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Abstract

While monotone operator theory is often studied on Hilbert spaces, many interesting
problems in machine learning and optimization arise naturally in finite-dimensional vec-
tor spaces endowed with non-Euclidean norms, such as diagonally-weighted `1 or `∞
norms. This paper provides a natural generalization of monotone operator theory to finite-
dimensional non-Euclidean spaces. The key tools are weak pairings and logarithmic norms.
We show that the resolvent and reflected resolvent operators of non-Euclidean monotone
mappings exhibit similar properties to their counterparts in Hilbert spaces. Furthermore,
classical iterative methods and splitting methods for finding zeros of monotone operators
are shown to converge in the non-Euclidean case. We apply our theory to equilibrium com-
putation and Lipschitz constant estimation of recurrent neural networks, obtaining novel
iterations and tighter upper bounds via forward-backward splitting.

Keywords: non-Euclidean norms, monotone operator theory, fixed point equations,
nonexpansive maps

1. Introduction

Problem description and motivation: Monotone operator theory is a fertile field of nonlin-
ear functional analysis that extends the notion of monotone functions on R to mappings on
Hilbert spaces. Monotone operator methods are widely used to solve problems in machine
learning (Combettes and Pesquet, 2020b; Winston and Kolter, 2020), data science (Com-
bettes and Pesquet, 2021), optimization and control (Simonetto, 2017; Bernstein et al.,
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2019), game theory (Pavel, 2020), and systems analysis (Chaffey et al., 2021). A crucial
part of this theory is the design of algorithms for computing zeros of monotone operators.
This problem is central in convex optimization since (i) the subdifferential of any convex
function is monotone and (ii) minimizing a convex function is equivalent to finding a zero
of its subdifferential. To this end, there has been extensive research in the last decade in
applying monotone operator methods to convex optimization; see, e.g., (Ryu and Boyd,
2016; Combettes, 2018; Ryu and Yin, 2022).

Existing monotone operator techniques are primarily based on inner-product spaces,
while many problems are better-suited for analysis in more general normed spaces. For in-
stance robustness analysis of artificial neural networks in machine learning often requires the
use of the `∞ norm for high-dimensional input data such as images (Goodfellow et al., 2015).
In distributed optimization, it is known that many natural conditions for the convergence
of totally asynchronous algorithms are based upon contractions in an `∞ norm (Bertsekas
and Tsitsiklis, 1997, Chapter 6, Section 3).

Motivated by problems in non-Euclidean spaces, we aim to extend monotone operator
techniques for computing zeros of monotone operators to operators which are naturally
“monotone” with respect to (w.r.t.) a non-Euclidean norm in a finite-dimensional space.

Literature review: The literature on monotone operators dates back to Minty and Brow-
der (Minty, 1962; Browder, 1967) and the connection to convex analysis was drawn upon by
Minty and Rockafellar (Minty, 1964; Rockafellar, 1966). Since these foundational works, the
theory of monotone operators over Hilbert spaces and its connection with convex optimiza-
tion continues to expand, especially in the last decade (Bauschke and Combettes, 2017; Ryu
and Boyd, 2016; Ryu and Yin, 2022; Ryu et al., 2021). Despite these connections between
convex optimization and monotone operators, many problems in machine learning involve
monotone operators beyond gradients of convex functions. Examples of such problems in-
clude generative adversarial networks, adversarially robust training of models, and training
of models under fairness constraints. Instead of minimizing a convex function, to address
these problems, one must solve for variational inequalities, monotone inclusions, and game-
theoretic equilibria. In each of these more general cases, monotone operator theory has
played an essential role in their analyses.

In machine learning, monotone operators have been used in the training of generative
adversarial networks (Gidel et al., 2019), in the design of novel neural network architec-
tures (Winston and Kolter, 2020), in the analysis of equilibrium behavior (infinite-depth
limit) of neural networks (Combettes and Pesquet, 2020b), in the estimation of Lipschitz
constants of neural networks (Combettes and Pesquet, 2020a; Pabbaraju et al., 2021), and
in normalizing flows (Ahn et al., 2022). Monotone operators have also been studied in the
machine learning community in the context of variational inequality algorithms, stochastic
monotone inclusions, and saddle-point problems; see e.g. (Balamurugan and Bach, 2016;
Diakonikolas, 2020; Cai et al., 2022; Pethick et al., 2022; Zhang et al., 2022; Alacaoglu
et al., 2023; Jordan et al., 2023; Yang et al., 2023) for recent works in this direction. See
also the recent survey (Combettes and Pesquet, 2021) for applications in data science.

The theory of dissipative and accretive operators on Banach spaces largely parallels the
theory of monotone operators on Hilbert spaces (Deimling, 1985). Despite these parallels,
this theory has found far fewer direct applications to machine learning and data science;
instead it is mainly applied for iterative solving integral equations and PDEs in Lp spaces
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for p 6= 2 (see the book, Chidume 2009, for iterative methods). Moreover, many works in
Banach spaces focus on spaces that have a uniformly smooth or uniformly convex structure,
which finite-dimensional `1 and `∞ spaces do not possess. In a similar vein, methods based
on Bregman divergences utilize smoothness and strict convexity of the distance-generating
convex functions (Bauschke et al., 2003). Connections between logarithmic norms and
dissipative and accretive operators may be found in (Söderlind, 1986, 2006).

A concept similar to a monotone operator in a Hilbert space is that of a contracting
vector field in dynamical systems theory (Lohmiller and Slotine, 1998). If the metric with
respect to which the vector field is contracting is the standard Euclidean distance, the
vector field, F, is strongly infinitesimally contracting if and only if the negative vector field
−F is strongly monotone when thought of as on operator on Rn. However, vector fields
need not be contracting with respect to a Euclidean distance. Indeed, a vector field may be
contracting w.r.t. a non-Euclidean norm but not a Euclidean one (Aminzare and Sontag,
2014). Due to the connection between monotone operators and contracting vector fields,
it is of interest to explore the properties of operators that may be thought of as monotone
w.r.t. a non-Euclidean norm. In this spirit, preliminary connections between contracting
vector fields and monotone operators were made in (Bullo et al., 2021).

Contributions: Our contributions are as follows. First, to address the gap in applying
monotone operator strategies to problems that arise in finite-dimensional non-Euclidean
spaces, we propose a non-Euclidean monotone operator framework that is based on the
theory of weak pairings (Davydov et al., 2022a) and logarithmic norms. We use weak
pairings as a substitute for inner products and we demonstrate that many classic results from
monotone operator theory are applicable to its non-Euclidean counterpart. In particular,
we show that the resolvent and reflected resolvent operators of a non-Euclidean monotone
mapping exhibit properties similar to those arising in Hilbert spaces. To ensure that the
resolvent and reflected resolvents have full domain, we prove an extension of the classic
Minty-Browder theorem (Minty, 1962; Browder, 1967) in Theorem 17.

Second, leveraging the non-Euclidean monotone operator framework, we show that tradi-
tional iterative algorithms such as the forward step method and proximal point method can
be used to compute zeros of non-Euclidean monotone mappings. We provide convergence
rate estimates for these iterative algorithms and the Cayley method in Theorems 26, 28,
and 31 and demonstrate that for diagonally-weighted `1 and `∞ norms, they exhibit im-
proved convergence rates compared to their Euclidean counterparts. Notably, we prove that
for a Lipschitz mapping which is monotone w.r.t. a diagonally-weighted `1 or `∞ norm, the
forward step method is guaranteed to converge for a sufficiently small step size, whereas
convergence cannot be guaranteed if the mapping is monotone with respect to a Euclidean
norm.

Third, we study operator splitting methods for mappings which are monotone w.r.t.
diagonally-weighted `1 or `∞ norms. In Theorems 33 and 36 we prove that the forward-
backward, Peaceman-Rachford, and Douglas-Rachford splitting algorithms are all guaran-
teed to converge, with some key differences compared to the classical theory. For instance,
in the classical setting where two operators, F and G, are monotone w.r.t. a Euclidean norm,
the forward-backward splitting algorithm will only converge if F is cocoercive. In contrast,
when considering `1 or `∞ norms, Lipschitzness of F is sufficient for convergence.
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Fourth, we present new insights into non-Euclidean properties of proximal operators
and their impact on the study of special set-valued operator inclusions. Specifically, in
Proposition 41, we demonstrate that when F is the subdifferential of a separable, proper,
lower semicontinuous, convex function, its resolvent and reflected resolvent are nonexpansive
with respect to an `∞ norm. To showcase the practical relevance of this result, we apply
our non-Euclidean monotone operator theory to the equilibrium computation of a recurrent
neural network (RNN). We extend the recent work of (Jafarpour et al., 2021) and show
that our theory provides novel iterations and convergence criteria for RNN equilibrium
computation.

Finally, we study the robustness of the RNN via its `∞ norm Lipschitz constant. In
Theorem 43, we generalize the results from (Pabbaraju et al., 2021) to non-Euclidean norms
and provide sharper estimates for the `∞ Lipschitz constant than were provided in the
previous work (Jafarpour et al., 2021).

A preliminary version of this work appeared in (Davydov et al., 2022b). Compared to
this preliminary version, this version (i) provides novel theoretical results on the analysis
of nonsmooth operators which are monotone with respect to general norms, (ii) proves a
novel generalization of the classical Minty-Browder theorem for these non-Euclidean mono-
tone mappings, (iii) study special classes of set-valued inclusions by providing novel non-
Euclidean properties of proximal operators, (iv) includes a more comprehensive application
to RNNs, allowing for more general activation functions and studies the robustness of the
neural network by providing a tighter Lipschitz estimate, and (v) includes proofs of all
technical results. Finally, we provide further comparisons to monotone operator theory on
Hilbert spaces. Other prior work, (Davydov et al., 2022a, 2024), focuses on continuous-time
contracting dynamical systems with respect to non-Euclidean norms and their robustness
properties. In contrast, this work instead uses weak pairings, developed in (Davydov et al.,
2022a), to establish monotonicity properties of maps with respect to non-Euclidean norms
and how we can find zeros of these maps using iterative methods. The prior works (Davydov
et al., 2022a, 2024) do not consider these discrete-time iterations.

2. Preliminaries

2.1 Notation

We let R≥0 be the set of nonnegative real numbers and R>0 be the set of positive real
numbers. For a set S, let 2S denote its power set. For a complex number z, let Re(z) denote
its real part. For a vector η ∈ Rn, let [η] denote the diagonal matrix satisfying [η]ii = ηi,
where η1, . . . , ηn are the components of η. Given a matrix A ∈ Rn×n, let spec(A) denote its
spectrum. For a mapping F : X → Y where X ⊆ Rn,Y ⊆ Rm, let Dom(F) be its domain.

If F is differentiable, let DF(x) := ∂F(x)
∂x denote its Jacobian evaluated at x. For a mapping

F : Rn → Rn, let Zero(F) := {x ∈ Rn | F(x) = 0n} and Fix(F) = {x ∈ Rn | F(x) = x} be the
sets of zeros of F and fixed points of F, respectively. We let Id : Rn → Rn be the identity
mapping and In ∈ Rn×n be the n × n identity matrix. For a vector y ∈ Rn, define the
mapping sign : Rn → {−1, 0, 1}n by (sign(y))i = yi/|yi| if yi 6= 0 and zero otherwise. For a
convex function f : Rn → ]−∞,+∞], let ∂f(x) = {g ∈ Rn | f(x)− f(y) ≥ g>(x− y), ∀y ∈
Rn} be its subdifferential at x and, if f is differentiable, ∇f(x) be its gradient at x.
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2.2 Logarithmic Norms and Weak Pairings

Instrumental to the theory of non-Euclidean monotone operators are logarithmic norms
(also referred to as matrix measures, or going forward, log norms) discovered by Dahlquist
and Lozinskii in 1958 (Dahlquist, 1958; Lozinskii, 1958).

Definition 1 (Logarithmic norm) Let ‖ · ‖ denote a norm on Rn and also the induced
operator norm on the set of matrices Rn×n. The logarithmic norm of a matrix A ∈ Rn×n
is

µ(A) = lim
h→0+

‖In + hA‖ − 1

h
. (1)

The log norm of a matrix A is the one-sided directional derivative of the induced norm in
the direction of A evaluated at the identity matrix. It is well known that this limit exists for
any norm and matrix (Lozinskii, 1958, Lemma 1). Properties of log norms include positive
homogeneity, subadditivity, convexity, and Re(λ) ≤ µ(A) ≤ ‖A‖ for all λ ∈ spec(A),
(Lozinskii, 1958). Note that unlike the induced matrix norm, the log norm of a matrix may
be negative. For more details on log norms, see the influential survey (Söderlind, 2006) and
the recent monograph (Bullo, 2022, Chapter 2).

We will be specifically interested in diagonally weighted `1 and `∞ norms defined by

‖x‖1,[η] = ‖[η]x‖1 =
n∑
i=1

ηi|xi| and ‖x‖∞,[η]−1 = ‖[η]−1x‖∞ = max
i∈{1,...,n}

1

ηi
|xi|. (2)

The formulas for the corresponding induced norms and log norms are provided in (Bullo,
2023, Eq. (2.36)-(2.38)) and are

‖A‖1,[η] = max
j∈{1,...,n}

n∑
i=1

ηi
ηj
|aij |, µ1,[η](A) = max

j∈{1,...,n}

(
ajj +

n∑
i=1,i 6=j

|aij |
ηi
ηj

)
,

‖A‖∞,[η]−1 = max
i∈{1,...,n}

n∑
j=1

ηj
ηi
|aij |, µ∞,[η]−1(A) = max

i∈{1,...,n}

(
aii +

n∑
j=1,j 6=i

|aij |
ηj
ηi

)
.

We additionally review the notion of a weak pairing (WP) on Rn from (Davydov et al.,
2022a) which generalizes inner products to non-Euclidean spaces.

Definition 2 (Weak pairing) A weak pairing is a map J·, ·K : Rn × Rn → R satisfying:

1. (sub-additivity and continuity of first argument) Jx1 + x2, yK ≤ Jx1, yK + Jx2, yK, for
all x1, x2, y ∈ Rn and J·, ·K is continuous in its first argument,

2. (weak homogeneity) Jαx, yK = Jx, αyK = α Jx, yK and J−x,−yK = Jx, yK, for all x, y ∈
Rn, α ≥ 0,

3. (positive definiteness) Jx, xK > 0, for all x 6= 0n,

4. (Cauchy-Schwarz inequality) | Jx, yK | ≤ Jx, xK1/2 Jy, yK1/2, for all x, y ∈ Rn.

For every norm ‖ · ‖ on Rn, there exists a (possibly not unique) compatible WP J·, ·K
such that ‖x‖2 = Jx, xK, for every x ∈ Rn. If the norm is induced by an inner product, the
WP coincides with the inner product.
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Definition 3 (Deimling’s inequality and curve norm derivative formula) Let ‖ · ‖
be a norm on Rn with compatible WP J·, ·K.

1. The WP J·, ·K satisfies Deimling’s inequality if

Jx, yK ≤ ‖y‖ lim
h→0+

h−1(‖y + hx‖ − ‖y‖), for all x, y ∈ Rn. (3)

2. The WP J·, ·K satisfies the curve norm derivative formula if for all differentiable x :
]a, b[→ Rn, ‖x(t)‖D+‖x(t)‖ = Jẋ(t), x(t)K holds for almost every t ∈ ]a, b[, where D+

denotes the upper right Dini derivative.1

For every norm, there exists at least one WP that satisfies the properties in Definition 3.2

Thus, going forward, we assume that WPs satisfy these additional properties. Indeed, due
to Deimling’s inequality, we have the following useful relationship between WPs and log
norms.

Lemma 4 (Lumer’s equality, Davydov et al. 2022a, Theorem 18) Let ‖ · ‖ be a
norm on Rn with compatible WP J·, ·K. Then for every A ∈ Rn×n,

µ(A) = sup
‖x‖=1

JAx, xK = sup
x 6=0n

JAx, xK
‖x‖2 . (4)

We will focus on WPs corresponding to diagonally-weighted `1 and `∞ norms. Specifically,
from (Davydov et al., 2022a, Table III), we introduce the WPs J·, ·K1,[η] , J·, ·K∞,[η]−1 : Rn ×
Rn → R defined by

Jx, yK1,[η] = ‖y‖1,[η] sign(y)>[η]x and Jx, yK∞,[η]−1 = max
i∈I∞([η]−1y)

η−2
i yixi. (5)

where I∞(x) = {i ∈ {1, . . . , n} | |xi| = ‖x‖∞}. One can show that both of these WPs satisfy
Deimling’s inequality and the curve-norm derivative formula. Formulas for more general `p
norms are available in (Davydov et al., 2022a).

2.3 Contractions, Nonexpansive Maps, and Iterations

Definition 5 (Lipschitz continuity) Let ‖ · ‖ be a norm and F : Rn → Rn be a mapping.
F is Lipschitz continuous with constant ` ∈ R≥0 if

‖F(x1)− F(x2)‖ ≤ `‖x1 − x2‖ for all x1, x2 ∈ Rn. (6)

Moreover we define Lip(F) to be the minimal (or infimum) constant which satisfies (6).

If two mappings F,G : Rn → Rn are Lipschitz continuous w.r.t. the same norm, then
the composition F ◦ G has Lipschitz constant Lip(F ◦ G) ≤ Lip(F) Lip(G).

1. The definition and properties of Dini derivatives are presented in (Giorgi and Komlósi, 1992).
2. Indeed, given a norm, the map J·, ·K : Rn × Rn → R given by Jx, yK = ‖y‖ limh→0+ h

−1(‖y + hx‖ − ‖y‖)
defines a WP that satisfies all of these properties. For more discussions about properties of this pairing,
we refer to (Deimling, 1985, Section 13) and (Davydov et al., 2022a, Appendix A).
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Definition 6 (One-sided Lipschitz mappings, Davydov et al. 2022a) Given a norm
‖ · ‖ with compatible WP J·, ·K, a map F : Rn → Rn is one-sided Lipschitz with constant
c ∈ R if

JF(x1)− F(x2), x1 − x2K ≤ c‖x1 − x2‖2 for all x1, x2 ∈ Rn. (7)

Moreover we define osL(F) to be the minimal (or infimum) constant which satisfies (7).

As was proved in (Davydov et al., 2022a, Theorem 27), if F,G : Rn → Rn are one-sided
Lipschitz w.r.t. the same WP, then osL(αF) = α osL(F), osL(F+G) ≤ osL(F) + osL(G), and
osL(F+cId) = osL(F)+c for all α ≥ 0, c ∈ R. Note that (i) the one-sided Lipschitz constant
is upper bounded by the Lipschitz constant, (ii) a Lipschitz continuous map is always one-
sided Lipschitz, and (iii) the one-sided Lipschitz constant may be negative. Moreover, if F
is locally Lipschitz continuous, we have an alternative characterization of osL(F).

Lemma 7 (osL(F) for locally Lipschitz continuous F, Davydov et al. 2024, Theo-
rem 16) Suppose the map F : Rn → Rn is locally Lipschitz continuous. Then F is one-sided
Lipschitz with constant c ∈ R if and only if 3

µ(DF(x)) ≤ c for almost every x ∈ Rn. (8)

Definition 8 (Contractions and nonexpansive maps) Let T : Rn → Rn be Lipschitz
continuous w.r.t. ‖ · ‖. We say T is a contraction if Lip(T) < 1, and T is nonexpansive if
Lip(T) ≤ 1.

Definition 9 (Picard iteration) Let T : Rn → Rn be a contraction w.r.t. a norm ‖ · ‖
with Lip(T) < 1. The Picard iteration applied to T with initial condition x0 defines the
sequence {xk}∞k=0 by

xk+1 = T(xk). (9)

By the Banach fixed-point theorem T has a unique fixed point, x∗, and the Picard iteration
applied to T satisfy ‖xk − x∗‖ ≤ Lip(T)k‖x0 − x∗‖, for any initial condition x0.

If T is nonexpansive with Fix(T) 6= ∅, Picard iteration may fail to find a fixed point
of T. Such situations can be addressed by the following iteration and convergence result,
initially proved in (Ishikawa, 1976) and with rate given in (Cominetti et al., 2014).

Definition 10 (Krasnosel’skii–Mann iteration) Let T : Rn → Rn be nonexpansive
w.r.t. a norm ‖ · ‖. The Krasnosel’skii–Mann iteration4 applied to T with initial condition
x0 and θ ∈ ]0, 1[ defines the sequence {xk}∞k=0 by

xk+1 = (1− θ)xk + θT(xk). (10)

Lemma 11 (Asymptotic regularity and convergence of Krasnosel’skii–Mann it-
eration, Cominetti et al. 2014; Ishikawa 1976) Let T : Rn → Rn be nonexpansive

3. Note that for locally Lipschitz continuous F, DF(x) exists for almost every x by Rademacher’s theorem.
4. The Krasnosel’skii–Mann iteration may be defined with step sizes θk ∈ ]0, 1[ which vary for each iteration.

In this document, we will only work with constant step sizes.
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w.r.t. a norm ‖ · ‖ and consider the Krasnosel’skii–Mann iteration as in (10). Suppose
Fix(T) 6= ∅. Then for any initial condition x0,

‖xk − T(xk)‖ ≤
2 infx∗∈Fix(T) ‖x0 − x∗‖√

kπθ(1− θ)
= O(1/

√
k). (11)

Moreover, the sequence of iterates, {xk}∞k=0, converges to a fixed point of T.

3. Non-Euclidean Monotone Operators

3.1 Definitions and Properties

Definition 12 (Non-Euclidean monotone mapping) A mapping F : Rn → Rn is
strongly monotone with monotonicity parameter c > 0 w.r.t. a norm ‖ · ‖ on Rn if there
exists a compatible WP J·, ·K and if for all x, y ∈ Rn,

− J−(F(x)− F(y)), x− yK ≥ c‖x− y‖2. (12)

If the inequality holds with c = 0, we say F is monotone w.r.t. ‖ · ‖.

In the language of Banach spaces, such a function F is called strongly accretive (Chidume,
2009, Definition 8.10). Note that Definition 12 is equivalent to − osL(−F) ≥ c.

In the case of a Euclidean norm, the WP corresponds to the inner product and Defi-
nition 12 corresponds to the usual definition of a monotone operator as in (Minty, 1962)
and (Bauschke and Combettes, 2017, Definition 20.1).

By properties of osL, if F,G : Rn → Rn are both monotone w.r.t. the same norm (and
WP), then − osL(−F − G) ≥ − osL(−F) − osL(−G) and thus a sum of mappings which
are monotone w.r.t. the same norm are monotone. Additionally, if F is monotone with
monotonicity parameter c ≥ 0, then for any α ≥ 0, − osL(−Id − αF) = 1 − α osL(−F) and
thus Id + αF is strongly monotone with monotonicity parameter 1 + αc.

Remark 13 (Connection with contracting vector fields) A mapping F : Rn → Rn
is strongly infinitesimally contracting with rate c > 0 w.r.t. a norm ‖ · ‖ on Rn provided
osL(F) ≤ −c (Davydov et al., 2022a). If c = 0, we say F is weakly infinitesimally contract-
ing w.r.t. ‖ · ‖. Clearly F is strongly monotone if and only if −F is strongly infinitesimally
contracting. Vector fields which are strongly infinitesimally contracting w.r.t. a norm gen-
erate flows which are contracting with respect to the same norm. In the case of weakly
infinitesimally contracting vector fields, their flows are nonexpansive.

Lemma 14 (Monotonicity for locally Lipschitz continuous mappings) Let F : Rn →
Rn be locally Lipschitz continuous. F is (strongly) monotone with monotonicity parameter
c ≥ 0 w.r.t. a norm ‖ · ‖ if and only if −µ(−DF(x)) ≥ c for almost every x ∈ Rn.

Proof Lemma 14 is a straightforward application of Lemma 7.

We can see the application of Lemma 14 more explicitly in the context of continuously
differentiable monotone operators in Euclidean norms. To be specific, for an operator
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F : Rn → Rn, let ‖ · ‖2 be the Euclidean norm with corresponding inner product 〈〈·, ·〉〉.
Then, following (Minty, 1962), F is monotone with respect to ‖ · ‖2 if

〈〈F(x)− F(y), x− y〉〉 ≥ 0, for all x, y ∈ Rn.

If F is continuously differentiable, this condition is known to be equivalent to (see e.g., (Ryu
and Boyd, 2016)) DF(x)+DF(x)> � 0, or equivalently −µ2(−DF(x)) ≥ 0 or 1

2λmin(DF(x)+
DF(x)>) ≥ 0, where µ2(A) = 1

2λmax(A + A>) is the log norm corresponding to the norm
‖ · ‖2. This result coincides with what was demonstrated in Lemma 14.

Example 1 An affine function F(x) = Ax+ b is monotone if and only if −µ(−A) ≥ 0 and
strongly monotone with parameter c if and only if −µ(−A) ≥ c. This condition implies that
the spectrum of A lies in the portion of the complex plane given by {z ∈ C | Re(z) ≥ c}.

3.2 Resolvent, Reflected Resolvents, Forward Step Operators, and Lipschitz
Estimates

Monotone operator theory transforms the problem of finding a zero of a monotone operator
into finding a fixed point of a suitably defined operator. Monotone operator theory on
Hilbert spaces studies the resolvent and reflected resolvent, operators dependent on the
original operator, with fixed points corresponding to zeros of the original monotone operator.
In this subsection we study these same two operators and also the forward step operator in
the context of operators which are monotone w.r.t. a non-Euclidean norm. In particular,
we characterize the Lipschitz constants of these operators, first providing Lipschitz upper
bounds for arbitrary norms and then specializing to diagonally-weighted `1 and `∞ norms.

Definition 15 (Resolvent and reflected resolvent) Let F : Rn → Rn be a monotone
mapping w.r.t. some norm. The resolvent of F with parameter α > 0 denoted by JαF :
Dom(JαF)→ Rn and defined by

JαF = (Id + αF)−1. (13)

The reflected resolvent of F with parameter α > 0 is denoted by RαF : Dom(RαF)→ Rn and
defined by

RαF = 2JαF − Id. (14)

Definition 16 (Forward step operator) Let F : Rn → Rn be a mapping and α ∈ R. The
forward step of F with parameter α > 0 is denoted by SαF : Rn → Rn and defined by

SαF = Id− αF. (15)

Note that for any α > 0, we have F(x) = 0n if and only if x = JαF(x) = RαF(x) = SαF(x),
i.e., Zero(F) = Fix(JαF) = Fix(RαF) = Fix(SαF). Note that under the assumption that F is
monotone, both JαF and RαF are single-valued mappings.

We have deliberately not been specific with the domains of the resolvent and reflected
resolvent operators. As we will show in the following theorem, under mild assumptions
(continuity and monotonicity), both of their domains are all of Rn.
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Theorem 17 (A non-Euclidean Minty-Browder theorem) Suppose F : Rn → Rn is
continuous and monotone. Then for every α > 0, Dom(JαF) = Dom(RαF) = Rn.

Proof Note that Dom(JαF) = Rn provided that for every u ∈ Rn, there exists x ∈ Rn such
that (Id + αF)(x) = u. To establish this fact, consider the differential equation

ẋ = −x− αF(x) + u =: G(x). (16)

Note that any equilibrium, x∗, of (16) satisfies (Id + αF)(x∗) = u. Thus it suffices to show
that the differential equation (16) has an equilibrium. First we note that for all x, y ∈ Rn,

JG(x)−G(y), x− yK ≤ J−(x− y), x− yK + α J−(F(x)− F(y)), x− yK ≤ −‖x− y‖2. (17)

Thus, we conclude that osL(G) ≤ −1. In line with Remark 13, we conclude that G is
strongly infinitesimally contracting which ensures uniqueness of solutions to (16) (see (Davy-
dov et al., 2022a, Theorem 31)). Let φ(t, x0) denote the flow of the dynamics (16) at time
t ≥ 0 from initial condition x(0) = x0. Then by (Davydov et al., 2022a, Theorem 31), we
conclude that

‖φ(t, x0)− φ(t, y0)‖ ≤ e−t‖x0 − y0‖
for all x0, y0 ∈ Rn and for all t ≥ 0. In other words, for a fixed t > 0, the map x 7→ φ(t, x)
is a contraction. By the Banach fixed point theorem, for τ > 0, there exists unique x∗

such that x∗ = φ(τ, x∗). Then either x∗ is an equilibrium point of (16) or it is part of a
periodic orbit with period τ . If x∗ were part of a periodic orbit, then every other point on
the periodic orbit would be a fixed point of φ(τ, ·), contradicting the uniqueness of the fixed
point from the Banach fixed point theorem. Thus, we conclude that x∗ is an equilibrium
point of (16) and thus verifies (Id + αF)(x∗) = u. This proves that Dom(JαF) = Rn. The
proof for RαF is a consequence of Dom(JαF) = Rn.

We have the following corollary about inverses of strongly monotone mappings.

Corollary 18 (Lipschitz constants of inverses of strongly monotone operators)
Suppose F : Rn → Rn is continuous and strongly monotone with monotonicity parameter
c > 0. Then F−1 : Rn → Rn is a Lipschitz continuous mapping with Lipschitz constant
estimate Lip(F−1) ≤ 1/c.

Proof To see this fact, note that

‖F(x)− F(y)‖‖x− y‖ ≥ − J−(F(x)− F(y)), x− yK ≥ c‖x− y‖2, (18)

where the left hand inequality is the Cauchy-Schwarz inequality for WPs. So if F(x) =
F(y), then necessarily x = y, which implies that F−1 is a single-valued mapping. The fact
that Dom(F−1) = Rn follows the same argument as in Theorem 17 instead studying the
differential equation ẋ = −F(x). Choosing u, v ∈ Rn and substituting x = F−1(u), y =
F−1(v) into (18), we conclude

‖u− v‖ ≥ c‖x− y‖ = c‖F−1(u)− F−1(v)‖, (19)

which shows that Lip(F−1) ≤ 1/c.

10
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For each of JαF,RαF and, SαF we have now established that each of their domains is
all of Rn and that fixed points of these operators correspond to zeros of F. In order to
compute zeros of F, we aim to provide estimates of the Lipschitz constants of JαF,RαF, and
SαF as a function of α and the norm and show when these maps are either contractions or
nonexpansive. The following lemmas characterize these Lipschitz estimates.

Lemma 19 (Lipschitz estimates of the forward step operator) Let F : Rn → Rn be
Lipschitz continuous w.r.t. the norm ‖ · ‖ with constant Lip(F) = `.

(i) Suppose F is monotone w.r.t. ‖ · ‖ with monotonicity parameter c ≥ 0, then

Lip(SαF) ≤ e−αc + eα` − 1− α`, for all α > 0. (20)

(ii) Alternatively suppose ‖ · ‖ is a diagonally weighted `1 or `∞ norm and F is monotone
w.r.t. ‖ · ‖ with monotonicity parameter c ≥ 0, then

Lip(SαF) ≤ 1− αc ≤ 1, for all α ∈
]
0,

1

diagL(F)

]
, (21)

where diagL(F) := sup
x∈Rn\ΩF

max
i∈{1,...,n}

(DF(x))ii ≤ `, where ΩF is the measure zero set of

points where F is not differentiable.

Proof Regarding item (i), we recall the inequality (Dahlquist, 1958, pp. 14), (Söderlind,
2006, Prop. 2.1)

‖eαA‖ ≤ eαµ(A), for all α ≥ 0, A ∈ Rn×n. (22)

We additionally note that since F is Lipschitz continuous, SαF is as well and SαF has
Lip(SαF) ≤ L if and only if ‖DSαF(x)‖ ≤ L for almost every x ∈ Rn. Also we have that
DSαF(x) = In − αDF(x) everywhere it exists and that DF(x) satisfies −µ(−DF(x)) ≥ c
and ‖DF(x)‖ ≤ `. In what follows, when we write DF(x), we mean for all x for which the
Jacobian exists.

To derive an upper bound on ‖In − αDF(x)‖, we define

S(x) :=

∞∑
i=2

(−α)iDF(x)i

i!
= e−αDF(x) − In + αDF(x)

and it is straightforward to see that ‖S(x)‖ ≤∑∞i=2
αi‖DF(x)‖i

i! ≤ eα` − 1− α`. Moreover,

‖In − αDF(x)‖ ≤ ‖e−αDF(x)‖+ ‖S(x)‖ ≤ eαµ(−DF(x)) + eα` − 1− α`
≤ e−αc + eα` − 1− α`.

(23)

Since this bound holds for all x for which DSαF(x) exists, the result is proved.

11
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Regarding item (ii), for every x ∈ Rn for which DF(x) exists,

‖In − αDF(x)‖∞,[η]−1 = max
i∈{1,...,n}

|1− α(DF(x))ii|+
n∑

j=1,j 6=i
|−α(DF(x))ij |

ηj
ηi

(24)

= max
i∈{1,...,n}

1− α(DF(x))ii +

n∑
j=1,j 6=i

|−α(DF(x))ij |
ηj
ηi

(25)

= 1 + αµ(−DF(x)) ≤ 1− αc, (26)

where (25) holds because 0 < α ≤ 1
diagL(F) so that 1 − α(DF(x))ii ≥ 0 for all x ∈ Rn, i ∈

{1, . . . , n} and (26) is due to the formula for µ∞,[η]−1 . The proof for µ1,[η] is analogous,
replacing row sums by column sums, and is omitted.

Remark 20 If c > 0, then for small enough α > 0, one can make the upper bound on
Lip(SαF) in (20) less than unity. In particular, one can show that minimizing the upper
bound (20) yields the optimal step size αopt = 1

` ln(s(γ)) and contraction factor s(γ) +
s(γ)−γ−1−ln(s(γ)), where γ = c/` ≤ 1 and s(γ) is the unique solution to the transcendental
equation s− 1− γs−γ = 0.

Remark 21 Note that for general norms, if F is monotone, but not strongly monotone,
then SαF need not be nonexpansive for any α > 0. Indeed, consider F(x) =

(
0 1
−1 0

)
x, which

is monotone w.r.t. the `2 norm, but SαF is not nonexpansive for any α > 0. On the other
hand, Lemma 19(ii) implies that if F is monotone w.r.t. a diagonally weighted `1 or `∞
norm, then SαF is nonexpansive for sufficiently small α.

We plot the upper bounds on the estimates of Lip(SαF) as a function of α and choice of
norm for fixed parameters c and ` in Figure 1.

Lemma 22 (Lipschitz constant of the resolvent operator) Suppose F : Rn → Rn is
continuous and monotone with monotonicity parameter c ≥ 0. Then,

Lip(JαF) ≤ 1

1 + αc
, for all α > 0. (27)

Proof We observe that Id + αF is strongly monotone with parameter 1 + αc. Then by
Corollary 18, the result holds.

Lemma 23 (Lipschitz constant of the reflected resolvent) Suppose F : Rn → Rn is
Lipschitz continuous with constant ` w.r.t. a norm ‖ · ‖.

(i) Suppose F is monotone w.r.t. ‖ · ‖ with monotonicity parameter c ≥ 0. Then

Lip(RαF) ≤ e−αc + eα` − 1− α`
1 + αc

, for all α > 0. (28)
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Figure 1: Plots of upper bounds of Lip(SαF) with respect to different norms. We fix param-
eters c = 1, ` = 2 and vary the choice of norm. The solid red curve corresponds
to the Lipschitz estimate (20) for arbitrary norms, the densely dashed green
curve corresponds to the estimate Lip(SαF) ≤

√
1− 2αc+ α2`2 from (Ryu and

Boyd, 2016, pp. 16) for the `2 norm, the loosely dashed blue curve corresponds
to the estimate (21) for diagonally-weighted `1/`∞ norms which is valid on the
interval ]0, 1

diagL(F) ]. Finally, the dotted black curve corresponds to the estimate

Lip(SαF) ≤
(
1 + αc − α2`2

1−α`
)−1

previously established in (Jafarpour et al., 2021,
Theorem 1). We see that the estimate (20) is a tighter estimate than the es-
timate from (Jafarpour et al., 2021) and that Lipschitz upper bounds are least
conservative in the case of diagonally-weighted `1/`∞ norms.

(ii) Alternatively suppose ‖ · ‖ is a diagonally weighted `1 or `∞ norm. Moreover, suppose
F is monotone w.r.t. ‖ · ‖ with monotonicity parameter c ≥ 0. Then,

Lip(RαF) ≤ 1− αc
1 + αc

≤ 1, for all α ∈
]
0,

1

diagL(F)

]
. (29)

Proof Recall from (Ryu and Boyd, 2016, pp. 21) that since F is monotone and continuous,
we have that RαF = SαF ◦ JαF. Both results then follow from Lip(RαF) ≤ Lip(SαF) Lip(JαF)
and the bounds on Lip(SαF) from Lemma 19 and on Lip(JαF) from Lemma 22.
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Lemma 23 stands in striking contrast with results on monotone operators in Hilbert
spaces which says that for any maximally monotone operator,5 F, the reflected resolvent
of F with parameter α > 0 is nonexpansive for every α > 0. Indeed, in the non-Euclidean
case, this property cannot be recovered as is demonstrated in the following example.

Example 2 Consider the linear mapping F(x) = Ax =
(

2 −2
1 1

)
x. F is monotone w.r.t. the

`∞ norm since −µ∞(−A) = −µ∞
(−2 2
−1 −1

)
= 0. For α = 2, we compute

JαF(x) =

(
3/23 4/23
−2/23 5/23

)
x, RαF(x) =

(
−17/23 8/23
−4/23 −13/23

)
x.

Thus, Lip(JαF) = 7/23 and Lip(RαF) = 25/23. In other words, for α = 2, JαF is a contrac-
tion and RαF is not nonexpansive.

Despite this key divergence from the classical theory, we will still be able to prove con-
vergence of iterative algorithms involving the reflected resolvent under suitable assumptions
on the parameter α > 0.

4. Finding Zeros of Non-Euclidean Monotone Operators

For a mapping F : Rn → Rn which is continuous and monotone, consider the problem of
finding an x ∈ Rn that satisfies

F(x) = 0n. (30)

Without further assumptions on F, this problem may have no solutions or nonunique solu-
tions. First we provide a preliminary sufficient condition for existence and uniqueness of a
solution.

Lemma 24 (Uniqueness of zeros of strongly monotone maps) Suppose F : Rn → Rn
is continuous and strongly monotone. Then Zero(F) is a singleton.

Proof We have that Zero(F) = Fix(JαF) for α > 0. By Lemma 22, we have that
Lip(JαF) ≤ 1/(1 + αc) < 1, where c > 0 is the monotonicity parameter of F. Then by
the Banach fixed point theorem, JαF has a unique fixed point and thus Zero(F) is a single-
ton.

Alternatively, if F is continuous and monotone, then we study fixed points of the nonex-
pansive map JαF, which may or may not exist and may or may not be unique. In what
follows, we will study the case where it is known a priori that zeros of F exist but need not
be unique.

We show that the most known algorithms for finding zeros of monotone operators on
Hilbert spaces (see, e.g., (Ryu and Boyd, 2016)) can be generalized to non-Euclidean mono-
tone operators using our framework and, furthermore, explicitly estimate the convergence
rate of these methods.

5. Recall that in monotone operator theory on Hilbert spaces, a set-valued mapping F : Rn → 2Rn

is
maximally monotone if it is monotone and there does not exist another monotone operator, G, whose
graph properly contains the graph of F. See (Bauschke and Combettes, 2017, Sec. 20.2) for more details.
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4.1 The Forward Step Method

Algorithm 25 (Forward step method) The forward step method corresponds to the
fixed point iteration

xk+1 = SαF(xk) = xk − αF(xk). (31)

Theorem 26 (Convergence guarantees for the forward step method) Let F : Rn →
Rn is Lipschitz continuous with constant ` w.r.t. a norm ‖ · ‖ and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. ‖ · ‖ with monotonicity parameter c > 0. Then
the iteration (31) converges to the unique zero, x∗, of F for every α ∈ ]0, α∗[. Moreover,
for every k ∈ Z≥0,

‖xk+1 − x∗‖ ≤ (e−αc + eα` − 1− α`)‖xk − x∗‖,

where α∗ is the unique positive value of α that satisfies e−α
∗c + eα

∗` = 2 + α∗`.

(ii) Alternatively suppose ‖ · ‖ is a diagonally-weighted `1 or `∞ norm and F is strongly
monotone w.r.t. ‖ · ‖ with monotonicity parameter c > 0. Then the iteration (31)
converges to the unique zero, x∗, of F for every α ∈ ]0, 1

diagL(F) ]. Moreover, for every
k ∈ Z≥0,

‖xk+1 − x∗‖ ≤ (1− αc)‖xk − x∗‖,
with the convergence rate optimized at α = 1/ diagL(F).

(iii) Alternatively suppose ‖ · ‖ is a diagonally weighted `1 or `∞ norm and F is monotone
w.r.t. ‖ · ‖. Then Zero(F) 6= ∅ implies the iteration (31) converges to an element of
Zero(F) for every α ∈ ]0, 1

diagL(F) [.

Proof Regarding statement (i), from Lemma 19(i), we have that Lip(SαF) ≤ e−αc + eα` −
1 − α`. It is straightforward to compute that at α = α∗, Lip(SαF) ≤ 1 and for α ∈ ]0, α∗[
we have that Lip(SαF) < 1. Thus, SαF is a contraction and fixed points of SαF correspond
to zeros of F. Then by the Banach fixed point theorem, the result follows.

Regarding statement (ii), Lemma 19(ii) implies that Lip(SαF) = 1 − αc < 1 for all
α ∈ ]0, 1/ diagL(F)]. The result is then a consequence of the Banach fixed point theorem.

Regarding statement (iii), since F is monotone w.r.t. a diagonally weighted `1 or `∞
norm, SαF is nonexpansive for α ∈ ]0, 1/ diagL(F)] by Lemma 19(ii). Moreover, for every
α ∈ ]0, 1/ diagL(F)[, there exists θ ∈ ]0, 1[ such that SαF = (1 − θ)Id + θSα̃F, for some
α̃ ∈ ]0, 1/ diagL(F)]. Therefore the iteration (31) is the Krasnosel’skii–Mann iteration of
the nonexpansive operator Sα̃F and Lemma 11 implies the result.

Note that Theorem 26(iii) is a direct consequence of the fact that the forward step oper-
ator is nonexpansive for suitable α > 0 when the mapping is monotone w.r.t. a diagonally-
weighted `1 or `∞ norm, a fact which need not hold when the mapping is monotone w.r.t. a
different norm, e.g., a Hilbert one. See the relevant discussion in Remark 21 for an example
of a mapping, F, which is monotone with respect to the `2 norm but SαF is not nonexpansive
for any α > 0.
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4.2 The Proximal Point Method

Algorithm 27 (Proximal point method) The proximal point method corresponds to
the fixed point iteration

xk+1 = JαF(xk) = (Id + αF)−1(xk). (32)

Theorem 28 (Convergence guarantees for the proximal point method) Suppose
F : Rn → Rn is continuous and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. a norm ‖ ·‖ with monotonicity parameter c > 0.
Then the iteration (32) converges to the unique zero, x∗, of F for every α ∈ ]0,∞[.
Moreover, for every k ∈ Z≥0, the iteration satisfies

‖xk+1 − x∗‖ ≤ 1

1 + αc
‖xk − x∗‖.

(ii) Alternatively suppose F is monotone and globally Lipschitz continuous w.r.t. a diag-
onally weighted `1 or `∞ norm ‖ · ‖ and diagL(F) 6= 0. Then if Zero(F) 6= ∅, the
iteration (32) converges to an element of Zero(F) for every α ∈ ]0,∞[.

Proof Regarding statement (i), Lemma 22 provides the Lipschitz estimate Lip(JαF) ≤
1

1+αc < 1 for all α > 0. Thus JαF is a contraction and since fixed points of JαF correspond
to zeros of F, the Banach fixed point theorem implies the result.

Regarding statement (ii), we will demonstrate that the iteration (32) is a Krasnosel’skii–Mann
iteration of a suitably-defined nonexpansive mapping. To this end, let θ ∈ ]0, 1[ be arbitrary

and consider the auxiliary mapping R
θ
αF : Rn → Rn given by R

θ
αF := JαF

θ − 1−θ
θ Id. Then it is

straightforward to compute

R
θ
αF =

(Id + αF)−1

θ
− 1− θ

θ
(Id + αF) ◦ (Id + αF)−1

=
( Id
θ
− 1− θ

θ
(Id + αF)

)
◦ (Id + αF)−1 =

(
Id− (1− θ)α

θ
F
)
◦ JαF = S 1−θ

θ
αF ◦ JαF.

Moreover, JαF is nonexpansive by Lemma 22, and by Lemma 19(ii), Lip(S 1−θ
θ
αF) ≤ 1,

for all α ∈ ]0, 1−θ
θ diagL(F) ]. We conclude that Lip(R

θ
αF) ≤ Lip(S 1−θ

θ
αF) Lip(JαF) ≤ 1 for α ∈

]0, 1−θ
θ diagL(F) ] which implies that R

θ
F is nonexpansive for all α in this range.

Let α > 0 be arbitrary. Then for any6 θ ≤ 1
1+αdiagL(F) ∈ ]0, 1[, we have that JαF =

(1− θ)Id+ θR
θ
αF, and R

θ
F is nonexpansive since α ∈ ]0, 1−θ

θ diagL(F) ]. Thus, the iteration (32) is

the Krasnosel’skii–Mann iteration for R
θ
αF and the result follows from Lemma 11.

6. Note that 1
1+α diagL(F)

∈ ]0, 1[ holds under the assumption diagL(F) 6= 0 since diagL(F) ≥ 0 for any
monotone F.
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Remark 29 Theorem 28(ii) is an analog of the classical result in monotone operator theory
on Hilbert spaces which states that the resolvent of a maximally monotone operator is firmly
nonexpansive (Minty, 1962) and (Bauschke and Combettes, 2017, Prop. 23.8). This firm
nonexpansiveness is a consequence of the fact that the reflected resolvent of a maximally
monotone operator with respect to a Euclidean norm is always nonexpansive and JαF =
1
2 Id + 1

2RαF. Note that this property need not hold when F is monotone with respect to a
non-Euclidean norm but we are able to show that in the case of diagonally-weighted `1/`∞
norms, a similar result holds.

4.3 The Cayley Method

Algorithm 30 (Cayley method) The Cayley method corresponds to the iteration

xk+1 = RαF(xk) = 2(Id + αF)−1(xk)− xk. (33)

Theorem 31 (Convergence guarantees for the Cayley method) Suppose F : Rn →
Rn is Lipschitz continuous with constant ` w.r.t. a norm ‖ · ‖ and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. ‖ · ‖ with monotonicity parameter c > 0. Then
the iteration (33) converges to the unique zero, x∗, of F for sufficiently small α > 0.
Moreover, for every k ∈ Z≥0, the iteration satisfies

‖xk+1 − x∗‖ ≤ e−αc + eα` − 1− α`
1 + αc

‖xk − x∗‖.

(ii) Alternatively suppose ‖ · ‖ is a diagonally weighted `1 or `∞ norm and F is strongly
monotone w.r.t. ‖ · ‖ with monotonicity parameter c > 0. Then the iteration (33)
converges to the unique zero, x∗, of F for every α ∈ ]0, 1

diagL(F) ]. Moreover, for every
k ∈ Z≥0, the iteration satisfies

‖xk+1 − x∗‖ ≤ 1− αc
1 + αc

‖xk − x∗‖,

with the convergence rate being optimized at α = 1/ diagL(F).

(iii) Alternatively suppose ‖ · ‖ is a diagonally weighted `1 or `∞ norm and F is monotone
w.r.t. ‖ · ‖. Then if Zero(F) 6= ∅, the Krasnosel’skii–Mann iteration with θ = 1/2

xk+1 =
1

2
xk +

1

2
RαF(xk)

correspond to the proximal point iteration (32), which is guaranteed to converge to an
element of Zero(F) for every α ∈ ]0,∞[.

Proof Regarding statement (i), from Lemma 23(i), we have that Lip(RαF) ≤ (e−αc+ eα`−
1−α`)/(1 +αc) which is less than unity for small enough α > 0. Thus, for small enough α,
RαF is a contraction and fixed points of RαF correspond to zeros of F. Thus, by the Banach
fixed point theorem, the result follows.
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Algorithm, Iterated map
F strongly monotone and globally Lipschitz continuous

`2 General norm Diagonally weighted `1 or `∞
α range Optimal Lip α range Optimal Lip α range Optimal Lip

Forward step, SαF

]
0,

2c

`2

[
1− 1

2κ2
+O

( 1

κ3

)
]0, α∗[ 1− 1

2κ2
+O

( 1

κ3

) ]
0,

1

diagL(F)

]
1− 1

κ∞

Proximal point, JαF ]0,∞[ A.S. ]0,∞[ A.S. ]0,∞[ A.S.

Cayley, RαF ]0,∞[ 1− 1

2κ
+O

( 1

κ2

)
]0, α∗[ 1− 2

κ2
+O

( 1

κ3

) ]
0,

1

diagL(F)

]
1− 2

κ∞
+O

( 1

κ2
∞

)

Table 1: Table of step size ranges and Lipschitz constants for three algorithms for find-
ing zeros of monotone operators with respect to arbitrary norms. For F strongly
monotone and Lipschitz continuous, let c be its monotonicity parameter (with
respect to the appropriate norm), ` its appropriate Lipschitz constant, and
diagL(F) := supx∈Rn\ΩF

maxi∈{1,...,n}(DF(x))ii ≤ `. Additionally, κ := `/c ≥ 1,

κ∞ := diagL(F)/c ∈ [1, κ], and α∗ is the unique positive solution to e−α
∗c+ eα

∗` =
2 + α∗`. A.S. means the Lipschitz constant can be made arbitrarily small. We
do not assume that the strongly monotone F is the gradient of a strongly convex
function.

Regarding statement (ii), Lemma 23(ii) implies that Lip(RαF) ≤ (1− αc)/(1 + αc) < 1
for α ∈ ]0, 1/diagL(F)]. The result is then a consequence of the Banach fixed point theorem.

Statement (iii) holds since 1
2 Id + 1

2(2JαF − Id) = JαF, and convergence follows by Theo-
rem 28(ii) since Zero(F) 6= ∅.

Table 1 summarizes and compares the range of step sizes and Lipschitz estimates as
provided by the classical monotone operator theory for the `2 norm (Ryu and Boyd, 2016,
pp. 16 and 20) and by Theorems 26, 28, and 31 for general and diagonally-weighted `1/`∞
norms.

5. Finding Zeros of a Sum of Non-Euclidean Monotone Operators

In many instances, one may wish to execute the proximal point method, Algorithm 27, to
compute a zero of a continuous monotone mapping N : Rn → Rn. However, the imple-
mentation of the iteration (32) may be hindered by the difficulty in evaluating JαN. To
remedy this issue, it is often assumed that N can be expressed as the sum of two monotone
mappings F and G where JαG may be easy to compute and F satisfies some regularity con-
dition. Alternatively, in some situations, decomposing N = F + G and finding x ∈ Rn such
that (F+G)(x) = 0n provides additional flexibility in choice of algorithm and may improve
convergence rates.

Motivated by the above, we consider the problem of finding an x ∈ Rn such that

(F + G)(x) = 0n, (34)
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where F,G : Rn → Rn are continuous and monotone w.r.t. a diagonally weighted `1 or `∞
norm.7 In particular, we focus on the forward-backward, Peaceman-Rachford, and Douglas-
Rachford splitting algorithms. For some extensions of the theory to set-valued mappings,
we refer to Section 6.1.

5.1 Forward-Backward Splitting

Algorithm 32 (Forward-backward splitting) Assume α > 0. Then in (Ryu and Boyd,
2016, Section 7.1) it is shown that

(F + G)(x) = 0n ⇐⇒ x = (JαG ◦ SαF)(x).

The forward-backward splitting method corresponds to the fixed point iteration

xk+1 = JαG(xk − αF(xk)). (35)

If both F and G are monotone, define the averaged forward-backward splitting iteration

xk+1 =
1

2
xk +

1

2
JαG(xk − αF(xk)). (36)

Theorem 33 (Convergence guarantees for forward-backward splitting) Let F :
Rn → Rn be Lipschitz continuous w.r.t. a diagonally weighted `1 or `∞ norm ‖ ·‖, G : Rn →
Rn be continuous and monotone w.r.t. the same norm, and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. ‖ · ‖ with monotonicity parameter c > 0, then
the iteration (35) converges to the unique zero, x∗, of F+G for every α ∈ ]0, 1

diagL(F) ].
Moreover, for every k ∈ Z≥0, the iteration satisfies

‖xk+1 − x∗‖ ≤ (1− αc)‖xk − x∗‖,

with the convergence rate being optimized at α = 1/ diagL(F).

(ii) If F is monotone w.r.t. ‖ · ‖ and Zero(F+G) 6= ∅, then the iteration (36) converges to
an element of Zero(F + G) for every α ∈ ]0, 1

diagL(F) ].

Proof Regarding statement (i), Lemmas 19(ii) and 22 together imply that Lip(JαG◦SαF) ≤
Lip(JαG) Lip(SαF) ≤ 1 − αc < 1 for all α ∈ ]0, 1/ diagL(F)]. Then since Fix(JαF ◦ SαF) =
Zero(F + G), the result is then a consequence of the Banach fixed point theorem.

Statement ii follows from Lip(JαG ◦ SαF) ≤ 1 and that the iteration (36) is the Kras-
nosel’skii–Mann iteration of the nonexpansive mapping JαG ◦ SαF with θ = 1/2.

Remark 34 (Comparison with standard forward-backward splitting convergence
criteria)

7. The results that follow can also be generalized to arbitrary norms using the Lipschitz estimates derived
for JαF,RαF, and SαF in Section 3.2.
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• Compared to the Hilbert case, in the non-Euclidean setting, if both F and G are mono-
tone, then iteration (36) must be applied to compute a zero of F + G. In the Hilbert
case, iteration (35) may be used instead since the composition of averaged operators
is averaged. For non-Hilbert norms, the composition of two averaged operators need
not be averaged.

• In monotone operator theory on Hilbert spaces, Lipschitz continuity of F is not suffi-
cient for the convergence of the iteration (35). Instead, a standard sufficient condition
for convergence is cocoercivity of F, see (Mercier, 1980) and (Bauschke and Combettes,
2017, Theorem 26.14). In the case of diagonally-weighted `1/`∞ norms, Lipschitz con-
tinuity is sufficient for convergence. This fact is due to the nonexpansiveness of SαF
for `1/`∞ monotone F and small enough α > 0 as discussed in Remark 21.

5.2 Peaceman-Rachford and Douglas-Rachford Splitting

Algorithm 35 (Peaceman-Rachford and Douglas-Rachford splitting) Let α > 0.
Then in (Ryu and Boyd, 2016, Section 7.3), it is shown that

(F + G)(x) = 0n ⇐⇒ (RαF ◦ RαG)(z) = z and x = JαG(z). (37)

The Peaceman-Rachford splitting method corresponds to the fixed point iteration

xk+1 = JαG(zk),

zk+1 = zk + 2JαF(2xk+1 − zk)− 2xk+1.
(38)

If both F and G are monotone, the term RαF ◦ RαG in (37) is averaged to yield

(F + G)(x) = 0n ⇐⇒
(1

2
Id +

1

2
RαF ◦ RαG

)
(z) = z and x = JαG(z). (39)

The fixed point iteration corresponding to (39) is called the Douglas-Rachford splitting
method and is given by

xk+1 = JαG(zk),

zk+1 = zk + JαF(2xk+1 − zk)− xk+1.
(40)

Theorem 36 (Convergence guarantees for Peaceman-Rachford and Douglas-
Rachford splitting) Let both F : Rn → Rn and G : Rn → Rn be Lipschitz continuous
w.r.t. a diagonally weighted `1 or `∞ norm ‖ · ‖, let G be monotone w.r.t. the same norm,
and let x0 ∈ Rn.

(i) Suppose F is strongly monotone w.r.t. ‖ · ‖ with monotonicity parameter c > 0. Then
the sequence of {xk}∞k=0 generated by the iteration (38) converges to the unique zero,

x∗, of F + G for every α ∈
]
0,min

{
1

diagL(F) ,
1

diagL(G)

}]
. Moreover, for every k ∈ Z≥0,

the iteration satisfies

‖xk+1 − x∗‖ ≤ 1− αc
1 + αc

‖xk − x∗‖,

with the convergence rate being optimized at α = min
{

1
diagL(F) ,

1
diagL(G)

}
.
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(ii) Alternatively suppose F is monotone w.r.t. ‖·‖ and Zero(F+G) 6= ∅. Then the sequence
of {xk}∞k=0 generated by the iteration (40) converges to an element of Zero(F+G) for

every α ∈
]
0,min

{
1

diagL(F) ,
1

diagL(G)

}]
.

Proof Regarding statement (i), by Lemma 23(ii), we have that

Lip(RαF ◦ RαG) ≤ Lip(RαF) Lip(RαG) ≤ 1− αc
1 + αc

< 1

for α ∈ ]0,min{1/ diagL(F), 1/ diagL(G)}]. Then since Lip(JαG) is nonexpansive, the Banach
fixed point theorem implies the result.

Statement (ii) holds because Lemma 23(ii) implies Lip(RαF ◦ RαG) ≤ 1. Then the itera-
tion (40) converges because of Lemma 11.

Compared to classical criteria for the convergence of the Douglas-Rachford iteration,
Theorem 36 requires Lipschitz continuity of F and G in order to utilize the Lipschitz esti-
mates for the reflected resolvents RαF and RαG. Moreover, the parameter α > 0 must be
chosen small enough in the non-Euclidean setting whereas convergence is guaranteed for any
choice of α in the Hilbert case. This is because the reflected resolvent is only nonexpansive
for a certain range of α when the norm is not a Hilbert one, see Example 2.

6. Set-Valued Inclusions and an Application to Recurrent Neural
Networks

6.1 Set-Valued Inclusions and Non-Euclidean Properties of Proximal
Operators

In many instances one may wish to solve an inclusion problem of the form

Find x ∈ Rn such that 0n ∈ (F + G)(x), (41)

where F : Rn → Rn is a single-valued continuous monotone mapping but G : Rn → 2R
n

is
a set-valued mapping. In monotone operator theory on Hilbert spaces, leveraging the fact
that JαG is single-valued and nonexpansive for every α > 0 when G is maximally monotone,
algorithms such as the forward-backward splitting and Douglas-Rachford splitting may be
used to solve (41) under suitable assumptions on F.

In this section we aim to prove similar results in the non-Euclidean case. We will
specialize to the case that G is the subdifferential of a separable, proper lower semicontinuous
(l.s.c.), convex function. To start we must define the proximal operator of a l.s.c. convex
function.

Definition 37 (Proximal operator, Moreau 1962 and Bauschke and Combettes
2017, Def. 12.23) Let g : Rn → ]−∞,+∞] be a proper l.s.c. convex function. The
proximal operator of g evaluated at x ∈ Rn is the map proxg : Rn → Rn defined by

proxg(x) = arg min
z∈Rn

1

2
‖x− z‖22 + g(z). (42)
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Since g : Rn → ]−∞,+∞] is proper, l.s.c., and convex, we can see that for α > 0 and
fixed x ∈ Rn, the map z 7→ 1

2‖x − z‖22 + αg(z) is strongly convex and thus has a unique
minimizer, so for each x ∈ Rn, proxαg(x) is single-valued. Moreover, we have the following
connection between proximal operators and resolvents of subdifferentials.

Proposition 38 (Rockafellar 1976 and Bauschke and Combettes 2017, Exam-
ple 23.3) Suppose g : Rn → ]−∞,+∞] is proper, l.s.c., and convex. Then for every α > 0,
Jα∂g(x) = proxαg(x).

In the case of scalar functions, one can exactly capture the set of functions which are
proximal operators of some proper l.s.c. convex functions.

Proposition 39 (Bauschke and Combettes 2017, Proposition 24.31) Let φ : R→ R.
Then φ is the proximal operator of a proper l.s.c. convex function g : R→ ]−∞,+∞], i.e.,
φ = proxg if and only if φ satisfies

0 ≤ φ(x)− φ(y)

x− y ≤ 1, for all x, y ∈ R, x 6= y. (43)

A list of examples of scalar functions satisfying (43) and their corresponding proper l.s.c.
convex function is provided in (Li et al., 2019, Table 1).

To prove non-Euclidean properties of proximal operators, we will leverage a well-known
property, which we highlight in the following proposition.

Proposition 40 (Proximal operator of separable convex functions, Parikh and
Boyd 2014, Section 2.1) For i ∈ {1, . . . , n}, let gi : R → ]−∞,+∞], be proper, l.s.c.,
and convex. Define g : Rn → ]−∞,+∞] by g(x) =

∑n
i=1 gi(xi). Then g is proper, l.s.c.,

and convex and for all α > 0,

proxαg(x) = (proxαg1(x1), . . . ,proxαgn(xn)) ∈ Rn.

If g satisfies g(x) =
∑n

i=1 gi(xi) with each gi proper, l.s.c., and convex, we call g separable.

In the following novel proposition, we showcase that when g is separable, proxαg and
2proxαg − Id are nonexpansive w.r.t. non-Euclidean norms.

Proposition 41 (Nonexpansiveness of proximal operators of separable convex
maps) For i ∈ {1, . . . , n}, let each gi : R→ ]−∞,+∞] be proper, l.s.c., and convex. Define
g : Rn → ]−∞,+∞] by g(x) =

∑n
i=1 gi(xi). For every α > 0 and for any η ∈ Rn>0, both

Jα∂g = proxαg and Rα∂g = 2proxαg − Id are nonexpansive w.r.t. ‖ · ‖∞,[η]−1.8

Proof By Proposition 40 we have proxαg(x) = (proxαg1(x1), . . . ,proxαgn(xn)). Moreover,
each proxαgi is nonexpansive and monotone by Proposition 39 and thus satisfies

0 ≤ (proxαgi(xi)− proxαgi(yi))(xi − yi) ≤ (xi − yi)2, for all xi, yi ∈ R. (44)

8. More generally, proxαg and 2proxαg − Id are nonexpansive with respect to any monotonic norm.
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We then conclude

‖proxαg(x)− proxαg(y)‖∞,[η]−1 = max
i∈{1,...,n}

1

ηi
|proxαgi(xi)− proxαgi(yi)|

≤ max
i∈{1,...,n}

1

ηi
|xi − yi| = ‖x− y‖∞,[η]−1 .

Regarding Rα∂g, we note that (44) implies for all xi, yi ∈ R

−(xi − yi)2 ≤ ((2proxαgi(xi)− xi)− (2proxαgi(yi)− yi))(xi − yi) ≤ (xi − yi)2,

=⇒ |(2proxαgi(xi)− xi)− (2proxαgi(yi)− yi)| ≤ |xi − yi|.

Following the same reasoning as for proxαg, we conclude that 2proxαg − Id is nonexpansive
w.r.t. ‖ · ‖∞,[η]−1 .

We recall from monotone operator theory on Hilbert spaces that if F : Rn → Rn is
continuous and G : Rn → 2R

n
satisfies Dom(JαG) = Rn and JαG(x) is single-valued for all x ∈

Rn, α > 0, then the following equivalences hold: (i) 0n ∈ (F+G)(x), (ii) x = (JαG ◦SαF)(x),
and (iii) z = (RαF ◦ RαG)(z) and x = JαG(z) (Ryu and Boyd, 2016, pp. 25 and 28). In
other words, even if G is a set-valued mapping, forward-backward and Peaceman-Rachford
splitting methods may be applied to compute zeros of the inclusion problem (41).

When F : Rn → Rn in (41) is Lipschitz continuous and strongly monotone w.r.t.
‖ · ‖∞,[η]−1 with monotonicity parameter c > 0 and G = ∂g for a separable proper, l.s.c.,
convex mapping g : Rn → ]−∞,+∞], by Proposition 41, the composition proxαg ◦ SαF is
a contraction w.r.t. ‖ · ‖∞,[η]−1 for small enough α > 0. Therefore, the forward-backward
splitting method, Algorithm 32, may be applied to find a zero of the splitting problem (41).
Analogously, for small enough α > 0, RαF ◦ RαG is a contraction w.r.t. ‖ · ‖∞,[η]−1 and
Peaceman-Rachford splitting, Algorithm 35, may be applied to find a zero of the prob-
lem (41). In the following section, we present an application of the above theory to recurrent
neural networks.

6.2 Iterations for Recurrent Neural Network Equilibrium Computation

Consider the continuous-time recurrent neural network

ẋ = −x+ Φ(Ax+Bu+ b) =: F (x, u), (45)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, b ∈ Rn, and Φ : Rn → Rn is a separable
activation function, i.e., it acts entry-wise in the sense that Φ(x) = (φ(x1), . . . , φ(xn))>. In
this section we consider activation functions φ : R→ R satisfying slope bounds of the form

d1 = inf
x,y∈R,x 6=y

φ(x)− φ(y)

x− y ≥ 0, d2 = sup
x,y∈R,x 6=y

φ(x)− φ(y)

x− y ≤ 1. (46)

Most standard activation functions used in machine learning satisfy these bounds.
In (Davydov et al., 2024, Theorem 23), it was shown that a sufficient condition for the strong
infinitesimal contractivity of the map x 7→ F (x, u) is the existence of weights η ∈ Rn>0 such
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that µ∞,[η]−1(A) < 1; if this condition holds, the recurrent neural network (45) is strongly
infinitesimally contracting w.r.t. ‖ · ‖∞,[η]−1 with rate 1 −max{d1γ, d2γ}, where we define
γ = µ∞,[η]−1(A) < 1.

Suppose that, for fixed u, we are interested in efficiently computing the unique equilib-
rium point x∗u of F (x, u). Note that equilibrium points x∗u satisfy x∗u = Φ(Ax∗u + Bu + b)
which corresponds to an implicit neural network (INN), which have recently gained signif-
icant attention in the machine learning community (Bai et al., 2019; Winston and Kolter,
2020; El Ghaoui et al., 2021). In this regard, computing equilibrium points of (45) corre-
sponds to computing the forward pass of an INN.

Since the map x 7→ F (x, u) is strongly infinitesimally contracting w.r.t. ‖ · ‖∞,[η]−1 , the
map x 7→ −F (x, u) is strongly monotone with monotonicity parameter 1 −max{d1γ, d2γ}
(see Remark 13). As a consequence, applying the forward step method, Algorithm 25, to
compute x∗u yields the iteration

xk+1 = (1− α)xk + αΦ(Axk +Bu+ b), (47)

which is the iteration proposed in (Jafarpour et al., 2021). This iteration is guaranteed to
converge for every α ∈ ]0, 1

1−mini∈{1,...,n}min{d1·(A)ii,d2·(A)ii} ] with contraction factor 1−α(1−
max{d1γ, d2γ}) by Theorem 26(ii).

However, rather than viewing finding an equilibrium of (45) as finding a zero of a non-
Euclidean monotone operator, it is also possible to view it as a monotone inclusion problem
of the form (41).

Proposition 42 (Winston and Kolter 2020, Theorem 1) Suppose φ satisfies the
bounds (46). Then finding an equilibrium point x∗u of (45) is equivalent to the (set-valued)
operator splitting problem 0n ∈ (F + G)(x∗u), with

F(z) = (In −A)z − (Bu+ b), G(z) = ∂g(z), (48)

where we denote g(z) =
∑n

i=1 f(zi) and f : R → ]−∞,+∞] is proper, l.s.c., convex, and
satisfies φ = proxf .

Proof By Proposition 39, since φ satisfies the bounds (46), there exists a proper, l.s.c.,
convex f with φ = proxf . The remainder of the proof is equivalent to that in (Winston and
Kolter, 2020, Thm 1).

While Proposition 42 was leveraged in (Winston and Kolter, 2020) for monotonicity
w.r.t. the `2 norm, we will use it for F which is monotone w.r.t. a diagonally-weighted `∞
norm.9

Checking that F is strongly monotone w.r.t. ‖ · ‖∞,[η]−1 is straightforward under the
assumption that γ < 1. As a consequence of Propositions, 41 and 42, we can consider dif-
ferent operator splitting algorithms to compute the equilibrium of (45). First, the forward-
backward splitting method, Algorithm 32, as applied to this problem is

xk+1 = proxαg((1− α)xk + α(Axk +Bu+ b)). (49)

9. Unless A = A>, the monotone inclusion problem (48) does not arise from a convex minimization problem.
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Since F is Lipschitz continuous, this iteration is guaranteed to converge to the unique
fixed point of (45) by Theorem 33(i). Moreover, the contraction factor for this iteration
is 1 − α(1 − γ) for α ∈ ]0, 1

1−mini(A)ii
], with contraction factor being minimized at α∗ =

1
1−mini(A)ii

. Note that compared to the iteration (47), iteration (49) has a larger allowable
range of step sizes and improved contraction factor at the expense of computing a proximal
operator at each iteration.

Alternatively, the fixed point may be computed by means of the Peaceman-Rachford
splitting method, Algorithm 35, which can be written

xk+1 = (In + α(In −A))−1(zk + α(Bu+ b)),

zk+1 = zk + 2proxαg(2x
k+1 − zk)− 2xk+1.

(50)

Since F is Lipschitz continuous and RαG is nonexpansive for every α > 0, this iteration
converges to the unique fixed point of (45) for α in a suitable range by Theorem 36(i).

Moreover, the contraction factor is 1−α(1−γ)
1+α(1−γ) for α ∈ ]0, 1

1−mini(A)ii
], which comes from the

Lipschitz constant of F. In other words, the contraction factor is improved for Peaceman-
Rachford compared to forward-backward splitting and the range of allowable step sizes is
identical. For RNNs where (In + α(In − A)) may be easily inverted, this splitting method
may be preferred.

6.3 Numerical Implementations

To assess the efficacy of the iterations in (47), (49), and (50), we generated A,B, b, u in (45)
and applied the iterations to compute the equilibrium. We generate A ∈ R200×200, B ∈
R200×50, u ∈ R50, b ∈ R200 with entries normally distributed as Aij , Bij , bi, ui ∼ N (0, 1). To
ensure that A ∈ R200×200 satisfies the constraint µ∞,[η]−1(A) ≤ γ for some η ∈ R200

>0 , we pick
[η] = I200 and orthogonally project A onto the convex polytope {A ∈ R200×200 | µ∞(A) ≤ γ}
using CVXPY (Diamond and Boyd, 2016). In experiments, we consider γ ∈ {−1, 0.9} and
consider activation functions φ(x) = ReLU(x) = max{x, 0} and φ(x) = LeakyReLU(x) =
max{x, ax} with a = 0.1.10 The proper, l.s.c., convex f corresponding to these activation
functions are available in (Li et al., 2019, Table 1).

For all iterations, we initialize x0 at the origin and for the Peaceman-Rachford iteration,
we initialize z0 at the origin. For each iteration we pick the largest theoretically allowable
step size, which in all cases was 1

1−mini(A)ii
(since mini∈{1,...,n}(A)ii was negative in all

cases). For the case of γ = 0.9, we found that the largest theoretically allowable step size
was α ≈ 0.182 and for γ = −1 the largest step size was α ≈ 0.175. The plots of the residual
‖xk − Φ(Axk + Bu + b)‖∞ = ‖F (xk, u)‖∞ versus the number of iterations for all different
cases is shown in Figure 2.11

We see that, when γ = 0.9, both forward-step and forward-backward splitting methods
for computing the equilibrium of (45) converge at the same rate. This result agrees with
the theory since γ > 0, so that max{d1γ, d2γ} = γ for both ReLU and LeakyReLU and
the estimated contraction factor for both the forward step method and forward-backward

10. Note that the slope bounds from (43) are d1 = 0, d2 = 1 for ReLU and d1 = a, d2 = 1 for LeakyReLU
with a ∈ [0, 1[.

11. All iterations and graphics were run and generated in Python. Code to reproduce experiments is available
at https://github.com/davydovalexander/RNN-Equilibrium-NonEucMonotone.
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Figure 2: Residual versus number of iterations for forward-step method (47), forward-
backward splitting (49), and Peaceman-Rachford splitting (50) for computing the
equilibrium of the recurrent neural network (45). The top two plots correspond to
φ = LeakyReLU with a = 0.1 and the bottom two plots correspond to φ = ReLU.
The left two plots correspond to γ = 0.9 and the right two plots correspond to
γ = −1. Curves for the forward-step method and forward-backward splitting are
directly on top of one another in the left two plots. Note the difference in the
number of iterations with respect to the parameter γ.

splitting is 1−α(1−γ) ≈ 0.982. For the Peaceman-Rachford splitting method and γ = 0.9,

the estimated contraction factor is 1−α(1−γ)
1+α(1−γ) ≈ 0.964, which justifies the improved rate of

convergence. When γ = −1, the forward-backward splitting method converges faster than
the forward step method. This result agrees with the theory since the estimated contraction
factor for the forward step method is 1−α(1−φ(γ)) ≈ 0.807 in the case of LeakyReLU and
≈ 0.825 in the case of ReLU while the estimated contraction factor for forward-backward
splitting is 1−α(1− γ) ≈ 0.649 independent of activation function. On the other hand, for
the Peaceman-Rachford splitting method and γ = −1, the estimated contraction factor is
1−α(1−γ)
1+α(1−γ) ≈ 0.481, which justifies the improved rate of convergence.

6.4 Tightened Lipschitz Constants for Continuous-Time RNNs

We are interested in studying the robustness of the RNN (45) to input perturbations. In
other words, given a nominal input, u, and its corresponding equilibrium output, x∗u, we aim
to upper-bound the deviation of the output due to a change in the input. The Lipschitz
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constant of a neural network is one common metric used to evaluate its robustness, as
discussed in works such as (Fazlyab et al., 2019; Combettes and Pesquet, 2020a; Pauli et al.,
2021). In the context of implicit neural networks, Lipschitz constants have been studied
in (Revay et al., 2020; Pabbaraju et al., 2021; Jafarpour et al., 2021), with (Pabbaraju et al.,
2021) unrolling forward-backward splitting iterations to provide `2 Lipschitz estimates. In
what follows, we generalize the procedure in (Pabbaraju et al., 2021) using techniques
from non-Euclidean monotone operator theory to provide novel and tighter `∞ Lipschitz
estimates.

Theorem 43 (Lipschitz estimate of equilibrium points of (45)) Suppose that A
satisfies µ∞,[η]−1(A) = γ < 1 for some η ∈ Rn>0 and that φ = proxf for some proper,
l.s.c., convex f : R → ]−∞,+∞]. Define fN : Rm → Rn by fN(u) = x∗u where x∗u solves
the fixed point problem x∗u = Φ(Ax∗u + Bu + b).12 Then for ηmax = maxi∈{1,...,n} ηi, ηmin =
mini∈{1,...,n} ηi, and Lip∞(fN) denoting the minimal `∞ Lipschitz constant of fN,

Lip∞(fN) ≤ ηmax

ηmin

‖B‖∞
1− γ . (51)

Proof We consider the forward-backward splitting iteration given input u as xk+1
u =

proxαg((1−α)xku +α(Axku +Bu+ b)) with initial condition x0
u = 0n which is guaranteed to

converge for α ∈ ]0, 1
1−mini(A)ii

] since proxαg is nonexpansive and SαF is a contraction w.r.t.

‖ · ‖∞,[η]−1 for every α in this range where F is defined as in (48). We find

‖xku − xkv‖∞,[η]−1 = ‖proxαg((1− α)xk−1
u + α(Axk−1

u +Bu+ b))

− proxαg((1− α)xk−1
v + α(Axk−1

v +Bv + b))‖∞,[η]−1

≤ ‖Sα(Id−A)(x
k−1
u − xk−1

v )‖∞,[η]−1 + α‖B(u− v)‖∞,[η]−1 (52)

≤ Lip(Sα(Id−A))
k‖x0

u − x0
v‖∞,[η]−1 + α‖B(u− v)‖∞,[η]−1

k−1∑
i=0

Lip(Sα(Id−A))
i

= α‖B(u− v)‖∞,[η]−1

k−1∑
i=0

Lip(Sα(Id−A))
i, (53)

where (52) holds because of nonexpansiveness of proxαg and the triangle inequality and (53)
is a consequence of x0

u = x0
v = 0n.

Since the forward-backward splitting iteration converges for every α in the desired range,
we can take the limit as k →∞ and find that xku → x∗u and xkv → x∗v as k →∞. Then

‖x∗u − x∗v‖∞,[η]−1 ≤ α‖B(u− v)‖∞,[η]−1

∞∑
i=0

Lip(Sα(Id−A))
i (54)

=
α‖B(u− v)‖∞,[η]−1

1− Lip(Sα(Id−A))
≤
α‖B(u− v)‖∞,[η]−1

1− (1− α(1− γ))
=
‖B(u− v)‖∞,[η]−1

1− γ , (55)

12. Note that if x∗u solves the fixed point problem x∗u = Φ(Ax∗u +Bu+ b), then it is an equilibrium point of
the RNN (45).
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which implies the result because η−1
max‖z‖∞ ≤ ‖z‖∞,[η]−1 ≤ η−1

min‖z‖∞ for every z ∈ Rn.

Remark 44 In (Jafarpour et al., 2021, Corollary 5), the following Lipschitz estimate is
given:

Lip∞(fN) ≤ ηmax

ηmin

‖B‖∞
1−max{γ, 0} . (56)

The Lipschitz estimate in Theorem 43 is always a tighter bound than the estimate (56) and
allows the choice of negative γ to further lower the Lipschitz constant of the RNN. Indeed,
one way to make the neural network more robust to uncertainties in its input would be to
ensure that γ is a large negative number.

7. Conclusion

In this paper, we introduce a non-Euclidean version of classical results in monotone operator
theory with a focus on mappings that are monotone with respect to diagonally-weighted `1
or `∞ norms. Our results show that the resolvent and reflected resolvent maintain many
useful properties from the Hilbert case, and we prove that commonly used algorithms for
finding zeros of monotone operators and their sums remain effective in the non-Euclidean
setting. We applied our theory to the problem of equilibrium computation and Lipschitz
constant estimation of recurrent neural networks, yielding novel iterations and tighter upper
bounds on Lipschitz constants via forward-backward splitting.

Topics of future research include (i) extending results to more general Banach spaces
with a focus on L1 and L∞ spaces, (ii) studying the convergence of additional operator
splitting methods such as forward-backward-forward (Tseng, 2000) and Davis-Yin (Davis
and Yin, 2017) splittings, (iii) extending the theory to variable step size methods, and (iv)
considering additional machine learning applications such as `∞ robustness of deep neural
networks as a non-Euclidean analog of (Combettes and Pesquet, 2020a) or reinforcement
learning and dynamic programming, where `∞ contractive and nonexpansive operators are
prevalent; see the recent work (Lee and Ryu, 2023) for preliminary ideas in this direction.
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