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Abstract

Motivated by approximation Bayesian computation using mean-field variational approxi-
mation and the computation of equilibrium in multi-species systems with cross-interaction,
this paper investigates the composite geodesically convex optimization problem over mul-
tiple distributions. The objective functional under consideration is composed of a convex
potential energy on a product of Wasserstein spaces and a sum of convex self-interaction
and internal energies associated with each distribution. To efficiently solve this problem,
we introduce the Wasserstein Proximal Coordinate Gradient (WPCG) algorithms with par-
allel, sequential, and random update schemes. Under a quadratic growth (QG) condition
that is weaker than the usual strong convexity requirement on the objective functional,
we show that WPCG converges exponentially fast to the unique global optimum. In the
absence of the QG condition, WPCG is still demonstrated to converge to the global op-
timal solution, albeit at a slower polynomial rate. Numerical results for both motivating
examples are consistent with our theoretical findings.

Keywords: composite convex optimization, coordinate descent, optimal transport, Wasser-
stein gradient flow, mean-field variational inference, multi-species systems.

1. Introduction

The task of minimizing a functional over the space of probability distributions is common
in statistics and machine learning, with a wide range of applications in nonparametric
statistics (Kiefer and Wolfowitz, 1956; Yan et al., 2023), Bayesian analysis (Ghosh et al.,
2022; Lambert et al., 2022; Trillos and Sanz-Alonso, 2020; Yao and Yang, 2022), online
learning (Ballu and Berthet, 2022; Guo et al., 2022), single cell analysis (Lavenant et al.,
2021), and spatial economies (Blanchet et al., 2016). Since a probability distribution is an
infinite-dimensional object with rich geometric structures, analysis of such an optimization
problem requires special treatment and usually leverages optimal transport theory where the
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convergence is characterized through the Wasserstein metric. In this paper, we consider the
problem of jointly minimizing an objective functional over m distributions {p; 7Ly, where
pj € P2(X}), the space of all probability distributions over the j-th (Euclidean) domain X;
with finite second-order moments. Precisely, we consider the following general optimization
problem:

i T pn) = Vionpn) ¢ D00+ W) ()
where  V(p1,. -, pm) :LV(xl,...,xm)dpl...dpm, (2a)
H(ps) = L sy () day, Ve m), (2)

Wites) = | ijj W, (2, ) doy () dpy ). (20)

Here we use X = @7]”:1 X to denote the product space of {&; };”:1 Throughout the paper,
the notation for a distribution, such as p, may stand for both the corresponding probability
measure or its density function relative to the Lebesgue measure. In this formulation, V can
be interpreted as an interaction potential energy functional with potential function V : X —
R, describing the interactions among the m input distributions, H; is the individual internal
energy functional associated with p; for some convex function h; : [0,00) — R, and W; is
the self-interaction functional associated with p; for some self-interaction potential function
W; : X; x X; — R. By convention, we define H;(p;) = oo if p; is not absolutely continuous
with respect to the Lebesgue measure and h; is not a constant function. When h; = 0 and
W; = 0, this problem degenerates into the problem of minimizing an m-variate function V' on
the Euclidean space; when hj(x) = xlogx, W; = 0, and m = 1, this optimization problem
amounts to minimize the Kullback-Leibler (KL) divergence KL(- | p¥) with pfoce™. In
general, an internal energy functional #H; with h; satisfying h;j(x) — o0 as ¢ — o0 prevents
the optimal solution of p; from degenerating into a point mass measure. Our problem of
minimizing the functional in (1) is chiefly motivated by the two representative examples
below.

Ezample 1 (Mean-field inference in variational Bayes). In approximate Bayesian com-
putation (ABC) when optimizing a functional over a single high-dimensional distribution
to approximate the posterior distribution, it can often be computationally and theoretically
advantageous to employ a mean-field approximation by breaking into the product of many
lower-dimensional ones, provided that the bias introduced by this approximation is tolera-
ble or can be suitably controlled. Specifically, consider a Bayesian model with a likelihood
function p(z|6) and a prior density function 7 (relative to the Lebesgue measure) over
the parameter space © = ®§n:1 ©;, where the parameter § = (61,...,60,,) is divided into
m pre-specified blocks with 6; € ©;. Given observed ii.d. data X" = (X1,...,X,), the
posterior density function of 6 can be expressed via Bayes’ rule as

Wn(e) — p(e | Xn) _ 7T(9) H:‘L=1 p(Xi | 9) (3)

Som(0) [Tiy p(Xi|0) 6




WASSERSTEIN PROXIMAL COORDINATE GRADIENT ALGORITHMS

We use II,, to denote the corresponding posterior distribution. In practice, m, is often com-
putationally intractable due to the lack of an explicit form of the normalizing constant, i.e.,
the denominator in (3). Mean-field variational inference (MFVI) (Bishop and Nasrabadi,
2006), which approaches this task by turning the integration problem into an optimization
problem, can be formulated as finding a closest fully factorized distribution 7,, = @;”:1 Dj
to approximate the target posterior distribution II,, with respect to the KL divergence; that
is, computing

7n = argmin KL(p|IL,), s.t. pje Z(0;) Vje[m].
p=Q)jL1 pj

Up to a p independent constant, this is equivalent to

T, = argmin { J [nU,(0) —log m(6)] dpy - - - dpm + 2 f pjlog pj}, (4)
p=®j 0y LJO j=179;

where Uy, (0) = —1 37 | log p(X; | 0) corresponds to the (averaged) negative log-likelihood
function of data X™. It is then apparent that above is a special case of the general formu-
lation (1) by taking V = nU, —logm, h;j(z) = xlogz, W; = 0, and &; = ©;. The optimal
solution (pi, ..., pm) corresponds to the mean-field approximation of the joint posterior dis-
tribution of the parameter 6 = (61,...,0;,) via the relationship 7, = ®)’., p;. Ghosh et al.
(2022) shows the connection between MFVI (4) and the objective functional (1) without
proposing practical algorithm for solving (4). Yao and Yang (2022) focuses on solving spe-
cial cases of problem (4) with m = 2 blocks corresponding to continuous model parameters
and discrete latent variables.

Concurrent and independent to our work, Arnese and Lacker (2024) and Lavenant and
Zanella (2024) have also investigated the minimization of (4) with coordinate ascent varia-
tional inference (CAVT) using optimal transport theory. Arnese and Lacker (2024) explored
the convergence of CAVI with the sequential update scheme, while Lavenant and Zanella
(2024) studied the random update scheme. Both papers primarily emphasized the theo-
retical analysis of the CAVI algorithm, demonstrating similar convergence results to ours
for CAVI when the posterior distributions are log-concave. In contrast, our work intro-
duces a novel algorithm that differs from CAVI and studies its algorithmic convergence
rate. Furthermore, our analysis is conducted under the quadratic growth condition (de-
tailed in Assumption D), which is weaker than the log-concavity assumption as later shown
in Proposition 8. 0

Ezample 2 (Equilibrium in multi-species systems with cross-interaction). Multi-
species systems (Carrillo et al., 2018; Daus et al., 2022) arise in applications in cell biology
(Pinar, 2021) and population dynamics (Zamponi and Jiingel, 2017). In this example, we
consider the following non-local multi-species cross-interaction model with diffusion,

s = (o3 [TV, = STE )+ T (p3)]). s € [, (5)
=1

where p;(x,t) is the unknown mass density of species j at location x and time t, V; is the
external potential field affecting species j, Kj; is the self-interaction potential of species j,
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and {K;; : 1 < i # j < m} are the cross-interaction potentials. When 7; is the negative
self-entropy functional hj(p;) = p;log p; for the j-th species, PDE (5) corresponds to the
Fokker—Planck equation associated with the mean-field multi-species stochastic interacting
particle system (Daus et al., 2022),

AX;(t) = =VV;(X;(1) dt + > (VK % pi(-, 1)) (X;(t)) dt + vV2dBy(t), Vje[m]. (6)
=1

In particular, p;(-,t) corresponds to the density function associated with the distribution
of X;(t) with initialization X;(0) ~ p;(-,0) for all j € [m]. Another common class of
H; has hj(p;) = ij with m; > 1, corresponding to diffusion in porous media (Aronson,
2006; Vazquez, 2007). For such an entropy functional #;, there is no analogous stochastic
differential equation (SDE) corresponding to equation (5). For symmetric multi-species
models where K;; = Kj;, finding the equilibrium of equation (5) is equivalent to solving the
optimization problem (1) with V(z) = X7} Vi(2:) =31 < jpn Kij(wi—25) and Wj(z;, ) =
—Kjj(zj — 2%)/2 (cf. Proposition 25). The symmetric interaction kernel assumption is
natural in physics applications due to Newton’s third law of motion.

The demand of computing the stationary distribution (or equilibrium) of a multi-species
system naturally arises in physical science, such as chemical engineering (Carrayrou et al.,
2002; Paz-Garcia et al., 2013). However, most existing literature considers computational
methods for calculating the equilibrium of interacting particle systems with only one species.
For example, Gutleb et al. (2022) consider the case where m = 1, V = h = 0, and the interac-
tion potential W has attractive-repulsive power-law form, by approximating the equilibrium
measure with a series of orthogonal polynomials. Under their approximating schemes, the
original problem of finding the equilibrium turns into an optimization problem of solving the
coefficient of each polynomial. In the multi-species setting, Owolabi and Atangana (2019)
studied the equilibrium of multi-species fractional reaction-diffusion systems by simply ap-
proximating the spatial derivatives with second-order Taylor expansion without analyzing
the approximation error of their methods. O

1.1 Our Contributions

In this paper, we propose the Wasserstein Prozimal Coordinate Gradient (WPCG) algo-
rithm as a tool to minimize a composite geodesically convex functional of form (1) over
multiple distributions, which extends the coordinate descent algorithm from the Euclidean
space to the space of probability distributions. We provide detailed convergence analysis
for WPCG with three updating schemes: parallel, sequential, and random. Specifically, we
show that: (i) under the condition that the potential function V' is smooth and convex, and
{h;}7L, and {W;}7L, are convex, WPCG converges to a global optimal solution of (1) at
rate O(1/k), where k denotes the iteration count; (ii) under the additional quadratic growth
(QG) condition in (17), WPCG converges to the unique global optimum exponentially fast
in the Wasserstein-2 metric. Note that QG condition is a weaker requirement than the
strong convexity on V' and/or {h;}7L; and {W;}7L ; see Figure 1 for the implications of
various assumptions for proving convergence in optimization and Section 3 for further de-
tails. In addition, implementation of WPCG with the parallel updating scheme inherently
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supports parallelization, which enhances its computational scalability to high-dimensional
problems.

Previous studies, including (Ambrosio et al., 2005; Salim et al., 2020; Wibisono, 2018),
predominantly concentrate on using Wasserstein gradient flow for the minimization of a
functional over a single distribution. To the best of our knowledge, the current work is
among the first study to:

1. investigate the application of Wasserstein gradient flow for minimizing a functional

over multiple distributions;

2. extend the design and analysis of coordinate descent type algorithms for optimization

in Euclidean spaces to those for optimization in Wasserstein spaces.

Convexity —— Polynomial rate

univariate

Strong Convexity + KL type LSI (PL)
\ \ KLiunivariate
Quadratic Growth Exponential rate

Figure 1: Implication diagram of commonly used assumptions for proving convergence re-
sults in optimization. Double arrows show the connections between assumptions
on the Wasserstein space: strong convexity implies convexity and the quadratic
growth condition; convexity and the quadratic growth condition together imply
LSI for KL-type functionals. Single arrows show the convergence rates implied
by different assumptions, among which the blue ones are studied in this work for
minimizing multivariate objective functionals.

We emphasize two key differences from optimization on the Euclidean space.

First, most common internal energy functionals {#; };”:1 in (2) (e.g., negative self-
entropy) are non-smooth in the usual sense—the difference incurred by the linearization
of H; around any p cannot be upper bounded by a multiple of the Wasserstein distance to
p. For coordinate descent optimization on the Euclidean space, such a smoothness property
serves as two critical purposes: (i) it ensures that the discretization error of gradient de-
scent is compensated by the contraction of the corresponding continuous-time gradient flow;
(ii) it prevents overshooting of the coordinate descent update by controlling the misalign-
ment between the coordinate-wise steepest descent direction and the entire steepest descent
direction, so that coordinate descent algorithm keeps making progress in minimizing the
objective functional. In the Wasserstein space, (explicit) gradient/coordinate ascent algo-
rithms with non-smooth H; require the linearization of #; in the algorithm and a uniform
control of smoothness of the Wasserstein gradient of H,;. Our analysis reveals that consid-
ering an implicit scheme (or a proximal type update) in designing coordinate descent type
algorithms in Wasserstein spaces can avoid imposing a smoothness assumption on {H,; };”:1
when analyzing their convergence. In particular, the linear convergence of WPCG only
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requires the potential gradient VV' to be Lipschitz (cf. Assumption B in Section 3). Thus,
convergence rates of WPCG are derived under more realistic conditions on the objective
function F and hold for general functionals {#,; };”:1 than the negative self-entropy. This
allows us to compute the stationary measure of non-local multi-species degenerate cross dif-
fusion beyond heat diffusion (cf. more details for our numeric example on porous medium
equation in Section 5.2).

A second challenge in demonstrating the convergence of WPCG lies in the difficulty of
proving a Polyak-Lojasiewicz (PL) type inequality, which requires some positive power of
certain norm of the “Wasserstein gradient” of target functional F at any p1., := (p1,-- -, Pm)
to be lower bounded by a multiple of F(pi.m) — F(p}.,,), where p}., denotes a global
minimizer of F. It is known (Karimi et al., 2016) that proving a PL inequality is crucial
and common for analyzing gradient-based optimization algorithms in the Euclidean case. A
PL inequality is typically implied by strong convexity or a log-Sobolev inequality (LST). It
is also known that a quadratic growth (QG) condition with convexity is strictly weaker than
the strong convexity (see discussions after Assumption D). While the QG condition together
with convexity implies LSI for the KL-type functional over a single distribution, there is
no corresponding result for a general functional over multiple distributions pi.,,. The main
technical difficulty comes from the lack of tensorization for a “multivariate” Wasserstein
gradient.

1.2 Related Work

Optimization over one distribution. The seminal paper by Jordan, Kinderlehrer, and
Otto (Jordan et al., 1998) introduces an iterative scheme (now commonly known as the
JKO scheme) serving as the time-discretization of a continuous dynamic in the space of
probability distributions following the direction of the steepest descent of a target functional
with respect to the Wasserstein-2 metric. In later developments, the JKO scheme has been
recognized as a promising numerical method for optimizing a functional over a probability
distribution and can be viewed as a special proximal gradient update (Rockafellar, 1997)
relative to the Wasserstein-2 metric in the space of probability distributions (see Section 2.2
for more details). Therefore, in the remainder of the paper, we will primarily use the term
Wasserstein proximal gradient scheme instead of the JKO scheme, as this terminology more
clearly suggests its close link with general convex optimization.

Recently, several other discretization methods are proposed for minimizing a functional
over a single distribution (i.e., m = 1 in our setting). Different from the Wasserstein proxi-
mal gradient scheme that can be viewed as an implicit (backward) scheme for discretizing
the Wasserstein gradient flow (WGF), some explicit (forward) schemes, analogous to the
usual gradient descent on the Euclidean space, are considered and analyzed for solving spe-
cific problems. For example, Chewi et al. (2020) analyze a gradient descent algorithm for
computing the barycenter on the Bures—Wasserstein manifold of centered Gaussian prob-
ability measures. One key ingredient in their convergence analysis is to prove a quadratic
growth condition for the barycenter functional that leads to a PL inequality and implies the
exponential convergence of the algorithm. For the KL divergence functional KL( - || p*) with
p* oc eV for some strongly convex and smooth potential function V', Wibisono (2018) shows
that a symmetrized Langevin algorithm, which is an implementable discretization of the
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Langevin dynamics, reduces the bias in the classical unadjusted Langevin algorithm (Dur-
mus and Moulines, 2017) and attains exponential convergence up to a step size dependent
discretization error. Salim et al. (2020) consider a more general setting where the objective
functional consists of the same potential functional and a general non-smooth term that
is convex along generalized geodesics on the Wasserstein space; they propose a forward-
backward algorithm, which runs a forward step (gradient descent) for the potential func-
tional and a backward step (proximal gradient) for the non-smooth term, and prove its
exponential convergence under the same conditions on potential V.

Optimization over special cases of multiple distributions. Several recent works focus
on solving an important special case of problem (1) in the context of MFVTI as we described
in Example 1, where a multi-dimensional Bayesian posterior distribution is approximated
by the product of several lower-dimensional distributions relative to the KL divergence.
Yao and Yang (2022) consider a block MFVI for Bayesian latent variable models with two
blocks, one for the discrete latent variables and one for the continuous model parameters,
which corresponds to problem (1) with m = 2. They propose and analyze a majorization-
minimization algorithm for solving MF VI, which can be viewed as a distributional extension
of the classical expectation—maximization (EM) algorithm. Due to the special property that
minimizing the latent variable block in the problem admits a closed-form expression, their
algorithm is effectively a time-discretized WGF for optimizing a single distribution, with
an effective potential function V' changing over the iterations. When the population-level
log-likelihood function is locally strictly concave, they show that their algorithm converges
exponentially fast to the solution of MFVI. Ghosh et al. (2022) study a WGF-based algo-
rithm for solving MFVI without latent variables. Their study shows that the discretized
flow (Wasserstein proximal gradient scheme) converges to a mathematically well-defined
continuous flow when the step size is small, assuming certain conditions on the potential
function V. However, their analysis is asymptotic and they do not directly examine the
convergence of the time-discretized algorithm, leaving it unclear if the discrete dynamic
system is stable so that the discretization error does not accumulate over time and whether
an explicit convergence rate can be obtained.

The rest of this paper is organized as follows. In Section 2, we present an overview of
essential concepts in optimal transport that are necessary for developing our methods and
theory. Section 3 introduces the WPCG algorithm with three different update schemes:
parallel, sequential, and random update schemes. We also propose two different numerical
methods to solve the Wasserstein proximal gradient scheme, a key step for implementing
the WPCG algorithms. Theoretical analyses of the WPCG algorithms are provided in
Section 4 in the presence and absence of a Ad-quadratic growth condition. In Section 5, we
demonstrate the applications of our algorithm and theory to mean-field variational inference
and multi-species systems, along with numerical experiments. In Section 6, we conclude
the paper and discuss some open problems for potential future research.

1.3 Notations

For any X < RY, let Z2(X) be the collection of all probability measures on X, P5(X) =
{1 : Ex,u[|X|?] < oo} be the set of probability measures with finite second-order moments,
and Z5(X) c P9(X) be the subset that includes all absolutely continuous probability
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measures with respect to the Lebesgue measure on X. For a measurable map 7': X — X,
let Ty : P (X) — P(X) be its corresponding pushforward operator, i.e., v = Ty p if and
only if v(A) = u(T~1(A)) for any measurable set A = X. Throughout the paper, we assume
X to be convex and compact unless otherwise stated.

Let 7°(x,y) = o and 7'(x,y) = y be two projection maps (projecting into the first and
second components). Let II(u,v) = {v: (7%) v = u, (7') 4y = v} be the set of couplings?,
or all transport plans, between p and v. Let Il,(u,v) be the set of all optimal transport
plans, whose precise definition can be found in Section 2 below. For a random variable X,
we use L(X) to denote its distribution.

Let C1(X) be the set of functions on X that have continuous derivatives. Let L!(X)
and L*(X) represent the class of integrable functions and uniformly bounded functions on
X, respectively. For a vector x = (x1,...,z,,), we assume its sub-vector without the j-th
entry is denoted by the shorthand x_; = (z1,...,2j-1,2j11,...,%m). Let | - || denote the
vector £ norm. For a matrix A, let [[All,, = supjyj=1 [|Az| denote its matrix o — 5
operator norm.

2. Preliminaries on Optimal Transport

In this section, we briefly review some concepts and results in optimal transport that are
necessary for explaining and developing our methods and analysis.

2.1 Wasserstein Space and Geodesics

For any u,v € P2(X), the Wasserstein-2 distance between p and v is defined as

Wieo) = jnt { [ e sPanten). (7)

yell(p,v)

It is known that (P2(X), Wa) is a metric space called Wasserstein space. Moreover, if X’
is complete and separable, (Z2(X), W2) is complete as well (Bolley, 2008). The infimum
in (7) always admits a solution v called an optimal transport plan (Santambrogio, 2015).
When p € &5(X), the optimal transport plan is unique and takes form v = (Id, T};)u,
implying v = (1};) 4, where Id is the identity map and 7}; is called the optimal transport
map from p to v (Santambrogio, 2015). Moreover, Brenier’s Theorem (Brenier, 1987) states
that this unique optimal transport map 7}, = V4 is the gradient of a convex function .

Note that (Z2(X), W3) is not a flat metric space, but is positively curved in the Alexan-
drov sense (Ambrosio et al., 2005). Geodesics on a curved space are the shortest paths
connecting two points. (P2(X), W2) is indeed a geodesic space. For any pg, u1 € 25(X)
and ~y € II,(po, (1), the constant-speed geodesic connecting pug and pu1 is py = (m¢) 47y, where
= (1 —t)70 +trl.

1. A coupling between two distributions p and v is a joint distribution whose two marginals are p and v.
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2.2 Convex Functionals on Wasserstein Space

Convexity is an important concept in optimization. On the Euclidean space, a function
f: X — Ris A-strongly convex if

Flae) < (0= ) Go) + 1) — 0P oy a2
and we say f is L-smooth if
Flao) > (- (o) + ) - Uy a2

for all ¢ € [0,1] where z; = (1 — t)xo + tz;. In convex optimization, L-smoothness and A-
strong convexity are common sufficient conditions to guarantee the exponential convergence
rate of an (explicit) gradient descent algorithm, :L‘g;é = x’grad — TVf(ZL‘grad), k=0,1,...,
towards the unique global minimum of f. In comparison, the following proximal gradient

algorithm
. 1
x];;:)i - argnjvln {f(flf) + ;H(l) - x’};rOXHQ} ) k= 07 17 R (8)
€

only requires the A-strong convexity to guarantee its exponential convergence rate (Beck,
2017). Note that a proximal gradient algorithm is also called an implicit gradient descent
algorithm, since the first-order optimality condition (FOC) for (8) reads xf;;;i = x’l‘;mx -
TV f (xf)joi) The theoretical advantage of the proximal scheme comes at the price of the
additional computational cost of numerically solving this FOC equation.

Similar to these notions in the Euclidean case, a functional F : &2(X) — (—0, +0] to

be A-strongly convex along geodesics, if for all pg, u1 € P2(X), we have

Flyu) < (1= F (uo) + tF () = 51— 1) W0, ), )

where {y; : 0 < t < 1} is the constant speed geodesic curve connecting g and p. When
A = 0, we simply say that F is geodesically convex. It can be shown that both functionals
W;(pj) and H;(p;) in our problem formulation (4) are geodesically convex when their
defining functions W; and h; are convex (Ambrosio et al., 2005, Chapter 9.3). However,
different from the Euclidean case where all convex functions are continuous, geodesically
convex functionals may not be continuous with respect to the Wy distance.

Ezample 3 (Geodesically convex functional may not be continuous). Consider the negative
self-entropy functional p — y plog p which is geodesically convex. Let py be the uniform
distribution on [0, 1] and p,, be the uniform distribution on A,, where 4,, = U?:_Ol[%, 2;’11].
Then Ws(pn, pos) — 0 as n — oo, while § py, log p,, = log 2 for all n and § ps log poo = 0. O

As we mentioned in the introduction, the Wasserstein proximal gradient scheme, an
iterative algorithm defined as below, is commonly used for minimizing a functional F :
Py(X) — (—o0, +0] defined on the Wasserstein space,

1
P! = argmin {f(p) +5- Wilp, p’“)} , k=01, (10)
pe7a(X) 27
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with the initial distribution p® and the step size 7 > 0. This is analogous to the proxi-
mal gradient algorithm (8), i.e., the backward time-discretization of a gradient flow on the
FEuclidean space. The convergence of Wasserstein proximal gradient scheme for the KL
divergence functional Fxr,(p) = {V dp + Splogp is well studied in literature. As on the

Euclidean space, piecewise 1nterpolat10n pr = pl | converges to a continuous dynamics on
Wasserstein space, i.e., the solution of Fokker—Planck equation dip; = V- (p:V(V + log py))
(Santambrogio, 2015). Since the Fokker—Planck equation is also the density evolution equa-
tion of Langevin dynamics (Jordan et al., 1998)

dX; = —VV(X;) dt + V2dW, (11)

one can also use the Fuler-Maruyama method to numerically approximate the Wasserstein
proximal gradient scheme for the KL using particle approximation. It is shown in the litera-
ture that when V' is strongly convex, the solution {p; : ¢t = 0} of the Fokker—Planck equation
converges to the unique global minimizer p* oce™" of Fir, (Villani, 2021). Corollary 2.8
in (Yao and Yang, 2022) further shows that the time-discretization of the continuous time
dynamic via Wasserstein proximal gradient scheme {pF : k € Z,} is unbiased, and also
converges to p*oce™" exponentially fast when V is strongly convex.

In this paper, we are primarily interested in functional F : HP5(X) X -+ x Po(Xy,) —
(—o0, 0] that is defined over m distributions. Analogously, we say that F is (blockwise)
A-strongly convex if

Fuhoooph,) < U= OF (], .., ) + tF (s - s pi) — l—tZ 500, 15)

for all H?» u} € P5(X;) and the corresponding constant speed geodesics {,uj ;0 <t <1},
Vj € [m]. In the next section, we will extend the aforementioned Wasserstein proximal
gradient scheme from minimizing a simple functional of one distribution into minimizing a
functional of multiple distributions by describing several coordinate ascent versions of JKO
and analyze their convergence.

2.3 First Variation and Wasserstein Gradient

Let F : Py(X) — (—w0,+0] be a lower semi-continuous functional. For a measure p €
Z5(X), we call u to be regular for F if F((1 —e)u+ev) < w0 for every ¢ € [0,1] and every

absolutely continuous probability measure v € Z(X ﬂLOO . If p is regular for F, the
first variation (or Gateaux derivative) of F at u is a map 55 oy ) : X — R satisfying

d OF

—Flptex)) = —(pdx

de e=0 X 5[)

for any perturbation x = i — p such that g € 225(X) and { dy = 0. Clearly, %(u) is
uniquely defined up to additive constant. This is analogous to the gradient of F in the
L?(X) sense. If F is a geodesically convex functional defined on the Wasserstein space, and
F(u) < oo at some p, then the vector field & = V%(ﬂ) e L?(pu; &) will satisfy (Ambrosio
et al., 2005)

Fv) = F(u) + L &, T —1dydu, Yve 25(X). (12)

10
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We say that £ = V%(u) is a strong subdifferential (or Fréchet derivative) of F at u.
Strong subdifferential captures the “gradient” with respect to the Wy metric and is more
convenient to use than the first variation when analyzing the convergence of a gradient flow
on the Wasserstein space. Henceforth, we will also refer to a strong subdifferential of F as
its Wasserstein gradient.

3. Wasserstein Proximal Coordinate Gradient (WPCG) Algorithms

In this section, we introduce the WPCG algorithm with three different yet common update
schemes: parallel update (WPCG-P), sequential update (WPCG-S), and random update
(WPCG-R).

3.1 Parallel Update

In the WPCG-P algorithm, each coordinate is updated synchronously, i.e., we solve the
following Wasserstein proximal gradient scheme (13) for all j € [m] at the same time to get

k
pjv

| 1
A1 = argmin {V(pj,pﬁj) +Hi(p;) + Wi(p;) + Q—Wg(pj,pf)} . (13)
pi€P5(X;) !

Recall that we have used the shorthand pljj = (p},... »P§—1»P§+1v ...,pE) to denote the
collection of all distributions at iteration k except for the j-th one, for each k¥ € N and

j € [m]. When H; = W; = 0, the solution pf“ of the subproblem (13) satisfies (Id +

V\/jk)#p?+1 = ,05?, where V]k = (V(zj,z_)) dp’ij is a function on &;. Furthermore, when the
initialization p?- is a point mass for all j € [m], the subproblem degenerates to the coordinate
proximal descent method for updating the j-th block. The parallel update scheme can be
parallelly computed and therefore is preferred when the number of coordinates m is large.
However, as we shall see in Section 4, this scheme is more sensitive to the step size compared
with the other two (i.e., sequential and random) update schemes since it may diverge when
the step size 7 is large. Pseudo-code of WPCG-P is shown in Algorithm 1.

Algorithm 1 WPCG-P

Initialize distribution p° = (p9,...,p%) arbitrarily, number of iterations T', and step size
T.
for k=0toT —1do
for j =1tomdo
Pyt = argmin o) V(pss p55) + Hj(pj) + Wilps) + 2= Wi(pj, pF);
end for
end for

3.2 Sequential Update

In the WPCG-S algorithm, the updates are made sequentially through all coordinates,
one by one, at each iteration. Although WPCG-S cannot be made parallel, the functional

11



YAO, CHEN AND YANG

value is always convergent regardless of the step size 7 magnitude since WPCG-S is always
a descent algorithm. To ease the presentation of the result, we use the notation pf:j =
(pf ey pf) to denote the distributions at iteration k from index ¢ to j, with the convention
that pf:j = ¢ if i > j. Pseudo-code of WPCG-S is shown in Algorithm 2.

Algorithm 2 WPCG-S

Initialize distribution p° = (p9,...,p%) arbitrarily, number of iterations T', and step size
T.
fork=0to7T —1do

for j =1tomdo

2 . k
pi = argmin , ¢ e VOTT 1) 050 P 1yam) + Hi(0i) + Wi(5) + 5= Wa(ps, 08);
J 2\t (3—1) (3+1)

end for

end for

3.3 Random Update

In the WPCG-R algorithm, we sample the index j; of the coordinate to be updated randomly
and uniformly from [m], independently of the previous selections of indices. To make the
convergence rate comparable to the other two schemes, we consider one iteration of WPCG-
R as the process of updating M randomly selected coordinates, where the batch size M
is of the order O(mlogm). This ensures that with high probability, each coordinate has
been updated at least once per iteration. Similar to WPCG-S, WPCG-R is also a descent
algorithm regardless of the choice of the step size 7. Pseudo-code of WPCG-R is shown in
Algorithm 3.

Algorithm 3 WPCG-R

Initialize distribution p = (p9,...,p%,) arbitrarily, number of iterations T, step size T,
and the number M of coordinates (or batch size) updated in each iteration.

for k=0to7T —1do

pk0 = p¥;

for {=0to M —1do
Choose index j; ~ unif([m]);

kl+1 . k,l k,l
pjl’ = argmin pj, €25 (X;,) V(/)jl,p,’jl) + Hjl (pjl) + sz (pjz> + 2717- W%(pjza pjl’ );
El+l kI
—i = P
end for
pk+1 _ pk,M;
end for

3.4 Implementation

Note that a common key step in the WPCG algorithm is to solve the Wasserstein proximal
gradient scheme (10) with F(p) = V(p) + H(p) + W(p), which does not have an explicit

12
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solution. Here we introduce two numerical methods: function approximation (FA) approach
and particle approximation via SDE.

3.4.1 PARTICLE APPROXIMATION VIA SDE

The first method is particle approximation via SDE, which is only applicable when H(p) is
the negative self-entropy functional. Recall that the Wasserstein proximal gradient scheme
is an 1mphc1t scheme for discretizing the WGF. When V(p) = {V dp, H(p) = {plog p, and
W(p) = (§W(z,2")dp(z)dp(z’), the WGF of F starting from po is the evolution of the
distribution of the following SDE,

dXt = *VV(Xt) dt — <fV1W(Xt, Z’) + VQW(ZL‘, Xt) dpt(fE)) dt + \/Eth, Xt ~ Pt
(14)

where V1 and Vs are the gradients with respect to the first and the second variates of W.
This connection between SDE and WGF motivates us to discretize the WGF by discretizing
its corresponding SDE. When the step size (for discretization) is small, these two different
discretization schemes are expected to be close. Then, we can approximate the Wasserstein
proximal gradient scheme by the evolution of the discretized SDE through the empirical
measure of particles which satisfy the following updating formula

B
X = xf = (Vv + 2 (VW (xE, XE) + VoW (X, XE)] ) 7 + Vo,

where 7 is the step size, B is the number of particles, and T]k i N(0,1) for all k € Z
and b € [B]. The last recursive equation is the discretized representation of the dynamics
(14) for approximating the Wasserstein proximal gradient scheme (10), and p**! can be
approximated by the empirical distribution of {XF™ : b e [B]}.

3.4.2 FUNCTION APPROXIMATION METHOD

The SDE approach is no longer applicable for a more general internal energy functional H
beyond the negative self-entropy. Instead, we leverage the function approximation methods
converting Wasserstein proximal gradient scheme (10) into an optimization problem over
the function space. Note that finding p**! that minimizes (10) is equivalent to finding a
transport map 7" such that T4 p* minimizes (10). Precisely, we have the following statement.

Proposition 4. If p* € 25 and
1
T = argmin V(Typ®) + H(Typ®) + W(Typ") + > f T () — x| dpF, (15)
T

minimizes (10).

then ph+! = T;;Hpk

We highlight the optimization problem (15) is unconstrained. By Brenier’s Theorem,
the optimal transport map from p* to p**! is the gradient of a convex function. Mokrov
et al. (2021) consider the constrained optimization problem by restricting 7' = V1 to the

13



YAO, CHEN AND YANG

gradient of a convex function 1 and finding the optimal convex function 1/**! by using input-
convex neural networks (ICNN) (Amos et al., 2017). On the contrary, Proposition 4 shows
that an unconstrained optimization problem is enough; directly minimizing the objective
functional (15) yields the optimal transport map 7%+ from p* to p**1. The intuition is
that, when T%*! is not the optimal transport map, changing 7%*! to the optimal transport
map TH+1 from p* to pF*1 does not change the first three functional values in (15) but
decreases the last term, which contradicts to the optimality of 7%+,

In practice, the optimization problem in Proposition 4 over the function space can be
solved by function approximation methods such as kernel methods and neural networks.
Moreover, since we do not have access to the time-evolving density p¥, we still need to
approximate the objective functional in Proposition 4. Suppose {X f : b e [B]} are samples
drawn from p*. We provide two concrete examples, which will be used later in Section 5,
to show how to approximate the objective functional in Proposition 4. The details will be
postponed to Appendix C.7.

Ezample 5 (Approximating negative self-entropy). For H(p*) = { p¥log p*, we can consider
the optimization problem

B
TR = argml ] Z T(X) — = Z log |det VT'(X[)|
1 & 1 &8
g D) WEE), X)) + o YTk - XEP
b =1 b1

O]

Ezample 6 (Approximating porous medium type diffusion). For H(p*) = §(p*)?, we can
consider the following optimization problem

B B
1
k+1 . 1
ThH+L argmin. Z V(T(XF ; Prae(XE) - |det VT (XF)~H"
s (10
t o 2 W), T(Xh) + 2 IT(x§) - XEIP,
bb'=1
where pF_ is the kernel density estimation of p* by {X} : b e [B]}. O

Remark 7 (Comparison between FA and SDE approaches). Compared with the SDE ap-
proach, the FA approach can be applied when the diffusion term H; is beyond the negative
self-entropy. According to our numerical results in Section 5, the performance of the FA
approach will not be affected when the system contains super-quadratic drift terms. How-
ever, smaller step size has to be chosen to apply the SDE approach, since 7 needs to be
smaller than O(L;!'), where L. = maxXjen] sex \HV V(x)|lop) is defined in the discussion
after Assumption B (Section 4), so that the exphc1t discretization of the SDE converges.
It then takes more iterations for the SDE approach to converge due to this requirement on
a smaller step size. An additional attractive aspect of the FA approach is its unbiasedness
for any step size 7. This is due to the fact that any fixed-point solution (from a distri-
butional perspective) to its iterative formula must correspond to a global minimum of F.
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In comparison, the SDE approach often exhibits bias—its fixed point usually deviates by
O(4/7) from a global minimum of F. Although choosing a decreasing step size sequence
when discretizing the SDE (14) can alleviate the constant bias, it does so at the expense of
convergence speed. This is evidenced by the slow convergence observed in Figure 7a, which
persists even for the largest permissible step size due to the existence of a super-quadratic
error term. O

4. Convergence Analysis of WPCG Algorithms

In this section, we derive the convergence rates of the WPCG (-P, -S, -R) algorithms. First,
we shall make the following assumptions and discuss their implications. These assumptions
are assumed to hold throughout the rest of paper unless otherwise specified.

Assumption A (Internal energy). All iy, hs, ..., hy, € CY(R,) are convex and satisfy:

d .
1. For some a > T2 it holds

ey
h;(0) = 0, 1iminf#fj) > —o0;
;104 $]

2. the map z; — ar;lj h; (x;dj ) is convex and non-increasing in R ;
3. hj(pj) € L'(X;) implies pil;(p;) € LY(Xx;).

The first condition on h; implies that the negative part h;(p;) is integrable. Details are
referred to Remark 3.9 in (Ambrosio and Savaré, 2007). The second condition implies the
convexity of h; along geodesics (Ambrosio and Savaré, 2007; Santambrogio, 2015). The third
condition guarantees that the first variation of H; at p; admits the explicit form as h}(p;)
(Lemma 9 in Appendix). For example, hj(z;) = z;logx; (corresponding to negative self-
entropy) and h;(x;) = 27 with mj > 1 (corresponding to porous medium type diffusion)

J
satisfy all these three conditions.

Assumption B (Potential energy). There exists L > 0 such that
HVjV(l’j,:L‘fj) — VjV(IL‘j,SL'/_j)H < L”l'fj — l'/_j“, V] € [m]

This Lipschitz constant is different from the coordinate Lipschitz constant L. used by
Wright (2015) in |V;V(y;,2—;) — V;V(25,2_5)| < Le|yj — 24| for all j € [m]. A finite
L. guarantees the smoothness of V' on each coordinate, which helps control the change of
the function value of V after each iteration through the gradient VV. Wright (2015) also
defined the restricted Lipschitz constant L, as [VV (y;,2—;) — VV (2, 2—;)|| < L:|y; — zj||
to study the convergence property of asynchronous coordinate GD. We also let Ly be the
global Lipschitz constant defined through |VV (2)—VV (y)|| < Lg|lz—y||, which is commonly
used in literature of GD. In fact, we have 0 < L/L, < v/m — 1,0 < L/L, < /1 —1/m, and
0 < L/Lg < 1. The proof of these connections is provided in Appendix E.

From the above connections, we can see that our Lipschitz assumption is the weakest,
which only requires a control on the off-diagonal term of V2V (when V is twice differen-
tiable). This difference is due to our choice of the proximal-type optimization algorithm,
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where only the magnitude of interaction (off-diagonal) components in V' matters in the sense
that changing the target function from V'(z) + 37", f;(x;) into V for any univariate func-
tions { fj}}”:l does not affect the convergence of a proximal coordinate descent algorithm.
Technically, this irrelevance of marginal (diagonal) components is due to the reason that
convergence of a proximal gradient algorithm for minimizing a univariate function does not
require the smoothness (gradient) condition. However, the interaction component, which
incurs the overshooting when alternating the coordinate-wise steepest descent direction,
cannot be eliminated by using the proximal scheme.

Assumption C (Self-interaction energy). There are functions f; and g; such that
both

YN/( Z fi(x;) + g; xj)] and Wj(xj,:c;) = fi(zy) —I—Wj(xj,m;) +gj($;-)

are convex for all j € [m].

When W; is symmetric, we can simply take f; = g; for all j € [m]. Without loss of
generality, in the remaining of this paper, we will only consider the case where f; = g; = 0
for all j € [m]. For the general case, note that the functional value F(pi.y) in (1) remains
the same while replacing V' and W; with V and W/j, respectively. Thus our proof with
fi = g; = 0 can be easily extended to the general case. This freedom of allocating the
marginal components between the potential energy and the self-interaction energy in our
analysis is again due to the fact that the convergence of the proximal coordinate algorithm
is only affected by the interaction components within V' (cf. discussions after Assumption
B).

Assumption D (Overall growth). The target functional F satisfies the following A-
quadratic growth (A-QG) condition: for A > 0,

F(prm) — F(pTm) =

1\9\>/

Z‘ 5(pj k), Vpje P5(X)). (17)

When A > 0, the \-QG condition guarantees the uniqueness of the solution to the
optimization problem (1). When A = 0, the minimizer of (1) may not be unique, but the
functional value convergences to F(pj.,,) for any global minimizer pj.,, of (1) (cf. Theorem
18). On the Euclidean space, it is known that A-strong convexity is stronger than A-QG
condition plus convexity, which together implies a PL inequality (Karimi et al., 2016). A
similar result holds in the Wasserstein setting. In fact, the following proposition shows that
Assumption D holds when V is A-strongly convex, which is a sufficient condition for F being
strongly convex. Its proof is provided in Appendix C.

Proposition 8. Assumption D holds when V' is A-strongly convex.

On the other hand, we also want to mention that the A-QG in Assumption D is strictly
weaker than A-strong convexity. A simple illustrative example is W; = 0, h;(p;) = p;log p;,
and V(z) = Vi(21) + -+ + Vin(zm) with Vj(z;) = § |2;] for z; € [—1,1] and Vj(z;) = %x?
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elsewhere. In this case, F(p1.m) = Fi(p1) + - -+ + Fm(pm) with

Fi(pj) = L Vidpj + Jpj logpj,  &j = R.
J

It is straightforward to verify that F; satisfies the \-QG condition due to the growth rate

of Vj (see p.280 in (Villani, 2021) for more details) and is convex along geodesics, but is not

strongly convex along geodesics since V' is not strongly convex in [—1,1]™ (e.g. consider

two absolutely continuous measures supported on [—1,1]™).

The PL inequality has an analogy on the Wasserstein space which is called log-Sobolev
inequality (LSI) (Villani, 2021). However, it is not easy to directly prove an LSI, mainly
due to the following two reasons. Firstly, LSI is often exclusively used to study the KL
divergence type objective functionals associated to the relative entropy functional, while
we are considering more general objective functionals. Secondly, when we consider a multi-
variate functional on the Wasserstein space, the multivariate Wasserstein gradient does not
tensorize, i.e., the sum of the norm of its blockwise Wasserstein gradient does not equal to
the norm of the Wasserstein gradient of the functional treated as a univariate functional
(see ahead (18) in Remark 17 below).

4.1 Convergence Rates of WPCG under \-QG Assumption

Now, we are ready to present our main theoretical results on the convergence rates of the
WPCG algorithms. For notation simplicity, we denote p* := pj., as a solution of the
optimization problem (1) and p¥ := p¥_  as the solution of the WPCG algorithms (-P, -S,
-R) at the k-th iteration when the context has no ambiguity.

Theorem 9 (Exponential convergence rate of WPCG-P under \-QG). Assume As-
sumptions A, B, C, and D hold for some A > 0. Let p¥ be the solution of WPCG-P in (13)

at the k-th iteration. If the step size satisfies 0 < 7 < L(mil/)im then
2 _
W3(0*,p") < S[1+ Cilm, LA [F (o) = F (")), VheZy,
where
1
5= + —1)(z — Lvm
Cy(m,L,7) = 2~ (m )( —1) > 0.

2m[2L2(m — 1) + 2]

T2

Remark 10 (Comments on the step size and iteration complexity of WPCG P).

(i) By taking 7=+ = KLy/m — 1 for K > 1, we have C1(m,L,7) > (ﬁ(;{é; Dm . Therefore,

the best iteration complex1ty based on our theory for achieving e-accuracy is

log 2[-7:(/70))\—5-7:(0*)] g log 2[]:(00)/\;]:(0*)] g 4L(K2 +1)m log 2[F(p 0))\—5-7'—( p*)]
Bl 3G n L) o1+ i) NIV 1

i.e., WPCG-P requires at most O(@ log()%e)) iterations to achieve e-accuracy when the
step size 7 is on the scale O(ﬁ) [In the sequel, we will drop the logarithmic factor in the
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iteration complexity when exponential convergence is achieved.] (ii) Both the upper bound
of the step size T and the smoothness condition of V' are necessary for the convergence of the
parallel update scheme. The following Example 11 shows that the upper bound O(ﬁ)
of the step size 7 cannot be relaxed, i.e., there exists V', H;, and W; such that WPCG-P
diverges when 7 exceeds the scale O(+%=). Moreover, when we choose 7 on this scale,

Tvm
the iteration complexity is exactly O(@) which coincides with the result in the previous
discussion. O

Ezample 11 (Optimality of step size and convergence rate of WPCG-P). Consider
the case where V(z) = 15 |z[? + $(21 + -+ + 2,,)? and W; = hj = 0 so that p; = o, the
point mass measure at 0 for each j € [m]. In this case, when we initialize p? to a point mass
measure for all j € [m], the optimization problem (1) on the Wasserstein space degenerates
into an optimization problem on R with objective function V. The (gradient) Lipschitz
constant of V' in Assumption B is L = ay/m — 1. In each iteration, the update scheme in
WPCG-P algorithm is equivalent to solve

(z; ;:75 ) }

k+1 _ : ok
2" = argmin {V(mj,x_j) +
CEJE]R

o fl-a k2
= argmin i+ —(zj+s7)" +
$J‘€]R { 2 I 2 ! J

where we use the shorthand s = 2% + .- + 2% to denote the sum of all coordinates at the

k-th iterate, and sk ;= sk — xf . A direct calculation for this example reveals that

o — <7'_1 —(m— 1)04>k80_
1+ 771

Therefore, s* only converges as k — o0 when |[77!—(m—1)a| < |1+77!|, which is equivalent
to
2 1
S L
! (m—1)a—1 Ly/m

This calculation shows that our upper bound requirement on step size 7 is necessary and
tight. To study the tightness of the convergence rate implied by the theorem, we note that
a direct calculation leads to

gjk+1 1 —-xT - —QT xk
1 _ _ 1
1 aT 1 aT A
: =137 . : . : Do = Apa”.
xk+1 . . . . xk
m —ar —at - 1 m

It is easy to verify that the m eigenvalues of the symmetric matrix A, are

1+ ar \ _1+oz7—oz7'm

N o= = Ay = -
! m-1 14+7° m 1+71
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Under the optimal step size (modulo constants) 7 = 1/(Ly/m — 1) = 1/(a(m — 1)), we have

m
)\1:"':>\m71:71, )\m:()
m—1+a

Therefore, we can always find some initialization z° € R™ (e.g., any eigenvector associated
with A1) such that

l1-—a k
k ky..0 0
2 = X)) = (1 - ) 12°).
ma+1—a«
Under this initialization, the algorithm takes O(ma/(1 — «)) = O(L+/m/)) iterations to
converge. This example shows that our convergence rate bound is unimprovable when 7 is

O(z7)- O
Next, we establish the exponential convergence rate of WPCG-S.

Theorem 12 (Exponential convergence rate of WPCG-S under A\-QG). Assume
Assumptions A, B, C, and D hold for some A > 0. Let p* be the solution of WPCG-S at
the k-th iteration. Then for any step size 7 > 0 we have

o2 - ;
W3(o", %) < S[1+ ACalm, L) (F () = F (o),
where
-1
Cao(m,L,7) = (87’L2(m —-1)+ 87’71> > 0.

Remark 13 (Comparison with existing results in the Euclidean case). Similar to
the parallel update scheme, by taking 7! = Ly/m — 1 the iteration complexity also grows
at a rate of O(@) When degenerated to optimization on the Euclidean space (by taking

H; = 0 and W; = 0), our result is comparable to the rate O(@) in Theorem 6.3
of (Wright and Recht, 2022) for sequential coordinate gradient descent method with strongly
convex and smooth functions. When we take 7 = L~!, the iteration complexity turns out
to be O(LTm) This iteration complexity is no larger than O(% : mTLg) derived by
Li et al. (2017) when applying coordinate proximal gradient descent with the sequential
update scheme, where \; and L; are the parameters of strong convexity and smoothness

of the j-th block, and the step size for updating the j-th block is Lj_l. Their result has an
max; L;
ming { L+, }
function by its first-order Taylor expansion before applying the proximal descent step. As
we mentioned, we believe that the difference between the Lipschitz constant in our result
and the ones chosen in (Li et al., 2017; Wright and Recht, 2022) for optimization problems
on the Euclidean space is due to our choice of a proximal-type optimization method. In
fact, for the sequential update scheme, the Lipschitz constant can be further relaxed to the

lower triangular Lipschitz constant (Hua and Yamashita, 2015). O

Remark 14 (Effect of step size in WPCG-S). The iteration complexity O(@) when

77t = Ly/m —1 in WPCG-S is smaller than the iteration complexity O(mf £) derived
by Sun and Ye (2021) for alternating minimization algorithm (corresponding to 7 = o0)

additional factor because they approximated the smooth part of the objective
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with the sequential update scheme on the Euclidean space, which shows that using an
overly large 7 can still drag down the convergence speed. It is an interesting open problem
that if the iteration complexity O( @) can be improved. Even when it degenerates to an
optimization problem on R™ (H; = W; = 0 and p° is a point mass measure), the optimality
of this rate remains as an open problem. Sun and Ye (2021) showed that there exists an
optimization problem (related to the Example 11 by choosing a carefully) on R™ such
that alternating minimization algorithm with the sequential update scheme has iteration

complexity O( m/\L £). O

For WPCG-R, we can establish the following rate of convergence.

Theorem 15 (Exponential convergence rate of WPCG-R under A\-QG). Let M =
[Qm log(mL)]. Assume Assumptions A, B, C, and D hold for some A > 0. Let p* be the
solution of WPCG-R at the k-th iteration with batch size M. Then for any step size 7 > 0,
we have

EF(p*) — F(p*) < min{Cs(m, L, 7), 1}*[F(o°) — F(p*)]
where

-1
AT N 2
8[1 + 2er2L2mlog(mL)] mL?’

Cg(m,L,T) = (1 +

The constant C5 is a strictly positive constant less than one if

4 A
< <
mL? ~ 8[r~1 4+ 2erL?mlog(mL)]

Remark 16 (Comments on the batch size in WPCG-R). In the proof of Theorem 15,
we may control the norm of the blockwise Wasserstein gradient by the distance between
two consecutive iterates only when all coordinates have been updated at least once in
each iteration. For this reason, we need to choose a larger batch size, M = [2mlog(mL)],
compared to the other two update schemes (parallel and sequential), where precisely M = m
coordinates are updated in each iteration. ]

Remark 17 (Comparison with existing results in the Euclidean case). In opti-
mization problems on the Euclidean space, the random update scheme usually has smaller
iteration complexity compared with the other two schemes in worst case scenario, such as in
coordinate GD (Wright, 2015) and alternating minimization algorithm (Sun and Ye, 2021).
However, on the Wasserstein space, we are only able to derive the same iteration complexity

up to a log factor as in the other two update schemes, given A > 0 and a fixed step size

7 > 0. In particular, when 77! = Ly/2emlog(mL), our result implies an O(M)

iteration complexity of WPCG-R, where in each iteration we need to solve [2m log(mL)|
sub-problems. Recall that there are only m sub-problems in each iteration in WPCG-P
and WPCG-S. Therefore, the iteration complexity in WPCG-R is [log(mL)]*/? times larger
than WPCG-P and WPCG-S. This logarithmic factor appears since we need to solve more
sub-problems in each iteration compared with the other two update schemes, so that every
coordinate has been updated with high probability in each iteration. When 7 = L™!, we

derive the iteration complexity O(%(mm), which is slower than O(%) in the coordinate
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GD with random update scheme derived by Wright and Recht (2022) if mLlog(mL) > L..
We conjecture that such a sub-optimal rate when specialized to the Euclidean case (Sun
and Ye, 2021; Wright and Recht, 2022) is due to the extra complexity of dealing with the
Wasserstein space, where there is no tensorization structure of the Wasserstein gradient.
More precisely, the following key identity

2

, where ji ~ unif ([m])

Bl Vi@ = = SV = |V
j=1

holds in the Euclidean case, indicating on average that randomly selecting a coordinate to
update for m times is similar to updating all coordinates at once as in the parallel scheme.
So, a majority of the analysis for the parallel update scheme can be reused for analyzing
the random update scheme that is expected to have smaller iteration complexity than the
other two update schemes for Euclidean optimizations. Nevertheless, the similar identity
does not hold for the Wasserstein gradient of potential energy V. Specifically, if we denote
Vw,V(p) = VV and Vi, ;V(p) = { V,;V(z;,2_;) dp_; as the Wasserstein gradient and the
Jj-th marginal Wasserstein gradient of V (with respect to p;) at p, then Vw,V(p) does not
tensorize, that is,

m 2

S IV = 3 [
J=17%

j=1

ViVi(xj,x_;)dp—;
X

dp;

- (18)
#Zf [VV (@2 )" dpsdp—; = [Vw,V(p) (-
j*l Xj XX,J'

Thus in our proof, different from the Euclidean case, we cannot directly calculate the norm
of the blockwise Wasserstein gradient of the updated coordinate and take expectation with
respect to the index of the updated coordinate due to the same non-tensorization issue
described in (18). We instead prove a high probability bound of the norm of blockwise
Wasserstein gradient to control the functional value of F after each iteration. When this
bound does not hold, we directly use the non-increasing property of the functional value
to bound F. By tuning the number M of updates in each iteration, we can derive the
convergence rate of WPCG-R in Theorem 15. It is still an open question whether the
iteration complexity in the theorem can be improved by applying other strategies. O

4.2 Convergence Rates of WPCG without \-QG Assumption

When the M\-QG condition is not met for a strictly positive A, we obtain the following
convergence result for all three update schemes. This result parallels that for the first-order
optimization algorithm in Euclidean spaces under convexity but not strict convexity.
Theorem 18 (Polynomial convergence rate of WPCG without \-QG). Let Dy < o0
m—1/2

L(m—1)3/2
with the parallel scheme, and Assumptions A, B, and C hold. Then, for each update scheme,
there exists a constant C' > 0 depending on 7, m, L, and the update scheme, such that

be the diameter of X'. Assume the step size 0 < 7 < if the coordinate is updated

E.F(,Ok)—]:(p*) < CD?Y""F(ZO)_'F(:O*)
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In the parallel and the sequential update schemes, EF(p¥) = F(p*) since there is no ran-
domness.

Remark 19 (Comparison with existing results in the Euclidean case). When the QG
condition is not met for some A > 0, the functional value in a typical first-order optimization
algorithm decreases with a rate no faster than O(k™!) in the worst case. This has been
demonstrated through various studies on the FEuclidean space especially for the sequential
update scheme. Theorem 3 in (Wright, 2015) shows that the function value decreases with a
rate O(k~!) when applying the coordinate GD with the sequential update scheme. Theorem
11.18 in (Beck, 2017) proves the same O(k~!) convergence rate for the coordinate proximal
GD with the sequential update scheme. Here, we derive the same convergence rate for
WPCG with all three update schemes. O

The assumption of compactness of the parameter space is frequently utilized when ap-
plying the Wasserstein proximal gradient scheme to optimization problems, as seen in works
by Santambrogio (2015); Yao and Yang (2022). This assumption plays a crucial role in our
proof, allowing us to derive a uniform bound for W3(p¥, p*) and the first-order optimality
condition of Wasserstein proximal gradient scheme (Lemma 9). The compactness is specif-
ically used to determine the first variation of W3(u, v) with respect to p. More details on
this can be found in Proposition 7.17 and Theorem 1.52 in (Santambrogio, 2015). It would
be interesting to explore potential methods for relaxing this technical condition.

4.3 Convergence Rates of Inexact WPCG

In this subsection, we investigate the inexact WPCG algorithm, where non-zero numerical
errors are allowed in each iteration. Our focus will be on the parallel update scheme
(WPCG-P), though analogous convergence results can be derived similarly for the other
two update schemes.

To precisely characterize the inexact WPCG-P algorithm, let ﬁ?“ denote the inexact
solution of the subproblem (13) for updating the j-th coordinate in the (k + 1)-th iteration.
We define a vector-valued function

it = Tﬁkﬂ Id — T[vvk+Vh’(~’f+1 +vLWj y) dpi T (y) +vj Wi(y, ) dpi (y )]

as the first variation of the objective functional in the subproblem (13) evaluated at pkﬂ.

If ,okJr1 is the exact solution of the subproblem (13), the first-order optimality condition

k+1

(Lemma 9) implies ;" = 0. Therefore, we can employ Hanr [ 2 ,,~k+1) to characterize

the numerical error incurred while solving the subproblem. Let {ej :je[m]l,keZi} bea
sequence of error tolerance levels such that

f an+1H2 dﬁ?-{-l < (€§+1)2

J

for every j € [m] and k € N. This rigorous formulation allows us to quantify the impact of
numerical errors stemming from the inexact subproblem solutions on the overall convergence

behavior of the WPCG-P algorithm.
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Theorem 20 (Convergence rate of inexact WPCG-P under A-QG). Assume Assump-

tions A, B, C, and D hold for some A > 0, and the step size satisfies 0 < 7 < 2L\/17.
m—1
Let p* be the inexact solution of WPCG-P at the k-th iteration with error tolerance levels

ek = (k... ek).

(1) If |e¥|| < ex” for some x € (0,1) and € > 0, then there are positive constants Cs =
Cs(\,7,m,L) <1 and Cg = Cg(\, 7, m, L, k) such that

W3 (", p*) < S[F(P") — F(p*)] < CE[F(p°) = F(p*)] + Coc® max{Cs, x*}**1.

> o

(2) If |€¥| < ek~ for some €, a > 0, then there exists a constant C7 = C7(\, 7,m, L, ) > 0
such that

0762

WERE ") < SIF @) = FoM)] < GIF ) = Fo)] + S

Remark 21 (Impact of numerical error). This result elucidates the impact of numerical
errors, highlighting how the rate of numerical error reduction influences the overall con-
vergence behavior. Specifically, the convergence rate of WPCG-P will be hindered if the
numerical error decreases at a polynomial rate across iterations. Conversely, the algorithm
maintains exponential convergence if the numerical error decays exponentially. Further-
more, if k? < Cjs, the same dependence of the iteration count on the condition number %

and the number of blocks m can be derived by carefully tracking the constant Cj.

The following result demonstrates that the convergence rate remains polynomial in the
presence of a numerical error that decreases polynomially, when the A-QG condition is not
met for a strictly positive \. Moreover, the iteration count depends on the rate at which
the numerical error diminishes, and as anticipated, will be no less than the iteration count
of the exact WPCG-P algorithm.

Theorem 22 (Polynomial convergence rate of inexact WPCG-P without \-QG).

. . . 1
Let Dy < oo be the diameter of X. Assume the step size satisfies 0 < 7 < SEvmT and

Assumptions A, B, and C hold. If ||e¥| < ek for some ¢, > 0, there exists a constant
Cs = Cg(a,7,m, L, Dy,e) > 0 such that

holds for all k € Z .

5. Numerical Experiments

In this section, we demonstrate the application of our WPCG algorithms to approximate the
posterior distribution via the mean-field variational inference in Example 1 and to compute
the stationary distribution of the multi-species systems with cross-interaction in Example 2.
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Figure 2: Histograms of particles used to approximate posterior distributions by MCMC
and MFVI through WPCG-P with the FA approach and the SDE approach. Sim-
ilar marginal distributions are derived by both WPCG-P (with the SDE approach
or the FA approach) and MCMC.

5.1 Mean-field Variational Inference

Recall that © = &)}, ©; is the parameter space, p(z | ) is the likelihood function, 7 is the
prior density function, and Xi,..., X, are n observations. In MFVI, we approximate the
posterior distribution by the solution of the following optimization problem,

7n = argmin KL(p|IL,), s.t. p;je Z(0©;) Vje[m],
=71 p;

where II,, is the posterior distribution with the density function given by (3). As a corollary
of Theorem 9, we have the following convergence result about computing 7,, via WPCG-P.

Corollary 23. Let p* be the k-th iterate by applying WPCG-P (Algorithm 1) to MFVI with
V=V,=->",logp(X;|0) —logm(0), hj(xz) = zlogz, and W; = 0. If V, is A,-strongly
convex and L,-smooth, and 0 < 7 < 5T 2(2:1)3 >, we have

W3(0", %) < (1+ Coda) " [ KL(p | L) — KL(7n | L),

where the constant
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Figure 3: Numerical errors of the SDE approach and the FA approach. The numerical error
W3(p¥, 5g) is first dominated by the optimization error W3(p*, p*) which decays
exponentially fast, and later dominated by the statistical error W3(p*, dg«). The
statistical error derived by the SDE approach is a bit larger than the one derived
by the FA approach since we discretize the Langevin dynamics to approximate
the Wasserstein proximal gradient scheme. The optimization error derived by the
FA approach decreases exponentially fast as predicted by our theoretical results.
In contrast, in the SDE approach, the optimization error will be dominated by
the approximation error after several iterations.

Note that in Corollary 23, both A\, and L,, depend on the samples X7, ..., X,,. When the
log-likelihood function log p(x | #) satisfies certain mild conditions (e.g., Assumptions 2 and
3 in Mei et al., 2016), the sample convexity parameter A\, and the smoothness parameter
L, will concentration in the small neighborhoods of the population convexity parameter
A = Eg« )\, and the smoothness parameter L = Eg« L,, respectively with high probability.

Remark 24. When applying WPCG-P to MFVI, our method coincides with representa-
tions in (Ghosh et al., 2022). However, Ghosh et al. (2022) only studied the convergence
of the piecewise constant interpolation {p; = pl¥7 : ¢ > 0} towards the solution of its
corresponding WGF (Equation (15) in Ghosh et al., 2022) as the step size 7 — 0 when
V, is strongly convex. Yao and Yang (2022) proposed the MF-WGF algorithm for solving
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MFVI with latent variables numerically. They showed exponential convergence of iterates
towards the mean-field approximation 7, of the true posterior in Wy sense. Their proof
heavily depended on the strong convexity of the negative log-likelihood function, while
our analysis only uses the strong convexity to show QG condition. Lambert et al. (2022)
studied Gaussian variational inference (i.e., m = 1 and the variational family is restricted
to all Gaussian distributions) and showed that the corresponding gradient flow (so-called
Bures—Wasserstein gradient flow) converges to the Gaussian variational approximation ex-
ponentially fast in Wo sense. Compared with Gaussian variational inference, our method
is more flexible with the number of blocks and the variational family. O

To support our theoretical findings, we simulate a Bayesian Logistic Regression model
with prior 7 = N(0,414) and data generating process

X; ~N(0,14), w;|X;,0 ~ Bernoulli(p;) where log -
- M
with the ground truth being 6* = (—1,1,0.3,—0.3). n = 100 samples generated from the
true model are then used to estimate the posterior by implementing MFVI through the
WPCG-P algorithm. Two different numerical methods, the FA approach and the SDE
approach, are implemented. In both numerical methods, B = 1000 particles are used
to approximate each marginal distribution. In the FA approach, a neural network with
three fully connected hidden layers is used to approximate the optimal transport map.
Fach hidden layer consists of 1000 neurons, and the activation function is ReLu defined as
ReLu(x) = max{z, 0}.

Figure 2 compares the WPCG-P algorithm with MCMC. The results show that similar
approximations of each marginal distribution of the posterior distribution are derived by
both methods. Figure 3 presents the numerical errors by applying the FA approach and
the SDE approach in WPCG-P. The numerical error W3(p*, §p+) is first dominated by the
optimization error W3 (p*, p*) (corresponding to the decreasing parts of the solid lines) and
then dominated by the statistical error W2(p*, §g«) (corresponding to the horizontal parts
of the solid lines) after several iterations. In the SDE approach, the optimization error will
finally be dominated by the approximation error, which appears since we use discretized SDE
to approximate the Wasserstein proximal gradient scheme, and stop decreasing as shown
by the orange dashed line. As comparison, the optimization error in the FA approach will
decrease exponentially fast as predicted by our theoretical findings, which is shown by the
red dashed line.

5.2 Equilibrium in Multi-species Systems

Here we apply WPCG to find the stationary distribution of the following non-local multi-
species cross-interaction model with diffusion, whose aggregation equation is given in (5).
Our numerical result below shows that the algorithm converges exponentially fast as pre-
dicted by our theory when the corresponding objective functional is convex and satisfies the
QG condition. We also conduct a numerical study to compare the FA approach and the
SDE approach when H;(p;) = {p;logp; for all j € [m]. The numerical study shows that
the FA approach is not affected by the existence of super-quadratic terms in the potential
energy function.
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Figure 4: Scatter plots of all three species for different « and 5. We use B = 1000 particles
to approximate each species. The first row corresponds to o = 1 and 8 = 1; the
second row corresponds to aw = 5 and = 1; the third row corresponds to a = 1
and 8 = 10. Species concentrate more around the centers 61, 62, and 03 with
larger o and smaller 3.

Let us start from the following result which connects the PDE (5) and the optimization
problem (1).

Proposition 25. Consider the optimization problem (1) with

V(zt,...,Tm) = Z Vi(zs) — Z Kij(z; — xj)
i=1

I<i<j<m

Wi(xj,2) = Kjj(w; — 2))

If Assumptions A, B, C, and D hold, and K;; = Kj; are even functions, then the solution
p* = (p},...,p},) of problem (1) is the stationary distribution of the system (5).

Remark 26. (i) In this lemma, we assume K;; = Kj; for all i, j € [m] so that the evolution
of {pj(-,t) : j € [m],t = 0} follows the WGF of some functional 7. When m = 2, this
condition can be relaxed to K19 = aKs; for some constant a > 0 by rescaling the WGF of
p1 and py (Di Francesco and Fagioli, 2013). (ii) The choice of h;(x) = xlogz corresponds
to the standard diffusion without medium of species j, and (5) turns to be the PDE of
multi-species stochastic interacting particle systems (Daus et al., 2022). As a comparison,
h;(z) = 2™i? corresponds to a porous medium type diffusion (Otto, 2001). When m = 1,

2. Here the exponent m; > 1 depends on physical properties of the diffusing material.
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Figure 5: (a) Comparison of optimization error W3 (pf, pi) for different o and 3. All these
lines are straight, indicating that the optimization error decays exponentially fast.
Contraction rate does not change by only changing 3 (blue line v.s. green line),
while it gets smaller (i.e., faster convergence) when « gets larger (orange line

v.s. blue line). (b) Varlance of first variation Var k((sp]: (P*)(X Jk)) versus number

of iterations. That the variance converges to 0 mdlcates that the first variation
(‘%(pk) converges to a constant, which implies that (o}, p§, p§) converges to the
minimum of F.

(5) is the aggregation equation of interacting particle systems (Cabrales et al., 2020; Carrillo
et al., 2019; Li and Rodrigo, 2010); when m = 2 and V; = h; = 0, (5) turns into the PDE
of non-local interaction systems with two species (Di Francesco and Fagioli, 2013; Evers
et al., 2017). To our knowledge, Equation (5) has not been studied for general m € N* and
functions hj, j € [m]. We believe that our theory is also useful to study the existence and
the uniqueness of this kind of PDEs from the perspective of WGEF. O

In the numerical study, we consider the following test example (Daus et al., 2022; Jin
et al., 2020) with m = 3 species in R%2. We specify the functions
Qi0Q: ar; .
Kij(z) = =5 arctan |2]%, - hj(p)) = Bpj,  and Vi(w)) = <Fay = 0], 1<4,5 <3,
with model parameters (Q1,Q2,Q3) = (1,—1,0.5), (r1,72,73) = (6,7,3), and 6; = (3,0),
0y = (—3,-3), and 03 = (3,3). It is easy to check that (see Appendix D.2 for more details)

v 7 0,2 i Qﬂ
(r1,22,23) Z 7 lx; —6;]° — Z arctan |z; — x|

J=1 1<i<j<3
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Figure 6: Scatter plots of all three species when the potential V' contains a super quadratic
term |x|*/4. As expected, all species converge to their equilibrium; they get
closer to the origin compared with the case without the super quadratic term.

and
2
Wj(zj,25) = _ZJ arctan | z; — x}Hz, j=1,2,3
satisfy Assumptions A, B, C, and D in Section 3 when « > 1 and § > 0. We will apply
WPCG with the FA approach by solving the optimization problem (16), since the corre-
sponding H; is not the negative self-entropy functional.

Figures 4, 5, 6, and 7 present the numerical results of this example. B = 1000 particles
are generated to approximate each species, and a neural network with 2 hidden layers is
used to solve (16) in the FA approach. Each hidden layer consists of 800 neurons, and the
activation function is ReLu. In Figures 6 and 7, we add a super-quadratic term |z[*/4 to
the potential function V' and change the entropy functional to the negative self-entropy to
compare the SDE approach and the FA approach.

Figure 4 shows the scatter plots of all species with different o and 8. When « gets
larger, all species concentrate more around the corresponding centers (61, 02, and 63) due
to a larger external force. In contrast, larger 8 makes all species less concentrate since the
entropy term penalizes the concentration of species. Figure 5 shows the optimization error
W3(pk, pi) for different o and B and the variance of the first variation when a = 8 = 1. In
Figure 5a, the optimization error decays faster with larger o (compare the blue line with
the orange line) since the convexity gets stronger, while changing § will not change the
convergence speed (compare the blue line with the green line) since the entropy term does
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Figure 7: (a) Comparison of optimization error W%(p’g, py) derived by the SDE approach
and the FA approach when hj(z) = xlogz. The optimization error derived by
applying the FA approach (the orange line and the red line) decays exponentially
fast despite of the existence of the super-quadratic term. In contrast, the opti-
mization error derived by applying the SDE approach (the green line and the blue
line) is dominated due to the approximation error. Moreover, due to the super-
quadratic term, it takes more iterations for the SDE approach to converge when
the initialization gets farther from the origin. (b) Variance of the first variation
Var ot ( OF (pk) (X Jk)) versus number of iterations. That the variance converges to

3o,
0 indicates that the first variation %(pk) converges to a constant, which implies
J

that (p, p&, p&) converges to the minimum of F.

not provide any convexity to the whole functional. Figure 5b plots the variance of the first
variation (‘%(pk)(X Jk) where X ]k ~ pé? . This variance converges to 0 if and only if the first

variation g%(pk) converges to a constant [p;]-a.e., which indicates that (p§, p&, pk) converges

to the minimum of F.

Figure 6 shows the scatter plot of all species when there exists an extra super-quadratic
term |z||*/4 in the potential function V. Due to this super-quadratic term, all species get
closer to the origin when the system is at its equilibrium. Figure 7 shows the optimization
error W3 (plg, pp) and the variance of the first variation. Figure 7a compares the optimization
error derived by WPCG with the FA approach and the SDE approach. Compare with the
FA approach, the optimization error derived by applying the SDE approach (the blue line
and the green line) is dominated by the approximation error after several iterations. Due to
the existence of the super-quadratic term, a smaller step size has to be chosen to make the

30



WASSERSTEIN PROXIMAL COORDINATE GRADIENT ALGORITHMS

107

—w=- FA approach, optim err
X
AY
\
A Y
\\
10* 4 ¢
N
LY
A Y

- X
5 A
2
o *
— \\
@
=] o A

10" 4 Ay
[ =
g “y
2 .
H S

A
\\
-1 \\
107t 4 *
LY
\
.
Ay
.
.
Y
~
~
~
l\
N
1072 +— T T T T
0 3 6 9 12

number of iteration
Figure 8: Optimization error W3(p¥, p*).

SDE approach converge when the initialization gets farther from the origin, which increases
the number of iterations for the SDE approach to converge. In contrast, the optimization
error derived by the FA approach (the red line and the orange line) is not affected by the
super-quadratic term as predicted by our theoretical result. Fig 7b plots the variance of the
first variation %(pk). The variance converges to zero as a sign of convergence of p* to the

minimum of F.

5.3 Real Data Example

We apply the WPCG-P algorithm to analyze the Pima Indian diabetes data set (Smith
et al., 1988). This data set comprises 8 medical predictors (pregnancies, glucose, blood
pressure, skin thickness, insulin, body mass index, diabetes pedigree function,
age) and a binary outcome variable (0 for no diabetes, 1 have diabetes) from 768 individuals.

We construct a Bayesian logistic regression model (with an intercept term) to predict the
outcome based on all 8 medical predictors. A stratified sample of 68 data points is set aside
as the test set, while the remaining 700 points constitute the training set. We employ the
WPCG-P algorithm with the FA approach to compute the mean-field variational approxi-
mation of the posterior distribution over the intercept and predictor coeflicients. Figure 8
depicts the optimization error W% (,ok , p*) across iterations, which decays exponentially fast
as predicted by our theoretical findings.

Furthermore, We compare our algorithm with MCMC for sampling from the posterior
distribution. Both WPCG-P and MCMC achieve a misclassification rate 19.1% and a
cross entropy loss 0.496 on the test set. Figure 9 presents the box plot of the mean-field
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Figure 9: Box plot of the mean-field variational approximation of the posterior distribution
of the intercept and all predictors.

variational approximations of the posterior distributions over the intercept and predictor
coefficients. Consistent with domain knowledge, the analysis indicates that larger values
of pregnancies,Glucose, BMI, and diabetes pedigree function are associated with an
increasing possibility of having diabetes.

6. Conclusions and Discussions

In this paper, we introduced the WPCG algorithms for solving multivariate composite
convex minimization problem on the Wasserstein space. We established its exponential
convergence results with different update schemes under the quadratic growth condition.
When this condition is not met, we also showed a slower polynomial convergence result for
the WPCG algorithm. Additionally, we analyze the convergence behavior of the inexact
WPCG algorithm with the parallel update scheme. We believe that similar results hold
for the other two update schemes. We also conducted numerical studies about mean-field
variation inference and multi-species systems to verify the predictions from our theory.

To conclude this paper, we list several open problems as future directions.

1. An interesting topic is to develop the PL-type condition for multivariate objective
functionals and investigate its relationship with the QG condition. This will enable
us to relax the assumptions of convexity and the QG condition, and analyze the
convergence rate of the WPCG algorithm for non-convex objective functionals.

2. It is interesting to see whether it would be beneficial to augment the Euclidean space
R™ to the space of all product measures @Tzl p;, which includes R™ as a special
case by restricting each p; to be a point mass measure, when minimizing a function
V over R™. This augmentation may help avoid the algorithm quickly getting trapped
into a local minimum in case of non-convexity, similar to SGD which avoids getting
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trapped by injecting random noise; the augmented algorithm can be viewed as the
infinite particle limit of an evolutionary algorithm for minimizing V.

3. It is still unknown if the convergence rates of WPCG are optimal with respect to
the number of blocks m. The dependence on m will be important when m is very
large. Also, The current convergence result of WPCG-R seems worse than the one
in the coordinate GD with the random update scheme on the Euclidean space. It
is interesting to see if this convergence rate is due to the analyzing strategies or the
difference between the Wasserstein space and the Euclidean space.

4. Another potential topic is to consider the coordinate Wasserstein forward-backward
gradient descent algorithm, which updates each coordinate by approximating the po-
tential energy V in first order (forward step) followed by a proximal descent step
(backward step). This algorithm corresponds to the proximal coordinate gradient
descent algorithm in the Euclidean case. The case m = 1 on the Wasserstein space
has been studied by Salim et al. (2020). We believe our analysis of WPCG can be
extended to the coordinate Wasserstein forward-backward gradient descent algorithm.

5. In many problems in statistics (such as MFVT in Section 5.1), the potential function
takes the form V = " | Vi, where n can be treated as the sample size. When n is
large, there will be huge computational cost to calculate VV in the proximal gradient
descent step. One possible way is to approximate VV = 77% 12, VV;, by subsampling
i; from [n] := {1,...,n} independently for [ € [ns] in each update, where ng is the
batch size. It is interesting to see how this stochastic WPCG algorithm converges and
the impact of the batch size n.
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Appendices

Appendix A. Proof of Main Results

Since the whole proof is quite involved, we will first provide with the sketch, and detail the
proof in next several subsections. For every update scheme when A > 0, we proceed with
the following two steps

Step 1. (Sufficient decrease.) In this step, we will prove
F(p 1) = F(p*) = CW3(p" 1, o)

holds with some constant C' > 0 depending only on 7, A, L, and the update scheme.

Step 2. (Bound of functional value.) In this step, we will prove
F(p*) = F(p*) < C'Wi(p", o)

holds with some constant C’ > 0 depending only on 7, A, L, and the update scheme.
With the above two steps, we have

F(™) = F(h) = OWR(6H b = 5 (F ()~ F (o)

This implies

C

+ 5)_1(f(p’“‘1) ~F(pM) << (14 £>_k (F(0°) = F(p*)).

Fh) - Fp) < (1
Since F satisfies (A-QG) condition, we have

A
2

W3 (p", p*) < (1 + %) _k(f(po) — F(p))-

This implies the desired result. Next, we will detail the proof for different update schemes.

A.1 Parallel Update Scheme: Proof of Theorem 9

As introduced in the sketch, we will use the following two results to bound the decrease of
functional values and the difference between the functional value and the minimum of F,
whose proof will be postponed to Appendix B.

Lemma 1 (sufficient decrease). Under Assumptions A, B, and C, when the step size satisfies

0<7 < —2m=l

m, we have

F(p") = F(p*) = Ca(m, L, 1) W3(p" 1, p*) > 0,

where the constant

Cu(m, L, 7) — 1{217 - (m— 1)(% _Lm)}.
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Lemma 2 (bound of functional value). Under Assumptions A, B, C, and D, in both the
parallel update scheme and the sequential update scheme, we have

F(p) ~ Flo") < 5 (222(m — 1) + ) WA(o", ).

With the above two lemmas,

tem2 g [ + (m = 1)(} — Lym —1)]
2(2L2(m—1) + )
= \Cy(m, L, 7)(F(p*) — F(p*)),

where

o tm-1D(z - Lym—1)
Cy(m, L,7) = 2 2m[2L%(m — 1) + 3]

is defined in Theorem 9. Therefore, we have
é W2 k * < k _ * < 1 )\C L —t 0 _ *
5 Walp",p%) < F(p") = F(p™) < [1+ ACw(m, L, )] (F(p") = F(p)),
where the first inequality is due to Assumption D (A-QG condition). This ends the proof.

A.2 Sequential Update Scheme: Proof of Theorem 12

In the sequential update scheme, we have the following lemma to bound the decrease of
functional values, whose proof will be postponed to Appendix B.

Land p*, we have

Lemma 3 (sufficient decrease). For two consecutive updates p*~
- 1 ,
F(p) = F(o) = - Wi, %),

With the above lemma, we have

_ Lem 3 1 _
FD =F(") = - Wi
Lem 2 )\

2orm -1+ 5) 7 (F ) - Foh)
= ACa(m, L, 7)(F(p") = F(p")).

=

Therefore, we have

A —k
5 Wi, ) < F(o", ) < [1+ ACa(m, L, )] *(F (") = F (o)),
where the first inequality is due to Assumption D (A\-QG condition). This ends the proof.
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A.3 Random Update Scheme: Proof of Theorem 15
For any fixed k € N, let A} (M) be the event such that all coordinates are updated at least

once but at most 7T times in the k-th iteration. Take

Ms = [mlog %] and Ts = [elog%].

The following lemma controls the probability of Az‘s (Ms)¢, whose proof will be postponed
to Appendix B.

Lemma 4. For any § > 0 such that 0 < § < 1, define
M = [mlog%] and T = [elog%].

Jos---yJm—1 are ii.d. random variables sampled from Uniform{l,...,m}. Then, there is
probability at least 1 — 24, such that every integer in {1,2,...,m} appears at least once but
at most T times in {jl}i‘ial.

From the above lemma, we know P(A”% (M;z)¢) < 2. Note that

E[F(p") = F(p*) | "] = B[F (") = F(o*) | A (M5), p*71] - P(A? (Ms))
+E[F(p*) — Fp*) | AR (M5)°, pF 1] - POAR (M5)°).
The second term can be bounded by 26(F(p*~1) — F(p*)) since F(p"*) is non-increasing

with respect to k. Next, we will bound the first term with the following two lemmas, whose
proof will be postponed to Appendix B.

Lemma 5 (sufficient decrease). For any k, M € Z,, we have

1 M—
f(pk_l) ? Z k: 1l k 1,l+l).

Lemma 6 (bound of functional value). For any k € Z,, let M € Z, be an integer such that
all coordinates are updated at least once but at most 7' times through M updates in the
k-th iteration. Under Assumptions A, B, C, and D, we have

4 1
]:(pk)—]:(p*)g—(LQ mT + ) Z W2 k—1,1 pk ll+1)

A 1=0
Under Azé(M(;), we have
M—
k—1 Lem%i lcll kll+1
Lem 6 )\

This implies

AT
8(1 + 72L2mTy

E[F(o") — (o) | AL (), 047 < (14 ) (Fe - Fe).
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Combining all the pieces above yields

AT
8(1 + TQLQmT(;)

E[F(p") — F(p*) | 7] < [(1 ; )" 25} (F1) - F (o)

1

Taking the expectation with respect to p*~!, we have

AT
8(1 + 72L2mTy)

E[F(p*) — F(p*)] < [(1 + )71 + 25]E[]:(pk_1) — F(p")]-

Now, let us choose a proper d to derive the convergence rate. Taking § = 1/(mL?), we
have Ts = 2elog(mL) and Ms = [2mlog(mL)]|. Therefore, we have

E[F(p") — F(p*)] < Cs(m, L, )E[F(p" 1) = F(p*)]

where

-1
AT N 2
8[1 + 2er2L2mlog(mL)] mL?’

Cg(m,L,T) = <1 +

Note that this is a decreasing algorithm, meaning that F(p*) < F(p*~1). Therefore,

E[F (") — F(p*)] < min{C3(m, L,7), 1}E[F(p*~) — F(p*)].

Taking 71 = y/2emL?log(mL) yields

A -2
Cs=(1+ + :
’ ( 24/2eL?mlog(mL) > mL?

A.4 Case )\ = 0: Proof of Theorem 18

Parallel and sequential update schemes. First, let us show there is a constant C' depending
on m, L, 7 and the update scheme, such that

F(p*) = F(p*) < CyJF(p=1) = F(p%) Wa(p, p*).

In fact, we have

() } (i)
F(p*) — F(p*) < CWalph, /) Waloh, p%) < CyJF(ph=1) — F(oh) - Wl p°).

where C' is a constant varying from line to line. Here, (i) is by the inequality (24) in both
the parallel and the sequential update schemes; (ii) is by Lemma 1 in the parallel update
scheme and Lemma 3 in the sequential update scheme.

The above inequality implies

1 2

FlpF N = F(p*) = <}—(Pk) _]-"(p*)> * CW3(pk, p*)

(Fb) - F (o)
2

(F6H - Fem)

A\

(F@) = F6M) + oz
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In the last inequality, we use the fact that

Wi o) = | inf  EIX - Y|?< D}

Therefore, we have

1 1 1 1
FO)—Fpr)  FFO—For) ~ CD% + F(p*) — F(p*) z CD% + F(p°) — F(p*)’

where the last inequality is due the non-increasing property of F derived by Lemma 1 and
Lemma 3. This implies

f_-(pk) _F(p*) < CD?Y+f(£O) _F(p*)'

Random update scheme. In the random update scheme, let A% (M) be the event such that
all coordinates are updated at least once but at most T' times in the k-th iteration. We
have IP’(A;‘:‘S(M(;)C) < 24 by taking

Ms = [mlog T] and T3 = [elog T].

4] 4]

Similar to the proof of Theorem 15, we consider the decomposition

E[F(p*) — F(p*) | 0*71] = E[F(p") — F(p*) | AP (Ms), 0] - P(AL (M)
+E[F(p*) — F(p*) | AL (Ms)e, pF71] - (AL (M5)©).

By (25) and Lemma 5, the first term is bounded by

\/27 (2L2mT5 + %) : DX\/]:(pkfl) — F(p*).

Since F(p") is non-increasing, the second term can be bounded by 26(F(p"~1) — F(p*)).
Thus, we have

E[F(o*) — F(p*)]

< \/2T (2L2mT5 + %) : EDX\/f(p’“‘l) — F(p*) + 26E[F(p" 1) — F(p*)] (19)

< \/2T (2L2mT5 + %) : DX\/E[}"(pk—l) — F(p*)] + 26E[F (o) — F(p")],

where the last inequality is due to Cauchy—Schwarz inequality.
Now, let us prove E[F(p*) — F(p*)] < %. For simplicity, assume 46 < 1 and let

T = E[.F(pk) - .F(p*)], A5 = Dx\/27'<2L2mT5 + %), and A(g =

We will prove zj, < (A% + 0)/k for all k > 1 by induction. k = 1 is obvious since x1 < xg.
For k > 2, note that (19) implies

Tp < AsA/Tp—1 — T + 202 1. (20)
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Case 1: xp_1 < 2x). (20) implies xp < As+/Tr_1 — 1. Thus, we have

1 1 1 @ 1 k—1 k
= > =

> — + =+ = =
T xp+ Ay Tk-1 x0+ AS A5+xo xo + Aj

—

\%

Here, (i) is by zj < xo and the induction hypothesis.
Case 2: xp_q1 > 2xy. In this case, we have
Tp—q1 () /Ig + X0 (2) Ag + Zo
2 20k—1) ~ k
Here, (i) is due to the induction hypothesis, and (ii) is by £ > 2. By induction, we have
zg < (A% + zo)/k. We finish the proof.

T <

S

A.5 Inexact WPCG-P with \ > 0: Proof of Theorem 20

The proof is similar to the exact WPCG, but we need to take the cumulative error into
consideration. Some analogous lemmas as in the proof of Theorem 9 are required, the proofs
of which are postponed to Appendix B.

Lemma 7 (sufficient decrease for inexact WPCG-P). Under Assumptions A, B, and C, when

. . 1
the step size satisfies 0 < 7 < TvmTr We have

k+1H2

.;E(ﬁk> _Jr(ﬁk'f‘l) (7 _ L\/7> W2(~k+l ~I<:) ”527—

Lemma 8 (bound of functional value for inexact WPCG-P). Under Assumptions A, B, C,
and D, we have

N 6 1 & ety NEFIP
ky * o 2 S 2~k ~k—1
F@N) =) < 5[ (£2m = 1)+ ) W36k 71 + 5|,
With the above two lemmas, we have
A ~k * & (l 2 1 2~k ~h—1
S[FG) = FoM)] = - < (L= 1) + ) WEGH )
i) L2(m —1) + ¥ |2

1
< =N FEFY — FF) + .
oy v e A AR GO R

Here (i) is by Lemma 8, and (ii) is by Lemma 7. Reorganizing the inequality yields
[A L2m—1)+ % LPm—1)+5%

6" ;_Lm]mﬁk)—f@*ﬂ ST g D= R )
{P( )+ Lo }IekIQ-

1—27L/m

Applying Lemma 14 with

A= 1+3-*_Lv m= 1y B =12 1 T & = ¥
6 L2(m—1)+%/ = 7 LEm-Dim )\ ko
T2 - = +g
5= —Ly/m—1

yields the convergence result.
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A.6 Inexact WPCG-P with A > 0: Proof of Theorem 22
Recall that we have Equation (26)

~k * 2 3 2~k ~k—1 3H5k‘|2 ~k %
F(3F) = F(p") <4/ (3L2(m = 1) + 5 ) WE(H, 71) + S5 - Wa (7, ")

<\/§W2(ﬁ’“,p*)[|€f’ W( 1)+ L Wl 7 1>}

k 2(m — iz N N k
< 3Dy ['i' \/;(_L 13:1 (FY - F M +|;|2>]_

Here, we apply Lemma 7 and the fact that Wo(p¥, p*) < Dx. If F(pF)—F(p*) = /3Dy HE L
we have

F*) = Fp*) lebN2 _ LPm-1)+ 5/ 4y oy, €]
— < = F - F + )
(e ) %_Lm(@ )= F@h) + )
otherwise
<f(ﬁk) —Fp*) HE’“)Q o ol
V3Dx T 7
Therefore, we have
AR T I S U R Y C Pl
3Dy T/ T L Lym—1 27 T2
i.e.
—Lym—1 ) [./_"(,Bk) —J—"(p*)]Q + [1 _ % - L\/m QHEkH ] [}—(ﬁk) —.7:(,0*)]
L2(m—1)+ % 3D3% L2(m—1)+ % 37Dy
< f ~k—1 _ f * HEkH2
<[FG") = FN]+ 5
Applying Lemma 15 with
L _Lvm—1 L _Lvym—1
e T T A
L*(m—1)+ % 3D% L2(m —1)+ % +/37Dx 27

yields the convergence result.

Appendix B. Proof of Lemmas in the Main Theorems

To prove the two steps mentioned in the sketch at the beginning of Appendix A, the most
important result is the following first-order optimality condition (FOC). The proof, which
will be postponed to Appendix C.2, is similar to Proposition 8.7 in (Santambrogio, 2015)
for h(z) = zlogz and W = 0.
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Lemma 9 (FOC). Consider the Wasserstein proximal gradient scheme

. 1
pr = argmin f U(z)dp + f h(p) + f W(z,y) du(z)du(y) + Q*W%(Palﬁ
pHEPL(X) X XxX T

Under Assumption A, p, satisfies

For simplicity, in the following proof, define
m m
= Y H;lp)) and W(p) = D W
j=1 J=1

for p = (p1,...,pm). Also, let
Vw,Wi(p;) = VL Wi (-, y)dp;(y) + VL W;(y,-) dp;(y)
J J

be the Wasserstein gradient of W; at p; with respect to Wo metric. Note that this Wasser-
stein gradient is a function on &j.

B.1 Proof of Lemma 1

For simplicity, define

V}k _ L{ V(a;j,x_j)dplfj(x_j), and V_; = JX V(a;j,x_j)dp?(a:j).

—J J

Step 1. First, let us show

1

— W3, pb).

D VU @E,) < mV(e) + HeE) + W) — M) — Wik — -

" (21)

k+1

In fact, by definition of p;™", we have

1
V(A @ o5 ) + (o) + Wil h) + o- WHGTL, ) < V(o) + H(0h) + Wi ().

Summing from j = 1 to m yields equation (21).

Step 2. Next, we will show that

m

Z P @ ph ) = mY(pHtT) + ZJ (VI T”,g+1 —Idydpftt.  (22)

]:
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To prove this, by convexity of ¥V we have
k41 ( ) k41 k+1 kH 1y P k+1
V(i @ o) = Vit @ ot 5 (p_j ), Ty = 1d ) dp;
p—j %5
(11) k}-‘rl + Z f <v V_k]—i—l’ Tp]§+1 Id> dpk+1
1]
V( k+1 + 2 f <vvk+1 Tplz+1 Id> dkarl

i#]

Here, (i) is by Equation (12); (ii) is by

(5V( k+1® )
vi

S (P = VVE = (WVE L v VIR v VR, V),

—J

Summing the inequality above from j = 1 to m yields equation (22).

Step 3. Let us show
Z f <vvk+1 TpIngl . Id> dpk+1

> (T— = L/m = 1) W3(o1, pF) = (M%) = H (o)) = (Wi(eh) = W),

(23)

k

By Lemma 9, we have T:,fH Id = TVV’IC + 7V (p k“) + 7Vw, W; (pf“) This implies
i

Z J <vvk+1 T k+1 _ Id> dpk+1

f < Hl _ — (VVF + VR (o) + Vw, W, (5), T p,m —Id>
+ (Vv T",gH —Id)ydpkt!
_ i U <vv’f+1 vV, ”,g+1 —Id> dph ! — f <Vh’ k1) ”,g+1 —Id> dph !
J (Tw W (o5 plzﬂ 1) dgh Wi ’““,p?)}
{f <vvk+1 vVE, p}g+1 —Id> dph+t - (7_[],(,0?) 9y (pgc—&-l))
= (W)~ Wit |+ LW

. m
(if) k:+1 k+1 k
> - Z ) -[wvE - vy

_ ky k+1
I (76" = H(pt )
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- (W(p’“) — W(Pkﬂ)) + %Wg(pk“m’“)

1
Wi (o o) + -—— WQ(p’iﬁlvp_J)]

1
= (M) = ) = (W0R) = W )+~ W, o)
— (7 = L = D) W3, 0F) = (5 = 1Y) = (Wb) = Wit ).
Here, (i) is due to the fact that both H; and W; are convex along geodesics; (ii) is by
Cauchy—Schwarz inequality; (iii) is by Lemma 12; (iv) is by AM-GM inequality.
Step 4. Finally, let us prove the statement. By Equations (21), (22), and (23), we have
1 m

mV(p") + H(p*) = H(p" 1) + W(p") = W(p") — — W35, k) = Y V(i @ ph)

27’ a

> mv(pk+1) ( . 1 J <vvk+1 T k+1 . Id> dkarl

> mV(p) + (m = 1) [(r— — LV = 1) WM, o) = (") = 1)
- (W) =it ) .
This implies

1

Fioh) —Fpt) = L] L

1
= 1) (2 - Ly = 1) | Wi ).
Substituting k& with k — 1 yields the result.

B.2 Proof of Lemma 2

To prove the result, we need the following lemma.

Lemma 10. Under Assumptions A and B, for both the parallel update scheme and the
sequential update scheme, we have

2 _
7) W3(p*, 0.

T

Z J _ [VVE -+ VB (0F) + e, Wi (o) * doh < <2L2(m —1)+

Then, by convexity of F, we have

(5.; *
k * k P k
F(p) — F(p*) < L<V5 (p ),Tpk Id>dp
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S *
==X L (T3V + VR (ph) + Vwe Wi (o), T —1d ) dp
j = J

N *
B[ (T T - v )

//\ =

\/J [VVE -+ VR (0F) + e, Wi (o8) [ doh - Wa ok, %)
j=1

ZJ YV + VR (pF) + Vw, Wi (ph H dpf - Wa(pk, p*)

2 _
2L2 = 1)+ = Wa(p", 0" Walp", 7). (24)
Here, both (i) and (ii) are due to Cauchy—Schwarz inequality, and (iii) is by Lemma 10. By
Assumption D (A-QG condition), we have

A 2 B
5 Wa(", p") < Flo') = F(p") < \/2L2(m = 1)+ = Wa(p®, p" ) Wa(p", 7).

This implies

2 2
Wa(p", p*) < A\/2L2(m = 1)+ = Wa(p®, p*7).
Substituting the term Wy(p*, p*) in (24) with the above inequality yields

F(p) = Flo®) < 5 (223m — 1) + ) WA(o", ).

B.3 Proof of Lemma 3
Proof By the definition of pf, we have

ke— k-1 k k k— k—
V(o o om) + H (5T W)
1

ke— k-1 & k k k k-1 k&

This implies
F(pH ) = F(p*) = )] [V(p’f’l, Pl + () + Wi

m
1 i
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B.4 Proof of Lemma 4
Proof Let Y; =3 ' I{j; = j} and A; = {Y; = 0} U {Y; > T} be a event. Then

P(A - JAm) < i P(A;) = mP(Y; = 0) + mP(Y; > T).
j=1

Take M = Rmlogm with some R to be decided later. Note that

M
1\M 1 m
Pri=0)=(1-—) = [lm} <M = eRlogm _ R
m (1 + m—l)

Applying Chernoff’s inequality to Bernoulli distribution (Theorem 2.3.1 in(Vershynin,
2018)) yields

IP’(Yl > eRlog m) < e flosm _ =R

Therefore, we have

m
P(Al U e UAm) < Z P(A;) <2m - m~ = om! R,
j=1
By taking
Ro1_ log ¢
logm
we have 2m! =1 = 2§, |
B.5 Proof of Lemma 5
Proof By the definition of p?l’lﬂ, we have

k41l kil k41 k41 I o) kit ki
V(le 7P7jl) + M, (/’jl )+ W, (pjl ) + o0 W2(le 1 Pj, )
ko k)l k.l k.l
< V(le ’p*jz) + My, (:Ojl )+ W (le )-

Therefore,

M-—1
F(p*) = F(pH*h) = F(ph0) = F(pHM) = Y [F(M) = F (o]
=0

M-1
kl k|l k,l k,l kl+l  kl+1 kl+1 kl+1
= [V(p]’l apfjl>+/sz(pjl )+le(pjl )]_[V(pjl * 7p7j7_ >+Hjl(pjl * )+le(pjl " )]
1=0
M—1
() kil kil K, k,l kl+1l k.l kl+1 k,l+1
= Z [V(le ap_jl)+sz(le )+W;, (le )] - [V(le * 7P_jl)+sz (pjl - )+W;, (pjl * )]
1=0
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M— 1 ki a1 M—
2 +1 1 k,l kl+1
Z 27 2 p]l ’le 27 Z P )

Here, both (i) and (ii) are due to pk Ak p’i’;l. [

B.6 Proof of Lemma 6

Proof Similar to the argument in Lemma 2, we have

- 2
F@h) = F () < | 3 [ 19V V68 + Twa i) k- Waloh, o),

To bound the norm of the blockwise Wasserstein gradient, we need the following lemma.

Lemma 11. For any k € Z,, let M € Z, be an integer such that all coordinates are
updated at least once but at most T' times through M updates in the k-th iteration. Under
Assumptions A and B, we have

M-
ZJ [VV] + VR (h) + Vw, Wi (0 H dpk < (2L2mT+7_2) Z W2(phb, i),

1=0
With the above lemma, we have
M-
F(o") ~ F(o) < | (202mT + ) Z PR, L) W (08, ). (25)
1=0
By Assumption D (A\-QG), we have
A
5 Wa(o", ") < F (") = F(p").
Combining the above two pieces yields
\ g\ M1
§W2(pk7p*) < <2L2mT + ﬁ) W%(pkilylvpkiLlJrl)a
=0
which implies
M—1

1 _ _
F(o) = F(p*) < 5 (1mT + ) 37 W(pF 1, phmtiet),

N
Il
=}
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B.7 Proof of Lemma 7
Step 1. By convexity of F, we have

V(@) ® P25) + Hi(05) + Wi (05)] = V@ @ 725) + Hi (0 + Wi ]
f (TVE+ O EE) + T W () Tﬁkﬂ 1)t

J <TZ§+1 . k+1 TZZ+1 Id> d~l€+1

WZ("’I?-FI ~k J < k+1 f]g+1 _ Id> d"'k-‘rl

1 ~ ~ 1 1 o ~ ~
> TWAGE A - (5 [, IR G )
T T\2
k+1y\2
1 (57
> w2t g j
2 ( 710]) 27_

Summing j from 1 to m yields

DIVEET @ F ) <mV(F) + HEF) + WY
7=1
1

o= W3R, ) +

k+1H2

2T

_ H(ﬁk-H) . W(ﬁk) o HE

Step 2. By convexity of V, we have
k+1
~h+1 L@ty (W ®-) ~k+1 P ~k+1
Vit et = vt e ot XV (P~ ~kHIdd
—J

~k‘+1 _|_ 2 J <Vvk‘+1 T~p£+1 Id> d~k+1
1#£]

Summing j from 1 to m yields
U B
Z VR @) = my@Et) + (m—1) ) L <vvj’f+1,Tpf’;H - Id> dphtt.
— Jx, f
Step 3. We have
i Vvk+1 Tﬁf —1d d~k+1
' . i ﬁ;§+1 Pj

_ k1
_ Nk“ g k 1k ~h+1 i
Z — (VV + VRS (EY) + Vw, W5 (7 )),Tﬁk_+1 Id
J

5k
v <vvj’““, T - Id> dpt+!
J
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p]
~k+1

This implies

F(p*) = F(™!

48

Id> dpit! —f | <Vh; (7!

) > (7 _ L\/i) W2(~k+1 ~k)

NI?_H P]

~k+1

_ Id> d~k+1

f (VWP T~ 1) dpf o WG )
_ J\ < k:-‘rl Tf}g+1 - Id> d~k+1:|
Z [J <vvk+l vvk f}j-{-l o Id>d~k+l f <Vh/ ~k’+l f]ﬁ-;—l _ Id> d~k+1
7=1
(€l§+1)2
f <Vw2 ~k+1 ~k+1 _ Id> d~k+1 (~k+175§) JQT ]
> - 2 W (ﬁ'/;l-Fl,ﬁ./;: HVVfH_l _ VVyk I o [H(ﬁk) o H(ﬁk+1)]
~k ~t1 L o2~k 1~k HngHQ
—[WE") -wi(p )]+EW2( ,P>—T
> = ) WP pE) - LWo (R R ) — [H(PF) — H(PF)]
j=1
~k ~h+1 L 2 kr1 ~k ||5]€+1H2
V") =WETH] + - W (™87 = -
> Z [ vim — W2(~l§+1 ﬁk) 1 ~k:+1 ﬁk :| (ﬁk+1)]
=1 N R
~k ~k+1 1 ogert ~y  E¥?
= V@) - WEF] + oo WAL ) - B
1 2 k1 ~k ~k ~k+1 & ~k+1 JeF 12
= (52— LVm =) W358 = [HGF) = 1G] = [WEH) - W] -
Step 4. Combining all pieces above yields
ko ~k & ~k+1 ey Lo g e, €T
mV(B") + H(P") + W(P") = H(P") = W(p") — o~ Wa(p™, b )+7
2 ~k+1 ®ﬁlij) > mV(PFHY) + (m— 1) Z J <Vvk+1 VAL e Id> d~k+1
o 1 el A o o
> V() + (n - 1) (5 - Ly —*1) WG, 7) — [HG) — 1)
~k ~et1 HEkHH2
— W@ =W )]_T :

H k+1H2
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B.8 Proof of Lemma 8
Step 1. We first prove that

S o AN 12 4~ 3 ke e 3|e”|?
2 L [V + VRS + Fw, Wi (56| 4 < (3L2m = 1) + 55 ) W3, 1) + ‘72’
7j=1 J

Just note that

|, 1oV« vm ) + Tww G o
J

1 ~k—1 2
k k—1 P k ~k
e e )
X, ’
k)2
b 12 gk L 3 w2 ey, S(E)
<3J |VVF =V T dps + 5 Wa .8y ) + ——5—
X;
L : - | (o b
<BLPWE(NSN PR ) + S WEGQL A + —5

Summing j from 1 to m yields

S k ’ (~k e\ (2 g~k 2 3 2k 1y, SEFI?
Z N |VVE+ VR (55) + Vw, W5 (7)) dpf < (3L (m—1) + ﬁ) W3 (0", p" ) + 2
i—1Y%

Step 2. By convexity of F, we have
OF *
) — F(p*) < — OF ey p* ~k
) =7 < = | (Ve ). 75 <1005
S *
—y L (37 + VR 3) + VoW (25). T —1d) dpt
j=1

S *
-y f (VVE+ TR (P) + Tw Wy (75), T —1d ) ap
j*l Xj J

L ~ ~ 2 1~ ~
< S5 197 9030 + B G 05 w2t
=1 j

< |y L [VVE + T (55) + T, Wy (35)]2 4% - Wa3*, %)
7=1 J

</ (3020m — 1)+ 2wk 1)+ P Ny, ok 26
= (m )J’_TQ 2<p ' P )+ ) 2(/0 P ) ( )

By A-QG condition, we have

AW2~k*<]_—~k7}—*< L2(m — 1 EWQNkafl M.W Sk ok
5 Wa(p", p%) < F(07) = F(p7) < \[(BLAm — 1) + —5 ) Wa(p", 2" 1) + — 5 2(0", P7).
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So, we have

~k % 2 2 3 2~k ~k—1 3H€k‘|2
WQ(pup)gx (3L (m_l)—i_ﬁ)WQ(p?p )+ 7_2 )

indicating that

N 6 1 o o e¥|2
Fi) - Fiot) < S[(2m -0+ H)wiek ity + 0

B.9 Proof of Lemma 10

The proof for two schemes are slightly different. We will consider these two cases separately.

k—1

Parallel update scheme. By Lemma9, T;,f —Id = TVij_l—i-TVh"j (p§)+TVw2 Wj(p;“)
J

Therefore, we have

k k NEEW k k1, Lot 2ok
L_ [VVE + VR (o) + Ve, Wi (05)|* i =L_ Vi - vy +o (1) ol
J
S k b2 gk, 2W30S A5
< L, AR
@ 2W2(p], )

Here, (i) is by Cauchy—Schwarz inequality, and (ii) is by Lemma 12. Summing the above
inequality from j = 1 to m yields the desired result.

Sequential update scheme. For simplicity, let
Vh= | Vi) doldpkapd - anky
—j
k—1 N
be a function on X;. By Lemma 9, we have T::,f —1d = 7'[VV;/€ + Vh;-(p?) + Vw, W;j (p;“)]

j
Therefore, we have

Z f _ |VVF + VRS (05) + Vw, W (pf)“2 dpf

_ i L. HVij —VVE i(T;’;l - 1d) Hdeg?

1

QZJ |VVE - VVF* dph + = ZJ HTPJ —IdH dpt
< 2>, 12 Z; W3t o) + %W%(p’“,p'“’l)
< [222(m—1) + J%m»“»

Here, (i) is by Cauchy-Schwarz inequality; (ii) is by Lemma 12.
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B.10 Proof of Lemma 11

Proof For any j € [m] and k € N, let I, € [M] be the time of the latest update of the

j-th coordinate in the k-th iteration. By definition, we know p?_l’M =pF = pl?fl’lj”“ for all

i = P
Jj € [m]. Since

k1.1, ) k—1,1; s—1 k—1,0; x—1
;7F = argmin V(pj,p- o ) +Hj(pj) + Wjlpj) + W2 (0s: 0 py )
pi €5 (X;)
Lemma 9 implies
pf k= k—1,1; —1 1 ( F=L Lk F=LLjk
I (S G s 09),
Pj

where we let

k—1,I; ,—1 k—1,I; —1
A R L s

Therefore, we have
- 2
35 [, 19V + 960 + T o

—ZJ [VVE + VR (051 + T, Wi (o) P dpl

1.0 -1

k
_ k k=11 Lp; 2ok
Z f vvE-vv; +T(ij,;17[jyk ~1d)[" dgt

2ZJ [VVE — vy gk 4 2 ZJ HTk“k —IdH2dp§

%(pk 1,0 k— 1,p§717lj'k)

(i) k=1, ) —1 2
<207 ) W3 (p*, )+ 5
JZ]I —J P—j ) )

m
_ 2 k 1M k=11~
= Z 2 ( P—j

IE
=

<
Nl
m\ I

i k 1,1 1 k-1,1
= LW AT, (27)

Here, (i) is by Lemma 12. In the k-th iteration, recall that j; € [m] be the coordinate
updated in the I-th update. The goal is to bound (27).

Bound of the second term in (27). It is obvious that

w k—1,1; p—1 k 1,1 M M
2 —1,1; — ]k 2 k—1,1 kll+1 kll kl,l+1
ZW2 (pj 1Pj Z 2sz 1 Pjy Z )-
= =

The first inequality is because each coordinate is updated at least once, and the second
equation is because only the j;-th coordinate is updated in the [-th update.
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Bound of the first term in (27). Note that

m m
Z k 1M k 1Ijk 1 Z prLM 1,1j7k71)_zzw2(pkz—l,M pk’ LIjk— 1)
- 2 \Mq v P

To bound this sum, define the set of iteration

SF M a,b) = {a <l <biph™ T2 7M.

We know |S]]?71(1, M)| < T since each coordinate is updated at most 7" times. Thus

m m
9 k—1,M k—1,I;,—1 k=1,0—1 k—1,1\)>2
S WM T < (Y Wl )
=1 63=11eSE1 (1, 1, M)
S k—1,0 k—1,0
E—1 20 k=11-1 k-1,
< Z |SZ (Ij,k’M)|' Z WZ(pz ) P; )
i,j=1 1leSE=1 (15 1, M)
S k—1,0 k—1,1
2/ k=11-1 k-1,
<T Z Z WQ(pi ) P )
63=11eSk1(1; kM)
k 1,0—-1 k 1,
<7 3 S WA
1,7=11=1
M
_ mTZ W%(pk_l’l,pk_l’l_l).
=1
Combining all pieces above yields the desired result. |

Appendix C. Other Technical Lemmas
C.1 Proof of Proposition 8

a A
Fprs--ospm) = F(pls-- s o) = f <V7(p*)7T,§’* - Id>dp* + *Wg(pm*)

f (VV,Th, —1d)dp* +ZJ (W(p%) + Vw, Wi(p3), Tp] Idydpt + = ZW2 P> PY)
] 1

- Z L (V;V, T/f;z —1Id)dp* + Z L_ (W% + VWQWj(p?),Tg —Idydp} + Z W3(pj, p%)

] 1

— ZJ (VVE+ B5(pF) + Vw, W5 (p5), ij —Id)dpf + = ZWz i P
] 1
where we let
= | Ve,

—=J
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for simplicity. Since p* is the stationary point of the optimization problem (1) on the
Wasl§erstein space, we know VV* + b’ (p¥) + Vw,W;(p}) = 0 (e.g., using Lemma 10). This
implies

w\y

m
f(le--»Pm)—]:(PTa---aPm = Z %p]’pj

C.2 Proof of Lemma 9 (first-order optimality condition)

Proof Since p € £5(X), by Brenier’s theorem (Theorem 2.12 in (Villani, 2021)), there is
a unique optimal map V¢ from p; to p and the Kantorovich potential ¢ is convex. Then,
by Lemma 2.1 in (Del Barrio and Loubes, 2019) we know ¢ is unique up to a constant. By
Proposition 7.17 in (Santambrogio, 2015), we know the first variation of the Wasserstein
term is ¢ The first variation of the potential energy term and the self-interaction term are
U and SW y)dp-(y) + § W (y, )dp,(y) respectively (see the first bullet point of Remark
7.13 in (Santambroglo 2015)). Next, we will show the first variation of the internal energy
functional is A/ (p;).

Let p = ¢ = |X|~! be the constant positive density on X, and let p. = (1 — &)p, + €p.
Similar to Lemma 8.6 in (Santambrogio, 2015), we have Cye = e(pr — ¢)h/(p:) where Cy is
a positive value depending on U. Let

A={xe X :p(x)>0}, B={xeX:p(z)=0}

Then, we have
Cy = j (pr — )W (pe) = J (pr — )W ((1 = &)pr + ec) — c|B|W (ec)
X A

f (0 — () — c|BIH(ec).
A

\%

Here, we get the last inequality since h is convex and h’ in nondecreasing. This implies
pr € LY(X). Taking 7 — 0 and applying Fatou’s lemma, we have (p, — ¢)h/(p,) € L' (X).
Since h(p,) € L*(X) which implies p.h'(p,) € L'(X), we know h/(p,) € L*(X). Therefore,
for any p e L*(X), we have

R = 2)pr +2)| = (0= 2)or +20) - (5= )| < (7l + ) ma [ W (o) Ilo} € £ (0).

Now, by Theorem 2.27 in (Folland, 1999) we know

a% L h(L—epr +ep)| = f jgh(( —&)pr + ep) .

This indicates that h'(p;) is a subdifferential.
By Proposition 7.20 in Santambrogio (2015), we know

= J W (pr)d(p— pr).
e=0 X

U+h’(p7)+f+LW y) dpr(y f Wy, ) dp-(y)

is a constant [p,]-a.e.. Taking the gradient yields the result. |
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C.3 Proof of Lemma 12

Lemma 12. Let p, p' € Z25(X). Under Assumption B, for any j € [m] we have

2
< L2 W%(p—japij)'

HVJ V(%w—j)dp—j—vf V(xj,z—;)dp’;
X X

—J

Proof Just notice that

2
VJ Vizj,z—j)dp—j — VJ V(xj,a—;)dp’;
X X
P ?
= ‘VJ V(xj7x—j) dp—j — VJ V(xj7x—j)d(Tp:J'J)#p—j
X, X
p 2
[, O - T ) dos
—j
(i)
< HVjV(xjﬂx_}) Vj V(x], T—j )H dp—;
X
(ii) o )
S0 ey el
=L WQ(PfjnO—j)-
Here, (i) is by Cauchy—Schwarz inequality; (ii) is by the L-smoothness of V. [ |

C.4 Tensorization of Wasserstein Distance

Lemma 13 (tensorization). Assume p = Q). pj and p' = Q)L p};, where pj, p; € P5(X})
for all j € [m]. Then
m

Wi(p, o) = Z 5(pj ;) and Ty (x) = (TpH (1), .., TEm (zm)).

Proof By definition, we have

W)~ minf [ o=yl dnwe (o)
=mm{ZJ‘Ma—%\mmy>wemm>}

{j oy — 5 dn,) 7 € T(ous)

m

{f . wpdm@%%)7U€Fpp&} 3 W)

i

The inequality holds while taking 7 = (Id, T} /)# p. This implies the desired result. |
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C.5 Proof of Proposition 4

For any p, let T be the optimal map from p* to 5. Note that

1
V() + H() + W) + - WE(, o)
1
< VTL ) + M ) + W) + o [ 1T ) = 2
- - - 1 -
< V(Tpeh) + W) + W(Te) + 5 [ 17() = 2l dp*

= V() + H(G) + W) + 5= W, )

So, pF*l = T;flpk minimizes (10).

C.6 Lemmas for Controlling Numerical Error

Lemma 14. Let {x1}}2, and {£{x}}2, be two non-negative sequences such that

rr < Axp_1 + Bég, VkeZs

for some constants 0 < A <1 and B > 0.

(1) If & < KX for some constants 0 < € < 1 and & > 0, we have

xp < Afzg + -max{A, £}F1,

Bk
|A—¢]

(2) If & < £k~ for some &, a = 0, there is a constant C'(«, A) > 0 such that

C(a, A)BE

Tp < Akx() + oo

Proof It is easy to see that

k
o < Afzog+ BY ARl Ve,
=1

(1) When &, < k&¥, we have

Note that

(%)

M=

k
zr < Afxo + B 2 AFleet = AF gy + BARK
=1 l

I
—

2 E<A
k A-¢
§ l
Z_Z; <Z) < §k+1
) Fea >4
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So, we have

ABK Ak
4 &\ A_EA <A Bk
BAk/-;Z ( < < A—¢ max{A, £}F1,
= ealt >4

Bk

Bk
zp < APzg + max{A, £} < (a:o + A—¢

[A—¢l
(2) When &, < k™, we have

) max{A, £},

Al
T < A :n0+BZAk lf Akm0+BAng .

=1 =1

Similar to the proof in (Proof of Theorem 4, Yao et al., 2023), there is a constant C' =
C(a, A) > 0 such that

So, we have

C(a, A)BE

Lemma 15. Let {xi}}, and {{x};2, be two non-negative sequences and {{;} are non-
increasing. Assume that there are constants A, B,C > 0 such that

A.Cl?k + (1 — B{k)xk Th—1 + Cﬁk

If & < k% for some a > 0, then there exists a constant K = K(«,&, A, B,C) > 0, such that
K

< ————-
k kmln{l,a} (28)
Proof Without loss of generality, we assume & < ;5. Otherwise, we have
B 2
A.%'k (1 — kfg)xk < Tg—1 + ki‘ )

and then take B’ = B¢, C' = C€2, and &, = 1/k°.

We can take K large enough such that inequality (28) is true for all k > kg, where
ko > 11is a constant such that Bky“ < 1. We will use induction to prove (28). Assume the
inequality is true for £ — 1 = kg. Now let us prove (28) holds for k. Then, we have

—(1- B&) + \/(1 — BE)? + 4A(zp_y + CE2)
24 '

N

Tk
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Since 1 — B¢y, = 0, we have

K —(1 — Bfk) + \/(1 — Bfk)z + 4A(:Ck_1 + Cf]%) K
Jemin{1l,a} 24 Jemin{1l,a}

2AK 2

AK? K(1-Bk™™) C

S Tkl S k2 min{l,a} T Jemin{1,a} o k@
K B AK? K(1-Bk*) C
— (k. _ 1)min{1,a} = k2 min{l,a} + Jemin{l,a} @
K K AK? BK C

— (k_ 1)min{1,a} o Jemin{l,a} S k2 min{l,a} a Jeat+min{l,a} a kﬁ’

Case 1. When « > 1, we only need to prove

F—1 kS R R e koD 2 !

K K AK? BK C K <AK2—BK—C'

which only requires AK? — (B +2)K —C > 0 since k = ko + 1 > 2.
Case 2. When « < 1, we only need to show

K _£<AK2—BK—C’
(k-_]_)oz k;oz\ 20 '
Note that
1 1 1 a « 2%
K¢ —— — — 1+——) —1golee = 27 k>2
[(k—l)a ka] (+k—1) k-1~ k v ’

So, we only need to prove
2%aK - AK? - BK - C
ko ke ’
Since a < 1, we just need AK? — (B + 2%a)K — C' > 0. By induction, we know such K
exists. m

C.7 Numerical Methods in FA Approach

By changing variables, we can write the interaction and self-interaction functionals as

V(Typ*) = f V(@) d[Typ*](z) = f V(T()) dp*(a),
and

W(Ls) = [[ Wiaa) dTe )T 1) = [ WT @) T6) a1 ),
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These expressions suggest the following sample approximations

V(T BZV () and W) ~ L 3 wireed.To),
bb'=1

where {X} : b € [B]} are B samples from p*. Regarding the internal energy term H(p"), we
will consider two leading cases H(p") = ( plog pr and H(p S " with some positive
integer n > 2

For H(p") = § p¥log p*, we can apply the argument in (Mokrov et al., 2021) by noting
that

H(Ty) = H() ~ [logldet VT (@) ",

which suggests approximating the negative self-entropy functional by

H(Typ") ~ H(p") — 5 Z log |det VT(X5)]
b 1

Since the first term does not depend on T', the above discussions yield the approximation
in Example 5

For H(p S )", an additional kernel density estimation (KDE) step is required.
Since

H(Tyr) = [ [#(0) - et VT @) d,

which suggests that we consider the approximation
& 1
— n—
H(Typ") Z Prae(XE) - |det VT (XF)| 7]

where pF, is the kernel density estimation of p* by {X} : b € [B]}. This leads to the
approximation in Example 6.

Appendix D. Results for Multi-species Systems
D.1 Proof of Proposition 25

Since p* = (pf,...,pk) is the minimum of (1), by Lemma 9, we have

Cilpt) = [ Ve anty 16D + | Wit asw)+ | Wi dri
—J J

= (V= X Kol ) + W) — K50 0]
i#]
is a constant [p}]-a.e. on Xj. If p(t) = p* at time ¢ = 0, we have

m

ps(t) | VVi(t) = X (V) * pi + VR (p)) | = 0. (29)
=1

This implies that p* is a stationary measure.
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D.2 Example in Section 5.2
Recall that hj(p;) = p;log pj,

n
i Q.0
V(x1, 22, 23) Z 3 |lz; — mg|® — Z # arctan |x; — x|

i=1 1<i<j<3

and
2
Wi(xj,2) = %aretan |x; — xJHQ 1<j<3.

Let us now check all assumptions in Section 3.
Assumption A. It is clear that p? satisfies the Assumption A.

Assumption B. Let R(y) = y/(1 + |y|?) be a function on R2. For any = = (z1, 29, r3) and

x = (2, xh, %), we have

ViV (z) = ViV ()| < |ri(z1 — )| + |@1Q2] -

H T1 — T9 x) — b H
L+ oy — 22?1+ 2] —ab?
/ /
Ir1 — I3 T, — Tg
1@l | - |
R Ty P e e
= |r1| - o1 — 2] + 1Q1Q2] - | R(x1 — 22) — R(2) — )|
+ [Q1Q3] - HR(acl —x3) — R(x) — xg)H

Notice that the Jacobian matrix of R at y = (y1,y2) is

1 1+y3 -y  —2u1y0 )
JR(y) = —— 2=
(v) (1+y? +y3)? < 21y 1+1y2— 2

with eigenvalues

1 1_ 2 .2
Y (1+yi +v3)

Clearly, we have |A\1| < 1 and |A\z| < 1. This implies |R(y) — R(Y')| < |ly — ¢|. Therefore,
we have

a1 — )| + (@1 — 22) — (&} — )| + (@1 — 23) — (&} — b))

HV1V($) — V1V($/)H <
<z — 2.

|
!
This indicates that
3
|[VV(z) - VV ()| < Z ViV (z) = ViV (') < o — 2.
So, VV is Lipschitz.
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Assumption C. To verify this, we first prove that when o = 3; = JZ,
2

- O 5 5 5 O 5 Q 5 5
Witas,a) = sl + Wyt 5) + Ll = Ll + 5 anctan | — a5 P + a5
is a convex function on R? x R2. To show this, notice that

ow; ow;

Wjj = Q?R(mj — %) and é’x’-J = ?R(x; — xj).

J

Therefore, the Hessian of W is

j .

Let

L=
T TR (= )2 F (g — w)?

be the eigenvalues of JR(z; — ). Assume P € O(2) be the orthogonal transition matrix
such that

JR(xj —2%) = P (7781 77?2') Pt

Therefore, we have

aj + Qinj 0 —1j1 0
PT 0\ oo (P O _ 0 aj + Q3njo 0 —1j2
T \Y WJ - 2 )
0 P 0o P —ni1 0 Bi + Qnj1 0
0 —1j2 0 Bj + Q3nj

which is p.s.d. when o = §; > —Q? min{0,nj1,n;2}. We can then take a; = §; = Q? since

nj1,Mj2 > —1.
Next, we will show that

~

3
V(z) = V() = Y QFfil?
i=1

n
i QiQ;
=3 (Blo =l = Q) = D) L arctan |y — o P
=1 1<i<j<3

is Ad-convex for A\ = minjg;<3 (ri —4Q? — |Qil 22 |Qj|). Let Hyj = JR(x; — x;) for
simplicity. It is easy to see that
oV

(ri =201 = Qi ), QuHy and  ———— = QiQ;Hyj, V1<i#j<3.
I#i Li0L;

03;12 N
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Therefore, we have

Y1
(W w3 v3)VV(2) (v
Y3

3
(ri = 2@ wl® = > Qi D Qi Hijyi + 2 ), QiQui Hiy;

I
'M“

i=1 i=1 i 1<i<j<3
3 3
> 23 = 20Dl = 2 D Q@i Higlloglwil® =2 Y 1111 Higllop il ]
i=1 i=1j#1 1<i<yj<3
0 o
> (202 1@l Y1) Il =2 Y, 1@l Iyl
i=1 J#i 1<i<j<3
(i) & ) )
> 3 (ri—4Q2 = 1@ 1 1041 il
i=1 j#i
; 402 _10O: . 2
> oin, (e~ 407 104 210,11y
JF

Here, (i) is because [[Hl[,, < 1; (ii) is due to AM-GM inequality. This implies V is
minj<i<3 (Ti —4Q? — |Q;] D |Qj\)—convex.

Appendix E. Connections between Different Lipschitz Conditions

First, let us show 0 < L/L. < v/m — 1. The lower bound is because L and L. are non-
negative. For the upper bound, notice that L = maxe[,,)sup, [|[V;V_;V ()], and L. =

VJZV(:U)

o,

sup,

. Also, when V?V is invertible, we have
op

0<<v2_jv vjv_jV) <vgv 0 )
“\VLVv v VY 0 VHV-V;V,V(VIV) 'V ,;V,;V )’

where A ~ B means A and B are congruent, i.e., there exists invertible matrix P such that
A = PTBP. It is known that congruent transformation does not change the semi-positive
definiteness of a matrix. This implies 0 < V?V - VjV_jV(V?V)*lv_jVjV, ie.,

oIV Ve =0T VvV V(VEV) IV Y Ve, Ve e R,
Therefore, we have

V25l = e o7 9=5V0
> sup v' V;V_;V(V3V)7'V_;V;Vo
lol=1

> sw V3V, 19-9sV el
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= IV VI, IV =V VII2,-
This implies
L2 = sup |V V;V @), < sup [ V2,V @), V3V @],
<sup [V2,V @), sup [ V3V ()],

i

< o~ 1) maxsup [V @], 500 [ 93V @),

—~
=

A

2
m = 1) mpxsup [ T3V @), )
= (m — l)Lg.

Here, (i) is due to Section 3.2 in (Wright, 2015). Thus, we have L/L. < v/m —1. To
see the bounds are tight, consider the examples V (z1,22) = 22 + 23 and V (1, ,2,) =
(T + -+, 2m)?. In the first example, we have L = 0 and L. = 2, indicating that L/L. = 0.
In the second example, we have L = 24/m — 1 and L. = 2, indicating that L/L. = v/m — 1.

Next, we will prove that 0 < L/L, < 4/1 —1/m. The lower bound is due to L, L, > 0
and is tight due to the same reason as of L/L.. To see the upper bound, note that L, =
maXje(m] [|[V;VV]l,,. Therefore, we have

L? = max sup |IV_;V;iVu + V?Vv2\|2

JELM] oy |2+ |lvz2=1

2
= max sup (\\V_jVval\\ + HV?vaH)

JELM] oy |2+ |lvz)2=1

2
Pmax sup (VL VVilg ol + V3V, lea])

TE[M] vy 2+ va)2=1

> sup (L“Ul |+
[v1]24]ve]2=1
mlIL?

m—1

L 2
ﬁ”%“)

Here, (i) is because we can rotate vy such that V_;V;Vv; and V?va have the same
direction; (ii) is by the definition of operator norm; (iii) is by L. > L/+/m — 1. Thus,
we have L/L, < 4/1—1/m. The tightness of this bound can been seen by considering
V(z) = (z1+ - +x5)%

Finally, let us show 0 < L/Lgs < 1. This inequality is obviously true. The lower bound
is tight by considering V' (z) = 2% + --- + 22,. For the upper bound, consider the example
V(z) = (1 + 22)? + 23 + --- + 22,. In this example, we have L = L, = 2. Therefore,
L/Lg <1 is the tightest bound.
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