +
C

1/4
λ ‖u‖3/2

L2(P0)
+‖u‖L2(P0)√
n

)
. Then

following the proof of Theorem 9 in (Hagrass et al., 2024), Lemma A.9 along with m ≥ n

yields that the power will be controlled to the desired level when ∆n ≥ r1Cλ(log(1/α))2

δ2n2 and

∆n ≥ r2N2(λ) log(1/α)
δn for some constants r1, r2 > 0, and under the condition (26) which can

be replaced by (27) when C := supi ‖φi‖∞ <∞.

7.12 Proof of Corollary 12

The proof is similar to that of Corollary 5. Since λi � i−β, we have N2(λ) . λ−1/2β. By
using this bound in the conditions of Theorem 11, we obtain that the conditions on ∆n

hold if

∆n & max


(

δn

log(1/α)

)− 4θ̃β

4θ̃β+1

,

(
δn

log(1/α)

)− 8θ̃β

4θ̃β+2β+1

 . (28)

By exactly using the same arguments as in the proof of Corollary 5, it is easy to verify that
the above condition on ∆n is implied if

∆n =

 c(α, δ)n
−4θ̃β

4θ̃β+1 , θ̃ > 1
2 −

1
4β

c(α, δ)n
− 8θ̃β

4θ̃β+2β+1 , θ̃ ≤ 1
2 −

1
4β

,

where c(α, δ) & δ−2(log 1
α)2. On the other hand when C := supi ‖φi‖∞ <∞, we obtain the

corresponding condition as

∆n & max


(

δn

log(1/α)

)− 4θ̃β

4θ̃β+1

,

(
δn

log(1/α)

)− 4θ̃β

2θ̃β+1

 , (29)

which is implied if

∆n = c(α, δ)n
−4θ̃β

4θ̃β+1 .

7.13 Proof of Corollary 13

The proof is similar to that of Corollary 6. When λi � e−τi, we have N2(λ) .
√

log 1
λ .

Thus substituting this in the conditions from Theorem 11 and assuming that

n ≥ max{e2, δ−1(log 1/α)},
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we can write the separation boundary as

∆n & max


( √

2θ̃δn

log(1/α)
√

log n

)−1

,

(
δn log(1/α)−1

√
log n

)− 4θ̃
2θ̃+1

 , (30)

which is implied if

∆n =

 c(α, δ, θ)
√

logn
n , θ̃ > 1

2

c(α, δ, θ)
(√

logn
n

) 4θ̃
2θ̃+1 , θ̃ ≤ 1

2

,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1
}
δ−2(log 1

α)2.

On the other hand when C := supi ‖φi‖∞ <∞, we obtain

∆n & max


( √

2θ̃δn

log(1/α)
√

log n

)−1

,
1

2θ̃

(
δn

log(1/α)
√

log n

)−2
 , (31)

which in turn is implied if

∆n = c(α, δ, θ)

√
log n

n
,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1

2θ̃
, 1
}
δ−2(log 1

α)2.

7.14 Proof of Theorem 14

First note that the following two events,

A :=
⋃
λ∈Λ

{
η̂TSλ ≥ γ(α̃, λ)

}
,

and

B := sup
λ∈Λ

η̂TSλ

N̂2(λ)
≥ 12(C1 + C2)

b1
√
α̃

(
1

n
+

1

m

)
are equivalent, where γ(α, λ) = 12(C1+C2)N̂2(λ)

b1
√
α

(
1
n + 1

m

)
. The proof therefore follows from

Theorem 8 and (Hagrass et al., 2024, Lemma A.16).

7.15 Proof Theorem 15

The same steps as in the proof of Theorem 9 will follow, with the only difference being α is
replaced by α

|Λ| , where |Λ| = 1 + log2
λU
λL
. log(n).

For the case of λi � i−β, we can deduce from the proof of Corollary 5 (see (20)) that

when λ = d
−1/2θ̃
3 ∆

1/2θ̃
N,M for some d3 > 0, then

PH1

{
η̂TSλ ≥ γ̃

}
≥ 1− 4δ,
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where γ̃ =
12N̂2(λ)

√
|Λ|(C1+C2)

b1
√
α

(
1
n + 1

m

)
and the condition on the separation boundary be-

comes

∆n & max


(

n

α̃−1/2 + δ−1

)− 4θ̃β

4θ̃β+1

, (δn)
− 8θ̃β

4θ̃β+2β+1

 ,

where α̃ = α
|Λ| . In turn, this is implied if

∆n = c(α, δ) max


(

n√
log n

)− 4θ̃β

4θ̃β+1

, n
− 8θ̃β

4θ̃β+2β+1

 ,

where c(α, δ) & (α−1/2 + δ−2). Note that the optimal choice of λ is given by

λ = λ∗ := d
−1/2θ̃
3 c(α, δ, θ)1/2θ̃ max

{(
n√

log n

)− 2β

4θ̃β+1

, n
− 4β

4θ̃β+2β+1

}
.

Thus it can be verified that for any θ and β, the optimal lambda can be bounded as

r1n
−4βU
1+2βU ≤ λ ≤ r2

(
n√

log n

) −2

4ξ̃+1

for some constants r1,r2 > 0.
� Define v∗ := sup{x ∈ Λ : x ≤ λ∗}. From the definition of Λ, it is easy to see that

λL ≤ λ∗ ≤ λU and λ∗

2 ≤ v
∗ ≤ λ∗. Thus v∗ ∈ Λ is an optimal choice of λ that will yield the

same form of the separation boundary up to constants. Therefore, by (Hagrass et al., 2024,
Lemma A.16), for any θ and any P in P, we have

PH1

{
sup
λ∈Λ

η̂TSλ

N̂2(λ)
≥ γ

}
≥ 1− 4δ.

Thus the desired result holds by taking the infimum over P ∈ P and θ. �
When λi � i−β and C := supi ‖φi‖∞ < ∞, then using (21), the conditions on the

separation boundary becomes

∆n = c(α, δ)

(
n√

log n

) −4θ̃β

4θ̃β+1

,

where c(α, δ) & (α−1/2 + δ−2). This yields the optimal λ to be

λ∗ := d
−1/2θ̃
3 c(α, δ, θ)1/2θ̃

(
n√

log n

) −2β

4θ̃β+1

.

Then as in the previous case we deduce that for any θ and β,

r3

(
n√

log n

) −2βU
4θlβU+1

≤ λ ≤ r4

(
n√

log n

) −2
4ξ+1
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for some constants r3, r4 > 0. The claim therefore follows by using the argument mentioned
between � and �.

For the case λi � e−τi, τ > 0, the condition on the separation boundary from (22)
becomes

∆n & c(α, δ, θ) max


(

n

log n

)−1

,

(
n√

log n

)− 4θ̃
2θ̃+1

 ,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1
}

(α−1/2 + δ−2). Thus

λ∗ = d
−1/2θ̃
3 c(α, δ, θ)1/2θ̃ max

{(
n

log n

)−1/2θ̃

,

(
n√

log n

)− 2
2θ̃+1

}
,

which can be bounded as r5

(
n√

logn

)−2
≤ λ ≤ r6

(
n

logn

)−1/2ξ̃
for some r5, r6 > 0. Further-

more when C := supi ‖φi‖∞ <∞, the condition on the separation boundary becomes

∆n = c(α, δ, θ)
log n

n
,

where c(α, δ, θ) & max
{√

1
2θ̃
, 1

2θ̃
, 1
}

(α−1/2 + δ−2). Thus

λ∗ = d
−1/2θ̃
3 c(α, δ, θ)1/2θ̃

(
n

log n

)−1/2θ̃

,

which can be bounded by r7

(
n

logn

)−1/2θl
≤ λ ≤ r8

(
n

logn

)−1/2ξ
. The claim, therefore,

follows by using the same argument as mentioned in the polynomial decay case.

7.16 Proof of Theorem 16

The proof follows from Theorem 10 and (Hagrass et al., 2024, Lemma A.16) by using α
|Λ| in

the place of α.

7.17 Proof of Theorem 17

The proof follows from Theorem 11 using α
|Λ| instead of α in the expressions (28), (29), (30)

and (31), and then bounding the expressions for the resulting optimal λ∗ using the ideas
similar to that used in the proof of Theorem 15.
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A. Technical results

In the following, we present technical results that are used to prove the main results of the
paper. Unless specified otherwise, the notation used in this section matches that of the
main paper.

Lemma A.1 Let (Xi)
n
i=1

i.i.d∼ Q, (Yi)
m
i=1

i.i.d∼ P and B : H → H be a bounded operator.
Define

I =
2

nm

∑
i,j

〈a(Xi), b(Yj)〉H ,

where a(x) = BΣ
−1/2
0,λ (K(·, x) − µQ), b(x) = BΣ

−1/2
0,λ (K(·, x) − µP ), µQ =

∫
X K(·, x) dQ(x)

and µP =
∫
Y K(·, y) dP (y). Then

(i) E〈a(Xi), b(Yj)〉2H ≤ ‖B‖
4
L∞(H )

∥∥∥Σ
−1/2
0,λ ΣQΣ

−1/2
0,λ

∥∥∥
L2(H )

∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥
L2(H )

;

(ii) E
(
I2
)
≤ 4

nm ‖B‖
4
L∞(H )

∥∥∥Σ
−1/2
0,λ ΣQΣ

−1/2
0,λ

∥∥∥
L2(H )

∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥
L2(H )

.

Proof (i) Note that

E〈a(Xi), b(Yj)〉2H = E〈a(Xi)⊗H a(Xi), b(Yj)⊗H b(Yj)〉L2(H )

=
〈
BΣ
−1/2
0,λ ΣQΣ

−1/2
0,λ B

∗,BΣ
−1/2
0,λ ΣPΣ

−1/2
0,λ B

∗
〉
L2(H )

≤ ‖B‖4L∞(H )

∥∥∥Σ
−1/2
0,λ ΣQΣ

−1/2
0,λ

∥∥∥
L2(H )

∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥
L2(H )

.

(ii) follows by noting that

E
(
I2
) (†)

=
4

n2m2

∑
i,j

E〈a(Xi), b(Yj)〉2H

where (†) follows from (Hagrass et al., 2024, Lemma A.3 (i)), and the result follows from
(i).

Lemma A.2 Let u = dP
dP0
− 1 ∈ L2(P0) and η =

∥∥∥g1/2
λ (Σ0)(µ0 − µP )

∥∥∥2

H
, where gλ satisfies

(A1)–(A4). Then
η ≤ C1 ‖u‖2L2(P0) .

Furthermore, if u ∈ Ran(T θ), θ > 0 and

‖u‖2L2(P0) ≥
4C3

3B3
‖T ‖2 max(θ−ξ,0)

L∞(L2(P0))
λ2θ̃
∥∥∥T −θu∥∥∥2

L2(P0)
,

where θ̃ = min(θ, ξ), then,

η ≥ B3

4
‖u‖2L2(P0) .

45



Hagrass, Sriperumbudur and Li

Proof The proof uses the same approach as in the proof of (Hagrass et al., 2024, Lemma
A.7) by noting that η = 〈T gλ(T )u, u〉L2(P0) and involves replacing µQ, R and ΣPQ with µ0,
P0 and Σ0, respectively.

Lemma A.3 Define N1(λ) := Tr(Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ ), N2(λ) :=

∥∥∥Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ

∥∥∥
L2(H )

, and

u := dP
dP0
− 1 ∈ L2(P0). Then the following hold:

(i)
∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥2

L2(H )
≤ 4Cλ ‖u‖2L2(P0) + 2N 2

2 (λ);

(ii)
∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥
L∞(H )

≤ 2
√
Cλ ‖u‖L2(P0) + 1,

where

Cλ =

{
N1(λ) supi ‖φi‖

2
∞ , supi ‖φi‖

2
∞ <∞

2N2(λ)
λ supx ‖K(·, x)‖2H , otherwise

.

Proof The proof is similar to that of (Hagrass et al., 2024, Lemma A.9) and involves
replacing R with P0 and ΣPQ with Σ0.

Lemma A.4 For any 0 < δ < 1
2 ,

P s0

(Yi)
s
i=1 :

∥∥∥Σ
−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ

∥∥∥
L2(H )

≤
32κ log 3

δ

λs
+

√
16κN1(λ) log 2

δ

λs

 ≥ 1− 2δ.

Furthermore, suppose C := supi ‖φi‖∞ <∞. Then

P s0

(Yi)
s
i=1 :

∥∥∥Σ
−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ

∥∥∥
L2(H )

≤
32C2N1(λ) log 3

δ

s
+

√
16C2N 2

1 (λ) log 2
δ

s


≥ 1− 2δ.

Proof Define s(x) := K(·, x), A(x, y) := 1√
2
(s(x) − s(y)), U(x, y) := Σ

−1/2
0,λ A(x, y), and

Z(x, y) = U(x, y)⊗H U(x, y). Then

Σ
−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ =

1

s(s− 1)

∑
i 6=j

Z(Yi, Yj)− E(Z(X,Y )).

Also,

sup
x,y
‖Z(x, y)‖L2(H ) = sup

x,y
‖U(x, y)‖2H =

1

2
sup
x,y

∥∥∥Σ
−1/2
0,λ (s(x)− s(y))

∥∥∥2

H
≤ 2κ

λ
.
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Define ζ(x) := EY [Z(x, Y )]. Then

E ‖ζ(X)− Σ0‖2L2(H ) ≤ E ‖ζ(X)‖2L2(H ) = E
∥∥∥Σ
−1/2
0,λ EY [A(X,Y )⊗H A(X,Y )]Σ

−1/2
0,λ

∥∥∥2

L2(H )

= ETr
(

Σ
−1/2
0,λ EY [A(X,Y )⊗H A(X,Y )]Σ−1

0,λEY [A(X,Y )⊗H A(X,Y )]Σ
−1/2
0,λ

)
≤ sup

x
‖ζ(x)‖L∞(H ) Tr(Σ

−1/2
0,λ Σ0Σ

−1/2
0,λ )

≤ sup
x,y
‖U(x, y)‖2H N1(λ) ≤ 2κN1(λ)

λ
.

When C := supi ‖φi‖∞ < ∞, we can use the same approach as in the proof of (Hagrass
et al., 2024, Lemma A.17) to show that supx,y ‖U(x, y)‖2H ≤ 2C2N1(λ) which in turn yields
that

sup
x,y
‖Z(x, y)‖L2(H ) ≤ 2C2N1(λ),

and
E ‖ζ(X)− Σ0‖2L2(H ) ≤ 2C2N 2

1 (λ).

Then the result follows from (Sriperumbudur and Sterge, 2022, Theorem D.3(ii)).

Lemma A.5 Let I =
〈

Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ ,Σ

−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ

〉
L2(H )

. Then for any δ > 0,

P s0

(Yi)
s
i=1 : |I| ≤

4κ log 2
δ

λs
+

√
12κN 2

2 (λ) log 2
δ

λs

 ≥ 1− δ.

Furthermore, suppose C := supi ‖φi‖∞ <∞. Then

P s0

(Yi)
s
i=1 : |I| ≤

4C2N1(λ) log 2
δ

s
+

√
12C2N1(λ)N 2

2 (λ) log 2
δ

s

 ≥ 1− δ.

Proof Define s(x) := K(·, x), A(x, y) := 1√
2
(s(x) − s(y)), U(x, y) := Σ

−1/2
0,λ A(x, y),

Z(x, y) := U(x, y)⊗H U(x, y), B := EZ(X,Y ) = Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ , and

Z̃(x, y) := 〈B,Z(x, y)〉L2(H ).

Then

I =
1

s(s− 1)

∑
i 6=j

Z̃(Yi, Yj)− EZ̃(X,Y ).

Moreover,

sup
x,y
|Z̃(x, y)| = sup

x,y
|〈B,Z(x, y)〉L2(H )|

= sup
x,y
|Tr(B(U(x, y)⊗H U(x, y)))| ≤ ‖B‖L∞(H ) sup

x,y
‖U(x, y)‖2H ≤

2κ

λ
,

47



Hagrass, Sriperumbudur and Li

and

EZ̃2(X,Y )
(∗)
≤ sup

x,y
|Z̃(x, y)|E〈B,Z(X,Y )〉L2(H ) ≤

2κN 2
2 (λ)

λ
,

where (∗) follows by using Z̃(x, y) ≥ 0, which can be shown by writing,

Z̃(x, y) = 〈B,Z(x, y)〉 = Tr(B(U(x, y)⊗H U(x, y)))

= Tr
(

Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ [U(x, y)⊗H U(x, y)]

)
= Tr(Σ

1/2
0 Σ

−1/2
0,λ (U(x, y)⊗H U(x, y))Σ

−1/2
0,λ Σ

1/2
0 )

=
∥∥∥Σ

1/2
0 Σ

−1/2
0,λ U(x, y)

∥∥∥2

H
≥ 0.

When C := supi ‖φi‖∞ < ∞, we can use the same approach as in (Hagrass et al., 2024,
Lemma A.17) to show that supx,y ‖U(x, y)‖2H ≤ 2C2N1(λ) which in turn yields that

sup
x,y
|Z̃(x, y)| ≤ 2C2N1(λ),

and
EZ̃2(X,Y ) ≤ 2C2N1(λ)N 2

2 (λ).

Thus the result follows by using Hoeffding’s inequality as stated in (de la Peña and Giné,
2012, Theorem 4.1.8).

Lemma A.6 For any c1 > 0, δ > 0 and 32c1κ
s log 3

δ ≤ λ ≤ ‖Σ0‖L∞(H ), we have

P s0

{
(Yi)

s
i=0 : N̂2(λ) ≤ ‖M‖2L∞(H )

(
N2(λ) +

(√
2

c1
+

1√
2c1

)√
N1(λ)

)}
≥ 1− 2δ.

Furthermore if C := supi ‖φi‖∞ <∞, the above bound holds for 32c1C
2N1(λ) log 3

δ ≤ s and
λ ≤ ‖Σ0‖L∞(H ) .

Proof Let M = Σ̂
−1/2
0,λ Σ

1/2
0,λ . Then

N̂2(λ) ≤ ‖M‖2L∞(H )

∥∥∥Σ
−1/2
0,λ Σ̂0Σ

−1/2
0,λ

∥∥∥
L2(H )

≤ ‖M‖2L∞(H )

(
N2(λ) +

∥∥∥Σ
−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ

∥∥∥
L2(H )

)
.

From Lemma A.4 and the assumption that 32c1κ
s log 3

δ ≤ λ, we have with probability at
least 1− 2δ that,∥∥∥Σ

−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ

∥∥∥
L2(H )

≤ 1

c1
+

1√
2c1

√
N1(λ)

(∗)
≤

(√
2

c1
+

1√
2c1

)√
N1(λ),
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where in (∗) we used
√
N1(λ) =

√∑
i

λi
λi+λ

≥
√

‖Σ0‖L∞(H )

‖Σ0‖L∞(H )+λ

(†)
≥ 1√

2
, and (†) follows from

λ ≤ ‖Σ0‖L∞(H ). Similarly when C := supi ‖φi‖∞ < ∞, the same bound holds by Lemma

A.4 for 32c1C
2N1(λ) log 3

δ ≤ s.

Lemma A.7 For any c1 > 0, δ > 0, and max{140κ
s log 16κs

δ , 4c1κ
s log 2

δ} ≤ λ ≤ ‖Σ0‖L∞(H ),
we have

P s0

{
(Yi)

s
i=0 : N̂ 2

2 (λ) ≥
(

4

9
− 16

3
√

3c1
− 32

9c1

)
N 2

2 (λ)

}
≥ 1− 3δ.

Furthermore if C := supi ‖φi‖∞ <∞, the above bound holds for λ ≤ ‖Σ0‖L∞(H ) , and

C2N1(λ) max{4c1 log 2
δ , 136 log 8N1(λ)

δ } ≤ s.

Proof LetM := Σ̂
−1/2
0,λ Σ

1/2
0,λ and I :=

〈
Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ ,Σ

−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ

〉
L2(H )

. Then

N̂ 2
2 (λ) ≥ 1

‖M−1‖4L∞(H )

∥∥∥Σ
−1/2
0,λ Σ̂0Σ

−1/2
0,λ

∥∥∥2

L2(H )

=
1

‖M−1‖4L∞(H )

(∥∥∥Σ
−1/2
0,λ Σ0Σ

−1/2
0,λ

∥∥∥2

L2(H )
+ 2I +

∥∥∥Σ
−1/2
0,λ (Σ̂0 − Σ0)Σ

−1/2
0,λ

∥∥∥2

L2(H )

)
≥ 1

‖M−1‖4L∞(H )

(N 2
2 (λ)− 2|I|).

Then from Lemma A.5 and the assumption 4κc1
s log 2

δ ≤ λ (similarly when C := supi ‖φi‖∞ <
∞ the same bound holds by Lemma A.5 for 32c1C

2N1(λ) log 3
δ ≤ s), we have with proba-

bility at least 1− δ,

|I| ≤ 1

c1
+

√
3

c1
N2(λ) ≤

(√
3

c1
+

2

c1

)
N2(λ) ≤ 2

(√
3

c1
+

2

c1

)
N 2

2 (λ),

where in the last two inequalities we used N2(λ) ≥ ‖Σ0‖L∞(H )

‖Σ0‖L∞(H )+λ
≥ 1

2 when λ ≤ ‖Σ0‖L∞(H ).

Define

S1 :=

{
(Yi)

s
i=1 : |I| ≤ 2

(√
3

c1
+

2

c1

)
N 2

2 (λ)

}
and

S2 :=

{
(Yi)

s
i=1 :

∥∥M−1
∥∥4

L∞(H )
≤ 9

4

}
.

Then,

P s0

{
(Yi)

s
i=0 : N̂ 2

2 (λ) ≥
(

4

9
− 16

3
√

3c1
− 32

9c1

)
N 2

2 (λ)

}
≥ P (S1 ∩ S2)

≥ 1− P (S
′
1)− P (S

′
2) ≥ 1− 3δ,

where we used (Sriperumbudur and Sterge, 2022, Lemma B.2 (iii)) in the last inequality,
with S

′
being the complement of set S. Similarly, when C := supi ‖φi‖∞ < ∞ the same

bound holds using (Hagrass et al., 2024, Lemma A.17 (iii)).
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Lemma A.8 Let ζ =
∥∥∥g1/2

λ (Σ̂0)(µP − µ0)
∥∥∥2

H
, M = Σ̂

−1/2
0,λ Σ

1/2
0,λ , and m ≥ n . Then

E
[
(η̂TSλ − ζ)2|(Y 0

i )si=1

]
≤ C̃ ‖M‖4L∞(H )

{
Cλ ‖u‖2L2(P0) +N 2

2 (λ)

n2
+

√
Cλ ‖u‖3L2(P0) + ‖u‖2L2(P0)

n

}
,

where Cλ is defined in Lemma A.3 and C̃ is a constant that depends only on C1 and C2.
Furthermore, if P = P0, then

E
[(
η̂TSλ

)2 |(Y 0
i )si=1

]
≤ 6(C1 + C2)2 ‖M‖4L∞(H )N

2
2 (λ)

(
1

m2
+

1

n2

)
.

Proof Define a(x) = BΣ
−1/2
0,λ (K(·, x) − µP ), and b(x) = BΣ

−1/2
0,λ (K(·, x) − µ0), where

B = g
1/2
λ (Σ̂0)Σ

1/2
0,λ . Then replacing ΣPQ by Σ0 and µQ by µ0 in the proof of (Hagrass et al.,

2024, Lemma A.12), it can be shown that

η̂TSλ − ζ =
1

n(n− 1)

∑
i 6=j
〈a(Xi), a(Xj)〉H︸ ︷︷ ︸
1

+
1

m(m− 1)

∑
i 6=j

〈
b(X0

i ), b(X0
j )
〉
H︸ ︷︷ ︸

2

+
2

m

m∑
i=1

〈
b(X0

i ),BΣ
−1/2
0,λ (µ0 − µP )

〉
H︸ ︷︷ ︸

3

− 2

nm

∑
i,j

〈
a(Xi), b(X

0
j )
〉
H︸ ︷︷ ︸

4

− 2

n

n∑
i=1

〈
a(Xi),BΣ

−1/2
0,λ (µ0 − µP )

〉
H︸ ︷︷ ︸

5

,

and

‖B‖L∞(H ) ≤ (C1 + C2)1/2 ‖M‖L∞(H ) .

Next, we bound each of these terms using Lemmas A.1, A.3 and (Hagrass et al., 2024,
Lemma A.4, Lemma A.5). It follows from Lemma A.3(i) and (Hagrass et al., 2024, Lemma
A.4(ii)) that

E
(

1
2|(Y 0

i )si=1

)
≤ 4

n2
‖B‖4L∞(H )

∥∥∥Σ
−1/2
0,λ ΣPΣ

−1/2
0,λ

∥∥∥2

L2(H )

≤ 4

n2
(C1 + C2)2 ‖M‖4L∞(H )

(
4Cλ ‖u‖2L2(P0) + 2N 2

2 (λ)
)
,

and

E
(

2
2|(Y 0

i )si=1

)
≤ 4

m2
(C1 + C2)2 ‖M‖4L∞(H )N

2
2 (λ).
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Using Lemma A.3(ii) and (Hagrass et al., 2024, Lemma A.5), we obtain

E
(

3
2|(Y 0

i )si=1

)
≤ 4

m
‖Σ−1/2

0,λ Σ0Σ
−1/2
0,λ ‖L∞(H )‖B‖4L∞(H )‖Σ

−1/2
0,λ (µP − µ0)‖2H

≤ 4

m
(C1 + C2)2 ‖M‖4L∞(H ) ‖Σ

−1/2
0,λ (µP − µ0)‖2H

(∗)
≤ 4

m
(C1 + C2)2 ‖M‖4L∞(H ) ‖u‖

2
L2(P0) ,

and

E( 5
2|(Y 0

i )si=1) ≤ 4

n
‖Σ−1/2

0,λ ΣPΣ
−1/2
0,λ ‖L∞(H )‖B‖4L∞(H )‖Σ

−1/2
0,λ (µ0 − µP )‖2H

≤ 4

n
(1 + 2

√
Cλ ‖u‖L2(P0))(C1 + C2)2 ‖M‖4L∞(H ) ‖Σ

−1/2
0,λ (µ0 − µP )‖2H

(∗)
≤ 4

n
(1 + 2

√
Cλ ‖u‖L2(P0))(C1 + C2)2 ‖M‖4L∞(H ) ‖u‖

2
L2(P0) ,

where (∗) follows from using gλ(x) = (x + λ)−1 with C1 = 1 in Lemma A.2. For term 4 ,
using Lemmas A.1 and A.3, we have

E( 4
2
|(Y 0

i )si=1) ≤ 4

nm
‖B‖4L∞(H )‖Σ

−1/2
0,λ ΣPΣ

−1/2
0,λ ‖L2(H )‖Σ

−1/2
0,λ Σ0Σ

−1/2
0,λ ‖L2(H )

≤ 4

nm
(C1 + C2)2 ‖M‖4L∞(H ) (2

√
Cλ ‖u‖L2(P0) +

√
2N2(λ))N2(λ)

≤ 4

nm
(C1 + C2)2 ‖M‖4L∞(H ) (2

√
CλN2(λ) ‖u‖L2(P0) +

√
2N 2

2 (λ)).

Combining these bounds with the fact that
√
ab ≤ a

2 + b
2 , and that (

∑k
i=1 ak)

2 ≤ k
∑k

i=1 a
2
k

for any a, b, ak ∈ R, k ∈ N yields that

E
[
(η̂TSλ − ζ)2|(Y 0

i )si=1

]
. ‖M‖4L∞(H )

(
Cλ ‖u‖2L2(P0) +N 2

2 (λ)

n2
+

√
Cλ ‖u‖3L2(P0) + ‖u‖2L2(P0)

n

+
N 2

2 (λ)

m2
+
‖u‖2L2(P0)

m

)

. ‖M‖4L∞(H )

(
Cλ ‖u‖2L2(P0) +N 2

2 (λ)

n2
+

√
Cλ ‖u‖3L2(P0) + ‖u‖2L2(P0)

n

)
,

where in the last inequality we used m ≥ n.
When P = P0, and using the same lemmas as above, we have

E
(

1
2|(Y 0

i )si=1

)
≤ 4

n2
(C1 + C2)2 ‖M‖4L∞(H )N

2
2 (λ),

E
(

2
2|(Y 0

i )si=1

)
≤ 4

m2
(C1 + C2)2 ‖M‖4L∞(H )N

2
2 (λ),

E
(

4
2|(Y 0

i )si=1

)
≤ 4

nm
(C1 + C2)2 ‖M‖4L∞(H )N

2
2 (λ),
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and 3 = 5 = 0. Therefore,

E[(η̂TSλ )2|(Y 0
i )si=1] = E

[(
1 + 2 + 4

)2 |(Y 0
i )si=1

]
(∗)
= E

(
1

2
+ 2

2
+ 4

2|(Y 0
i )si=1

)
(†)
≤ (C1 + C2)2 ‖M‖4L∞(H )N

2
2 (λ)

(
6

m2
+

6

n2

)
,

where (∗) follows by noting that E
(

1 · 2
)

= E
(

1 · 4
)

= E
(

2 · 4
)

= 0 under the

assumption P = P0, and (†) follows using
√
ab ≤ a

2 + b
2 .

Lemma A.9 For 0 < α ≤ e−1, δ > 0 and m ≥ n, there exists a constant C5 > 0 such that

PH1(qλ1−α ≤ C5γ) ≥ 1− δ,

where

γ =
‖M‖2L∞(H ) log 1

α√
δn

(√
Cλ ‖u‖L2(P0) +N2(λ) + C

1/4
λ ‖u‖3/2

L2(P0)
+ ‖u‖L2(P0)

)
+
ζ log 1

α√
δn

,

ζ =
∥∥∥g1/2

λ (Σ̂0)(µ0 − µP )
∥∥∥2

H
, and Cλ is defined in Lemma A.3.

Proof The proof is similar to that of (Hagrass et al., 2024, Lemma A.15) and involves
replacing ΣPQ with Σ0, R with P0, and µQ with µ0. Then the desired result follows by
using m ≥ n.
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