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Abstract

Change point estimation is often formulated as a search for the maximum of a gain function
describing improved fits when segmenting the data. Searching one change point through all
candidates requiresO(n) evaluations of the gain function for an interval with n observations.
If each evaluation is computationally demanding (e.g. in high-dimensional models), this can
become infeasible. Instead, we propose optimistic search, a methodology that only requires
O(log n) evaluations of the gain function, leading to huge computational gains for massive
(large-scale, high-dimensional) data for single and multiple change point estimation.

Towards solid understanding of our strategy, we investigate in detail the p-dimensional
Gaussian changing means setup, including high-dimensional scenarios. For some of our
proposals, we prove asymptotic minimax optimality for detecting change points and derive
sharp asymptotic rates for localizing change points.

Our search strategy generalizes far beyond the theoretically analyzed setup. We il-
lustrate, as an example, massive computational speedup in change point detection for
high-dimensional Gaussian graphical models.

Keywords: fast computation, high-dimension, minimax optimality, multiple break points,
sublinear runtime

1. Introduction

Change point (break point) estimation tackles the problem of estimating the locations of
abrupt structural changes for ordered and noisy data, e.g., by time or space. One can
distinguish between online (sequential) and offline (retrospective) detection problems. We
will primarily focus on the latter setup where all ordered observations are available at
once and only point to online detection in connection with our methods and results for
the detection of a single change point. Applications include detecting changes in copy
number variation (Olshen et al., 2004; Zhang and Siegmund, 2007; Hocking et al., 2013),
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License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0871.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0871.html


Kovács, Li, Haubner, Munk and Bühlmann

ion channels (Hotz et al., 2013), financial time series (Bai and Perron, 1998; Kim et al.,
2005; Davies et al., 2012), climate data (Reeves et al., 2007), environmental monitoring
systems (Londschien et al., 2021), among many others. We refer also to the recent reviews
(Niu et al., 2016; Truong et al., 2020).

We focus on computational improvements of change point inference while maintaining
statistical optimality. Two common algorithmic approaches are optimal partitions via dy-
namic programming (Jackson et al., 2005; Friedrich et al., 2008), and greedy procedures,
e.g. binary segmentation (BS, Vostrikova, 1981) and its variants. The former approaches
are mainly studied for univariate data. Typical examples include `0 penalization methods
(cf. Boysen et al., 2009; PELT, Killick et al., 2012 and FPOP, Maidstone et al., 2017) and
multiscale methods (SMUCE, Frick et al., 2014, FDRSeg, Li et al., 2016, MQS, Vanegas
et al., 2022, and MUSCLE, Liu and Li, 2024), which are known to be statistically minimax
optimal in a Gaussian setup. However, finding the optimal partition requires in the worst
case at least quadratic run time. In contrast, BS is typically faster and easier to adapt to
more general scenarios, but worse in terms of estimation performance than methods find-
ing the optimal partitioning. The wild binary segmentation (WBS, Fryzlewicz, 2014) and
its variants (e.g. narrowest over threshold, Baranowski et al., 2019) improve on estimation
performance of BS, but lose some of its computational efficiency.

Already for simple univariate cases, increasingly larger data sets with long time series led
to the development of computationally more efficient (univariate) approaches (Maidstone
et al., 2017; Lu et al., 2017; Fryzlewicz, 2020; Kovács et al., 2023). Computational issues
are even more pronounced for multivariate problems. This is in particular true for emerging
high-dimensional parametric change point detection approaches (e.g. Sharpnack et al., 2013;
Leonardi and Bühlmann, 2016; Roy et al., 2017; Gibberd and Nelson, 2017; Gibberd and
Roy, 2017; Bybee and Atchadé, 2018; Avanesov and Buzun, 2018; Wang and Samworth,
2018; Wang et al., 2021c; Londschien et al., 2021; Yu and Chen, 2021; Wang et al., 2021b,a;
Dette et al., 2022; Xu et al., 2024; Cho and Owens, 2024; Gao and Wang, 2022; Li et al.,
2023; Cho et al., 2024), or multivariate non-parametric change point detection methods
(Madrid Padilla et al., 2022). Many of these approaches rely on computationally costly fits
of algorithms such as the lasso (Tibshirani, 1996) or the graphical lasso (Friedman et al.,
2008). Performing a full grid search in order to find a single split point requires as many
fits as there are observations. Even with warm-starts, neighboring fits with one additional
observation are not straightforward to update (unlike e.g. means in univariate cases) and
the number of fits is the main driver of computational cost. Thus, for a few hundred or
thousand observations, full grid search based methods (incl. BS, its variants and even more
costly dynamic programming approaches) can be very slow, beyond what is acceptable. This
is a main motivation for our work, namely to avoid too many fits with piecewise stationary
model structure.

1.1 Our Contribution and Related Work

The key idea is to replace the exhaustive search for a change point by an adaptive search
that dynamically determines the next search location given the previous ones in the spirit of
divide-and-conquer, requiring only a logarithmic number of operations. We call this novel
methodology for searching for single change points optimistic search (OS). The basic idea
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behind OS is based on a rather general observation: In numerous change point problems,
population gain functions (describing the expected gain when splitting into two parts at
a given split point) have a specific piecewise quasiconvex structure where local maxima
correspond to change points, and thus the presence of a single change point implies only
one global maximum.

Besides computational advantages, methods built on OS achieve a high statistical effi-
ciency. Such a method for finding a single change point is advanced optimistic search (aOS).
We will show (Theorems 2 and 6) that in a Gaussian setup it achieves asymptotically min-
imax optimal detection and nearly minimax optimal localization of the change point with
O(log n) evaluations as opposed to full grid search methods requiring at least O(n) evalua-
tions. These results are surprising and fundamental, as asymptotically one loses nothing in
terms of detectable signals and in terms of localization error compared to full grid search,
while at the same hand computationally only O(log n) operations are required. In case of
multiple change points, we extend this idea to develop a method (Optimistic Seeded Binary
Segmentation, OSeedBS), which achieves similar computational speedup and statistical op-
timality as in the single change point scenario. In p-dimensional Gaussian changing mean
problems, our methodology is significantly faster, e.g., finding a change point in O(p log n)
run time. This requires that cumulative sums have been pre-computed, which can easily
be done in online change point detection. Note that the existing (full grid search based)
methods also benefit computationally from the availability of cumulative sums. Thus, we
suggest to store data in cumulative sums format also for offline analysis. Even when the
data are not properly stored, the worst case computation complexity of our method for
finding all possible change points is O(np), which is limited by the cost of calculating the
cumulative sums. In particular, for the univariate setup with multiple change points, it
improves the worst case computation complexity of O(n log n) that is the fastest in the
literature, by a log factor. Further, the improvement becomes way more significant in more
complex models where the number of model fits involved in each evaluation of the gain
function are the main driver of computational cost, see Table 1 for an overview.

Method
Evaluations of
gain function

Computation complexity for p-dimensional data
mean changes

with cum. sums
mean changes

w/o cum. sums
covariance changes

Single
change

aOS O(logn) O(logn) · p O(n) · p O(logn) · glasso(p)
BS O(n) O(n) · p O(n) · p O(n) · glasso(p)

Multiple
changes

OSeedBS O
(
(nω logn) ∧ n

)
O
(
(nω logn) ∧ n

)
· p O(n) · p O

(
(nω logn) ∧ n

)
· glasso(p)

SeedBS O(n logn) O(n logn) · p O(n logn) · p O(n logn) · glasso(p)

Table 1: Computation comparison of OS (aOS in Algorithm 2, and OSeedBS in Algo-
rithm 3) and full grid search methods (BS, and SeedBS in Kovács et al., 2023).
Here glasso(p) denotes the computation complexity of graphical lasso estimator of
the precision matrix in Rp×p, which is typically O(p3) or worse, see Appendix C.
Sample size is n, and n−ω with ω ∈ [0, 1] encodes an a-priori lower bound on the
minimal length of stationary segments, which is tailored to particular applications.
Note that ω = 1 corresponds to the case of no such a-priori knowledge.
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Some problem specific solutions for gaining computational speedup in certain high-
dimensional setups have been suggested, e.g. for changing graphical models (Hallac et al.,
2017; Bybee and Atchadé, 2018) or changing linear regression coefficients (Kaul et al.,
2019a; Kaul et al., 2019b), but these may not be easy to adapt to other scenarios. The
following two proposals may be seen as most related to our approach. Our idea of avoiding
a high number of model fits is vaguely related to the procedure of Kaul et al. (2019a) for
change point detection in high-dimensional linear regression. For an initial split point they
fit appropriate models which are then kept for evaluating (an approximation of) the gain
function for candidate split points on the full grid, but without updating the costly high-
dimensional fits. However, in scenarios where the evaluation of the gain on the full grid
has a comparable cost as the model fit itself (e.g. calculating and updating means in the
Gaussian change in mean setup), their procedure would not lead to any speedup. In Lu et al.
(2017), the authors proposed a procedure specific for the univariate case. They thin out the
number of evaluations by searching on a small subsample to obtain preliminary estimates,
and then use a dense sample in neighbourhoods for the final change point estimates. A
rough subsample is not well suited for high-dimensional problems, unlike our approach of
keeping all samples but avoiding evaluations on the full grid. This will be illustrated in the
following example.

1.2 A Motivating Example

Rather than a problem specific solution, the proposed OS is a computationally attractive
and general methodology for searching for a single change point. Figure 1 illustrates its
computational efficiency in an example of single change point detection for a Gaussian
graphical model (based on an estimator discussed in Section 6.3 and Appendix C). The aim
is to find the maximum of the gain function (black curve). Evaluating the gain function at a
single split point t ∈ {1, . . . , n} with n = 2,000 requires two graphical lasso fits: one for the
segment (1, t] and one for (t, n]. For finding the maximum, the full grid search took roughly
100 times longer than OS. The latter evaluated the gain only at two initial points (marked
by two zeros) and subsequently at further 14 split points (marked by colored numbers)
which are determined dynamically. Then OS returns the maximum over all considered split
points. This leads to a massive reduction of computation time.

When searching for multiple change points, OS can be combined flexibly with existing
algorithms as discussed in Section 4, resulting again in massive computational speedup with
essentially no loss in statistical performance.

1.3 Outline and Announcing Our Results

The crucial part of our methodology is the OS introduced in Section 3. It is capable of
finding a local maximum of the population gain function with O(log n) evaluations for n
observations. For the sake of readability, we first introduce our methodology as well as the
statistical guarantees in the classical univariate Gaussian change in mean setup, detailed
in Section 2. In the scenario when only one change point is present, the advanced version
of OS, i.e. aOS, (Theorem 2) is able to detect the change point even in the most difficult
detection scenario

minimal jump size ×
√

minimal segment length &
√

log log(n)/n (1)
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Figure 1: Finding a single change point with full grid search (black) and OS (red) in a
200 × 200-dimensional covariance change example with graphical lasso fits. OS
starts with two evaluations marked by the two zeros and then evaluates further 14
split points adaptively, in the order marked by the numbers shown in the zoomed
in b). The true underlying change point at observation 400 is marked in green
and the final candidate returned by OS at observation 423 in blue. The overall
maximum of the black gain curve found by full grid search is at observation 402.

thus being optimal in minimax sense. In Section 4 we extend the methodology for multiple
change points and derive a minimax optimal performance result. Namely, under nearly
the same condition as in (1), the number of change points is identified correctly, and the
location of each change point is estimated at the best rate (up to possible log factors) that
is available in literature, see Theorem 5.

We further examine general multivariate and high-dimensional Gaussian mean changes
in Section 5. We again obtain via aOS the detection and the localization rates of change
points, which are (nearly) the best in the literature. Interestingly, unlike the univariate
and multivarite cases, the localization rate may be much faster than the rate induced by
the detection problem in several high-dimensional setups, including both sparse and dense
scenarios, e.g., when the signal-to-noise ratio is larger than the minimax detection rate. Our
theoretical analysis is built on a careful exploitation of algorithmic structures, and a subtle
treatment of the difference of certain (noncentral) chi-squared random variables resulting
from the comparison of gain functions, which takes advantage of local dependence behavior
(Lemmas 15 and 18 in the Appendix). Although the detailed proofs are rather technical,
we stress that the main arguments can serve as a roadmap for more complicated models,
which require their own treatments.

Sections 6 and 7 contain empirical simulation results and conclusions. Additional ma-
terial on simulation study and high-dimensional scenarios as well as proofs are given in
the Appendix. There we present several deviation inequalities for randomly weighted chi-
squares which are of independent interest.

Notation. For a real number r, we define downward rounding as brc = max{n ∈ Z : n ≤
r} and upward rounding as dre = min{n ∈ Z : n ≥ r}, and also define (r)+ := max{r, 0}.
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Kovács, Li, Haubner, Munk and Bühlmann

For two sequences of positive real numbers {an}∞n=1 and {bn}∞n=1, we write an � bn, or
an = o(bn), if limn→∞ an/bn = 0, write an . bn, or an = O(bn), if lim supn→∞ an/bn < ∞,
and write an � bn if both an . bn and bn . an . We use bold symbols for vectors and
matrices to differentiate them from scalar values.

2. Gaussian Mean Shifts with Constant Variance

We consider first the simple model of univariate Gaussian changing means (Model 1). The
results are later generalized to multivariate and high-dimensional scenarios in Section 5.

Model 1 (Univariate Gaussian changing means) Assume that observations X1, . . . , Xn

are independent and

Xτ0n+1(= X1), . . . , Xτ1n ∼ N (µ0, σ
2) ,

...

Xτκn+1, . . . , Xτκ+1n(= Xn) ∼ N (µκ, σ
2) ,

where {τi : i = 1, . . . , κ} is the locations of change points satisfying

0 = τ0 < τ1 < · · · < τκ+1 = 1 and τin ∈ N ,

means µi 6= µi−1, i = 1, . . . , κ are the levels on segments, and the standard deviation σ > 0
is known. Assume w.l.o.g. σ = 1. Further, define the minimal segment length

λ ≡ λn = min
i=0,...,κ

(τi+1 − τi),

and the minimal jump size

δ ≡ δn = min
i=1,...,κ

δi with δi = |µi − µi−1| .

The goal of change point inference is to estimate the number κ and the locations τi’s
of the true underlying change points from realizations of X1, . . . , Xn . A common criterion
for determining the best split point is the CUSUM statistics (Page, 1954), defined for an
interval (l, r] and a split point t as

CS(l,r](t) =

√
r − t

(r − l)(t− l)

t∑
i=l+1

Xi −

√
t− l

(r − l)(r − t)

r∑
i=t+1

Xi , (2)

with integers 0 ≤ l < t < r ≤ n. The CUSUM statistic is the likelihood ratio test for
a single change point at location t in the interval (l, r] against a constant signal. The
population counterpart of |CS(l,r](·)|, i.e. replacing Xi by E [Xi], has its maximum at one of
the underlying change points. In noisy cases, the best split point candidate when dividing
the segment (l, r] into two parts is the location of the maximal absolute CUSUM statistics

t̂(l,r] = arg max
t∈{l+1,...,r−1}

|CS(l,r](t)| .
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Algorithm 1 Naive Optimistic Search (OS)

Require: r − l > 2, l, r ∈ N; and step size ν ∈ (0, 1) with 1/2 by default
1: initialize: l̃← l, r̃ ← r and t← b(l + νr)/(1 + ν)c
2: function OS(l̃, t, r̃ | ν, l, r)
3: if r̃ − l̃ ≤ 5 then . Stopping condition for recursion
4: t̂(l,r] ← arg max

t∈{l̃+1,...,r̃−1}
G(l,r](t) . Search over all points if less than 5 remain

5: return t̂(l,r]

6: if r̃ − t > t− l̃ then . Pick a new probe point in larger segment
7: w ← dr̃ − (r̃ − t)νe
8: if G(l,r](w) ≥ G(l,r](t) then
9: OS(t, w, r̃ | ν, l, r)

10: else
11: OS(l̃, t, w | ν, l, r)
12: else
13: w ← bl̃ + (t− l̃)νc
14: if G(l,r](w) ≥ G(l,r](t) then

15: OS(l̃, w, t | ν, l, r)
16: else
17: OS(w, t, r̃ | ν, l, r)

We refer to the function |CS(l,r](·)| as a gain function, denoted by G(l,r](·), because the
square of it describes gains, namely the reductions in squared errors when fitting separate
means on the left and right segments for split points in the segment (`, r]. The gain functions
G(l,r](·) are initially defined on a discrete grid of split points, but it is convinient to extend
them continuously to t ∈ (l, r] (via e.g. linear interpolation).

3. Optimistic Search for a Single Change Point

In this section, we focus on Model 1 with a single change point (κ = 1), and introduce two
versions of OS that are at the core of our methodology for multiple change points, as well.

3.1 Naive Optimistic Search

We introduce first the naive version of optimistic search (OS) within a segment (l, r] in
Algorithm 1, which is a key building block for later introduced statistically optimal meth-
ods. The procedure is similar to the golden section search (Kiefer, 1953; Avriel and Wilde,
1966, 1968), typically used to find the global extremum of unimodal functions. OS splits an
interval into three segments recursively and discards one of the outer segments in each iter-
ation. For unimodal functions with one peak this search converges to the global maximum.
If there is only a single change point contained in (l, r], then the (continuously embedded)
population gain function is unimodal with the single peak at the true underlying change
point. Optimism is required in noisy scenarios, and hence the naming of the method, as
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Figure 2: Naive optimistic search step OS(l̃, t, r̃ | ν, l, r) within the current segment (l̃, r̃] ⊆
(l, r] given the previous evaluation at t and step size ν. As r̃− t > t− l̃, the new
probe point w is taken within (t, r̃] as w = dr̃− (r̃− t)νe. Depending on the gain
G(l,r](w) vs. G(l,r](t), one either continues with OS(t, w, r̃ | ν, l, r) (discarding the

blue part) or OS(l̃, t, w | ν, l, r) (discarding the red part).

noisy counterparts are rather “wiggly” functions following the shape of the population gain
function only approximately.

When initializing by calling OS(l, b(l + νr)/(1 + ν)c, r | ν, l, r) for an interval (l, r], the
search first probes the points t = l + (r − l)ν/(1 + ν) and w = r − (r − l)ν/(1 + ν) (up
to rounding), i.e. the two first probe points are equally distant from l and r respectively.
Depending on the gains at the probe points t and w either (l, t] or (w, r] is then discarded.
The possible decisions for the general case when the search is already narrowed down to
the sub-interval (l̃, r̃] is depicted in Figure 2. Note that in general, the lengths of the two
candidate intervals for discarding are not necessarily equal. In case (a) we have G(l,r](t) <
G(l,r](w) and hence the less promising blue area is discarded. In case (b) we have G(l,r](t) >
G(l,r](w) and the red area is discarded. Also note that one of the previous probe points
will be one of the new boundary points while the other probe point is going to be one of
the new probe points in the middle with gain that is thus at least as high as for the new
boundary. This leads to a “triangular structure” that one probe point in the middle has a
higher gain than both boundary points, throughout the search.

We set ν = 1/2 by default, but in general ν can be interpreted as (relative) step size,
expected to reflect some kind of trade off between computational performance and estima-
tion accuracy. The choice of evaluating the last 5 points remaining (in line 3) is some-
what arbitrary and can be also set to e.g. 10 or 20. In rare cases, when r − t = t − l or
G(l,r](w) = G(l,r](t) one can also take a (pseudo) random choice or incorporate additional
information (e.g. variance in the segments for Model 1) to decide on the new probe point
and the segment to discard.
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Theorem 1 (Naive optimistic search) Under Model 1 with a single change point, i.e. κ =
1, we assume that the minimal segment length λ and the minimal jump size δ satisfy

δλ
√
n ≥ C0

√
log log n (3)

for some large enough constant C0. Let τ̂ = t̂(0,n]/n be the estimated change point by OS
(Algorithm 1) on (0, n]. Then:

lim
n→∞

P
{
|τ̂ − τ | ≤ C1

log log n

δ2n

}
= 1 with some constant C1 .

Theorem 1 states that OS detects the only change point with a localization error of order
log logn/(δ2n), which is minimax optimal up to a possible log factor (see e.g. Lemma 1 in
Verzelen et al., 2023). In comparison with the weakest condition to ensure consistency of
change point estimation, which is δ

√
λn &

√
log log n (Liu et al., 2021), OS is sub-optimal.

However, in the particular case that the minimal segment length does not vanish, i.e. λ � 1,
the condition (3) becomes δ

√
n &
√

log log n and OS is then optimal. This is the situation
where the length of the left segment is comparable to that of the right segment, which we
thus refer to as a “balanced” scenario. In contrast, “unbalanced” scenarios are ones where
the lengths of shorter and longer segments are very different. It is possible to show that the
suboptimal condition (3) cannot be improved and is intrinsic to OS, rather than an artifact
in our theoretical analysis (see Example 4 in Appendix B).

3.2 Advanced Optimistic Search

In Algorithm 2 we propose the advanced optimistic search (aOS) that improves on the
naive version to tackle unbalanced cases with the change point being close to the boundary.
The main idea is to check a preliminary set of dyadic locations to localize the change
point approximately and then apply OS in a suitable (balanced) neighborhood around the
preliminary estimate in order to achieve a better localization. The preliminary estimate and
the two locations marking its neighborhood are chosen from the dyadic locations, namely,
as the location of the biggest gain as well as the closest dyadic neighbors thereof (to the
left and to the right). Intuitively, as the dyadic points are denser on the boundaries, the
advanced search is suitable even in very unbalanced scenarios where the naive version fails.
From a theoretical perspective, this modification leads to minimax optimality.

Theorem 2 (Advanced optimistic search) Under Model 1 with a single change point,
i.e. κ = 1, assume that the minimal segment length λ and the minimal jump size δ satisfy

δ
√
λn ≥ C0

√
log log n (4)

for some large enough constant C0. Let τ̂ = t̂(0,n]/n be the estimated change point by aOS
(Algorithm 2) on (0, n]. Then:

lim
n→∞

P
{
|τ̂ − τ | ≤ C1

log log n

δ2n

}
= 1 with some constant C1 .
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Kovács, Li, Haubner, Munk and Bühlmann

Algorithm 2 Advanced Optimistic Search (aOS)

Require: r − l > 2; l, r ∈ N and step size ν ∈ (0, 1) with 1/2 by default
1: function aOS(ν, l, r)
2: k ← blog2((r − l)/2)c
3: D ←

{
bl + 2−i(r − l)c, dr − 2−i(r − l)e : i = 1, . . . , k

}
. Dyadic locations

4: t∗ ← arg max
t∈D

G(l,r](t) . Find the best split point on the “dyadic” grid

5: if t∗ ≤ (r + l)/2 then
6: l̃← bt∗ − (t∗ − l)/2c and r̃ ← dt∗ + (t∗ − l)e . “Dyadic neighbours” of t∗
7: else
8: l̃← bt∗ − (r − t∗)c and r̃ ← dt∗ + (r − t∗)/2e . “Dyadic neighbours” of t∗

9: t̂(l,r] ← OS(l̃, t∗, r̃ | ν, l, r) . Naive optimistic search on (l̃, r̃] containing t∗
10: return t̂(l,r]

Similar to OS (Theorem 1), it is shown in Theorem 2 that aOS is able to localize the
only change point at the best possible rate up to a log factor, but now under a much weaker
condition (4) instead. In comparison with the weakest condition δ

√
λn &

√
log log n in Liu

et al. (2021), we lose nothing except for a possibly larger multiplying constant. Therefore,
aOS possesses the (nearly) statistical minimax optimality like the full grid search, which
checks every possible split point in {1, . . . , n}. Note that aOS (and OS) only requires
O(log n) evaluations of the gain function (Lemma 3 later), in sharp contrast to O(n) required
by the full grid search. It is a surprising fact that computational speedups come at almost
no cost of statistical performance at all. In this sense, “free lunch” is possible!

The idea of preliminary check of dyadic locations dated back to Rufibach and Walther
(2010) (or even earlier to wavelets) and was recently explored in Liu et al. (2021) and Kovács
et al. (2023). In practice, variants of aOS/OS might be equally viable e.g. the combination
of OS and aOS, referred to as combined OS, see Appendix A for details.

Lemma 3 OS and aOS (Algorithms 1 and 2) terminate in O
(
log(r− l)

)
and thus at most

O(log n) steps (i.e. the number of gain function evaluations).

For the univariate Gaussian setting, the overall computational cost is only O(log n) if
cumulative sums have been pre-computed, as in that case each evaluation is possible in
O(1) time. Otherwise the O(n) cost of calculating the cumulative sums becomes dominant.
We remark that availability of cumulative sums (or similar “sufficient statistics” for the
evaluation of the gain function) is a practical recommendation to store data for off- and
online change point problems.

4. Methodology and Theory for Multiple Change Points

We consider now the setup of multiple change points, and investigate how our methodology
can be extended to such a more ambitious setup in order to still have a sublinear number
of evaluations of the gain function and yet with theoretical optimality guarantees for the
estimation performance. Obviously, the extension of OS to multiple change points is not
straight-forward. Here we adopt the idea of Seeded Binary Segmentation (SeedBS, Kovács
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et al., 2023), which searches for a single change point in various intervals with the hope that
some of these intervals contain only a single change point, where the detection is “easy”.
While the best split point in each interval is a candidate, the decision which candidates
to declare finally as change points depends on a subsequent selection step. The intervals
are called seeded intervals and they are constructed deterministically (Definition 4 below).
SeedBS is thus very similar to wild binary segmentation (WBS, Fryzlewicz, 2014) and the
narrowest over threshold method (Baranowski et al., 2019). The latter two procedures use
random intervals instead of the deterministic ones, where the former in general leads to
total length and number of considered intervals to be larger and thus computationally more
expensive.

Definition 4 (Seeded intervals; Kovács et al., 2023) Let a ∈ [1/2, 1) be a given decay
parameter. Let I1 = (0, n]. For k = 2, . . . , dlog1/a(n)e (logarithm with base 1/a) define the
k-th layer Ik as the set of nk intervals of length lk that are evenly shifted by sk:

Ik =

nk⋃
i=1

{(b(i− 1)skc, d(i− 1)sk + lke]},

with nk = 2d(1/a)k−1e−1, lk = nak−1, sk = (n− lk)/(nk−1). The set of seeded intervals is

I =

dlog1/a(n)e⋃
k=1

Ik.

Note that I covers the whole range of scales and locations in an efficient way such
that there are O(n) intervals, which is constructed to guarantee appropriate background for
different types of change points. When there is only one change point, all intervals that do
not have a starting point at 1 or do not have an end point at n can be discarded, reducing the
number of intervals to O(log n). In the case of multiple change points, assuming a certain
minimal spacing between change points allows to discard intervals that are too short.

Algorithm 3 Optimistic Seeded Binary Segmentation (OSeedBS)

Require: a decay parameter a ∈ [1/2, 1), a minimal segment length m ≥ 2, and tuning
parameters for the selected optimistic search (OS or aOS)

1: function OSeedBS
2: I ← seeded intervals with decay a and at least m observations.
3: for (l, r] ∈ I do
4: t̂(l,r] ← the split point returned by the optimistic search on (l, r].

5: Apply some selection rule to
(
t̂(l,r], G(l,r](t̂(l,r])

)
, (l, r] ∈ I, to output the change point

estimates τ̂1, . . . , τ̂κ̂.
6: Post-process: refine the estimated change points by applying the optimistic search

to intervals
(
(τ̂i−1 + τ̂i)/2, (τ̂i + τ̂i+1)/2

]
, i = 1, . . . , κ.

The difference between SeedBS and its optimistic counterpart OSeedBS is essentially in
line 4 of Algorithm 3, where we perform either OS or aOS rather than full grid search. The
selection method in line 5 can be for example greedy or narrowest-over-threshold (NOT)
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selection, see Kovács et al. (2023). The computational times of OSeedBS depend critically
on the minimal segment length m. If m = O(n), only a handful of intervals are considered,
with O(log n) evaluations each, and thus O(log n) evaluations overall. For the other extreme,
when m is very small, many intervals need to be generated and thus the main driver of the
number of evaluations (and hence, the computational cost) is the number of considered
intervals. For m = 2, the number of intervals and also the total number of evaluations is
O(n). The estimation performance of course also depends on the choice of m. If chosen
too large, estimation performance will be bad as change points within short segments may
not be detected. Thus, m offers some kind of trade-off between estimation performance
and computational efforts. Such trade-offs are inherent also in other methods, see e.g. the
number of random intervals chosen in WBS.

Theorem 5 Under Model 1, we assume that the minimal segment length λ and the minimal
jump size δ satisfy

δ
√
λn ≥ C0

√
log n (5)

for some large enough constant C0. Assume further that there is an a-priori known lower
bound λ∗ of all segment lengths, i.e.

λ ≥ λ∗ � n−ω for some constant ω ∈ [0, 1] . (6)

By κ̂ and τ̂1 < · · · < τ̂κ̂ denote respectively the number and the locations of estimated change
points by OSeedBS (Algorithm 3), with the NOT selection method, and the seeded intervals
of lengths larger than m = bλ∗n/3c. Then:

i. There exist constants C1, C2, independent of n, ω, a and m, such that, given the
threshold for the selection method γ = C1

√
log n,

lim
n→∞

P
{
κ̂ = κ, max

i=1,...,κ
δ2
i |τ̂i − τi| ≤ C2

log n

n

}
= 1 .

ii. The number of evaluations is O(min{nω log n, n}).

We emphasize that the assumption (6) is only needed for computational efficiency en-
suring a sublinear number of evaluations as specified in part ii of Theorem 5. If the data are
stored in the format of cumulative sums, then the overall computational cost itself is also
O(min{nω log n, n}), i.e. it equals the number of evaluations. However, if cumulative sums
are not available, then the O(n) cost of calculating cumulative sums becomes dominant and
the overall computational cost is O(n), see Appendix F. For the statistical guarantee in
part i, an assumption on the minimal spacing, i.e. (6), becomes obvious if we choose ω = 1
and m = 2, since it is pointless to work on a higher resolution than the sampling rate 1/n
without further model assumption, and thus in this sense it imposes no restriction at all.
In case of multiple change points, the signal strength condition (5) is the weakest one that
still allows for detection. It coincides with the best known results (e.g. Frick et al., 2014;
Baranowski et al., 2019; Hu et al., 2023; Verzelen et al., 2023) with the only difference in
multiplying constants. Following the proof in Appendix E.3, we can easily replace it by

min
i=1,...,κ

(
min{τi+1 − τi, τi − τi−1}δ2

i n
)

& log n as n→∞.
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This is slightly more general, as it allows for frequent large jumps and rare small jumps
over long segments (cf. Cho and Kirch, 2022). However, we prefer the current version as in
Theorem 5, for notational simplicity. Note, moreover, that the localization rate reported in
part i of Theorem 5 is minimax optimal up to a possible log factor. In the particular case of
κ � nθ with some constant θ > 0, the derived localization rate is indeed optimal (namely,
the log factor being necessary, see Verzelen et al., 2023).

WBS (Fryzlewicz, 2014), and the similar narrowest over threshold method (Baranowski
et al., 2019), can also be sped up using OS (or aOS). However, in the worst case with very
short segments, e.g. in frequent change point scenarios with up to O(n) change points, these
two methods need to draw up to O(n2) random intervals, which prohibits sublinear number
of evaluations overall. Nonetheless, we expect substantial computational gains using OS (or
aOS) in connection with many other multiple change point detection techniques compared
to the respective full grid search based counterparts.

5. Extension to Multivariate and High-dimensional Scenarios

In the previous sections, the theoretical findings on the univariate Gaussian changing means
(Model 1) reveal the statistical insight that the computational efficiency can be improved
by almost one order (more precisely, from O(n) to O(log n) evaluations) with nearly no loss
of statistical efficiency, using the optimistic search strategy. We show that this is also true
for Gaussian changing means problems of general and potentially high dimension.

5.1 The Multivariate Model and Some Technical Simplification

The following model and variants thereof find applications e.g. in genomics, particularly in
analyzing copy number variations (cf. Zhang et al., 2010; Picard et al., 2011; Behr et al.,
2018; Mallory et al., 2020).

Model 2 (Gaussian changing means) Assume that the observation vectors X1, . . . ,Xn ∈
Rp are independent and

Xτ0n+1(= X1), . . . ,Xτ1n ∼ N (µ0, Ip) ,

...

Xτκn+1, . . . ,Xτκ+1n(= Xn) ∼ N (µκ, Ip) ,

where {τi : i = 1, . . . , κ} is the points satisfying

0 = τ0 < τ1 < · · · < τκ+1 = 1 and τin ∈ N ,

mean vectors µi 6= µi−1 ∈ Rp, i = 1, . . . , κ are the levels on segments, and the covariance
matrix is Ip ∈ Rp×p the identity matrix. Define the minimal segment length

λ ≡ λn = min
i=0,...,κ

(τi+1 − τi) ,

and the minimal jump size

δ ≡ δn = min
i=1,...,κ

δi with δi =
∥∥µi − µi−1

∥∥ ,
13
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with ‖·‖ the Euclidean norm. In addition, assume that there is a known integer s ∈
{1, . . . , p} such that, for i = 0, . . . , κ,∥∥µi − µi−1

∥∥
0

:= #{j = 1, . . . , p | µi,j 6= µi−1,j} ≤ s,

with µi,j the j-th entry of µi.

In Model 2 the locations of change points are shared over p coordinates, and thus it
potentially allows aggregation of detection power among different coordinates. In case that
the change of means happens in only a sparse fraction of coordinates (e.g. s � p), one
should focus only on the coordinates where the mean changes. The selection of changing
coordinates can be achieved by a simple thresholding rule, see Liu et al. (2021). This
motivates us to consider the following gain function:

Go(l,r](t) :=

p∑
j=1

(
CS(l,r],j(t;X)2 − α2

)
+
, (7)

where 0 ≤ l < t < r ≤ n are integers, α ≥ 0 is a user-specified threshold, and CS(l,r],j(t;X)
is the CUSUM statistics in the j-th coordinate of X = (X1, . . . ,Xn), namely,

CS(l,r],j(t;X) =

√
r − t

(r − l)(t− l)

t∑
i=l+1

Xi,j −

√
t− l

(r − l)(r − t)

r∑
i=t+1

Xi,j ,

with Xi,j the j-th entry of Xi.
In the gain function (7) the CUSUM statistics is utilized for change point estimation as

well as for coordinate selection. This entanglement of change point estimation and coordi-
nate selection complicates the theoretical analysis. We employ two technical modifications
to ease the theoretical analysis.

The first is a sample splitting trick that removes the aforementioned entanglement. We
split the samples from Model 2 into two independent groups, with one group at odd times,
and the other at even times. One group of samples is then used for the estimation of change
points, and the other for the selection of coordinates. For simplicity, we assume that there
are two independent copies of samples, denoted as {X1, . . . ,Xn} and {Y 1, . . . ,Y n}, from
Model 2. Then the modified gain function is defined as

G(l,r](t) :=

p∑
j=1

(
CS(l,r],j(t;X)2 − 1

)
1
{∣∣CS(l,r],j(t;Y )

∣∣ ≥ α} , (8)

with a threshold α ≥ 0 and integers 0 ≤ l < t < r ≤ n.
Recall that the basic operation in optimistic searches is the comparison between a pair of

locations to determine which one is more likely to be a change point. Such a comparison is
done via the absolute scores determined by the gain function, but it is also feasible whenever
relative scores are available. Thus, as the second modification, we introduce a relative score
between two locations t and w in the form of a comparison function

C(l,r](t, w) :=

p∑
j=1

((
CS(l,r],j(t;X)2 − CS(l,r],j(w;X)2

)
×

1
{

max
{∣∣CS(l,r],j(t;Y )

∣∣ , ∣∣CS(l,r],j(w;Y )
∣∣} ≥ α}). (9)
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The location t is preferred as a change point candidate rather than w, if and only if
C(l,r](t, w) ≥ 0. This second modification means that in OS and aOS (Algorithms 1 and 2)
we use the comparison function in (9) instead of the gain function in (8) to decide which
location is preferred. Besides, in the dyadic search in aOS (Algorithm 2, line 4), the max-
imum of the gain function should be replaced by the location at which it is preferable in
terms of comparison function over all other dyadic locations. However, for a found change
point candidate by OS or aOS, the gain function in (8) is still used to decide whether it
should be selected as an estimated change point, in OSeedBS (Algorithm 3, line 5).

These two modifications are needed only when α > 0. In case of α = 0, the modified
gain function (8) is the same as the original gain (7), and the comparison function (9) is
simply the difference of the original gain function (7) at two locations.

5.2 Statistical Guarantees

Given the above two technical modifications, we can establish the following statistical prop-
erties of the optimistic searches.

Theorem 6 (Single change point) Under Model 2 with κ = 1 (a single change point),
assume that the minimal segment length λ and the minimal jump size δ satisfy

nλδ2 ≥ C0ρ◦(n, p, s), (10a)

where C0 > 0 is a sufficiently large constant, and

ρ◦(n, p, s) :=

{√
p log logn if s ≥

√
p log log n,

max
(
s log e

√
p log logn
s , log logn

)
if s ≤

√
p log log n.

(10b)

Let τ̂ = t̂(0,n]/n be the estimated change point by aOS (Algorithm 2) on (0, n], with the
gain (8), the comparison function (9) and

α ≡ α(n, p, s) =

{
0 if s ≥

√
p log log n or s = p,√

2 log e2p log logn
s2

otherwise.

Then, for some constant C1 > 0, it holds that

lim
n→∞

P
{
|τ̂ − τ | ≤ C1 max

{ log log n

δ2n
,

min{s2, p log log n}
n2λδ4

}}
= 1.

Theorem 6 includes Theorem 2 as a special case when p = 1, with the threshold
α = 0. In general, the condition (10) is the weakest possible for the detection of a
single change point (Liu et al., 2021). For the localization of the change point, since
ρ◦(n, p, s) ≥

√
min{s2, p log log n}, Theorem 6 implies

P
{
|τ̂ − τ | ≤ C1

ρ◦(n, p, s)

nδ2

}
→ 1, as n→∞. (11)

This is the induced localization rate from the detection of change points, as reported in
Pilliat et al. (2023). Intuitively, the induced rate can be obtained since one may treat the
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localization of a single change point up to an accuracy εn “equivalently” as the detection of a
single change point at t = nεn with the same jump size. This connection between detection
and localization of change points leads to almost sharp localization rates in univariate and
multivariate cases, but may yield suboptimal rates in case of high-dimension. In fact, if
p � log log n, the localization rate in Theorem 6 is strictly faster than the rate in (11), in
the dense scenario (s ≥

√
p log log n) when nλδ2 �

√
p log log n, and in the sparse scenario

(s ≤
√
p log logn) when s & log logn.

Moreover, Theorem 6 together with the condition

nλδ2 & min
{ s2

log log n
, p
}
, (12)

leads to

P
{
|τ̂ − τ | . log logn

nδ2

}
→ 1, as n→∞,

which is not improvable except for the factor of log log n (Wang and Samworth, 2018,
Proposition 3). In the literature, stricter conditions than (12) are required for the same
localization rate (ignoring the log factor), see e.g. Bhattacharjee et al. (2017), Kaul et al.
(2021) and Li et al. (2023). We stress that in the low dimensional case of p . log log n,
or in the highly sparse case of s . log log n, the condition (12) is simply a consequence
of (10), and thus the localization rate in Theorem 6 is minimax optimal (up to a log log n
factor). However, in general, it remains unclear, whether the localization rate in Theorem 6
is optimal or not, under the weakest detection condition (10), see Section 7.

The optimistic searches can be applied to the inference of multiple change points, if
one incorporates the idea of SeedBS, which results in OSeedBS (Algorithm 3), as in the
univariate setup of Model 1. In particular, because of multiscale nature of seeded intervals,
OSeedBS extends the statistical optimality of optimistic searches for a single change point
to the general case of multiple change points.

Theorem 7 (Multiple change points) Under Model 2, we assume that the minimal seg-
ment length λ and the minimal jump size δ satisfy

nλδ2 ≥ C0ρ(n, p, s), (13a)

where C0 > 0 is a sufficiently large constant, and

ρ(n, p, s) :=

{√
p log n if s ≥

√
p log n,

max
(
s log e

√
p logn
s , log n

)
if s ≤

√
p log n.

(13b)

By κ̂ and τ̂1 < · · · < τ̂κ̂ denote respectively the number and the locations of estimated change
points by OSeedBS (Algorithm 3) with the NOT selection. Set the threshold α in the gain (8)
and the comparison function (9) as

α ≡ α(n, p, s) =

{
0 if s ≥

√
p log n or s = p,√

2 log e2p logn
s2

otherwise,
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and the selection threshold γ in NOT as γ = C1ρ(n, p, s) for some constant C1 > 0. Then,
there exists a constant C2, such that, as n→∞,

P
{
κ̂ = κ, |τ̂i − τi| ≤ C2 max

{ log n

δ2
i n

,
min{s2, p log n}

n2λδ4
i

}
, i = 1, . . . , κ

}
→ 1.

It is clear from the proof (Section E.3) that if all segment lengths are larger than λ∗,
then Theorem 7 remains valid even if the minimal length m of seeded intervals is chosen as
m = bλ∗n/3c. As a consequence, it covers part i of Theorem 5 as a special case of p = 1.
Such a-priori knowledge of λ∗ will lead to computational speedups, see Section 5.3 later.

Since ρ(n, p, s) ≥
√

min{s2, p log n}, the localization rate of Theorem 7 implies the
induced rate from the detection of change points, namely,

P
{
κ̂ = κ, |τ̂i − τi| ≤ C2

ρ(n, p, s)

nδ2
i

, i = 1, . . . , κ

}
→ 1, as n→∞, (14)

which was given in Pilliat et al. (2023). Similar to the single change point case, the local-
ization rate in Theorem 7 can be strictly faster than the induced rate in (14). For instance,
in the high-dimensional setup of p� log n, this occurs in the dense scenario (s ≥

√
p log n)

when nλiδ
2
i �

√
p log n, and in the sparse scenario (s ≤

√
p log n) when s & log n.

The condition (13) is minimax optimal in detection of two or more change points, while
the minimax optimality of localization rates remains unclear. An exception is the case of
nλiδ

2
i & min{s2/ log n, p}, the localization rate of Theorem 7 is of order (log n)/(δ2

i n) and
thus not improvable except a possible log factor. In high-dimension, the optimal localization
rates remain yet unknown, similar to the case of a single change point, see Section 7.

Inspecting the proof of Theorem 7 (Appendix E.3), we can show that with no post-
processing (line 6, Algorithm 3), the localization error rate is

εi � max

{
log n

nδ2
i

,
min

{
s2, p log n

}
nδ2

i γ

}
,

provided that the selection threshold γ satisfies

ρ(n, p, s) . γ . nλδ2.

Then, if γ � nλδ2
i , the same localization rate as in Theorem 7 can be achieved, but this is

not practical or feasible, as nλδ2
i is often unknown, and may be larger than nλδ2. Thus, if

log n

nδ2
i

�
min

{
s2, p log n

}
nλδ4

i

,

the post-processing is necessary for the faster rate in Theorem 7. Otherwise, e.g. in the
univariate case, we can drop the post-processing step for the sake of saving computation.

The tuning parameters of OSeedBS are the selection threshold γ and the threshold α,
which can be chosen according to Theorem 7. One restriction in the sparse scenario is that
the level of sparsity s is required (which appears in the threshold α). One may adjust the
gain function by considering a proper selection of guesses on s, e.g.

{1, 2, . . . , 2dlog2

√
p logne} ∪ {p}
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and aggregating over such a selection, in a similar way as in Liu et al. (2021). The careful
investigation is left as future research. In addition, data-driven rules for selecting γ and α
can be beneficial, especially for improving finite sample performances. We expect that simi-
lar approaches (e.g. various information criteria, minimum description lengths, or heuristic
methods) developed for full grid search methods would also apply to the optimistic searches.

We emphasize that the proofs of the statistical guarantees (Appendix E) are organized
in a modular fashion, which handle the random perturbations in the data (Appendix E.1,
particularly, Lemmas 15 and 18) separately from the specific structure of optimistic searches
(Appendices E.2 and E.3). This modular approach allows the application of our proof
strategies to general scenarios beyond the specific Gaussian model (Model 2). For instance,
we might extend our results to general non-Gaussian and possibly temporally dependent
situations, by leveraging the framework of functional dependence (introduced in Wu, 2005).
To achieve this, we only need to extend Lemmas 15 and 18 to such situations, which seems
feasible based on the results in Zhang and Wu (2017, Lemma C.4) and Zhang and Wu
(2021, Theorem 6.6). Moreover, we might introduce spatial dependence into the Gaussian
model by considering a general covariance Σ instead of the identity matrix Ip. In the dense
scenario, this modification would request to adjust the selection threshold γ according to the
trace, operator norm and Frobenius norm of Σ, which can be estimated using the sample
covariance matrix (see Section 3 in Liu et al., 2021). The sparse scenario is more intricate,
as various sparsity structures, such as the sparsity of µi − µi−1, that of Σ and/or that
of Σ(µi − µi−1), may come into play. Further investigation of these extensions, along the
aforementioned lines of discussion, presents interesting avenues for future research.

5.3 Computation Complexity

The number of gain function evaluations remains the same as in the univariate case (Lemma 3
and Theorem 5ii). If the data is stored in cumulative sums, each evaluation of gain function
involves O(p) computations, which leads to an additional factor of p in run time; Otherwise,
each evaluation of gain function will cost O(np) computations, in which case the calculation
of cumulative sums is recommended as a preprocessing of the data, which requires O(np)
computations only once.

Proposition 8 Assume that the data from Model 2 is stored in the format of cumulative
sums, that is, St,j :=

∑t
i=1Xi,j with t = 1, . . . , n and j = 1, . . . , p. Then:

i. In case of a single change point, the optimistic searches (Algorithms 1 and 2) require
O(p log n) computations in the worst case.

ii. In case of multiple change points, assume further that

λ ≥ λ∗ � n−ω for some constant ω ∈ [0, 1] .

OSeedBS (Algorithm 3) with m = bλ∗n/3c requires O(pmin{nω log n, n}) computations
in the worst case.

Clearly, Proposition 8 includes Lemma 3 and part ii of Theorem 5 as a special case of
p = 1. In comparison, the full grid search has O(pn) run time for a single change point,

18



Optimistic Search for Change Point Estimation

and SeedBS has O(pn log n) run time for multiple change points. Thus, the computational
speedup based on optimistic searches can be polynomial in sample size.

Moreover, we stress that OSeedBS can be sped up by a slight modification of the pro-
cedure as follows. On every seeded interval, we first select s coordinates such that their
corresponding squared CUSUM statistics evaluated at the middle point of this interval are
the largest among all coordinates. Afterwards, we only consider the gain function restricted
to the selected s coordinates. With this modification, OSeedBS will have an improved worst
case run time O(smin{nω log n, n}+pnω), and will still enjoy the same statistical guarantee
of OSeedBS established in Theorem 7 (Appendix E.3).

6. Simulations

We provide a simulation study of our optimistic searches (incl. combined OS in Appendix A)
on univariate changing means and high-dimensional changing covariance problems.

6.1 Single Change Point in Univariate Gaussian Means

Example 1 Let X1, . . . , X100 ∼ N (0, σ2) and X101, . . . , X100+n ∼ N (0.5, σ2) be indepen-
dent observations with a single change in the mean value at observation 100.

Simulation results are reported in Table 2 and Figure 5 in Appendix B. While OS clearly
struggles when the lengths of the two segments are very unbalanced (n large, in particular
with high noise level), aOS has a much better performance. However, for the more balanced
scenarios (up to n = 400 for σ = 1.5 for example), OS performs well. The combined OS
(Appendix A) has a slightly improved performance compared to aOS (in particular for the
rather balanced scenarios). The full grid search has the best performance for the rather
challenging scenarios that are very unbalanced and/or have a high noise level, but aOS and
combined OS come remarkably close. We note that increasing absolute errors in change
point location for higher values of n despite having more available observations is actually
reasonable, as there are meanwhile more potential candidates for change points on the grid.
This is also compatible with the theoretical bound of order log log(n)/δ2.

6.2 Multiple Change Points in Univariate Gaussian Means

Example 2 below describes the blocks signal (Donoho and Johnstone, 1994) with the noise
level as used in Fryzlewicz (2014).

Example 2 Consider a total of 2048 observations with 11 change points at locations 205,
267, 308, 472, 512, 820, 902, 1332, 1557, 1598 and 1659 as well as mean values 0, 14.64,
−3.66, 7.32, −7.32, 10.98, −4.39, 3.29, 19.03, 7.68, 15.37 and 0 between the change points
to which independent Gaussian noise with a standard deviation of σ = 10 is added.

The results are given in Figure 3. The average performances of OS and combined OS
are very close to that of the full search. Overall, it turns out that the optimistic variants of
OSeedBS have a competitive performance compared to the full grid search based SeedBS.
Further, as long as the minimal segment length constraints are short enough to guarantee
coverage of each single change point, both SeedBS and variants of OSeedBS perform well.
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Figure 3: Results on Example 2. Pairwise plots of Hausdorff distances of the locations
of the best 11 change point candidates (with greedy selection) compared to the
true ones in 100 simulations for SeedBS (decay a = 1/

√
2) with various minimal

segment length constraints and full grid search in each seeded interval (horizontal-
axis) versus combined OS (vertical-axis, left) and OS (vertical-axis, right). The
vertical and horizontal dashed lines indicate the average Hausdorff distances for
the respective minimal segment length constraint and search method within the
seeded intervals. Note the logarithmic scales on both axes.

6.3 High-dimensional Gaussian Covariance Changes

As an exploration on the potential of optimistic searches, we introduce a changing covariance
setup in Model 3 with specific instances for simulations in Example 3.

Model 3 Assume that observations X1, . . . ,Xn are independent and

Xτ0n+1(= X1), . . . ,Xτ1n ∼ N (0,Σ0) ,

...

Xτκn+1, . . . ,Xτκ+1n(= Xn) ∼ N (0,Σκ) ,

where {τi : i = 1, . . . , κ} gives the locations of change points satisfying

0 = τ0 < τ1 < · · · < τκ+1 = 1 and τin ∈ N ,

and Σi 6= Σi−1 ∈ Rp×p, i = 1, . . . , κ are the covariances on the segments.

A simulation setup of Model 3 was considered in Kovács et al. (2023) as an example to
demonstrate the computational efficiency of seeded intervals over random intervals utilized
in WBS. We will show that further speedups in such computationally challenging setup for
many available algorithms can be easily obtained utilizing our optimistic search strategies.
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Example 3 Let Σij = exp (−1
2 |ti − tj |) with ti − ti−1 = 0.75, i = 2, . . . , 20, be a chain

network model (Fan et al., 2009, Example 4.1) with p = 20 variables. A modified version
Σ̃ is obtained by replacing the top left 5× 5 block of Σ by a 5-dimensional identity matrix.

(a) As in Kovács et al. (2023), we set in Model 3 Σ0 = Σ, Σ1 = Σ̃, Σ2 = Σ, Σ3 = Σ̃,
etc. and draw 100 observations for each segment until obtaining a total of n = 2000
observations. Hence, there are 20 segments of length 100 each, i.e. κ = 19.

(b) In Model 3, we set Σ0 = Σ2 = Σ4 = Σ, Σ1 = Σ3 = Σ5 = Σ̃, and draw 550, 300, 700,
250, 100 and 100 observations for the respective segments, obtaining again a total of
n = 2000 observations, but this time with 6 segments, i.e. κ = 5.

We consider a gain function (defined in Appendix C) based on the multivariate Gaussian
log-likelihood where the underlying precision matrices are obtained by the graphical lasso
(Friedman et al., 2008; Giraud, 2022). The graphical lasso is rather costly especially when
repeatedly fitting at each possible split point t on a grid. The essential problem is that the

estimator Ω̂
glasso
(u,t] of precision matrix for a segment (u, t] cannot be efficiently updated (not

even using warm starts) to obtain Ω̂
glasso
(u,t+1] for the segment (u, t + 1]. Hence, the overall

number of graphical lasso fits is the main driver of computational time.

This chosen gain function is motivated by the fact that its population version attains
local maxima only at change points. More precisely, the population gain has the form of

G∗(l,r](t) =
r − l
n

log(|Σ(l,r]|)−
t− l
n

log(|Σ(l,t]|)−
r − t
n

log(|Σ(t,r]|) , (15)

where Σ(l,r] is the average covariance matrix on the segment (l, r] ⊆ (0, 1],

Σ(l,r] =
κ∑
i=0

|(τi, τi+1] ∩ (l, r]|
|(l, r]|

Σi with |(a, b]| = b− a,

and |A| is the determinant of a matrix A.

Lemma 9 The function G∗(l,r](·) defined in (15) is piecewise (between change points) con-

vex, and up to the special cases as detailed in the proof (Appendix C.1) even strictly convex.

Lemma 9 shows that in case of a single change point in (l, r], G∗(l,r] is unimodal, and in case

(l, r] contains multiple change points, each strict local maximum is a change point.

We compare the estimation performance and computational times of various methods.
In order to eliminate the effect of model selection, for all algorithms we selected greedily as
many change points as the true underlying number (with some exceptions for WBS with
small M). The results in Figure 4 show roughly speedups of factor 30 for OBS compared
to BS, factor 35 for OWBS versus WBS and factor 10–14 for OSeedBS versus SeedBS in
both of the considered setups. We provide a further discussion on the speedups of different
approaches and potential benefits of combining them in Appendix D.
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Figure 4: Estimation performances (in Hausdorff distance) and computational times on
Example 3 (based on 10 simulations) with setups (a) on the top and (b) on the
bottom. The symbols differentiate among the basic algorithms and the colors
indicate whether full grid search or OS was used. The five point clouds for
SeedBS and OSeedBS correspond to decay a = 2−1, 2−1/2, 2−1/4, 2−1/8, 2−1/16 for
the seeded intervals, while the five point clouds for WBS and OWBS correspond
to M = 100, 200, 400, 800, 1600 random intervals. For all algorithms, the true
number of change points (or the maximally many if not achieved) was used.

7. Discussion

We introduced optimistic search strategies that avoid the full grid search and thus lead to
computationally fast change point detection methods in great generality. For univariate,
multivariate and high-dimensional Gaussian changing means setups we proved that aOS is
asymptotically minimax optimal for detecting a single change point with only a logarith-
mic number of evaluations of the gain function. For multiple change point problems we
combined optimistic searches (OS and aOS) with seeded binary segmentation, leading to
asymptotically minimax optimal detection while having superior runtime compared to ex-
isting approaches. In addition, the localization rate of change points is by far the sharpest,
given the weakest possible condition on the signal-to-noise ratios. It is unclear though
whether our localization rate is optimal or not in certain high-dimensional scenarios. In the
literature, a faster localization rate is shown to be possible in certain regimes with much
larger signal-to-noise ratio (Wang and Samworth, 2018, Theorems 1 and 2). In particular,
it indicates that our localization rate is not adaptively minimax optimal over all possible
ranges of signal-to-noise ratios. The complete understanding of localization rates is, to the
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best of our knowledge, still open for high-dimensional Gaussian mean changes, which offers
an interesting avenue for future research in this direction. Overall, our theoretical results
reveal a surprising fact that the computational acceleration up to one order in sample size
can be achieved (by optimistic searches) with nearly no loss of statistical efficiency.

Our methodology is also most relevant for complex change point detection problems
with computationally expensive model fits, as demonstrated by the massive computational
gains in examples involving high-dimensional graphical models.
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Appendix A. Combined Optimistic Search

Combining the results of naive and advanced optimistic search (i.e. OS and aOS), thus
referred to as the combined optimistic search, leads to slightly better empirical performance
than the individual searches, but at a slightly higher computational cost, see Algorithm 4.
Also from a theory point of view, the combined optimistic search enjoys the same statistical
minimax optimality as the advanced version, see Remark 22 later in Appendix E.

Algorithm 4 Combined Optimistic Search

Require: r − l > 2; l, r ∈ N and step size ν ∈ (0, 1) with 1/2 by default
1: function cOS(ν, l, r)
2: t̂0 ← aOS(ν, l, r) . Advanced optimistic search
3: t̂1 ← OS(l, b(l + νr)/(1 + ν)c, r | ν, l, r) . Naive optimistic search
4: if G(l,r](t̂0) ≥ G(l,r](t̂1) then

5: t̂(l,r] ← t̂0
6: else
7: t̂(l,r] ← t̂1

8: return t̂(l,r]

Appendix B. Additional Material on the Univariate Gaussian Simulations

Example 4 Consider a specific example of Model 1 with κ = 1 and τ1 = λ ≤ 1/3. For
simplicity, let ν = 1/2 and n/3 ∈ N. In the first step of OS, we check the gain function at
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n/3 and 2n/3. In order to avoid wrongly discarding (0, n/3], we have to ensure∣∣∣CS(0,n]

(n
3

)∣∣∣ ≥ ∣∣∣∣CS(0,n]

(2n

3

)∣∣∣∣ .
In fact, we have

P
{∣∣∣CS(0,n]

(n
3

)∣∣∣ < CS(0,n]

(2n

3

)}
≤ P

{∣∣∣CS(0,n]

(n
3

)∣∣∣ < ∣∣∣∣CS(0,n]

(2n

3

)∣∣∣∣}
≤ 2P

{∣∣∣CS(0,n]

(n
3

)∣∣∣ < CS(0,n]

(2n

3

)}
.

Elementary calculation using properties of the Gaussian distribution reveals

P
{∣∣∣CS(0,n]

(n
3

)∣∣∣ < CS(0,n]

(2n

3

)}
= Φ

(
−δλ

√
n

2

)
Φ
(
δλ

√
3n

2

)
,

with Φ the standard Gaussian distribution function. Thus, if and only if δλ
√
n→∞,

P
{∣∣∣CS(0,n]

(n
3

)∣∣∣ ≥ ∣∣∣∣CS(0,n]

(2n

3

)∣∣∣∣}→ 1 as n→∞ .

Note that δλ
√
n→∞ is, up to a log factor, equivalent to the condition (3), which guarantees

that the probability of making a mistake in the first step of OS vanishes eventually.

Table 2 displays various results for Example 1 in the main text. The top part of Table 2
shows the localization error of the change point estimates found by the naive, advanced and
combined optimistic search, as well as the full grid search for various choices of n (from 100
to 5000) for three different noise levels (σ = 0.5, 1, 1.5). The bottom part of Table 2 shows
the number of evaluations as a measure of computation times.

Figure 5 shows found change points using various search methods in each 1000 simula-
tions for a balanced (n = 200) and an unbalanced (n = 5000) scenario. The failure of the
naive optimistic search in most cases for the unbalanced scenario is again clearly visible,
while for the advanced, and in particular the combined optimistic search, the found change
points very often lie exactly on the diagonal when compared to the full grid search and
hence exactly the candidate proposed by the full grid search were found.

The simulation results in Table 2 and Figure 5 confirm our theoretical results that the
naive optimistic search is not consistent for very unbalanced signals, while the advanced and
combined versions are. Computationally, the number of evaluations for optimistic searches
can be orders of magnitude smaller compared to full grid search, in particular if n is large.

Appendix C. Changes in High-dimensional Gaussian Graphical Models

We briefly describe an estimator introduced by Londschien et al. (2021) for change point
detection in high-dimensional Gaussian graphical models, as this is the basis of all change
point detection algorithms (BS, SeedBS, WBS and their optimistic variants) that we in-
vestigate in Section 6.3. For a segment (u, v] with 0 ≤ u < v ≤ n let S(u,v] denote the
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Average absolute estimation error for search methods
Noise level n Naive Advanced Combined Full search

100 3.38 (7) 2.77 (4) 2.88 (5) 3.24 (5)
200 2.72 (4) 4.22 (7) 2.95 (5) 3.17 (5)
300 3.43 (7) 4.45 (8) 3.21 (5) 3.16 (5)

σ = 0.5 400 4.68 (10) 3.95 (6) 3.37 (5) 3.16 (5)
500 6.55 (27) 4.24 (8) 3.09 (5) 3.08 (5)
1000 13.75 (74) 3.84 (6) 3.35 (5) 3.08 (5)
2000 171.74 (387) 3.92 (7) 3.26 (6) 3.01 (4)
5000 1021.12 (1338) 3.92 (7) 3.52 (6) 3.05 (5)

100 15.86 (20) 15.26 (23) 15.07 (21) 16.79 (22)
200 12.37 (18) 28.93 (43) 15.78 (26) 17.44 (28)
300 19.50 (34) 26.91 (45) 19.30 (35) 17.73 (33)

σ = 1 400 30.58 (56) 26.02 (54) 20.14 (42) 17.85 (37)
500 50.09 (87) 26.97 (59) 21.06 (49) 18.80 (44)
1000 136.75 (240) 29.70 (94) 24.59 (81) 21.24 (72)
2000 544.70 (547) 35.73 (160) 34.16 (156) 24.21 (116)
5000 1948.79 (1328) 48.08 (341) 51.94 (354) 38.34 (298)

100 25.24 (25) 33.95 (35) 31.70 (32) 34.19 (33)
200 23.77 (29) 60.82 (62) 39.03 (50) 42.05 (52)
300 41.23 (54) 65.17 (82) 50.79 (72) 48.55 (72)

σ = 1.5 400 62.98 (85) 70.69 (107) 58.85 (95) 56.11 (93)
500 96.54 (114) 82.27 (134) 70.03 (121) 62.41 (115)
1000 253.11 (291) 121.14 (256) 114.73 (243) 98.52 (226)
2000 739.92 (534) 202.01 (504) 203.74 (493) 156.51 (434)
5000 2171.28 (1211) 436.96 (1269) 455.99 (1260) 355.35 (1123)

Average number of evaluations for search methods
Noise level n Naive Advanced Combined Full search

100 16.18 (1) 25.10 (1) 41.28 (2) 199 (0)
200 17.31 (1) 25.92 (2) 43.24 (2) 299 (0)

σ = 1 500 19.08 (1) 29.34 (2) 48.43 (2) 599 (0)
1000 19.36 (1) 30.95 (1) 50.31 (2) 1099 (0)
2000 21.37 (1) 33.00 (1) 54.36 (2) 2099 (0)
5000 23.69 (1) 35.02 (1) 58.71 (2) 5099 (0)

Table 2: Simulation results for Example 1. Reported are average absolute differences be-
tween the true change point at location 100 and the best single split point found
by the respective search method (top) and the average number of evaluations
(bottom). Values are averaged over 10,000 simulations and in parentheses the
standard deviations (rounded to integers). The number of evaluations for noise
levels σ = 0.5, 1.5 are omitted as they are very similar to the case σ = 1.
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Figure 5: Pairwise plots of found change points using different optimistic search methods
(horizontal-axis) versus the ones returned by the full grid search (vertical-axis)
for a noise level σ = 1.5 and n = 200 (top) as well as n = 5000 (bottom) in
1000 simulations from Example 1. The vertical and horizontal lines indicate the
location of the true change point at observation 100.

empirical covariance matrix within that segment. Let 0 < ε < 1/2 be some required mini-
mal relative segment length and γ > 0 be a regularization parameter. For a segment (u, v]
with v − u > 2εn we define the split point candidate as

η̂(u,v] = arg max
t∈{u+εn,...,v−εn}

Ln(Ω̂
glasso
(u,v] ;S(u,v])−

(
Ln(Ω̂

glasso
(u,t] ;S(u,t]) + Ln(Ω̂

glasso
(t,v] ;S(t,v])

)
, (16)

where

Ln(Ω;S(u,v]) =
v − u
n

(
Tr(ΩS(u,v])− log(|Ω|)

)
is a multivariate Gaussian log-likelihood based loss in the considered segment (u, v] (scaled

according to its length), and Ω̂
glasso
(u,v] is the graphical lasso precision matrix estimator (Fried-

man et al., 2008) with a scaled regularization parameter
√
n/(v − u)γ, i.e.,

Ω̂
glasso
(u,v] = arg min

Rp×p3Ω�0

Tr(ΩS(u,v])− log(|Ω|) +
√

(n/(v − u))γ‖Ω‖1.

Each split point t in (16) requires fitting two graphical lasso estimators. While various
algorithms for computing exact or approximate solutions for the graphical lasso estimator
exist, scalings of O(p3) (or worse) are common (assuming that the input covariance matrices
have been pre-computed and that no special structures such as the block diagonal screening
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proposed by Witten et al. (2011) as well as Mazumder and Hastie (2012a) can be exploited).
Hence, the graphical lasso is rather costly especially when repeatedly fitting at each possible
split point t on the grid u + εn, . . . , v − εn. The essential problem is that it is not easy to

re-use the estimator Ω̂
glasso
(u,t] for the segment (u, t] to obtain Ω̂

glasso
(u,t+1] for the segment (u, t+1].

One could use Ω̂
glasso
(u,t] as a warm start, but not all algorithms that have been developed to

compute graphical lasso fits are guaranteed to converge with warm starts (Mazumder and
Hastie, 2012b) and even the ones that do converge would not save orders of magnitude in
terms of runtime. This lack of efficient updates is common for more complex (e.g. high-
dimensional) scenarios and it is in sharp contrast with e.g. change point detection in means
for p-dimensional Gaussian variables. There, one needs to calculate means, but the mean for
the segment (u, t+1] can be updated in O(p) cost if the mean for the segment (u, t] is already
available, and hence the computational cost is typically proportional to the total length of
considered segments. In contrast, in the estimator in (16), the number of graphical lasso
fits, as given by the number of considered split points, is the main driver of computational
cost. Our optimistic search techniques rely on evaluating far fewer split points t than the
full grid search and thus provide an option for massive computational speedups. Of course,
the price to pay is having no guarantee to obtain exactly the optimal split point, but the
“optimistic” approximation to η̂(u,v] is still fairly good, see the simulations in Section 6.3.

In the simulations, we used the glasso R package, available on CRAN, for the graphical
lasso fits. For all six methods, we set ε = 0.01, i.e. skipping 20 observations on the bound-
aries of each considered interval and overall, no change points were searched in intervals
containing less than 60 observations. We set γ = 0.007. Regularization in these examples is
not essential in the sense that we do not have truly high-dimensional scenarios, but for split
points close to the boundaries of the search interval and in short intervals, where the num-
ber of observations is close to p, regularization can be still helpful. We could have increased
p in order to cover truly high-dimensional setups in our simulations, but given the scaling
O(p3) of the graphical lasso, this very quickly goes beyond reasonable computational times
for the full grid search based approaches that we want to include as references in terms of
achievable estimation error.

C.1 Proof of Lemma 9

First note that in the following we only consider the case l < τi < t < τi+1 < r, but
similar arguments can be used also in the presence of a single change point in (l, r] or when
considering a split point t in the segment from l to the first change point within (l, r].
Recall that Σ(l,r] denotes the convex combination of the covariance matrices within the
segment (l, r] ⊆ (0, 1] with the weights given by the relative segment lengths within (l, r].
In particular, for l < τi < t < τi+1 < r,

Σ(l,t] =
1

t− l
(
(τi − l)Σ(l,τi] + (t− τi)Σi+1

)
and

Σ(t,r] =
1

r − t
(
(τi+1 − t)Σi+1 + (r − τi+1)Σ(τi+1,r]

)
,
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where Σi+1 = Σ(τi,τi+1] is the covariance matrix in the i+ 1-st segment (τi, τi+1]. We seek
to find the first and second derivatives of G∗(l, r](t). First note that

∂

∂t
Σ(l,t] =

τi − l
(t− l)2

(
Σi+1 −Σ(l,τi]

)
and

∂2

∂t2
Σ(l,t] = −2(τi − l)

(t− l)3

(
Σi+1 −Σ(l,τi]

)
= − 2

t− l
∂

∂t
Σ(l,t].

We use the following expressions for derivatives of an invertible matrix A(s) depending on s,

∂

∂t
log(|A(t)|) = Tr

(
A(t)−1 · ∂

∂t
A(t)

)
;

∂

∂t
Tr(A(t)) = Tr

(
∂

∂t
A(t)

)
;

∂

∂t
A(t)−1 = −A(t)−1 · ∂

∂t
A(t) ·A(t)−1.

Compute next the first and second derivatives of G∗(l,r](t). Recall from equation (15) that

G∗(l,r](t) =
r − l
n

log(|Σ(l,r]|)−
t− l
n

log(|Σ(l,t]|)−
r − t
n

log(|Σ(t,r]|) .

Consider first the middle part of G∗(l,r](t), i.e.

L∗(t) := − t− l
n

log(
∣∣Σ(l,t]

∣∣) .
Then for the first derivative

d

dt
L∗(t) = − 1

n
log(|Σ(l,t]|)−

t− l
n

Tr

(
Σ−1

(l,t] ·
∂

∂t
Σ(l,t]

)
,

and for the second derivative

d2

dt2
L∗(t)

=− 1

n
Tr

(
Σ−1

(l,t] ·
∂

∂t
Σ(l,t]

)
− 1

n
Tr

(
Σ−1

(l,t] ·
∂

∂t
Σ(l,t]

)
− t− l

n

∂

∂t

(
Tr

(
Σ−1

(l,t] ·
∂

∂t
Σ(l,t]

))
=− 2

n
Tr

(
Σ−1

(l,t] ·
∂

∂t
Σ(l,t]

)
− t− l

n
Tr

(
−Σ−1

(l,t] ·
∂

∂t
Σ(l,t] ·Σ−1

(l,t] ·
∂

∂t
Σ(l,t]

)
− t− l

n
Tr

(
Σ−1

(l,t] ·
∂2

∂t2
Σ(l,t]

)
=
t− l
n

Tr

(
Σ−1

(l,t] ·
∂

∂t
Σ(l,t] ·Σ−1

(l,t] ·
∂

∂t
Σ(l,t]

)
=
t− l
n

∥∥∥∥Σ−1/2
(l,t] ·

∂

∂t
Σ(l,t] ·Σ

−1/2
(l,t]

∥∥∥∥2

F

≥ 0.
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By symmetry, we can obtain similarly for the right part of G∗(l,r](t),

∂2

∂t2

(
−r − t

n
log(|Σ(t,r]|)

)
=
r − t
n

∥∥∥∥Σ−1/2
(t,r] ·

∂

∂t
Σ(t,r] ·Σ

−1/2
(t,r]

∥∥∥∥2

F

≥ 0.

As the left part of G∗(l,r](t) is constant, we have G∗
′′

(l,r](t) ≥ 0 for τi < t < τi+1 and thus
G∗(l,r] is convex in between τi and τi+1. Further, with the exception of the special cases of

Σ(l,τi] = Σi+1 = Σ(τi+1,t], G
∗
(l,r] is even strictly convex in the interval (τi, τi+1]. For such

special cases G∗(l,r](t) = 0 for arbitrary t ∈ (τi, τi+1], i.e. the population gain function is
flat between change points τi and τi+1. The special cases can only occur in the presence of
two or more change points in the considered segment. In particular, in case τi is the single
change point in (l, r], G∗(l,r] is strictly convex in (l, τi] and strictly convex in (τi, r].

Appendix D. Computational Gains for High-dimensional Simulations

The achievable speedups using optimistic search in general are dependent on the cost of
the model fit in each segment (how they depend on the number of observations n and
the dimensionality p), whether there are possibilities to update neighboring fits efficiently,
but also on the length of the series, the number of change points, which basic algorithm
(BS, SeedBS, WBS or yet another one) is used with which specific tuning parameters, etc.
Nonetheless, we would like to further comment on some of the observed computational gains
in the high-dimensional simulations presented in Section 6.3 in the main text.

The biggest computational gains for optimistic search occur when the underlying search
intervals are long. Random intervals have expected length O(n) and thus many of them are
comparably long. For these long intervals we gain a lot by optimistic searches. However,
the lengths of the intervals in lower layers of seeded intervals are quite short (decaying ex-
ponentially) and what becomes dominant in that case is the number of very short intervals.
For example, while there is only a single interval containing 2000 observations (first layer),
there were more than sixty intervals on the lowest layer we considered with the minimally
required segment length of m = 60 observations. This explains why the speedup for OS-
eedBS versus SeedBS is a factor 10–14, while for BS and WBS we could achieve factor 30 or
more. Skipping the last few layers of seeded intervals would have saved considerable compu-
tational time for OSeedBS, which is important to keep in mind when interpreting the results
from Figure 4 in the main text. From a practical perspective, when utilizing OSeedBS, one
should thus limit the number of covered layers in order to consider fewer of the very short
intervals that are a driver of computational cost. However, the minimal segment length
in seeded intervals cannot be too large either, as in that case one is risking not covering
each single change points sufficiently (similar to what happened in the shown examples for
WBS and OWBS with a small number of random intervals M). The choice for the mini-
mal segment length for seeded intervals might come fairly naturally in some applications,
where segments below a certain size are uninteresting or when considering high-dimensional
problems requiring a minimal number of observations for fitting reasonable models.

A pragmatic approach could be to combine the best of both worlds from OBS and
OSeedBS. For example, find a first set of change points with fewer number of seeded intervals
and then, to protect against the possibility that there could be even further change points
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that were not discovered due to having chosen a too large minimal segment length, in
between the first found change points from the seeded intervals, one could perform a further
OBS-like search that adapts better to the number of change points within these shorter
search intervals. This way adaptively one could invest more computational effort if there is
evidence for further change points beyond the ones found by the rough first set of seeded
intervals, but without the need to go over each and every very short interval as would be
the case with further layers of seeded intervals containing very short intervals. Thus, one
could keep computational advantages from OBS and at the same time exploit the better
expected statistical performance of OSeedBS.

Appendix E. Proofs of Statistical Guarantees

Here we give proofs of statistical guarantees for optimistic searches in terms of consistency
and localization rates. For ease of reading, we rewrite Model 2 as

Xt = f t + ξt for t = 1, . . . , n, (17)

where f t ≡ f(t/n) with f : (0, 1] → Rp defined as f(x) :=
∑κ

i=0µi1(τi,τi+1](x), and

ξt
i.i.d.∼ N (0, Ip), i.e. independently, standard p-dimensional Gaussian distributed. Let X :=

(X1, . . . ,Xn)> ∈ Rn×p be the data matrix, F := (f1, . . . ,fn)> ∈ Rn×p the signal matrix
and Ξ := (ξ1, . . . , ξn)> ∈ Rn×p the noise matrix. Then, in an equivalent matrix form
of (17), it holds that X = F + Ξ. Similarly, we denote another independent sample as
Y = F + Ξ̃ (which is needed for sample splitting, see Section 5.1).

Towards a matrix-vector formulation of CUSUM statistics, we introduce

et :=

(√
n− t
nt

, · · · ,
√
n− t
nt︸ ︷︷ ︸

t

,−

√
t

n(n− t)
, · · · ,−

√
t

n(n− t)︸ ︷︷ ︸
n−t

)>
∈ Rn,

for t ∈ {1, . . . , n− 1}, and en := (1/
√
n, . . . , 1/

√
n)> ∈ Rn. Then

〈et, en〉 = 0, ‖et‖ = ‖en‖ = 1, t = 1, . . . , n− 1,

where 〈·, ·〉 and ‖·‖ are the inner product and the norm, respectively, in Euclidean spaces.
Further notation is as follows. Let ‖·‖∞ denote the supremum norm of vectors. For real
numbers a, b, let a∨b := max {a, b} and a∧b := min {a, b}. Let also Φ(·) be the distribution
function of a standard Gaussian random variable.

In all proofs, we try to give constants as explicitly as possible, but those constants may
not be optimal. The limiting behavior is considered as the sample size n → ∞, and the
involved quantities, including the sparsity level s, the dimension p, the signal f , and thus
the minimal segment length λ and the minimal jump size δ, are allowed to depend on n.

E.1 Technical Tools

We need several deviation bounds on chi-squares related quantities.
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Lemma 10 (Tail of chi-squares) Let Y :=
∑k

i=1wi(Xi +µi)
2, with Xi

i.i.d.∼ N (0, 1), and
constants wi ≥ 0 and µi ∈ R. Then

E [Y ] =
k∑
i=1

wi(1 + µ2
i ) and Var (Y ) = 2

k∑
i=1

w2
i (1 + 2µ2

i ).

Further, for every x ≥ 0, it holds

P {Y ≤ E [Y ]− x} ≤ exp

(
− x2

2Var (Y )

)
,

and P {Y ≥ E [Y ] + x} ≤ exp

(
−Var (Y )

4 ‖w‖2∞
ψ
(2 ‖xw‖∞

Var (Y )

))

≤ exp

(
− x2

2Var (Y ) + 4x ‖w‖∞

)
,

where ψ(x) = 1 + x−
√

1 + 2x.

Proof The expectation and variance are easy to compute. Note that

ψ(x) =
x2

1 + x+
√

1 + 2x
≥ x2

2 + 2x
.

Then the second assertion is a reformulation of Lemma 2 in Laurent et al. (2012) or the
Hanson–Wright inequality.

Lemma 11 (Tail of Bernoulli weighted chi-squares) Let Xi
i.i.d.∼ N (0, 1), Bi

ind.∼ Ber(βi),
with 0 ≤ βi ≤ 1, i = 1, . . . , k, and (Xi)

k
i=1 and (Bi)

k
i=1 be independent. Let also

Y :=

k∑
i=1

(
wi(Xi + µi)

2 − wi(1 + µ2
i )
)
Bi

with constants wi ≥ 0, µi ∈ R. Then

E [Y ] = 0 and Var (Y ) = 2

k∑
i=1

βiw
2
i (1 + 2µ2

i ),

and, for every x ≥ 0, it holds

P {Y ≥ x} ≤ exp

(
−min

{
x

8 maxi
(
wi(1 + 2µ2

i )
1/2
) , x2

6Var (Y )

})
, (18a)

P {Y ≤ −x} ≤ exp

(
−min

{
x

2 maxi
(
wi(1 + 2µ2

i )
1/2
) , x2

4Var (Y )

})
. (18b)
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Further, if min1≤i≤k βi ≥ 1/2, then for every x ≥ 0,

P {Y ≥ x} ≤ exp

(
−min

{
x

8 ‖w‖∞
,

x2

8Var (Y )

})
, (19a)

P {Y ≤ −x} ≤ exp

(
− x2

4Var (Y )

)
. (19b)

Proof We introduce the shorthand notation

Zi := wi(Xi + µi)
2 − wi(1 + µ2

i ).

Then Y =
∑k

i=1 ZiBi, and E [Y ] =
∑k

i=1 E [Zi]P {Bi = 1} = 0 and

Var (Y ) =
k∑
i=1

E
[
Z2
i

]
P {Bi = 1} = 2

k∑
i=1

βiw
2
i (1 + 2µ2

i ).

Note that, for −∞ < a < 1/(2wi),

E [exp(aZi)] = exp

(
2a2w2

i µ
2
i

1− 2awi
− awi −

1

2
log(1− 2awi)

)
,

and also that

−x− 1

2
log(1− 2x) ≤

{
x2

1−2x if 0 ≤ x < 1/2,

x2 if x ≤ 0.
(20)

We consider two separate cases:

• The case of general βi ∈ [0, 1]. For 0 ≤ x ≤ (1 + 2µ2)−1/2/4, it holds

exp

(
2x2µ2

1− 2x
− x− 1

2
log(1− 2x)

)
− 1 ≤ exp

(
(1 + 2µ2)x2

1− 2x

)
− 1

≤ exp
(
2(1 + 2µ2)x2

)
− 1 ≤ 3(1 + 2µ2)x2.

Thus, for a such that 0 ≤ 4amaxi
(
wi(1 + 2µ2

i )
1/2
)
≤ 1, we obtain

log(E [exp(aY )]) =

k∑
i=1

log
(
βiE [exp(aZi)] + 1− βi

)
≤

k∑
i=1

log
(
1 + 3βi(1 + 2µ2

i )a
2w2

i

)
≤

k∑
i=1

3βi(1 + 2µ2
i )a

2w2
i .

By the Chernoff bound, we obtain

log (P {Y ≥ x}) ≤ inf
0≤4amaxi(wi(1+2µ2i )

1/2)≤1

(
−ax+

k∑
i=1

3βi(1 + 2µ2
i )a

2w2
i

)

≤ −min

{
x

8 maxi
(
wi(1 + 2µ2

i )
1/2
) , x2

12
∑k

i=1 βi(1 + 2µ2
i )w

2
i

}
.

32



Optimistic Search for Change Point Estimation

Similarly, we have, for −1 ≤ amaxi
(
wi(1 + 2µ2

i )
1/2
)
≤ 0,

log(E [exp(aY )]) ≤
k∑
i=1

log
(
1 + 2βi(1 + 2µ2

i )a
2w2

i

)
≤

k∑
i=1

2βi(1 + 2µ2
i )a

2w2
i ,

and

log (P {Y ≤ −x}) ≤ inf
−1≤amaxi(wi(1+2µ2i )

1/2)≤0

(
ax+

k∑
i=1

2βi(1 + 2µ2
i )a

2w2
i

)

≤ −min

{
x

2 maxi
(
wi(1 + 2µ2

i )
1/2
) , x2

8
∑k

i=1 βi(1 + 2µ2
i )w

2
i

}
.

• The case of βi ≥ 1/2 for all i ∈ {1, . . . , k}. For 0 ≤ x < 1/2 ≤ β ≤ 1,

1 + β exp

(
2x2µ2

1− 2x
− x− 1

2
log(1− 2x)

)
− β ≤ exp

(
2βx2(1 + 2µ2)

1− 2x

)
.

This implies, for 0 ≤ 2a ‖w‖∞ < 1,

log(E [exp(aY )]) =
k∑
i=1

log
(
βiE [exp(aZi)] + 1− βi

)
≤

k∑
i=1

2βia
2w2

i (1 + 2µ2
i )

1− 2awi
.

Then, again by the Chernoff bound, we have

log (P {Y ≥ x}) ≤ inf
0≤2a‖w‖∞<1

(
−ax+

k∑
i=1

2βia
2w2

i (1 + 2µ2
i )

1− 2awi

)

≤ inf
0≤4a‖w‖∞<1

exp

(
−ax+

k∑
i=1

4βia
2w2

i (1 + 2µ2
i )

)

≤ −min

{
x

8 ‖w‖∞
,

x2

16
∑k

i=1 βi(1 + 2µ2
i )w

2
i

}
.

Similarly, for a ≤ 0, we have

log(E [exp(aY )]) =

k∑
i=1

log
(
βiE [exp(aZi)] + 1− βi

)
≤

k∑
i=1

log
(
βi exp

(
2βia

2w2
i (1 + 2µ2

i )
)

+ 1− βi
)
≤

k∑
i=1

2βia
2w2

i (1 + 2µ2
i ),

and

log (P {Y ≤ −x}) ≤ inf
a≤0

(
ax+

k∑
i=1

2βi(1 + 2µ2
i )a

2w2
i

)
= − x2

8
∑k

i=1 βi(1 + 2µ2
i )w

2
i

.
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Therefore, the assertions follow, as Var (Y ) = 2
∑k

i=1 βi(1 + 2µ2
i )w

2
i .

Remark 12 In comparison with Lemma 10, there is an additional term maxi
(
wi(1 + 2µ2

i )
1/2
)

in the bound of lower tail probability, see (18), when there are Bernoulli weights. We stress
that such a term is necessary, especially when βi ↘ 0 for every i ∈ {1, . . . , k}. However,
in case of mini βi ≥ 1/2, Y behaves the same as if there are no Bernoulli weights (i.e.
β1 = · · · = βp = 1), see (19). In particular, up to difference in constants, Lemma 11
includes Lemma 10 as a special case.

Lemma 13 (Lower tail of Bernoulli weighted non-central chi-squares) Let Xi
i.i.d.∼

N (0, 1), Bi
ind.∼ Ber(βi), with 0 ≤ βi ≤ 1, i = 1, . . . , k, and (Xi)

k
i=1 and (Bi)

k
i=1 be indepen-

dent. Let also

Y :=
k∑
i=1

Biwi(Xi + µi)
2

with constants wi ≥ 0, µi ∈ R. Assume that, for some constant C > 0,

1− βi ≤ exp
(
−Cwi(1 + µ2

i )
)
, i = 1, . . . , k. (21)

Then, for every x ≥ 0, it holds that

P

{
Y −

k∑
i=1

wi(1 + µ2
i ) ≤ −x

}

≤ exp

(
−min

{
Cx

4
,

x2

4
∑k

i=1w
2
i (1 + 2µ2

i )

})
·
k∏
i=1

(
1 + exp

(
−Cwi(1 + µ2

i )

2

))

≤ 2k exp

(
−min

{
Cx

4
,

x2

4
∑k

i=1w
2
i (1 + 2µ2

i )

})
.

Proof Note first that, for a ≤ 0,

E

[
exp

(
aY − a

k∑
i=1

wi(1 + µ2
i )

)]

=

k∏
i=1

(
βiE

[
exp
(
awi(Xi + µi)

2 − awi(1 + µ2
i )
)]

+ (1− βi) exp
(
−awi(1 + µ2

i )
))

=
k∏
i=1

(
βi exp

(
2a2w2

i µ
2
i

1− 2awi
− awi −

1

2
log(1− 2awi)

)
+ (1− βi) exp

(
−awi(1 + µ2

i )
))

≤
k∏
i=1

(
exp

(
a2w2

i (1 + 2µ2
i )
)

+ exp
(
−(a+ C)wi(1 + µ2

i )
))
,
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where the last inequality is due to (20) and the assumption in (21). Then, we apply the
Chernoff bound and obtain

P

{
Y −

k∑
i=1

wi(1 + µ2
i ) ≤ −x

}
≤ inf

a≤0
E

[
exp

(
aY − a

k∑
i=1

wi(1 + µ2
i ) + ax

)]

≤ inf
a≤0

eax
k∏
i=1

(
exp

(
a2w2

i (1 + 2µ2
i )
)

+ exp
(
−(a+ C)wi(1 + µ2

i )
))

≤ inf
−C/2≤a≤0

eax
k∏
i=1

(
exp

(
a2w2

i (1 + 2µ2
i )
)

+ exp
(
−Cwi(1 + µ2

i )

2

))

≤ inf
−C/2≤a≤0

eax
k∏
i=1

(
1 + exp

(
−Cwi(1 + µ2

i )

2

))
exp

(
a2w2

i (1 + 2µ2
i )
)

≤ inf
−C/2≤a≤0

exp

(
ax+ a2

k∑
i=1

w2
i (1 + 2µ2

i )

)
·
k∏
i=1

(
1 + exp

(
−Cwi(1 + µ2

i )

2

))

≤ exp

(
−min

{
Cx

4
,

x2

4
∑k

i=1w
2
i (1 + 2µ2

i )

})
·
k∏
i=1

(
1 + exp

(
−Cwi(1 + µ2

i )

2

))
,

which concludes the proof, since exp
(
−Cwi(1 + µ2

i )/2
)
≤ 1.

Remark 14 (Upper tail) We stress that the bound of the upper tail probability of Y fol-
lows readily from Lemma 10, since

P

{
Y −

k∑
i=1

wi(1 + µ2
i ) ≥ x

}
≤ P

{
k∑
i=1

wi(Xi + µi)
2 −

k∑
i=1

wi(1 + µ2
i ) ≥ x

}
.

It is a bit unusual that the concentration inequalities here are centered at
∑k

i=1wi(1 + µ2
i )

rather than E [Y ] =
∑k

i=1 βiwi(1+µ2
i ), but this makes little difference as βi’s are fairly close

to one, which is assumed in (21). The current version is chosen to ease our later proofs.

Consider next concentration inequalities on the difference of (Bernoulli weighted) chi-
squares. The key is to decouple the possible correlation between the involved chi-squares.

Lemma 15 (Tail of difference of chi-squares) Let Xj ∼ N (µj , In) be independent,
with µj ∈ Rn, j = 1, . . . , k, and t, r ∈ {1, . . . , n} be arbitrary. Define the relative difference
of t, r within the background (0, n] as

d(t, r) :=
|t− r|

min {r ∨ t, n− (r ∧ t)}
, (22)

which is always in [0, 1]. Then, for every x ≥ 0, it holds that
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P


k∑
j=1

〈et,Xj〉2 −
k∑
j=1

〈er,Xj〉2 ≤
k∑
j=1

〈
et,µj

〉2 −
k∑
j=1

〈
er,µj

〉2 − x


≤ 2 exp

−min

 x2

32
(
2d(t, r) ∧ 1

) (
k + 2

∑k
j=1 ‖µj‖2

) , x

16
√

2d(t, r) ∧ 1


 .

Proof We first compute the eigendecomposition

ete
>
t − ere>r =

(
u+ u−

)(θ 0
0 −θ

)(
u+ u−

)>
= θu+u

>
+ − θu−u>−,

with θ =
√

1− 〈et, er〉2 ≥ 0, ‖u+‖ = ‖u−‖ = 1 and 〈u+,u−〉 = 0. More precisely,

u+ =
1

2
√

1 + 〈et, er〉
(et + er) +

1

2
√

1− 〈et, er〉
(et − er),

and u− =
1

2
√

1 + 〈et, er〉
(et + er)−

1

2
√

1− 〈et, er〉
(et − er).

Elementary calculation shows that

d(t, r) ≤ θ2 =
n |t− r|

(r ∨ t)
(
n− (r ∧ t)

) ≤ min {2d(t, r), 1} .

Define ξ+ :=
∑k

j=1 〈u+,Xj〉2 and ξ− :=
∑k

j=1 〈u−,Xj〉2. Then ξ+ and ξ− are independent,

because u>+
(
X1, . . . ,Xk

)
and u>−

(
X1, . . . ,Xk

)
are jointly Gaussian and uncorrelated, thus

independent.
Note that k∑

j=1

〈et,Xj〉2 −
k∑
j=1

〈er,Xj〉2
−

 k∑
j=1

〈
et,µj

〉2 −
k∑
j=1

〈
er,µj

〉2


=

k∑
j=1

X>j (ete
>
t − ere>r )Xj −

k∑
j=1

µ>j (ete
>
t − ere>r )µj

= θ(ξ+ − ξ−)− θ(E [ξ+]− E [ξ−]).

Thus, we have

P {θ(ξ+ − ξ−) ≤ θ(E [ξ+]− E [ξ−])− x}

≤ P
{
ξ+ ≤ E [ξ+]− x

2θ

}
+ P

{
ξ− ≥ E [ξ−] +

x

2θ

}
. (23)

By Lemma 10, we obtain, for the first term in (23),

P
{
ξ+ ≤ E [ξ+]− x

2θ

}
≤ exp

(
− x2

8θ2Var (ξ+)

)
= exp

− x2

16θ2
(
k + 2

∑k
j=1

〈
u+,µj

〉2
)
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≤ exp

− x2

16θ2
(
k + 2

∑k
j=1 ‖µj‖2

)


≤ exp

− x2

16
(
2d(t, r) ∧ 1

) (
k + 2

∑k
j=1 ‖µj‖2

)
 ,

and, similarly, for the second term in (23),

P
{
ξ− ≥ E [ξ−] +

x

2θ

}
≤ exp

(
− x2

8θ2Var (ξ−) + 8θx

)
≤ exp

− x2

16θ2
(
k + 2

∑k
j=1 ‖µj‖2

)
+ 8θx


≤ exp

−min

 x2

32
(
2d(t, r) ∧ 1

) (
k + 2

∑k
j=1 ‖µj‖2

) , x

16
√

2d(t, r) ∧ 1


 .

These two upper bounds, together with (23), conclude the proof.

Remark 16 (Centering) Note that u+,u− ∈ span {et, er} ⊆
(
span {en}

)⊥
. Then〈

u+,µj
〉2

=
〈
u+, (In − ene>n )µj

〉2
≤
∥∥∥(In − ene>n )µj

∥∥∥2

and a similar bound holds for
〈
u−,µj

〉2
. Thus, Lemma 15 can be slightly improved if every

‖µj‖2 is replaced by ‖(In − ene>n )µj‖2.

Remark 17 (Simple bound) A simple bound on the tail of difference of chi-squares can
be derived directly from Lemma 10 as follows:

P

{
k∑
j=1

〈et,Xj〉2 −
k∑
j=1

〈er,Xj〉2 ≤
k∑
j=1

〈
et,µj

〉2 −
k∑
j=1

〈
er,µj

〉2 − x

}

≤ P


k∑
j=1

〈et,Xj〉2 −
k∑
j=1

(〈
et,µj

〉2
+ 1
)
≤ −x

2


+ P


k∑
j=1

〈er,Xj〉2 −
k∑
j=1

(〈
er,µj

〉2
+ 1
)
≥ x

2


≤ 2 exp

−min

 x2

32
(
k + 2

∑k
j=1

(〈
er,µj

〉2 ∨
〈
et,µj

〉2)) , x

16


 (24)

≤ 2 exp

−min

 x2

32
(
k + 2

∑k
j=1

∥∥µj∥∥2
) , x

16


 . (25)
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This simple bound above is no better than that in Lemma 15, and the one in Lemma 15 is
strictly sharper if d(t, r) < 1/2, and particularly, if d(t, r) = o(1).

In exactly the same way as Lemma 15, we can derive the tail bound on the differences
of Bernoulli weighted chi-squares.

Lemma 18 (Tail of difference of Bernoulli weighted chi-squares) Assume the same

setup as in Lemma 15, and let Bi
ind.∼ Ber(βi), with 0 ≤ βi ≤ 1, i = 1, . . . , k, be independent

from X1, . . . , Xk. Then, for every x ≥ 0:

i. It holds that

P


k∑
j=1

Bj

(
〈et,Xj〉2 −

〈
et,µj

〉2
)
−

k∑
j=1

Bj

(
〈er,Xj〉2 −

〈
er,µj

〉2
)
≤ −x


≤ 2 exp

(
−min

{
x

16
√

(2d(t, r) ∧ 1) maxi
(
1 + 2 ‖µi‖

2) ,
x2

48
(
2d(t, r) ∧ 1

)∑k
j=1 βj

(
1 + 2

∥∥µj∥∥2
)}).

ii. If βi ≥ 1/2 for every i = 1, . . . , k, then

P


k∑
j=1

Bj

(
〈et,Xj〉2 −

〈
et,µj

〉2
)
−

k∑
j=1

Bj

(
〈er,Xj〉2 −

〈
er,µj

〉2
)
≤ −x


≤ 2 exp

(
−min

{
x

16
√

2d(t, r) ∧ 1
,

x2

64
(
2d(t, r) ∧ 1

) (
k + 2

∑k
j=1

∥∥µj∥∥2
)}).

iii. If the condition (21) holds, then

P


k∑
j=1

Bj 〈et,Xj〉2 −
k∑
j=1

Bj 〈er,Xj〉2 ≤
k∑
j=1

〈
et,µj

〉2 −
k∑
j=1

〈
er,µj

〉2 − x


≤ 2 exp

−min

 x2

32
(
2d(t, r) ∧ 1

) (
k + 2

∑k
j=1 ‖µj‖2

) , (C ∧ 1/2)x

8
√

2d(t, r) ∧ 1




×
k∏
i=1

(
1 + exp

(
−Cwi(1 + µ2

i )

2

))
.

The proof of Lemma 18 is omitted for brevity, since the only difference to that of
Lemma 15 is to employ Lemmas 11 and 13 instead of Lemma 10. Remarks 16 and 17 apply
here as well.
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E.2 Single Change Point

We consider here the particular case of κ = 1, i.e. a single change point, in Models 1 and 2,
and provide proofs for Theorems 1, 2 and 6. Since the involved CUSUM statistic is invariant
to constant shifts, we assume, without loss of generality, in (17),

f(x) = δ1(0,λ](x), x ∈ (0, 1],

where δ = (δ1, . . . , δp)
> ∈ Rp, the change point τ = λ ∈ (0, 1/2], and the jump size δ = ‖δ‖.

The following proofs rely on the observation that the localization error is no larger than
the minimal length of search intervals that contain the only true change point. Moreover,
assume that the search interval in a step still contains the change point, i.e. no mistake has
been made yet. Then excluding the segment containing the true change point, and thus
making a mistake, can only happen when both probe points lie to the left of the change
point or when both probe points lie to the right of the change point. In such cases, in order
to avoid wrongly excluding the segment containing the true change point, we have to ensure
that the difference of population gain function at two investigated probe points is larger
than the random oscillation caused by the noise with high probability.

For ease of notation, we assume the default step size ν = 1/2 in optimistic searches,
which implies that the three parts within each search window have relative lengths 1 : 1 : 1,
1 : 1 : 2 or 2 : 1 : 1. We further assume that there is no rounding in determining the dyadic
search locations and the probe points in all search intervals.

E.2.1 Naive Optimistic Search

Proof [of Theorem 1] We will prove that the assertion of theorem holds with constants

C0 = 20 and C1 = 32217.

The proof consists of two steps.
Firstly, we show that, with probability tending to one, the naive optimistic searches

makes no mistake whenever a search window is of length no shorter than O(nλ). To this
end, we introduce I1, I2, . . ., such that I1 ⊃ I2 ⊃ · · · , as the search windows of the naive
optimistic search in the population case, i.e. I1 = (0, n], I2 = (0, 2n/3] and so on. It is easy
to see that the change point nλ lies in every Ik, thus no mistakes. Let

k∗ := min
{
k : (t ∧ w) ≤ nλ with t, w the probe points of Ik

}
,

i.e., when one probe point drops in [0, nλ] for the first time. The left end point of Ik, k ≤ k∗,
is always 0, and |Ik| ≥ |Ik∗ | � nλ. Then it is sufficient to show that the first k∗ steps of the
naive optimistic search coincide with the population case, with probability tending to one.

We thus define

P1 := {(t, w) : t, w are probe points of Ik with t ≤ w for k < k∗} .

Note that P1 is deterministic, and only depends on the signal f . Recall that

F =
(
f(1/n), . . . , f(n/n)

)> ∈ Rn.
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Fix an arbitrary pair of probe points (t, w) ∈ P1. Then it holds that

〈ew,F 〉2 ≤ 〈et,F 〉2 = nλ2δ2n− t
t
≤ n2λ2δ2 1

t
,

and 〈et,F 〉2 − 〈ew,F 〉2 = n2λ2δ2 |t− w|
tw

≥ n2λ2δ2 1

3t
.

We apply inequality (25) in Remark 17 and obtain

P
{∣∣CS(0,n](t)

∣∣ ≤ ∣∣CS(0,n](w)
∣∣} = P

{
〈et,X〉2 ≤ 〈ew,X〉2

}
≤ P

{
〈et,X〉2 − 〈ew,X〉2 ≤ 〈et,F 〉2 − 〈ew,F 〉2 − n2λ2δ2 1

3t

}
≤ 2 exp

(
−min

{
n4λ4δ4

288(t2 + 2tn2λ2δ2)
,
n2λ2δ2

48t

})
≤ 2 exp

(
−min

{
n2λ4δ4

32(1 + 6nλ2δ2)
,
nλ2δ2

16

})
,

where the last inequality is due to t ≤ n/3. Since |P1| ≤ log(2λ)/ log(3/4) ≤ 4 log n, the
bound above in combination with the union bound implies

P
{∣∣CS(0,n](t)

∣∣ ≤ ∣∣CS(0,n](w)
∣∣ for some (t, w) ∈ P1

}
≤

∑
(t,w)∈P1

P
{∣∣CS(0,n](t)

∣∣ ≤ ∣∣CS(0,n](w)
∣∣}

≤ 8 exp

(
−min

{
n2λ4δ4

32(1 + 6nλ2δ2)
,
nλ2δ2

16

}
+ log log n

)
.

Thus, if

nλ2δ2 ≥ 400 log log n = C2
0 log log n,

the probability that the first k∗ steps of naive optimistic search differ from the population
version satisfies

P
{∣∣CS(0,n](t)

∣∣ ≤ ∣∣CS(0,n](w)
∣∣ for some (t, w) ∈ P1

}
≤ 8

log n
→ 0.

Secondly, we consider the search windows in the naive optimistic search that are shorter
than O(nλ), namely, later steps k ≥ k∗. Recall that the true change point nλ can be
wrongly excluded from consecutive search intervals only when both pairs of probe points
t, w lie on the same side of nλ. It is thus sufficient to consider

P2 :=
{

(t, w) : t, w are pairs of probe points from steps k ≥ k∗ of

the naive optimistic search, such that t, w lie on the same side of

the change point, and t is closer to the change point
}
.
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We fix arbitrarily a pair of probe points (t, w) ∈ P2, and assume that the first k∗ steps of the
naive optimistic search coincide with the population case, which happens with probability
towards one as shown earlier. It follows that t, w ≤ 4nλ and further that

〈et,F 〉2 − 〈ew,F 〉2 =

{
n2λ2δ2 |t−w|

tw ≥ 1
16 |t− w| δ

2 if t, w ≥ nλ,
n2δ2 |t−w|(1−λ)2

(n−t)(n−w) ≥
1
4 |t− w| δ

2 if t, w ≤ nλ.

The relative distance d(·, ·) in (22) satisfies

d(t, w) =
|t− w|

min {t ∧ w, (n− t) ∧ (n− w)}
≤ 4 |t− w|

nλ
.

Then, by Lemma 15 we have, for (t, w) ∈ P2,

P
{∣∣CS(0,n](t)

∣∣ ≤ ∣∣CS(0,n](w)
∣∣} = P

{
〈et,X〉2 ≤ 〈ew,X〉2

}
≤ P

{
〈et,X〉2 − 〈ew,X〉2 ≤ 〈et,F 〉2 − 〈ew,F 〉2 −

1

16
|t− w| δ2

}
≤ 2 exp

(
−min

{
x2

64d(t, r) (1 + 2nλδ2)
,

x

16
√

2d(t, r)

})

≤ 2 exp

(
−min

{
nλ |t− w| δ4

216 (1 + 2nλδ2)
,

√
nλ |t− w|δ2

219/2

})
.

Note that P2 is contained in a mother set P∗2 of size ≤ (4 log n)2, and that P∗2 is determined
only by the signal f , see later Part 2 in the proof of Theorem 6 for a formal proof. Let

ε∗ :=
C1

2

log logn

δ2
= 32216 log log n

δ2
.

Then, by the union bound again, we obtain

P
{∣∣CS(0,n](t)

∣∣ ≤ ∣∣CS(0,n](w)
∣∣ for some (t, w) ∈ P2 with |t− w| ≥ ε∗

}
≤ P

{∣∣CS(0,n](t)
∣∣ ≤ ∣∣CS(0,n](w)

∣∣ for some (t, w) ∈ P∗2 with |t− w| ≥ ε∗
}

≤
∑

(t,w)∈P∗2 , |t−w|≥ε∗

P
{∣∣CS(0,n](t)

∣∣ ≤ ∣∣CS(0,n](w)
∣∣}

≤ 32 exp

(
−min

{
nλε∗δ

4

216 (1 + 2nλδ2)
,

√
nλεδ2

219/2

}
+ 2 log log n

)
≤ 32

log n
→ 0.

This implies an upper bound of 2ε∗ on the localization error of the change point, which
concludes the proof.

E.2.2 Advanced and Combined Optimistic searches

Since Theorem 2 is a special of Theorem 6 when p = 1, we only need to prove Theorem 6.
Proof [of Theorem 6] Divide the p coordinates of observations in Model 2 into three groups:
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i. The set of coordinates with large jump sizes

L :=

{
j : |δj |2 ≥

1

32

‖δ‖2

s

}
;

ii. The set of coordinates with small jump sizes

S :=

{
j : 0 < |δj |2 <

1

32

‖δ‖2

s

}
;

iii. The set of coordinates with no jumps

N := {j : δj = 0} .

The constant 1/32 above can be replaced by any constant that is sufficiently small. Clearly,
L, S,N are disjoint, |L|+ |S| ≤ s and L ∪ S ∪N = {1, . . . , p}. It holds that L 6= ∅, since∑

j∈S
|δj |2 ≤

1

32
‖δ‖2 < ‖δ‖2 =

∑
j∈S∪L

|δj |2 .

The remaining proof is split into two parts.
Part 1. Global search over dyadic locations. In this part, we will show

P {nλ ∈ (t∗/2, 2t∗]} → 1, (26)

with t∗ the output of the dyadic search (i.e. line 4 in Algorithm 2), provided that the
constant C0 in (10a) is sufficiently large. One possible choice is

C0 = 218 · 32. (27)

Since 0 < λ ≤ 1/2, there exists an integer k0 ≥ 1 such that λ ∈ (2−k0−1, 2−k0 ]. Then
(26) is equivalent to

P
{
t∗ = 2−k0−1n or 2−k0n

}
→ 1.

Thus, we only need to show that

P {C(tk0+1, tk) ≤ 0 for some k = k0 + 2, . . . , log2 n} → 0, (28a)

and P {C(tk0 , tk) ≤ 0 for some k = 1, . . . , k0 − 1} → 0, (28b)

where C(·, ·) ≡ C(0,n](·, ·) is the comparison function defined in (9), and tk := 2−kn for
k ∈ {1, . . . , log2 n} the dyadic locations.

We first prove (28a). Note that for k ∈ {k0 + 2, . . . , log2 n}, i.e. on the left side of the
change point, and for j ∈ {1, . . . , p},

CSj(tk0+1;F )2 − CSj(tk;F )2 ≥ CSj(tk0+1;F )2 − CSj(tk0+2;F )2

= n2(1− λ)2δ2
j

tk0+1 − tk0+2

(n− tk0+1)(n− tk0+2)
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≥ (1− λ)2δ2
j

nλ

4(1− λ/2)(1− λ/4)
≥ 2

21
nλδ2

j ,

where CSj(·;F ) ≡ CS(0,n],j(·;F ) is the CUSUM statistics in the j-th coordinate applied to
the signal matrix F . Thus, it holds that∑

j∈L

(
CSj(tk0+1;F )2 − CSj(tk;F )2

)
=

∑
j∈L∪S

(
CSj(tk0+1;F )2 − CSj(tk;F )2

)
−
∑
j∈S

(
CSj(tk0+1;F )2 − CSj(tk;F )2

)
≥ 2

21
nλ

∑
j∈L∪S

δ2
j −

∑
j∈S

CSj(tk0+1;F )2

≥ 2

21
nλ ‖δ‖2 − |S| 1

32

nλ
∥∥δ2
∥∥

s
≥ 1

16
nλ ‖δ‖2 .

Fix an arbitrary k ∈ {k0 + 2, . . . , log2 n}, and let

Bj := 1
{

max
(
|CSj(tk0+1;Y )| , |CSj(tk;Y )|

)
≥ α

}
,

for j = 1, . . . , p. Introduce

x :=
1

16
nλ ‖δ‖2 , (29)

and we have

P {C(tk0+1, tk) ≤ 0}

≤ P
{ ∑
j∈L∪S∪N

Bj

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤
∑
j∈L

(
CSj(tk0+1;F )2 − CSj(tk;F )2

)
− x
}

≤ P

{∑
j∈L

Bj

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤
∑
j∈L

(
CSj(tk0+1;F )2 − CSj(tk;F )2

)
− x

3

}
(30a)

+ P

∑
j∈S

Bj

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3

 (30b)

+ P

∑
j∈N

Bj

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3

 . (30c)

Next we bound the probabilities in (30a), (30b) and (30c), separately.

i. The probability in (30a) can be bounded from above by

P

∑
j∈L

BjCSj(tk0+1;X)2 −
∑
j∈L

(
1 + CSj(tk0+1;F )2

)
≤ −x

6
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+ P

∑
j∈L

BjCSj(tk;X)2 −
∑
j∈L

(
1 + CSj(tk;F )2

)
≥ x

6

 . (31)

For the first term in (31), we consider two cases separately.

• Dense case, i.e. when s ≥
√
p log logn or s = p. It follows that α = 1 and thus

Bj = 1 for j ∈ L. By Lemma 10, we have

P

∑
j∈L

BjCSj(tk0+1;X)2 −
∑
j∈L

(
1 + CSj(tk0+1;F )2

)
≤ −x

6


= P

∑
j∈L

CSj(tk0+1;X)2 −
∑
j∈L

(
1 + CSj(tk0+1;F )2

)
≤ −x

6


≤ exp

(
− x2

144
(
s+ 2nλ ‖δ‖2

)) .
• Sparse case, i.e. when s <

√
p log logn and s 6= p. It implies α ≥ 2. Note that, for

every j ∈ {1, . . . , p},

|CSj(tk0+1;F )|2 ≥ nλδ2
j

(1− λ)2

1− λ/2
≥ 1

3
nλδ2

j ,

and that nλ ‖δ‖2 ≥ C0sα
2/4 ≥ C0s. For j ∈ L, by C0 in (27), we have

(|CSj(tk0+1;F )| − α)2 ≥ 2

9
nλδ2

j ≥
1

6

(
1 + nλδ2

j

)
,

and then, by Mill’s ratio,

P {Bj = 0} ≤ P {|CSj(tk0+1;Y )| ≤ α}

≤P
{∣∣CSj(tk0+1; Ξ̃)

∣∣ ≥ |CSj(tk0+1;F )| − α
}

≤2
(
1− Φ(|CSj(tk0+1;F )| − α)

)
≤ exp

(
−(|CSj(tk0+1;F )| − α)2

2

)
≤ exp

(
− 1

12

(
1 + nλδ2

j

))
.

Recall that Φ(·) denotes the distribution function of standard Gaussian random
variable. Thus, by Lemma 13, we obtain

P

∑
j∈L

BjCSj(tk0+1;X)2 −
∑
j∈L

(
1 + CSj(tk0+1;F )2

)
≤ −x

6


≤ 2s exp

(
−min

{
x

288
,

x2

144
(
s+ 2nλ ‖δ‖2

)}) .
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For the second term in (31), because P {Bj = 1} ≥ 1/2 for every j ∈ L, we apply (19)
in Lemma 11 and obtain

P

∑
j∈L

BjCSj(tk;X)2 −
∑
j∈L

(
1 + CSj(tk;F )2

)
≥ x

6


≤ P

∑
j∈L

BjCSj(tk;X)2 −
∑
j∈L

Bj

(
1 + CSj(tk;F )2

)
≥ x

6


≤ exp

(
−min

{
x

48
,

x2

576
(
s+ 2nλ ‖δ‖2

)}) .
ii. We split the probability in (30b) according to all possible values of (Bj)j∈S , namely,

P

∑
j∈S

Bj

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3


=

∑
∅6=J⊂S

(
P

∑
j∈J

Bj

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3

∣∣∣∣∣ Bj = 1 iff j ∈ J


× P {Bj = 1 iff j ∈ J}

)

=
∑
∅6=J⊂S

P

∑
j∈J

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3

P {Bj = 1 iff j ∈ J} .

For every ∅ 6= J ⊂ S, we apply Lemma 10 (cf. Remark 17) and obtain

P

∑
j∈J

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3


≤ P

{∑
j∈J

((
CSj(tk0+1;X)2 − CSj(tk;X)2

)
−
(

CSj(tk0+1;F )2 − CSj(tk;F )2
))
≤ −x

3

}

≤ P

∑
j∈J

(
CSj(tk0+1;X)2 − CSj(tk0+1;F )2

)
≤ −x

6


+ P

∑
j∈J

(
CSj(tk;X)2 − CSj(tk;F )2

)
≥ x

6


≤ 2 exp

(
−min

{
x

48
,

x2

288(s+ 2nλ ‖δ‖2 /21)

})
.
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Thus, we have

P

∑
j∈J

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3


≤

∑
∅6=J⊂S

2 exp

(
−min

{
x

48
,

x2

288(s+ 2nλ ‖δ‖2 /21)

})
P {Bj = 1 iff j ∈ J}

= 2 exp

(
−min

{
x

48
,

x2

288
(
s+ 2nλ ‖δ‖2 /21

)}) .
iii. Consider the probability in (30c), and note that for j ∈ N ,

P {Bj = 1} ≤ P
{∣∣∣CSj(tk0+1; Ξ̃)

∣∣∣ ≥ α}+ P
{∣∣∣CSj(tk; Ξ̃)

∣∣∣ ≥ α}
= 2
(
1− Φ(α)

)
≤ exp

(
−α

2

2

)
.

We apply Lemma 11, more precisely, (18), and obtain

P

∑
j∈N

Bj

(
CSj(tk0+1;X)2 − CSj(tk;X)2

)
≤ −x

3


= P

∑
j∈N

Bj

(
CSj(tk0+1; Ξ)2 − CSj(tk; Ξ)2

)
≤ −x

3


≤ P

∑
j∈N

Bj

(
CSj(tk0+1; Ξ)2 − 1

)
≤ −x

3

+ P

∑
j∈N

Bj

(
1− CSj(tk; Ξ)2

)
≤ −x

3


≤ 2 exp

(
−min

{
x

48
,

x2

432
∑

j∈N P {Bj = 1}

})

≤ 2 exp

(
−min

{
x

48
,

x2

432 p exp(−α2/2)

})
.

Therefore, combining all the bounds above and (29), we obtain

P {C(tk0+1, tk) ≤ 0}

≤ 2 exp

(
− x2

432 p exp(−α2/2)

)
+
(
6 + 2s1 {α > 0}

)
exp

(
−min

{
x

288
,

x2

576
(
s+ 2nλ ‖δ‖2

)})

= exp

(
− n2λ2 ‖δ‖4

21233p exp(−α2/2)

)
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+
(
6 + 2s1 {α > 0}

)
exp

(
−min

{
nλ ‖δ‖2

2932
,

n2λ2 ‖δ‖4

21432
(
s+ 2nλ ‖δ‖2

)}) ,
for any fixed k ∈ {k0 + 2, . . . , log2 n}. This together with the union bound (i.e. Boole’s
inequality) implies

P {C(tk0+1, tk) ≤ 0 for some k = k0 + 2, . . . , log2 n}

≤
log2 n∑
k=k0+2

P {C(tk0+1, tk) ≤ 0} ≤ 12

log n
→ 0,

where we use

p exp

(
−α

2

2

)
=

{
p if α = 0,

s2

e2 log logn
if α > 0,

(32)

and the assumption (10) with C0 in (27).
Next, we consider (28b). For k ∈ {1, . . . , k0 − 1}, i.e. on the right side of the change

point, and for j ∈ {1, . . . , p}, it holds that

CSj(tk0 ;F )2 − CSj(tk;F )2 ≥ CSj(tk0 ;F )2 − CSj(tk0−1;F )2 =
1

2tk0
n2λ2δ2

j

≥ 1

4
nλδ2

j ≥
2

21
nλδ2

j ,

and also that

|CSj(tk0 ;F )|2 = nλ2δ2
j

n− tk0
tk0

≥ 1

4
nλδ2

j .

Thus, for j ∈ L, we have

(|CSj(tk0+1;F )| − α)2 ≥ 2

9
nλδ2

j ≥
1

6

(
1 + nλδ2

j

)
.

Therefore, the same calculation as for (28a) remain valid, and thus

P {C(tk0 , tk) ≤ 0 for some k = 1, . . . , k0 − 1} ≤ 12

log n
→ 0.

Part 2. Advanced optimistic search. We will show that the assertion of Theorem 6 holds
with C0 given in (27) and

C1 = 229 34. (33)

Based on Part 1, we can start from the search interval (t∗/2, 2t∗], which contains nλ with
probability towards one as n→∞.

We only need to consider the pairs of probe points r, t at the same side of nλ, since
otherwise no matter which side is dropped off, no mistake will occur. Thus, we introduce

P =
{

(t, r) : t, r are the pair of probe points in the same step of

optimistic search such that t, r lie on the same side of
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the change point, and t is closer to the change point
}
.

That is, for (t, r) ∈ P, it holds (t− nλ)(r − nλ) ≥ 0 and |t− nλ| ≤ |r − nλ|.
Consider arbitrarily (t, r) ∈ P. Recall that the step size of optimistic search is ν = 1/2,

and that the relative distance d(·, ·) is defined in (22). Since 2t∗ ≤ n, it always holds

(r ∨ t) ≤ 2

3

(
2t∗ −

1

2
t∗

)
+

1

2
t∗ ≤

3

2
t∗ ≤

3

4
n.

Then, using nλ/2 ≤ t∗ ≤ 2nλ, we have

|t− r|
4nλ

≤ |t− r|
2t∗

≤ |t− r|
r ∨ t

≤ d(t, r) =
|t− r|

(t ∨ r) ∧
(
n− (r ∧ t)

)
≤ |t− r|

(t∗/2) ∧ (n− 3n/4)
≤ 4 |t− r|

nλ
, (34)

that is, d(t, r) � |t− r| /(nλ).
Given (t, r) ∈ P, there are only two possible cases:

• Case: nλ ≤ t ≤ r ≤ 2t∗. For j ∈ {1, . . . , p}, we have

|t− r| δ2
j ≥ CSj(t;F )2 − CSj(r;F )2 = n2λ2δ2

j

r − t
tr
≥ 1

16
|t− r| δ2

j ,

where the second inequality is due to t ≤ r ≤ 2t∗ ≤ 4nλ.

• Case: t∗/2 < r ≤ t ≤ nλ. For j ∈ {1, . . . , p}, we have

|t− r| δ2
j ≥ CSj(t;F )2 − CSj(r;F )2 = n2(1− λ)2δ2

j

t− r
(n− t)(n− r)

≥ (1− λ)2

(1− λ/4)2
|t− r| δ2

j ≥
16

49
|t− r| δ2

j ≥
1

16
|t− r| δ2

j ,

where the second inequality is due to nλ/4 ≤ t∗/2 < r ≤ t, and the third inequality
is due to λ ≤ 1/2.

Thus, it follows∑
j∈L

(
CSj(t;F )2 − CSj(r;F )2

)
=

∑
j∈L∪S

(
CSj(t;F )2 − CSj(r;F )2

)
−
∑
j∈S

(
CSj(t;F )2 − CSj(r;F )2

)
≥ 1

16
|t− r|

∑
j∈L∪S

δ2
j − |t− r|

∑
j∈S

δ2
j ≥

1

16
|t− r| ‖δ‖2 − |S| |t− r| ‖δ‖

2

32s
≥ 1

32
|t− r| ‖δ‖2 .

Fix a pair of probe points (t, r) ∈ P, and introduce

x :=
1

32
|t− r| ‖δ‖2 , (35)
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and, for j ∈ {1, . . . , p},

Bj := 1
{

max
(
|CSj(t;Y )| , |CSj(r;Y )|

)
≥ α

}
.

Then we can bound the probability of making a mistake as below:

P {C(t, r) ≤ 0}

≤ P
{ ∑
j∈L∪S∪N

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤
∑
j∈L

(
CSj(t;F )2 − CSj(r;F )2

)
− x
}

≤ P

{∑
j∈L

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤
∑
j∈L

(
CSj(t;F )2 − CSj(r;F )2

)
− x

3

}
(36a)

+ P

∑
j∈S

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3

 (36b)

+ P

∑
j∈N

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3

 . (36c)

The three terms above can be bounded in a similar way as (30a), (30b) and (30c)
in Part 1, respectively, but we need to decouple the correlation between CSj(t;X) and
CSj(r;X) by means of Lemmas 15 and 18. The details are given below.

i. For (36a), we consider two cases separately.

• Dense case, i.e. when s ≥
√
p log log n or s = p. Note that α = 0 and thus Bj = 1

for j ∈ L. Then Lemma 15 implies

P

{∑
j∈L

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤
∑
j∈L

(
CSj(t;F )2 − CSj(r;F )2

)
− x

3

}

= P

{∑
j∈L

(
CSj(t;X)2 − CSj(r;X)2

)
≤
∑
j∈L

(
CSj(t;F )2 − CSj(r;F )2

)
− x

3

}

≤ 2 exp

(
−min

{
x2

576 d(t, r)
(
s+ 2nλ ‖δ‖2

) , x

48
√

2d(t, r)

})
.

• Sparse case, i.e. when s <
√
p log logn and s 6= p. In this case, it holds that α ≥ 2,

and thus that nλ ‖δ‖2 ≥ C0sα
2/4 ≥ C0s. Because t is closer the change point and

t ∈ [t∗, 3t∗/2] (which is due to ν = 1/2), we obtain, for j ∈ {1, . . . , p},

|CSj(t;F )|2 ≥ nλ2δ2
j

n− t
t
≥ 1

4
nλδ2

j .

Then, the choice of C0 in (27) implies, for j ∈ L,

(|CSj(t;F )| − α)2 ≥ 2

9
nλδ2

j ≥
1

6

(
1 + nλδ2

j

)
,
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and further, by Mill’s ratio,

P {Bj = 0} ≤ P {|CSj(t;Y )| ≤ α} ≤ P
{∣∣CSj(t; Ξ̃)

∣∣ ≥ |CSj(t;F )| − α
}

≤ 2
(
1− Φ(|CSj(t;F )| − α)

)
≤ exp

(
−(|CSj(t;F )| − α)2

2

)
≤ exp

(
− 1

12

(
1 + nλδ2

j

))
.

Thus, by Lemma 18iii, we obtain

P

{∑
j∈L

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤
∑
j∈L

(
CSj(t;F )2 − CSj(r;F )2

)
− x

3

}

≤ 2 exp

(
−min

{
x2

576 d(t, r) (s+ 2nλ‖δ‖2)
,

x

288
√

2d(t, r)

})

×
∏
j∈L

(
1 + exp

(
− 1

24

(
1 + nλδ2

j

)))

≤ 2 exp

(
−min

{ x2

576 d(t, r) (s+ 2nλ‖δ‖2)
,

x

288
√

2d(t, r)

}
+ s exp

(
− 1

768

nλ ‖δ‖2

s

))
,

where the last inequality is due to the definition of L and the basic inequality
1 + x ≤ exp(x).

ii. We decompose the probability in (36b) into events conditioned on all possible values of
(Bj)j∈S , namely,

P

∑
j∈S

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3


=

∑
∅6=J⊂S

(
P

∑
j∈J

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3

∣∣∣∣∣ Bj = 1 iff j ∈ J


× P {Bj = 1 iff j ∈ J}

)

=
∑
∅6=J⊂S

P

∑
j∈J

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3

P {Bj = 1 iff j ∈ J} .

For every ∅ 6= J ⊂ S, we obtain, by Lemma 15,

P

∑
j∈J

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3
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≤ P

{∑
j∈J

((
CSj(t;X)2 − CSj(rX)2

)
−
(

CSj(t;F )2 − CSj(r;F )2
))
≤ −x

3

}

≤ 2 exp

(
−min

{
x

48
√

2d(t, r)
,

x2

576 d(t, r)(s+ nλ ‖δ‖2 /16)

})
.

Thus, we have

P

∑
j∈J

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3


≤
∑
∅6=J⊂S

(
2 exp

(
−min

{
x

48
√

2d(t, r)
,

x2

576 d(t, r)(s+ nλ ‖δ‖2)

})
P {Bj = 1 iff j ∈ J}

)

=2 exp

(
−min

{
x

48
√

2d(t, r)
,

x2

576 d(t, r)
(
s+ nλ ‖δ‖2

)}) .
iii. For (36c), we first note that for j ∈ N ,

P {Bj = 1} ≤ P
{∣∣∣CSj(t; Ξ̃)

∣∣∣ ≥ α}+ P
{∣∣∣CSj(r; Ξ̃)

∣∣∣ ≥ α}
= 2
(
1− Φ(α)

)
≤ exp

(
−α

2

2

)
.

Then, Lemma 18i implies

P

∑
j∈N

Bj

(
CSj(t;X)2 − CSj(r;X)2

)
≤ −x

3


= P

∑
j∈N

Bj

(
CSj(t; Ξ)2 − CSj(r; Ξ)2

)
≤ −x

3


≤ 2 exp

(
−min

{
x

48
√

2d(t, r)
,

x2

864 d(t, r)
∑

j∈N P {Bj = 1}

})

≤ 2 exp

(
−min

{
x

48
√

2d(t, r)
,

x2

864 d(t, r)p exp(−α2/2)

})
.

Thus, we combine all bounds above and obtain, for (t, r) ∈ P,

P {C(t, r) ≤ 0}

≤ 2 exp

(
− x2

864 d(t, r)p exp(−α2/2)

)
+
(

4 + 2 exp
(
se−nλ‖δ‖

2/(768 s)1 {α > 0}
))

× exp

(
−min

{
x

288
√

2d(t, r)
,

x2

576 d(t, r)
(
s+ 2nλ ‖δ‖2

)})
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≤ 2 exp

(
− nλ |t− r| ‖δ‖4

21733p exp(−α2/2)

)
+
(

4 + 2 exp
(
se−nλ‖δ‖

2/(768 s)1 {α > 0}
))

× exp

(
−min

{√
nλ |t− r| ‖δ‖2

21132
√

2
,

nλ |t− r| ‖δ‖4

21832
(
s+ 2nλ ‖δ‖2

)}) ,
where the last inequality is due to (34) and (35).

We claim that there are at most O
(
(log n)2

)
possible choices for such pairs of probe

points r, t. More precisely, we will show that there exists another set P∗ such that P ⊆ P∗
with |P∗| = O

(
(log n)2

)
, and P∗ is completely determined by the signal F , in particular,

independent of the noise Ξ. We will prove the claim in two steps.

First, we note that in each step of (naive) optimistic search, at least 1/4 of the interval
is dropped off. Thus, the optimistic search stops with at most

log n

log(4/3)
≤ 4 log n steps.

However, in some steps (e.g. two probe points lying on both side of nλ and with the same or
similar distance to nλ), which part to drop off may depend not only on the signal F but also
on the noise Ξ. In this case, we will include both pairs of probe points that are followed by
deleting the leftmost part and the rightmost part, respectively, as possible choices of probe
points. This results in a bigger set of pairs of probe points than P, which is denoted by P∗.

Figure 6: Binary tree structure of (naive) optimistic searches. The starting search interval
is (0, n]. Each node represents a pair of probe points (t, r). The level of depth
corresponds to the number of steps in optimistic searches.

Second, we record all possible choices of pairs of probe points by a binary tree, see
Figure 6 for an illustration. Let us look into the binary tree: at each level (which consists
of all nodes that have the same depth to the root), there is at most one node for which the
corresponding pair of probe points have similar distance to nλ. Namely, given the signal F ,
at each level, there is at most one node that yields two child nodes, while for the rest it is
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clear that which part needs dropped off. In this way, the possible choices of pairs of probe
points can be restricted to a subtree that has at most 4 log n width, and thus has at most

(4 log n)2 nodes.

That is, |P∗| ≤ (4 log n)2, which shows the above claim.
Thus, by the union bound, we can bound the probability of wrongly excluding any

segment for all pairs of probe points r, t with |t− r| ≥ ε, for some ε ≡ ε(n, p, s) > 0.

P {C(t, r) ≤ 0 for some (t, r) ∈ P such that |t− r| ≥ ε}
≤ P {C(t, r) ≤ 0 for some (t, r) ∈ P∗ such that |t− r| ≥ ε}

≤
∑

(t,r)∈P∗, |t−r|≥ε

P {C(t, r) ≤ 0}

≤
∑

(t,r)∈P∗, |t−r|≥ε

(
2 exp

(
− nλ |t− r| ‖δ‖4

21733p exp(−α2/2)

)
+
(

4 + 2 exp
(
se−nλ‖δ‖

2/(768 s)1 {α > 0}
))

× exp

(
−min

{√nλ |t− r| ‖δ‖2
21132

√
2

,
nλ |t− r| ‖δ‖4

21832
(
s+ 2nλ ‖δ‖2

)}))

≤ (4 log n)2

(
2 exp

(
− nλε ‖δ‖4

21733p exp(−α2/2)

)
+
(

4 + 2 exp
(
se−nλ‖δ‖

2/(768 s)1 {α > 0}
))

× exp

(
−min

{√nλε ‖δ‖2
21132

√
2
,

nλε ‖δ‖4

21832
(
s+ 2nλ ‖δ‖2

)})).
Thus, under assumption (10) with C0 in (27), if

ε ≥ ε∗ :=
C1

2
max

{ log logn

‖δ‖2
,

min{s2, p log log n}
nλ ‖δ‖4

}
, (37)

with C1 in (33), then by maxx≥0 xe
−x = e−1 and (32) we obtain

P {C(t, r) ≤ 0 for some (t, r) ∈ P such that |t− r| ≥ ε} ≤ 128

log logn
→ 0.

That is, when the probe points t, r satisfy |t− r| ≥ ε∗, no wrong dropping-off will occur,
except on an event with asymptotically vanishing probability. As a consequence, it holds
with probability tending to one that |τ̂ − λ| ≤ 2ε∗/n, which concludes the proof.

Remark 19 (Rates of probability towards one) In fact, we have shown

1− P
{
|τ̂ − τ | ≤ C1 max

{ log logn

n ‖δ‖2
,

min{s2, p log log n}
n2λ ‖δ‖4

}}
≤ 140

log n
,

in the proof above. Such a rate can be improved to any polynomials of 1/ log n if constant
C0 is chosen larger than the one in (27).
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Remark 20 (Slightly weaker assumption) If the dyadic grid search in advanced opti-
mistic search is modified to start from k = 1 (or equivalently, t1 = n/2) on, and to stop
at the first k0 such that C(tk0 , tk0+1) > 0 and C(tk0 , tk0−1) > 0, then we only need to con-
trol random perturbations at pairs of dyadic points of maximal number O

(
log(2/λ)

)
. This,

together with slight modification of the proof, will allow a weaker condition

nλ ‖δ‖2 &


√
p log log(2/λ) if s ≥

√
p log log(2/λ),

max

(
s log

e
√
p log log(2/λ)

s , log log n

)
if s ≤

√
p log log(2/λ).

A similar condition appeared also in Pilliat et al. (2023).

Remark 21 (Slightly higher accuracy) Note that in the proof we only need to control
the random perturbations at the pairs of probe points until the length of search interval is ε,
which leads to an upper bound O

(
log(n/ε)2

)
on the number of pairs of probe points. This

will lead to a slightly better accuracy of order

min

{
γ > 0 : γ ≥ log log(n/γ)

‖δ‖2
and γ ≥ min{s2, p log log(n/γ)}

nλ ‖δ‖4

}
.

Further, the iterated log factor might be removable if one employs the sub-martingale prop-
erty of the gain function and partitions the sampling locations into geometrically equally
spaced segments, as detailed in Howard et al. (2021). This might lead to the essential mul-
tiplicity of polylog(ε) instead of order (log n)2, and then it would allow the removability of
the iterated log factor. The careful examination will be left as part of future research.

Remark 22 (Combined optimistic search) We note that Theorem 6 also holds for the
combined optimistic search, introduced in Appendix A. This can be proven as follows: Let
t̂a and t̂c be the outputs of advanced and combined optimistic search, respectively. Similar
to the proof above, one can apply Lemmas 15 and 18 and show that

P
{
C(t̂a, r) ≤ 0 for some probe point r in naive optimistic search s.t. |r − nλ| ≥ 6ε∗

}
→ 0,

with ε∗ defined in (37). Since C(t̂a, t̂c) ≤ 0, it holds that

P
{∣∣t̂c − nλ∣∣ ≤ 6ε∗

}
→ 1.

E.3 Multiple Change Points

Theorem 5i is a special case of Theorem 7 for p = 1, so the proof of Theorem 5i is omitted.
The intuition why the OSeedBS in combination with the NOT selection performs opti-

mally is that the selected seeded interval often contains only a single change point close to
the center, due to the multiscale nature of seeded intervals. On such a seeded interval, naive
and advanced (as well as combined) optimistic searches perform in a minimax optimal way.
Proof [of Theorem 7] We set the constant C0 in assumption (13) as

C0 = 23434,
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and the selection threshold γ = C1ρ(n, p, s) with

C1 = 23334.

We will show that the assertion of the theorem holds with

C2 = 23134.

For notation simplicity, we assume there is no rounding, the decay a = 1/2 for seeded
intervals, and the step size ν = 1/2 for optimistic searches (otherwise, only the multiplying
constants may be different). We split the rest of the proof into five steps.

Step 1. Consider intervals
(
(τi − λ/2)n, (τi + λ/2)n

]
as potential backgrounds for

change points τin for i = 1, . . . , κ . By the construction of seeded intervals, we can find
seeded intervals (ci − ri, ci + ri] such that

(ci − ri, ci + ri] ⊆
(

(τi −
1

2
λ)n, (τi +

1

2
λ)n
]
,

ri ≥
1

6
λn, and |ci − τin| ≤

1

2
ri .

Note that |(ci − ri, ci + ri]| ≥ λn/3 and that (ci − ri, ci + ri] contains only a single change
point τin for every i = 1, . . . , κ .

Step 2. By τ̂0
i we denote the estimated change point (scaled by 1/n) by naive or advanced

(or combined) optimistic search on (ci− ri, ci+ ri]. Note that there is a single change point
in (ci − ri, ci + ri], which is closer to the center of the interval than boundaries, for every
i = 1, . . . , κ. Following similar lines as in the proof of Theorem 6, under the assumption in
(13), we can show that

P
{∣∣τ̂0

i − τi
∣∣ ≤ ε0

i ≡ C0
2

(
log n

nδ2
i

∨ s2 ∧ p log n

n2λδ4
i

)
, i = 1, . . . , κ

}
≥ 1− 9

n
,

with C0
2 := 22233. One important difference in calculation to Appendix E.2 is the overall

number of events that we need to control is now in polynomial of n rather than in polynomial
of log n. If

∣∣τ̂0
i − τi

∣∣ ≤ ε0
i , then it holds, for every j ∈ {1, . . . , p},

CS(ci−ri, ci+ri],j(τ̂
0
i n;F )2 ≥ 1

16
nλδ2

i,j −
3

3− 4ε0
i

nε0
i δ

2
i,j ≥

1

18
nλδ2

i,j ,

where the last inequality is due to ε0
i ≤ λ/432. Thus, we obtain:

i. Dense case, i.e. when s ≥
√
p log n or s = p. The union bound and Lemma 10 imply

P
{
G(ci−ri, ci+ri](τ̂

0
i n) ≥ γ, i = 1, . . . , κ

}
≥ 1− 10

n
.

ii. Sparse case, i.e. when s <
√
p log n and s 6= p. Similar to Part 1 in the proof of

Theorem 6, we split the set of coordinates into the set of large jumps, the set of small
jumps and the set of no jumps, apply Lemmas 11 and 13, and then obtain

P
{
G(ci−ri, ci+ri](τ̂

0
i n) ≥ γ, i = 1, . . . , κ

}
≥ 1− 12

n
.
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That is, for every i ∈ {1 . . . , κ}, G(ci−ri, ci+ri](τ̂
0
i n) is above the selection threshold γ, with

probability tending to one.

Step 3. Recall that the NOT selection rule selects the shortest seeded interval I∗ which
has a value of gain function above the threshold γ. Then it follows from Step 2, with
probability tending to one, that the length of selected seeded interval |I∗| ≤ λ, and thus
that I∗ contains at most one change point. By Lemmas 10 and 11 and the union bound,
we consider dense and sparse cases separately, and then obtain

P
{

max
I⊆(0,n], I contains no change point

max
t∈I

G(l,r](t) ≤ 24 ρ(n, p, s)

}
≥ 1− 1

6n
.

Since γ ≥ 24 ρ(n, p, s), the selected seeded interval I∗ contains exactly one change point,
with probability tending to one.

Step 4. We rewrite the selected seeded interval I∗ as
(
(τi − u)n, (τi + v)n

]
for some

i ∈ {1, . . . , κ}. We claim that, with probability tending to one,

uv

u+ v
nδ2

i ≥
γ

2
. (38)

Otherwise, we have maxt∈I∗
∑p

j=1 CSI∗,j(t : F )2 ≤ γ/2, and then, by the union bound,
Lemma 10 and Remark 14, obtain (noting that C1 ≥ 36)

P
{

max
t∈I∗

GI∗(t) ≤ γ
}
≥ 1−

∑
t∈I∗

P {GI∗(t) ≥ γ}

≥ 1−
∑
t∈I∗

P

GI∗(t)−
p∑
j=1

CSI∗,j(t : F )2 ≥ γ

2

 ≥ 1− 1

n2
,

which contradicts with the fact that I∗ is selected by NOT.

Let τ̂1
i be the estimated change point (scaled by 1/n) by naive or advanced (or combined)

optimistic search applied to I∗ . Then, following similar calculations as in the proof of
Theorem 6, we can see that (38) implies

P
{∣∣τ̂1

i − τi
∣∣ ≤ ε1

i ≡ C1
2

(
log n

nδ2
i

∨ s2 ∧ p log n

nγδ2
i

)
, i = 1, . . . , κ

}
≥ 1− 11

n
,

with C1
2 := 23234. In particular, it holds that ε1

i ≤ λ/4.

Step 5. Steps 1–4 imply that all change points {τ1, . . . , τκ} can be estimated by {τ̂1
1 , . . . , τ̂

1
κ}

with errors ε1
i and in particular κ̂ ≥ κ, with probability tending to one. It remains to show

that κ̂ = κ . To this end, we note that after the detection of κ change points, the remaining
seeded intervals either contain no change point or contain one or two change points that
are very close to the boundary. In the latter case, if a seeded interval contains say τi then
we must have the distance of τi to one of the boundaries is no more than ε1

i . This leads to

max
t∈I

p∑
j=1

CS(t;F )2 ≤ max
1≤i≤κ

nε1
i δ

2
i ≤

1

2
γ
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for any remaining interval I. Thus, as in Step 4, we can show that the maximum value of
gain function maxt∈I GI(t) on every remaining seeded interval I is upper bounded by γ,
more precisely,

P
{

max
I∈Ir

max
t∈I

G(l,r](t) ≤ γ
}
≥ 1− 12

n
.

where Ir denotes the collection of remaining seeded intervals. This further implies that
OSeedBS will stop after κ steps, i.e. κ̂ = κ.

Step 6. Recall from Step 4 that ε1
i ≤ λ/4. Then, with probability tending to one, it

holds that each interval Ii :=
(
n(τ̂1

i−1 + τ̂1
i )/2, n(τ̂1

i + τ̂1
i+1)/2

]
contains only one change

point nτi such that nτi is at least nλ/4 apart from the boundaries of Ii. Thus, as in the
proof of Theorem 6, under the assumption in (13), we can establish for naive or advanced
(or combined) optimistic search the following

P
{
κ̂ = κ, |τ̂i − τi| ≤ C2

(
log n

δ2
i n

∨ s2 ∧ p log n

n2λδ4
i

)
, i = 1, . . . , κ

}
≥ 1− 24

n
,

which concludes the proof.

Appendix F. Computation Complexity Analysis

In this section, we derive computation complexity analysis for optimistic searches, as stated
in Lemma 3, Theorem 5ii and Proposition 8. We omit the proof of Theorem 5ii as it follows
from Proposition 8 with p = 1.
Proof [of Lemma 3] We start with the naive optimistic search. Let Ik denote the search
window at the k-th step of the naive optimistic search. The choice of probe points ensures
that a segment of length at least ν |Ik| /2 ∧ ν |Ik−1| /2 will be dropped out, with ν the step
size, at the k-th step. Since Ik ⊆ Ik−1, we have a proportion of at least ν/2 will be removed
at each step, and thus the procedure will stop in⌈

1

log
(
2/(2− ν)

) log(R− L)

⌉
steps.

Consider next the search over dyadic locations (in the advanced optimistic search), which
requires O

(
log(R − L)

)
evaluations of gain functions, as there are in total 2dlog2(R − L)e

dyadic locations.
Thus, overall, in the worst case one has O(log(R − L)) ≤ O(log n) evaluations for the

naive and the advanced optimistic search.

Proof [of Proposition 8] Part i. It follows from Lemma 3 and the fact that given the cumu-
lative sums each evaluation of the gain or the comparison function takes O(p) computations.

Part ii. We consider first the optimistic searches on seeded intervals. By Iω we denote
the set of all seeded intervals of length no less than m � n1−ω. Then the total number
of evaluations in naive and advanced (and also combined) optimistic search on all seeded
intervals in Iω is of order
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p
∑
I∈Iw

log |I| . p

dlog1/a(nω)e∑
k=1

a−(k−1) log(ak−1n) . p

∫ log1/a(nω)

0
a−x log(axn)dx

. p

∫ nω

0
log
(n
x

)
dx = nω

(
1 + (1− ω) log n

)
. pmin{nω log n, n} .

Consider the NOT selection, and employ the deterministic and nested structure of seeded
intervals. Each seeded interval I is equipped with a boolean variable bI , denoting whether it
is needed to be considered or not (its default value being true), and with an integer variable
tI , recording the estimated change point location (its default value being zero).

Note that the seeded intervals at k-th layer are of the same length lk = nak−1, and that
the NOT selection favours shorter intervals. Thus, we iterate from the highest layer to the
lowest layer. More precisely, at k-th layer, we check each seeded interval I:

• If its boolean variable bI is false, we mark the seeded intervals that lie at (k−1)-th layer
and contain tI , with the boolean variable being false and the integer variable being tI .
Due to the construction of seeded intervals, this can be done in O(1) computations.

• If its boolean variable bI is true, we check whether the candidate change point t̂I found
in this seeded interval has a value of gain function above the selection threshold. If
no, we do nothing. If yes, we identify t̂I as an estimated change point, and mark the
seeded intervals that lie at (k − 1)-th layer and contain t̂I , with the boolean variable
being false and the integer variable being t̂I . Similarly, this can be done in O(1)
computations.

It is clear to see that this procedure executes precisely the NOT selection. As each seeded
interval is accessed at most O(1) times and each access costs O(1) computations, the NOT
selection requires O(|Iω|) = O(nω) computations. Note that this computation complexity
analysis improves the one in Theorem 1 of Kovács et al. (2023) by a log factor.

The post-processing step involves optimistic searches on κ̂ non-overlapping intervals,
and thus requires another O

(
pmin {κ̂ log n, n}

)
= O

(
pmin{nω log n, n}

)
computations.

Thus, if cumulative sums are pre-computed, the final computation complexity is

O
(
pmin{nω log n, n}

)
.

Otherwise, the computation of cumulative sums dominates, and leads to the final compu-
tation complexity of O(pn). Besides, the overall memory complexity is O(pn).

Remark 23 (Implementation) It is logically clean and easy to consider the optimistic
search part and the selection part, separately, as in Algorithm 3. But in regard to implemen-
tation, we should merge both parts, and run optimistic searches only for the seeded intervals
with boolean variables being true, though this only improves the multiplying constant in the
computation complexity analysis, instead of the order.

Remark 24 (Speedup) We can speed up OSeedBS by considering first the middle points
of seeded intervals as follows:
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i. For a given seeded interval, we run optimistic searches only when the value of gain
function at the middle of this seeded interval is above the selection threshold.

ii. Further, we use the middle point of seeded intervals to decide which coordinates to look
at for optimistic searches, more precisely, all the coordinates that has a cumulative
statistic at the middle point with absolute value greater than α.

Note that for each change point there is a seeded interval containing it roughly at the center,
which will eventually be picked by the NOT selection, as shown in the proof of Theorem 7.
Then the gain function evaluated at the middle points of such seeded intervals has similar
values as if it were evaluated at true change points. Thus, the same statistical guarantee
remains still valid for OSeedBS with the modification above.

Let ŝ denote the maximal number of selected coordinates. Then as n → ∞ it holds
that P {ŝ = O(s)} → 1. It is clear to see that the overall computation complexity can
be improved to O(ŝmin {nω log n, n} + pnω), which is O(smin {nω log n, n} + pnω) with
probability tending to one.

In particular, in case of a single change point, one only needs to consider seeded intervals
that starting at 0 or ending at n, the number of which is O(log n). Then the naive optimistic
search with the NOT selection can achieve the same statistical optimality as in Theorem 6,
and together with the speedup idea above it results in O(p log n) computations, provided that
cumulative sums of data are available. Thus, the naive optimistic search with the NOT
selection, and the advanced optimistic search, are equivalent in terms of statistical and
computational efficiency.
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L. Boysen, A. Kempe, V. Liebscher, A. Munk, and O. Wittich. Consistencies and rates
of convergence of jump-penalized least squares estimators. Ann. Statist., 37(1):157–183,
2009.
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