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Abstract

We develop a notion of projections between sets of probability measures using the geometric
properties of the 2-Wasserstein space. In contrast to existing methods, it is designed for
multivariate probability measures that need not be regular, and is computationally efficient
to implement via regression. The idea is to work on tangent cones of the Wasserstein
space using generalized geodesics. Its structure and computational properties make the
method applicable in a variety of settings where probability measures need not be regular,
from causal inference to the analysis of object data. An application to estimating causal
effects yields a generalization of the synthetic controls method for systems with general
heterogeneity described via multivariate probability measures.

Keywords: Optimal Transport, Wasserstein distance, Generalized geodesics, Projection,
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1. Introduction

The concept of projections, that is, approximating a target quantity of interest by an opti-
mally weighted combination of other quantities, is of fundamental relevance in mathematics,
statistics, and machine learning. Statistical projections are generally defined between ran-
dom variables in appropriately defined linear spaces (e.g. van der Vaart, 2000, chapter 11).
In modern statistics and machine learning applications, the objects of interest are often
probability measures themselves. Examples range from object- and functional data (e.g.
Marron and Alonso, 2014) to causal inference with individual heterogeneity (e.g. Athey and
Imbens, 2015).

A notion of projection between sets of probability measures should be applicable between
any set of general probability measures, replicate geometric properties of the target measure,
and possess good computational and statistical properties. We introduce such a notion of
projection between sets of general probability measures supported on Euclidean spaces. It
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also provides a global solution to the projection problem, which will in general be unique. To
achieve this, we work in the 2-Wasserstein space, that is, the set of all probability measures
with finite second moments equipped with the 2-Wasserstein distance.

Importantly, we focus on the multivariate setting, i.e. we consider the Wasserstein space
over some Euclidean space R?, denoted by Wa(R?), where the dimension d can be arbitrarily
high. The multivariate setting poses challenges from a mathematical, computational, and
statistical perspective. In particular, Ws is a positively curved metric space for d > 1 (e.g.
Ambrosio et al., 2008; Kloeckner, 2010). Moreover, the 2-Wasserstein distance between
two probability measures is defined as the value function of the Monge-Kantorovich optimal
transportation problem (Villani, 2003, chapter 2), which does not have a closed-form solution
in multivariate settings in general. This is coupled with a well-known statistical curse of
dimensionality for general measures (Ajtai et al., 1984; Dudley, 1969; Fournier and Guillin,
2015; Talagrand, 1992, 1994; Weed and Bach, 2019).

1.1 Existing Approaches

These challenges have impeded the development of a method of projections between general
and potentially high-dimensional probability measures. A focus so far has been on the
univariate and low-dimensional setting. In particular, Chen et al. (2021), Ghodrati and
Panaretos (2022), and Pegoraro and Beraha (2021) introduce frameworks for distribution-
on-distribution regressions in the univariate setting for object data. Bigot et al. (2014)
and Cazelles et al. (2017) develop principal component analyses on the space of univariate
probability measures using geodesics on the Wasserstein space. Most recently, in the context
of manifold learning, Cloninger et al. (2023) examine how to learn low-dimensional structures
by approximating pairwise Wasserstein distances between data points, which are probability
measures.

The most closely related works to ours are Wang et al. (2013), Kolouri et al. (2016),
Bonneel et al. (2016), Mérigot et al. (2020), Werenski et al. (2022), and Fan and Alvarez-
Melis (2023). Wang et al. (2013) and Kolouri et al. (2016) leverage generalized geodesics
to construct linear Wasserstein embeddings, with an eye towards applications in computer
vision. Bonneel et al. (2016) develop a regression approach in barycentric coordinates with
applications in computer graphics as well as color and shape transport problems. Their
method is defined directly on W5 and requires solving a bilevel optimization problem, which
does not necessarily yield global solutions. This is not an issue for prediction problems
such as color transport, which is their main focus. For causal inference, which is our main
application, the weights obtained in the projection problem are of primary interest, however.
Therefore, a method that obtains globally optimal weights is desirable.

Meérigot et al. (2020) introduce a linearization of the 2-Wasserstein space by lifting it to
a L2-space anchored at a measure that is absolutely continuous with respect to Lebesgue
measure. Similarly, Fan and Alvarez-Melis (2023) introduce a method of projection along
generalized geodesics similar to ours, but it requires the existence of optimal transport
maps and hence a regular reference measure, which needs to be fixed; this also makes their
practical implementation significantly more computationally involved. Since we focus on
projections, the “anchor” in our case is naturally given as the target measure we want to
project. This need not be absolutely continuous in practice. Allowing for general target
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measures to project is important from a causal inference perspective, as many measures of
interest as not continuous, such as treatment status.

Werenski et al. (2022) work with a tangential structure based on “Karcher means”
(Karcher, 2014; Zemel and Panaretos, 2019). In particular, this means that their method
requires all probability measures to be absolutely continuous with respect to the Lebesgue
measure, their densities bounded away from zero, and with the target measure lying in
the convex hull of the control measures, something that is as hard to check in practice as
performing the projection.

1.2 Our Contributions

In contrast to the existing approaches, our method is applicable for general probability
measures, allows for the target measure to be outside the generalized geodesic convex hull of
the control measures, can be implemented by a standard constrained linear regression, and
provides a global solution. Convexity of the projection in particular implies that solutions
are unique conditional on fixing the optimal transport plans.

Specifically, our proposed method transforms the projection problem on the positively-
curved Wasserstein space into a constrained regression problem in the geometric tangent
cone. This problem takes the form of a deformable template (Boissard et al., 2015; Yuille,
1991), which connects our approach to this literature. Our method can be implemented in
three steps: (i) obtain the general tangent cone structure at the target measure, (ii) construct
a tangent space from the tangent cone via barycentric projections if it does not exist, and
(iii) perform a regression constrained to the unit simplex to carry out the projection in
the tangent space. This implementation of the projection approach via linear regression is
computationally efficient, in particular compared to the existing methods in Bonneel et al.
(2016), Fan and Alvarez-Melis (2023), and Werenski et al. (2022).

The challenging part of the implementation is lifting the problem to the tangential struc-
ture: this requires computing the corresponding optimal transport plans between the target
and each measure used in the projection. Many methods have been developed for this, see
for instance Benamou and Brenier (2000); Jacobs and Léger (2020); Makkuva et al. (2020);
Peyré and Cuturi (2019); Ruthotto et al. (2020) and references therein. Other alternatives
compute approximations of the optimal transport plans via regularized optimal transport
problems (Peyré and Cuturi, 2019) such as entropy regularized optimal transport (Galichon
and Salanié, 2010; Cuturi, 2013). The proposed projection approach is compatible with
any such method, therefore its complexity scales with that of estimating optimal transport
plans. As a statistical contribution, we provide results for the statistical consistency when
estimating the measures via their empirical counterparts in practice.

To demonstrate the efficiency and utility of the proposed method, we apply it in differ-
ent settings and compare it to existing benchmarks such as Werenski et al. (2022) where
those are computationally feasible. Furthermore, we extend the classical synthetic control
estimator (Abadie and Gardeazabal, 2003; Abadie et al., 2010), a fundamental approach for
counterfactual prediction in causal inference, to settings with observed individual hetero-
geneity in multivariate outcomes. The synthetic controls estimator is a projection approach,
where one tries to predict an aggregate outcome of a treated unit by an optimal convex com-
bination of control units. The weights of this optimal combination is then used to construct
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the counterfactual state of the treated unit had it not received treatment. The novelty of our
application is that it lets us perform the synthetic control method on the joint distribution
of several outcomes, which complements the recently introduced method in Gunsilius (2023)
designed for univariate outcomes. The possibility to project entire probability measures
allows us to disentangle treatment heterogeneity at the treatment unit level. The possibility
of working with general probability measures is key in this setting, as many outcomes of
interest are not regular. We illustrate this by applying our method to estimate the effects
of a Medicaid expansion policy in Montana, where we consider—as outcome—non-regular
probability measures in d = 28 dimensions.

All the code used to produce the synthetic experiment results and the application
to synthetic control method can be found at the following GitHub repository: https:
//github.com/menghsuanhsieh/tangential-wasserstein-projection.

2. Methodology

2.1 The 2-Wasserstein Space W5(RY)

For probability measures Py, Py € ,@(Rd) with supports X,) C R?, respectively, the 2-
Wasserstein distance Wa(Px, Py ) is defined as

o=

Wa(Px, Py) & ( min /X y\x—y\Qdfy(x,y)> : (1)

Here, | - | denotes the Euclidean norm on R? and

D(Px, Py) 2 {7 € PRI xR : (m)gy = Px, (m)py = Py }

is the set of all couplings of Px and Py. The maps m; and mo are the projections onto
the first and second coordinate, respectively, and T% P denotes the pushforward measure
of P via T, i.e. for any measurable A C Y, Ty P(A) = P(T"1(A)). An optimal coupling
v € I'(Px, Py) solving the optimal transport problem (1) is an optimal transport plan. By
Prokhorov’s theorem, a solution always exists in our setting. When Px is regular, i.e. when
it does not give mass to sets of lower Hausdorff dimension in its support, then the optimal
transport plan « solving (1) is unique and takes the form v = (Id x V)4 Px, where Id is
the identity map on R? and V(z) is the gradient of some convex function. This result is
known as Brenier’s theorem (Brenier, 1991; McCann, 1997; Villani, 2003, Theorem 2.12).
By definition, all measures that possess a density with respect to Lebesgue measure are
regular. Our main contribution is to allow for general probability measures, where only
optimal transport plans but no maps exist.

The 2-Wasserstein space Wo 2 (Z5(R%), W3) is the metric space defined on the set
P5(R%) of all probability measures with finite second moments supported on R?, with the
2-Wasserstein distance as the metric. It is a geodesically complete space in the sense that
between any two measures P, P’ € W5, one can define a geodesic P; : [0,1] — Wa via the
interpolation P, = ()47, where + is an optimal transport plan and 7 : R? x R* — RY is
defined through 7;(x,y) £ (1 — t)x + ty (Ambrosio et al., 2008; McCann, 1997). Using this,
it can be shown that W5 is a positively curved metric space when d > 1 (Ambrosio et al.,
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2008, Theorem 7.3.2) and flat for d = 1 (Kloeckner, 2010), where curvature is defined in the
sense of Aleksandrov (1951). This difference in the curvature properties is the main reason
for why the multivariate setting requires different approaches compared to the established
results for measures on the real line.

2.2 Tangent cone structure on W,

We exploit a tangential structure that can be defined for general measures on Wa (Ambrosio
et al., 2008; Otto, 2001; Takatsu and Yokota, 2012). In particular, it allows us to circumvent
solving a bilevel optimization problem as the one considered in Bonneel et al. (2016), which
we review below.

The tangential structure relies on the fact that geodesics P; in Wy are linear in the
transport plans (m)47y. This implies a geometric tangent cone structure at each measure
P €W that can be defined as the closure in Z25(R%) of the set

G(P)= {'y € Po(R*x RY) : (m)yy =P, (m1,m1 + em2)yy is optimal for some & > 0}
(2)

with respect to the local distance

W2(v12,713) 2 min {/ » |wg — 23)* dyi23 : Y123 € F1(712,W13)} ; (3)
(RY)

where 12 and 713 are couplings between P and some other measures P» and P, respectively,
and I';(v12,713) is the set of all 3-couplings 7123 such that the projection of 123 onto the
first two elements is 12 and the projection onto the first and third element is y13 (Ambrosio
et al., 2008, Appendix 12). The optimality requirement in G(P) is with respect to transport
plans . We can then define the exponential map at P with respect to some tangent element
7 € G(P) by

expp(7) = (m1 + m2) 47 -

This tangent cone can be constructed at every P € W, irrespective of its support; in
particular, we do not assume that the corresponding measures are regular, i.e., give mass to
subsets of R? of lower Hausdorff dimension. In the case where P is regular the tangent cone
structure reduces to a tangent space (Ambrosio et al., 2008, Theorem 8.5.1).

2.3 Descriptions of Existing Approaches

One approach to defining projections on W is to work on the Wasserstein space directly.
This leads to a bilevel optimization problem, based on the notion of barycenters in Wasser-
stein space (Agueh and Carlier, 2011; Carlier and Ekeland, 2010):

J
_ bV
P(\) = argmin » ZW(P,P)).
Pe(RY) 27 2
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With this definition, and assuming that the barycenter P()) is unique for given ), the bilevel
projection problem reads:

J

_ _ s
A* € argmin Wa(FPy, P(\)), where P(\) = argmin Z WP, P)).
ACAT PeZa(RY) S 2

A version of this approach is used in Bonneel et al. (2016) to define a notion of regression
between probability measures in low dimensions. The challenges here are mathematical and
computational. Importantly, the optimal weights A* need not be unique. This is not an
issue for the applications considered in Bonneel et al. (2016), like color transport; however,
it is important in statistical settings when the weights convey information used in further
procedures, like causal inference via synthetic controls, where the optimal weights are used
to introduced a counterfactual outcome of a treated unit had it not been treated (Abadie and
Gardeazabal, 2003; Abadie et al., 2010; Abadie, 2021). Moreover, the bi-level optimization
structure makes solving the problem prohibitively costly in higher dimensions. Bonneel et al.
(2016) introduce a gradient descent approach based on an entropy-regularized analogue of
Wy (Cuturi, 2013; Peyré and Cuturi, 2019) that can be implemented in low-dimensional
settings.

Other approaches like Werenski et al. (2022) introduce a tangential approach, but under
strong assumptions on the involved measures: they need to be absolutely continuous with
densities bounded away from zero on their support, and in particular the target measure
must be known to lie inside the convex hull of the other measures, something that is as hard
to check in practice as performing the projection. A starting point for this is to consider a
characterization of the barycenter P(X) for fixed weights of a set {P;},c[] in regular tangent
spaces. Agueh and Carlier (2011, Equation (3.10)) show that if at least one of the measures
is absolutely continuous with respect to Lebesgue measure, then P(\) can be characterized

via
J

D N (Vg —1d) =0, (4)
j=1
where {@;} jepsq are the optimal transport maps from the barycenter to the respective mea-
sure Pj, i.e. (¢j)xP(\) = P;. Each term of the summand in (4) an element in T Wa(R%)
by construction. We leave additional descriptions to Appendix A, including a projections
result we can prove in this setting.

2.4 Tangential Wasserstein Projections

Our main contribution is to define a projection approach between general probability mea-
sures, where the target need not be regular. To define this notion of projection, we need
to first define an appropriate notion of a geodesic convex hull. The novelty here is that we
define this notion via generalized geodesics (Ambrosio et al., 2008, section 9.2) centered at
the target measure Py. For this, we extend the definition of Wp to the multimarginal setting,
by defining, for given couplings ~yo; € I'(Py, Pj), j € [J]

J

. 2

" 12309\(’7017/702,"'7’70(]) < min [ ays+1 § :)\J ‘xj —33'0’ d7 Y€ Fl(’}/Ul)'"?’YOJ) ) (5)
R -

7j=1
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where I'1 (Y01, - - -, Y00) C T'(Po, P1, ..., Py) is the set of all (J + 1)-couplings ~ such that the
projection of v onto the first- and j-th element is ;. Note that this definition is similar
to the multimarginal definition of the 2-Wasserstein barycenter (Agueh and Carlier, 2011;
Gangbo and Swiech, 1998), but “centered” at Py. Based on this, we define the generalized
geodesic convex hull of measures { P;};c[s) with respect to the measure Py as

J
J 0 B
cor, ({P;}),) 2 { PO € (RY - P(3) = Z;Am.ﬂ 7
j:
~ solves WI%O;,\(’YOL e Y0),s Yo; is optimal in F(PO,Pj) VielJ], e AL (6)

A direct application of our tangential projection idea would lead us to solving

P argmin Wg’g;A(VOly e ,’YOJ) ) (7)
AeAT
which would be a computationally prohibitive bilevel optimization problem similar to the
one in Bonneel et al. (2016). We therefore rely on barycentric projections to reduce the
general cone structure to a regular tangent space which we denote by Tp, W2 (Ambrosio
et al., 2008). In this structure the projection problem (7) is replaced by

2

J
\* £ argmin Z Aj (b%]. - Id) , with by, (z1) £ / 22 dyoj,2, (22) (8)
AeAd 1T L2(F) Rd
0

denoting the barycentric projections of optimal transport plans 7g; between Py and FP;.
Here, v,, denotes the disintegration of the optimal transport plan v with respect to F.

This approach is a natural extension of the regular setting to general probability measures
for two reasons. First, if the optimal transport plans 7p; are actually induced by some
optimal transport map, then b,,; reduces to this optimal transport map; in this case the
general tangent cone G(Pp) reduces to the regular tangent cone Tp, Wa (Ambrosio et al.,
2008, Theorem 12.4.4). Second, by the definition of b, and disintegrations in conjunction
with Jensen’s inequality it holds for all A € A” that

2
J
2
Z)\j (b'YOj —Id) < WPO;)\(’YOla“-v’YOJ) . (9)
Jj=1 LZ(PO)

This implies that for general Py we can also define a convex hull based on barycentric
projections, which is of the form

J
Cop, ({pj};’zl)é P(\) € 23RN : PO) = | D Asbay, |, P A€ AR (10)
j=1

Using these definitions, the following defines our notion of projection for general 4 and
shows that it projects onto €op,.
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Figure 1: Tangential Wasserstein projection for a general target Fp.

T p, Wa is the regular tangent space constructed by applying barycentric projection to G(FPp), the
general tangent cone anchored at Py. Thick dashed lines are tangent vectors (b; — Id) generated by
the respective barycentric projections. The gray shaded region is their convex hull in this
constructed tangent space and 7 is the projection of Id onto this convex hull. Pr £ expp, (7) is the

projection of Py onto the generalized geodesic convex hull Co P, ({Pl, Py, P3}) C W5 (blue).

Proposition 1 Consider a general target measure Py and a set {P;} ey of general control

measures. Construct the measure Py as

J
P, £ expp, Z Aiby, —1d |
=1

where the optimal weights \* € A7 are obtained by solving (8) and Y0; are optimal plans
transporting Py to P;, respectively. Then for given optimal plans ~yo;, Pr is the unique metric
projection of Py onto Eapo ({Pj };']:1>'

The optimal plans vp; transporting Py to P; need not be unique if P; lies outside the
cut locus of P, i.e., when there is more than one optimal way to transport Py onto P;.
However, the projection for fixed 7p; is always unique by virtue of the linear regression.

3. Statistical Properties of the Weights and Projection

We now provide statistical consistency results for our method when the corresponding mea-
sures {Pj}jc[s] are estimated from data. We consider the case where the measures P; are
replaced by their empirical counterparts

N
Py, (A) £ N1 6x, (A)
n=1

for every measurable set A in the Borel o-algebra on R?, where d,(A) is the Dirac measure

and (X s+ s XN ,j) is an independent and identically distributed set of random variables
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whose distribution is P;. We explicitly allow for different sample sizes U _oN; = N for the

different measures. To save on notation we write @ N; = = @j, boj = b%] N; and Ap; = va No
in the following.

J
Proposition 2 (Consistency of the optimal weights) Let {IPN].} be the empirical
=0

J

measures corresponding to the data (le, ... ,XN”) _, which are independent and identical
1)

draws from Pj, respectively, and are supported on some common latent probability space

(Q, 4, P). Assume all Pj have finite second moments. As Nj — oo for all j € [J], the

corresponding optimal weights £t = (A}‘\,l, e ,A}‘V]> € A7 obtained via
; 2
X}"V £ argmin Z Aj @03’ - Id) , (11)
AeAd j=1
LZ(IPNo)
satisfy

P ([ -

>5>—>O foralle >0,

where \* solve (8).

This consistency result directly implies consistency of the optimal weights in case the optimal
transport problems between IPy, and each IPy, are achieved by optimal transport maps

V@n,. We also have a consistency result for the empirical counterparts ﬁ’m ~ of the optimal

projection ]SW.

Corollary 3 (Consistency of the optimal projections) In the setting of Proposition
2, the estimated projections IPr n converge weakly in probability to the projection Py as
Nj — oo for all j € [J].

Proposition 2 and Corollary 3 hold in all generality and without any assumptions on the
corresponding measures Pj, except that they possess finite second moments. To get stronger
results—for instance, parametric rates of convergences—we need to make strong regularity
assumptions on the measures P}, such as on the smoothness of their densities (provided they
exist). Under such additional regularity conditions, the results for the asymptotic properties
are standard (e.g. Andrews, 1989), because the proposed method reduces to a classical
semiparametric estimation problem, as the weights \; are finite-dimensional. Additionally,
a recent work of Deb et al. (2021) examine the rates of convergence of estimating optimal
transport maps via computing barycentric projections of optimal transport plans. Without
additional regularity assumptions, the rate of convergence of optimal transport maps in
terms of expected square loss is as slow as n=2/4 (Hiitter and Rigollet, 2021).

4. Illustrations

For all experiments in this section, we use the POT toolbox (Flamary et al., 2021) to com-
pute optimal transport plans and free-support barycenters. To solve the regression problem
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constrained to the unit simplex, we leverage the constrained optimization solver from the
CVXPY toolbox (Diamond and Boyd, 2016).

As for the computational complexity, our proposed method consists of two steps: obtain-
ing the optimal transport maps between the target and each of the J control units, and then
applying a regression constrained to the unit simplex to obtain the optimal weights. In the
case where optimal maps do not exist, we estimate the optimal transport plans first, then
obtain the optimal transport maps by applying barycentric projections to the estimated
optimal transport plans. We included an analysis of the computational complexity of our
proposed method, and a small simulation exercise, in Appendix E.

4.1 Image Experiment: MNIST

We compare our results to those from the experiment in Section 4.3 of Werenski et al. (2022).
We follow the experimental procedure described therein, taking as experimental data the
MNIST dataset of 28 x 28 pixel images of hand-written digits (LeCun, 1998). We show
comparison to the test case with image occlusion and with salt and pepper noise. We treat
the normalized matrix as probability measures supported on a 28 x 28 grid. Our experiment
was run using 10 control images; these control images are shown in Appendix C. For each
control unit, we record the relative weights the receive in the respective projection approach.
500 iterations of each of these exercises took 4 seconds to compute on an Apple M1 laptop
with 8 cores and 16GB of working memory. In fact, computation takes 4 seconds on any
exercise: any digit between 0 and 9, with either type of noise.

Occlusion Figures 2 shows our results. The occlusion for the “4” image is around 8% and
for the “8” image it is around 25%.

o]8]8]8]3

Figure 2: Left to right: occluded image; Euclidean projection; result from Werenski et al.
(2022), using optimal weights obtained from their method; result from our approach, using
optimal weights obtained from (8); target image.

Salt and pepper noise Figures 3 shows our results. The noisy pixels are chosen randomly
and make up between 10% and 20% of all pixels.

10
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Figure 3: Left to right: image with salt and pepper noise; Euclidean projection; result from
Werenski et al. (2022), using optimal weights obtained from their method; result from our
approach, using optimal weights obtained from (8); target image.

4.2 Image Experiment: Lego Bricks

To examine the general properties of how our method obtains the optimal weights, we
provide an application on replicating a target image of an object using images of the same
object taken from different angles. We use the Lego Bricks dataset available from Kaggle,
which contains approximately 12,700 images of 16 different Lego bricks in RGBA format.
All images used have the resolution 200 x 200 pixels. We used 10 images as our controls,
and these are illustrated in Figure 6. Figure 4 shows our results. Our method manages to
replicate the target block rather well, while only using the information of control units that
look sufficiently like the target (i.e. first row of Figure 6). In particular, in replication, our
method places zero weights on every image from the underside of the Lego brick (see second
row of Figure 6). In contrast, the Euclidean projection does not provide the correct rotation
in the replication, and suffers from the standard blur induced by using a mixture of images.

(a) (b) ©

Figure 4: (a) target block, (b) Euclidean projection, and (c) projection from our method.

In Figure 5, we show a direct comparison of our method to that in Werenski et al.
(2022) on a downsampled target image. We downsampled the target image to reduce the
extensive computational time of the method in Werenski et al. (2022). Our projection
retains fine details on the target block, while the method in Werenski et al. (2022) does not,

11
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and it results in an image with a significant amount of noise. The 2-Wasserstein distances
between Figure 5(a) and Figure 5(b) and Figure 5(a) and Figure 5(c) are 0.0068 and 0.0330,
respectively. We also computed our proposed projection in 3 minutes on an Apple M1 laptop
with 8 cores and 16GB of working memory, compared to 4 hours on a cluster computer with
36 cores and 180GB of working memory for the method of Werenski et al. (2022).

- .

e

i
ot
.. e

(a) (b) (c)

Figure 5: (a) target block, (b) projection from our method, and (c) barycenter obtained
from Werenski et al. (2022).

XXX
K N N N

Figure 6: Control units used in simulation for Section 4.2.

4.3 Application to Color Transport

We further illustrate an application of our method to color transport as in Bonneel et al.
(2016). We utilize the Berkeley DeepDrive dataset (Yu et al., 2020). Our goal is to take an
image taken from the dashboard, at daytime, and show it as if the photo is taken during
nighttime. The results are contained in Figure 7. The controls units used are contained
in Figure 8. We note that our projection puts the most weights on control units that are
both bright and situationally “close” to the target image (i.e. the center and right images
in the first row of Figure 8). This allows us to achieve painting the target image as if it
is nighttime. The images used for this example is downsampled to a size of 144 x 216
pixels from its original 720 x 1080 pixels to reduce computation time. Unfortunately, even
the downsampled size requires a rather extreme amount of computing power and working
memory for methods from Bonneel et al. (2016) and Werenski et al. (2022). We thus present
results from our method only in comparison to the Euclidean projection. Our results were

12
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computed on a cluster computer with 36 cores and 180GB of RAM within 1.5 hours. Lastly,
our output is correctly classified as a nighttime image by a pre-trained night-and-day image
classifier.

Figure 8: Control units used in simulation for Section 4.3.

5. Application to Causal Inference Via Synthetic Controls

When analyzing the causal effect of treatment on a unit that is observed over many time
periods with an intervention in one time period, such as that of public policies or medical
interventions on individuals, there is often no comparable control unit that can capture
the treated unit’s underlying characteristics and trend over time. The classical synthetic
controls method (Abadie and Gardeazabal, 2003; Abadie et al., 2010) aims to create a
suitable control unit by replicating the pre-treatment outcome trends of the treated unit,
using some optimally chosen set of control units, the synthetic control unit. This is achieved
by projecting the observed characteristics of the target unit onto the convex hull defined
by the characteristics of control units in the pre-treatment periods. The optimal weights
obtained by this projection, therefore, describe how much each control unit contributes to
the target unit’s counterfactual outcome in the post-treatment period (Abadie, 2021).
Current developments in the synthetic control method literature focus on vectors as the
outcome of interest. The trend over time of the outcomes are assumed to be generated via
latent factor models, and principal component analyses generate counterfactual outcomes
(Agarwal et al., 2019; Athey et al., 2021; Bai and Ng, 2021). There is, separately, a growing
literature that relates the synthetic control method for vector-valued outcomes to online
learning and machine learning; see, for example, Chen (2023); Bottmer et al. (2023); Agarwal
et al. (2023), and references therein. In contrast to the existing methods, our proposed

13
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method of projection can be applied to define a synthetic controls estimator for outcomes
that are multivariate measures instead of vectors; in that, it generalizes the recent univariate
method of distributional synthetic controls introduced in Gunsilius (2023) and allows to
nonparametrically disentangle multivariate heterogeneous treatment effects.

As demonstration, we study the effect of health insurance coverage following state-level
Medicaid expansion in Montana in 2016. The variables of interest are Medicaid coverage,
employment status, log wages, and log hours worked. For control units, we use the twelve
states for which such expansion has never occurred; these are: Alabama, Florida, Geor-
gia, Kansas, Mississippi, North Carolina, South Carolina, South Dakota, Tennessee, Texas,
Wisconsin, Wyoming. Additional information can be found in Appendix F.

We estimate “synthetic Montana”, i.e. Montana had it not adopted Medicaid expansion,
by estimating the optimal weights A* using data from 2010 to 2016, and solving (8) over
the joint distribution of the four outcomes over the time period from 2010 to 2016, which
generates measures in d = 28 dimensions. We note that we estimate one set of optimal
weights—specifically, one for each control state—over the entire time period. We then esti-
mate the counterfactual joint distribution using data from 2017 to 2020, by using the optimal
weights \* and computing the weighted barycenter (Agueh and Carlier, 2011) of the control
states using these weights. Details of sample selection and estimating “synthetic Montana”
are described in Appendix F. The results of the general causal effect of the Medicaid expan-
sion policy in Montana averaged over the years 2017 — 2020 are illustrated in Figures 9, 10,
11, 12.
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Figure 9: Counterfactual (blue) vs actual (orange) Medicaid coverage in Montana from 2017
to 2020.
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Figure 10: Counterfactual (blue) vs actual (orange) employment statuses in Montana from
2017 to 2020.

Consistent with findings in Courtemanche et al. (2017) and Mazurenko et al. (2018), we
find significant first- and second order effects of Medicaid expansion. From Figures 9 and 10,
“synthetic Montana” has much lower proportion of individuals insured under Medicaid, sug-
gesting that expanding Medicaid eligibility directly affects the extensive margin of Medicaid
enrollment. The disemployment effect is less pronounced in comparison to the enrollment
effect we estimated, but nonetheless positive and nontrivial, consistent with the findings in,
e.g., Peng et al. (2020), but inconsistent with those in, e.g., Gooptu et al. (2016). We do not
find positive second-order effects, and the results we obtained are summarized in Figures 11
and 12. Additional details related to this application can be found in Appendix F.

Figure 11: Counterfactual (blue) vs actual (orange) log wages in Montana from 2017 to 2020.
Histogram of data distribution is shown on the left, and cumulative distribution function is
shown on the right.
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Figure 12: Counterfactual (blue) vs actual (orange) log labor hours supplied in Montana
from 2017 to 2020. Histogram of data distribution is shown on the left, and cumulative
distribution function is shown on the right.

6. Conclusion

We proposed a projection method between sets of probability measures supported on R?
based on the tangent cone structure of the 2-Wasserstein space. Our method seeks to best
approximate some general target measure using some chosen set of control measures. In
particular, it provides a global optimal solution that is unique conditional on fixing the
optimal transport plans. It also demonstrably performs well compared to existing methods
while being significantly more efficient in its implementation via a regression approach. Fur-
thermore, it can be applied to general, that is, not necessarily regular, probability measures,
in contrast to existing methods.

We derive statistical properties of the method when the respective measures are replaced
with their empirical analogues. We also showcase the empirical performance of the method
in several applications, the main one being in the field of causal inference where we generalize
the concept of synthetic controls (Abadie et al., 2010; Abadie, 2021) to general multivariate
probability measures. The proposed method still works without restricting optimal weights
to be in the unit simplex, which would allow for extrapolation beyond the convex hull of
the control units, providing a notion of tangential regression. It can also be extended to a
continuum of measures, using established consistency results of barycenters (e.g. Le Gouic
and Loubes, 2017).
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Appendix A. Existing Methods Based on Wasserstein Barycenters, and
the Special Case of a Regular Target Measure

Existing methods such as Werenski et al. (2022) rely on the notion of “Karcher means” as
mentioned in the main text. In that respect, the condition (4) is a sufficient condition for
P()) to be a “Karcher mean” (Karcher, 2014) in W5 (Zemel and Panaretos, 2019). In fact,
a “Karcher mean” of a set of measures {P;};c[s] is defined as the gradient of the Fréchet
functional in W5 and is characterized through (4) holding P(\)-almost everywhere. (4) is a
stronger condition because it is assumed to hold at every point in the support of P()), not
just almost every point. Alvarez-Esteban et al. (2016) use this characterization to introduce
a fixed-point approach to compute Wasserstein barycenters, and Werenski et al. (2022) use
this structure to introduce a replication approach for absolutely continuous measures whose
densities are bounded away from zero and whose target measure lies inside the convex hull of
the control measures. Related is the recent definition of weak barycenters in Cazelles et al.
(2021), where the authors replace the optimal transport maps from the classical optimal
transport problem by the weak optimal transport problem introduced in Gozlan et al. (2017).

Heuristically, this characterization is that of a deformable template. A measure P is a
deformable template if there exists a set of deformations {wj }j:L..-, ; such that 1, #P = Pj,
in a way that their weighted average is “as close to the identity” as possible. In our setting
1 = Vy; —1Id (Anderes et al., 2015; Boissard et al., 2015; Yuille, 1991).

In our setting of interest, our tangential projection reduces to

2
J

A* £ argmin|| Y~ \; (Vep; —1d) : (12)
AeAS j=1
L2(Po)

where V; are the optimal transport maps between the target Py and the control measures
P;, j € [J]. In contrast to Werenski et al. (2022) the target measure does not need to lie
inside the convex hull of the other measures.

Based on these definitions we can show that our approach is a projection of the target

Py onto Cop, ({Pj }3-7:1) in the case where P is regular.

Proposition 4 Consider a regular target measure Py and a set {Pj}je[[J]] of general control
measures. Construct the measure Py as

J

Pr 2 expp, [ D Xj(Ve, —1d) |
j=1

where the optimal weights \* € A7 are obtained by solving (12) and V; are the optimal
maps transporting Py to Pj, respectively. Then Py is the unique metric projection of Py onto

cor, ({Pi}L1):
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Appendix B. Proofs

Proof [Proof of Proposition 4] Define the following closed and convex subset C C L?(P,)
for fixed optimal transportation maps between Fy and P;, denoted V;:

J
CEJfel’(P): f=) X\Vey;for some A e A7
j=1
Recall that the transport maps V; exist since Py is regular. Using C, we can rewrite (12)

as
2

argmin Z AV —Id = argmin|| f — Id||%2(PO) ,
Aea’ T fec
L2(P0)

which by definition is the metric projection of Id onto C. Since C is a non-empty closed
and convex subset of the Hilbert space L?(Fp), this metric projection exists and is unique
(Aliprantis and Border, 1999, Theorem 6.53). Moreover, if Id € C, then 7¢ = Id; otherwise,
me € OC, where OC is the boundary of C (Aliprantis and Border, 1999, Lemma 6.54).

Since Py is regular, the exponential map is continuous. In fact, for every j # k,

WE2(P;, P) = W2(Veoy) 3 Po. (Vo) Po) < / Vi — V| dPo(a) .

In other words, the distance between P; and Py in W2(R?) is smaller than that between
corresponding elements V;, Vyy, in the tangent space. This implies continuity of the
exponential map.

Furthermore, in this regular setting, the exponential map sends convex sets in 7 p, Wa
to generalized geodesically convex sets in Wa. Mechanically, for any two (scaled) elements
t(Vyp; —1d) and s(Vyy, —1Id) in Tp, Wa, and any p € [0, 1],

expp, (pt(Vep; —1d) + (1 — p)s(Vp, — 1d))
=expp, ((ptV; + (1 = p)sVer) — (pt + (1 — p)s) Id)

~ t 1—p)s
=expp, | p [%thj + (ﬁp)Vgok] —1d

= ([ptij + (1= p)sVer] +(1—p) Id># Py
- ([pt(wj —1d) + (1= p)s(Veoy, — Id)] + Id># P,

where p £ pt + (1 — p)s. This is a generalized geodesic connecting P; and Py, via the
optimal transport map between them and Py (Ambrosio et al., 2008, section 9.2). The
same argument holds when extending generalized geodesics to generalized barycenters by
taking convex combination of more measures than a binary interpolation with respect to p.
Mechanically, for any A € A7 and t; > 0 for all j € [J],

J
expp, Z%‘%’(V@j —1d) | =expp, ZA tiVoj — Z/\ t,1d

j=1
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J
=expp, | A1 | Y PiVe; —1d
j=1

[

= Z )\jtjngj + (1 — ﬁ]) Id Po
j=1

#

J
= ANiti(Ve; —1d) | +1d | Py,
j=1
- #

where p; £ Z}'le Ajt;j. This proves the exponential map is generalized geodesically convex.

From above it follows that Pr = expp (m¢) is either in the interior of C, which is the
case if Id € C, or on its boundary: since m¢ € 9C, expp,(nc) € expp,(OC). By continuity
of the exponential map it follows that expp (9C) = dexpp, (C). Combining all steps above

show that Py is a geodesic metric projection of Py onto the geodesic convex hull of {P] };.]:1. |

Proof [Proof of Proposition 1] The result follows from the same argument as the proof of
Proposition 4. Theorem 12.4.4 in Ambrosio et al. (2008) shows that Tp, W2 is the image
of the barycentric projection of measures in the general tangent cone: b, (z) is an optimal
transport map if v is an optimal transport plan. But the exponential map satisfies

expp, (v) = (v+1d), P for all v € Tp, Wa.

This implies that

J J

D * * g J

Pr 2 expp, [ 3o X, —1d | = [ YAy, |, Poe Con ({B}L) -
J=1 Jj=1

since the convex combination of elements in the subgradients of convex functions lie in
the subgradient of a convex function (provided the subgradient of each convex function is
nonempty, which is the case here). Then the continuity and generalized convexity of the
exponential map for elements in the regular tangent space 7p, Wo implies the result. |

Proof [Proof of Proposition 2] We split the proof into two parts. In the first part we prove
the convergence in probability of the family of objective functions (11) to their population
counterparts (8) if the empirical measures IPy, converge weakly in probability to the popu-
lation measures P;. In the second step we use the fact that \* is a classical semiparametric
estimator (Andrews, 1994; Newey and McFadden, 1994) to derive the convergence of the
weights.
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Step 1: Convergence of the objective functions To show the convergence of the of
the objective functions for obtaining the weights A*, we write

J 2 J 2
> " Ajbo; —1d — 1> Ajby; —1d
=1 L2(Py) =1 L2(Pn,)
2 2

J J
= / > Ajboj(z) — @ dPO—/ > Ajboj(z) — x| diPy,
j=1 j=1

We hence want to show that

2 2

J
lim /Z)\jboj(aj)—:n dPy(z /ZA boj(z) — x| dPy,(z)| =0,
/\ij—>OO j=1

where A; N; = min {No,...,Ny}.
We split the result into two parts. The first part shows that

2 2

lim inf / Z/\ bOJ 330) — X0 leNO(.%'()) / Z)\ boj .ZC()) — X dPg(:L’o)
: Rd
]:

N;j Nj—o0 j=1

In the second part we use the L?(P,) convergence of the barycentric projections to prove
that the limit exists and coincides with the limit inferior.
For the first part, we have

2
J

lim inf / > " Ajboj(xo) — wo| AP, (o) =

N;j Ni—o0 JRd j=1

2

lim inf Njx; —xo| dyn(zo,x1,...,27) ,
/\jN]'*)oo/Rd)J+1 z_: J 0 ﬂyN( 01 J)

where Ay (zo, x1,...,27) is a measure that solves
4 2
min / Z)\]’li]_xO} d'Y:'YEFl(ﬁOla-na:Y\OJ) )
(R)J+1 “—

~o; are the optimal couplings between IPy, and W’Nj = (l;oj)# IPn,. Since all measures

are defined on the complete and separable space R?, and by assumption of finite second
moments, i.e.

max sup/ ’1:]- fxo‘Qd%j < +o0,
i€lJ] N
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it holds that each sequence 7p; is tight by Ulam’s theorem (Dudley, 2018, Theorem 7.1.4).
Using the fact that A € A7 and Ay € T'1 (Fou, - - -, 307), applying Jensen’s inequality gives
us

2

2 1~
max sup Ajxj — x| dyy < maxsu Aj xj — 29| dYpj < 400,
sl Ny / e Z R I ¥ NP; / of oy

which implies that 4y is tight. By Prokhorov’s theorem, there exists a subsequence 7y, that
weakly converges to a limit measure . Therefore, by the continuity of the map (xo,z;) —

> ; Ajx; — xo, it follows from classical convergence results (Ambrosio et al., 2008, Lemma
5.1.12(d)) that

2

lim inf Aj dy S =
A;I}Vljlgoo/Rd . Z jT5 — 0 AN (w0, 1, )

2

7
/(Rd)Jﬂ Z)‘jxj —xo| dy(zo,...,zJ) -
j=1

Furthermore, by the same argument via Jensen’s inequality, i.e.,

2

J
2
Nz — 0| dy(zo,. .. ay) < N — o] dyoj (o, 7
[Rd)]+l ; ij 330 ’Y(ZEO’ ’ Z/ d)2 ‘ J:L.] ':L'O‘ PYO.](xO’x.]) < —'I—OO 9

it follows that the limit v € T'; (701, - .., Y0s) exists.
Now note that by the definition of disintegration it follows that (Ambrosio et al., 2008,
Lemma 5.3.2)

7EF1(’}/01)"')’YOJ) < Yo EF(’YI|1’Q""7’}/J|$O> )

where
v = /’Yxo dPy(xzo) and o5 = /%‘m dPy(o)

are the disintegrations of 7 and 7o, with respect to Py, respectively. Therefore, we have

2

J
/(Rd)]+1 Z ijj — o d'Y(xO’ cee xj)
7j=1

2
J
:// S 12N = xo| dyeg (@, ) dPo(ao)
R J(RY)

2

J
Z\/ / J Z)\]CU]—.YJO d7$0(x1;---,xj) dPO(xO)
R |J(R)™ \ j
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2
J
:/ Z)\J/ JiL‘jd")’xO(ZL‘l,...,:L'J)—l’o dP()(l’o)
RU= /(RY)

2

J
:/Rd Z)‘J‘/ 2 dYjjzo (25) — 20| dPo(z0)
j=1

Rd
2

J
:/Rd > Ajboj (o) — 0| dPo(wo)
i=1

where the third lines follows from Jensen’s inequality and the fifth line from the fact that
Yoo €T (71|a:07 .. ,7J|x0>. This shows the first part.

For the second part we use the fact that each barycentric projection on(:vl) is an optimal

transport map between IPy, and P N, if Ao; is an optimal transport plan between IPy, and
IP,, which follows from Theorem 12.4.4 in Ambrosio et al. (2008). As before, we know that

(i?\Oj)# IPy, is a tight sequence that converges to some ﬁj By definition and the fact that

on is the gradient of a convex function between IPy, and P Njs on is the unique optimal

transport map between IPy, and P N, for all N; and all j. Since the measures P; have finite
second moments by assumption, we have

. 2 115 .
lim sup / |z;|°dIPy; = limsup /
NQ/\NJ‘A)OO Rd No/\NjHOO Rd
= limsup /
NoAN;—o00 JRd

: 2~
< limsup / Q}mj’ dqo; (o, x5)
No/\Nj-}OO (Rd)

~ 2
boj (1:0)‘ dIPNo

2
dIPy,

/Rd 5 dYj|z, (%)

2
:/(Rd)2 |25]” dyo; (20, ;) < +o0 |

where the last equality follows from the tightness of 7, as shown earlier. Therefore, by
standard stability results for optimal transport maps (Segers, 2022; Panaretos and Zemel,
2020), it holds that E@j converges uniformly on every compact subset K C R? in the support
of the limit measure ]Bj, that is

lim su Eo-mo —v;i(xg)| =0,
s sup [Py (o) = vj(an)
where v; is the optimal transport map between Py and ]Sj
We now show that v; = by; Py-almost everywhere. From the local uniform convergence,
we can then derive “strong L?-convergence” (Ambrosio et al., 2008, Definition 5.4.3) of the
potentials:

lim sup H/l;oj ’

No/\Nj%OO

L2(Py,) o ||UjHL2(P0)
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§]\}§i’f]1v§ipoo HbOJ" L2(Pyy) HUJ'HL2(|PNO) +1§\1;13_s>101£) HUJ'HL2(|PNO) - HUJ'HLQ(PO)
§]\}3ifjlvjipoo HbOj - ’Uj‘ L2(Pay) + limjgop H”J'HL2(|PNO) - H”J’HL2(PO)

Now the first term converges to zero by Holder’s inequality and the local uniform convergence
of the optimal transport maps from above. The second term satisfies

lim sup HUjHL2(|PNO) - ijHL2(PO)

N0—>OO
1/2 1/2
=lim sup </ ‘vj(xo)|2d|PN0> - </ ‘vj(mo)‘QdPo>
N0~>oo Rd Rd
1/2

glimsup/ !vj(:cg)‘ZleNO—/ ‘Uj(x[))‘2dP0
Rd R4

No—o00
But since Py has finite second moments, it holds that this term also converges to zero.
Based on this we can show that 7p; = (Id,goj) converge weakly to vo; = (Id, Uj).
Indeed, if 7p; is a limit point of the sequence 7y;, it holds that
/ ) |xj‘2d’yoj(x0,xj) < liminf / ) ’xjfd%j(xg,xj)
(R?) (R?)

No/\Nj%oo

i 2 .
< limsup / 2’%" dAoj (o, ;)
NoANj—o0 J (R4)

—~ 2
boj (o) P, (w0)

= limsup/
No/\Nj-)OO Rd
2
:/ |vj (o) | dPo(xo) -
R4

Disintegrating the left-hand side with respect to Py, and applying Jensen’s inequality, gives
2 2
/ |z doj (o, ) = / / |25]” Al (25) A Po (o)
(R?) Re JRd

2
> /Rd /Rd 25 Yjlay (25)

/ ‘boj(xo)‘ZdP()({L‘o)S/ ‘vj($0)|2dPo(x0).
Rd Rd

But since v; is an optimal transport map between Py and ]5] by definition, it holds that

/ ‘boj(xo)‘zdpo(wo)Z/ ‘Uj(l‘0)|2dpo($0),
Rd Rd

which implies that equality holds and we have that

/Rd Uboj(ﬂﬂo)\2 — \Uj(xo)\Q] dPy(x0) =0 ,

dPy(zg) = /Rd \bOj(iﬂo)FdPo(l‘o) )

that is,
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which implies that by; = v; FPy-almost everywhere. We have hence shown that (Id,goj) 4 P,
converges weakly to (Id, boj) 4 Py for all j, where the barycentric projection by, is the optimal

transport map between Fy and ]5J (e.g. Villani, 2003, Theorem 2.12.(iii)).

Moreover, we have shown “strong L?-convergence” of the barycentric projections in terms
of Definition 5.4.3 in Ambrosio et al. (2008). Since this holds for all j, it also holds for their
convex combination for fixed weights A € A”/. Putting everything together, we then have

that
2 2

J
lim (Y Ajboj — Id =D Ajbo; —1d
Jj= L2(|PNO) Jj=1

Since all observable measures IP; are empirical measures, they converge weakly in probability
(Varadarajan, 1958), which implies that

L2(P)

2 2
J

— 11" Ao —1d >e| =0 foralle >0.
j=1

J
lim P || Ajbo; —1d
= L2(P)

/\j Nj*)OO
L2(IPN0)

This shows convergence in probability of the objective function for fixed A.

Step 2: Convergence of the optimal weights //\\7\{ The convergence of the optimal
weights now follows from standard consistency results in semiparametric estimation. In
particular, the objective functions are all convex for any A € R/, which implies that they
converge uniformly on any compact set (Rockafellar, 1970, Theorem 10.8), so the objective
function converges uniformly on A”7. Now a standard consistency result like Theorem 2.1 in
Newey and McFadden (1994) then implies that

lim P ( Ny A
N, Nj—ro0

>6>:0 foralle >0,

which is what we wanted to show. Note that the result can also be shown if we allow the
weights A to be negative, i.e., if we only require that Z}]:1 Aj = 1. In this case, the fact that
the objective functions are convex and coercive implies that an optimal A\* will be achieved
at the interior of the extended Euclidean space, from which consistency follows by Theorem

2.7 in Newey and McFadden (1994). |

Proof [Proof of Corollary 3] We want to show that (Z‘j]:l 5\}*\,] Boj># IPn, converges weakly

in probability to (Z}le )\;fb()])# Py, where ;\*N £ (5\}‘\[1, ceey S\}‘VJ) are the optimal weights

obtained in (11) and (8), respectively. The result follows by applying the extended contin-
uous mapping theorem (van der Vaart and Wellner, 2013, Theorem 1.11.1) as follows.

AsAshkon in the proof of Proposition 2 we have “strong L?-convergence”’ of the maps
ijl )\}"Vj bo; — Id to ijl Ajbo; — Id. Therefore, by Theorem 5.4.4 (iii) in Ambrosio et al.
(2008), it holds that
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AjNj—ro0

J
im [ f 20, »_ A, boj(w0) — o | dIPw, (o) =
R -
7j=1

J

/Rd f $0,Z/\§60j($0) — o | dPy(z0)

J=1

for any continuous function such that |f(zo)| < C1 4 Ca [To — xo|® for all g in the support
of Py, where C1,(Cy < 400 are some constants and Tg in some element in the support of
Py (Ambrosio et al., 2008, equation (5.1.21)). In particular, this holds for any bounded and
continuous function f, which implies that

J J
im [ f > AR boj (o) dIPNO(xo):/df > Niboj(xo) | dPo(xo)
R . R -
7j=1 7=1

/\ij—}OO

for any bounded and continuous function, which implies that (Z}'le X*N] 30j> M IPn,, converges

weakly to (ijl X;boj)# Py if Py, converge weakly to Pj, j € [J].

Now we apply the extended continuous mapping theorem (van der Vaart and Wellner,
2013, Theorem 1.11.1). Equip 5(R?) with any metric d(-,-) that metrizes weak conver-
gence. We define the maps ¢ : X;']:o (QQ(RC[), &) = <<@2(Rd), J) by

J

J
g(Po,...,Py) = Z/\;bOj Py,
Jj=1 #
and analogously for their empirical counterparts gy. Note that g and gy are non-random
functions if the measures P; and IPy; are non-random themselves for all j € [J]. Moreover,
by definition, g and gy are continuous maps because Zj:l Ajboj are gradients of convex
functions, which are continuous Fy-almost everywhere; the same thing holds for their em-

pirical counterparts. Now from what we have shown above and in Proposition 2, it holds
that

gN (lPNO,...,leJ) —>g(P0,...,PJ)
as Py, converge weakly to P;. Since {IPy; }3]:1 here instead are the only random elements

in X;-]:[) (ﬁg(Rd), &) , the extended continuous mapping theorem implies that
j

A]g&@P(d (gN (IPN()7"'7IPNJ) ,g(Po,...,PJ)> >E> =0 foralle >0,

which is what we wanted to show. [ |
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Appendix C. Additional Details of MINIST Experiment
We provide the control images used in the MNIST experiment described in Section 4.1 of

the main text.

Figure 13: Control images used for MNIST experiment in Figure 2.

Notes: For Panel (a), the optimal weights from top left to bottom right are: (our method)
(0.149, 0.025, 0, 0, 0.101, 0.369, 0.051, 0.101, 0.092, 0.109); (Werenski et al., 2022) (0.025,

0.015, 0, 0.103, 0.108, 0.260, 0, 0.268, 0, 0).
For panel (b), the optimal weights from top left to bottom right are: (our method) (0, 0.628,
0, 0, 0, 0, 0.142, 0.125, 0, 0.106); (Werenski et al., 2022) (0.284, 0.159, 0, 0, 0, 0.329, 0.248,

0.276, 0, 0).
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Figure 14: Control images used for MNIST experiment in Figure 3.

Notes: For Panel (a), the optimal weights from top left to bottom right are: (our method)
(0.107, 0, 0, 0, 0.118, 0.388, 0.0340, 0.065, 0.1888, 0.095); (Werenski et al., 2022) (0.120, 0,

0, 0, 0, 0.657, 0, 0.223, 0, 0).
For panel (b), the optimal weights from top left to bottom right are: (our method) (0.109,
0.011, 0.057, 0.196, 0.058, 0.355, 0, 0.096, 0.082, 0.034); (Werenski et al., 2022) (0, 0.284, 0,

0.469, 0, 0.133, 0.113, 0, 0, 0)..
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Appendix D. Additional Simulation Results With 2D Empirical
Distributions

To better illustrate how the projection method works, we illustrate an example involving
very simply 2D empirical distributions, which consist of the following measures:

1.

Target measure: supported with equal weights on 4 points in the unit cube ABCD,
where A = (0,0), B=(1,0), C =(1,1), and D = (0,1).

. Control measure 1: two-point measure supported on AB, with equal weights on A and

B.

. Control measure 2: two point measure supported on AC', with equal weights on A and

C.

. Control measure 3: two point measure supported on %AD + %BC’ , with equal weights

on each of these midpoints.

. Control measure 4: three point measure supported on one edge BC, and on the

midpoint of the cube, with equal weights on B, C, and the said midpoint.

The target and control measures are illustrated in Figure 15. With this example, we illustrate
the barycentric projection maps in Figure 16. This is an example where some optimal
transport plans need not be unique. The method automatically picks one of them and the
corresponding tangential projection is unique for these given transport plans.
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Figure 15: Illustrations of target and control measures used in simulation, and the optimal
projection obtained from our method.

29



GUNSILIUS, HSIEH, AND LEE

Y Y
12 12
10@ 9 10@ r
08 08
06 06
o4 04
0z 02

oo 02 04 06 08 10 12 % [;0 02 04 06 08 10 12 %

(a) Barycentric projection associated with con- (b) Barycentric projection associated with con-
trol measure 1, applied to the target measure.  trol measure 2, applied to the target measure.

¥ ¥
13 12
109 o 108 ®
%
08 08 "
e
06 06
"
H b
04 04
=
02 02 .
r/’
r//‘
! T T T T X st - - T T - X
oo 02 04 06 08 10 12 ol 02 04 06 08 10 12

(¢) Barycentric projection associated with control (d) Barycentric projection associated with con-
measure 3, applied to the target measure. trol measure 4, applied to the target measure.

Figure 16: Ilustrations of barycentric maps associated with each control measure, applied
to the target measure. The target and control measures of the experiment are illustrated in
Figure 15.
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Appendix E. Runtime Complexity of the Proposed Method

As mentioned in the main text, the proposed method consists of two main steps: obtaining
the optimal transport maps between the target and each of the J control units, and then
applying a regression constrained to the unit simplex to obtain the optimal weights. In
the case where optimal maps do not exist, we estimate the optimal transport plans via
barycentric projections, which are sums over columns of data matrices depending on the
respective data samples of the measures. Assuming for simplicity that all measures have the
same number of data points IV, the complexity for this is O(N2J). The exact solver of the
optimal transport maps is of time complexity O(JN?log N) (Flamary et al., 2021).
The regression to obtain the optimal weights takes the form

2

N d [
A* = argmin f(\) = argmin Z Z Z Njbaoik(Tn) — Tk | s

rea’ ACAT p—1g=1 \j=1

There are many ways to solve this problem with different complexity dependencies. One
way to solve it is via projected gradient descent. The gradient V f(\) takes the form
Vf(\) = A\ —Z, where A := (ay,--- ,ay)' is the J x J matrix defined by the vectors @, :=
((A1: Ag), ..., (Ay: Ag)). Here, Aj = {V(p;"k(xn)} , is the N x d matrix for
k=1,...,d;n=1,...,.N
fixed j and A;: A denotes the tensor double dot product A;: Ay = Zizl Zﬁf:l Ajo Ay,
where A; o Ay, denotes the Hadamard product between A; and A. Similarly, & is the J x 1
vector defined by stacking the scalar values x; := X: A;, where X = {x"k}n=1,...,N,k=1,..-,d’
is the N x d data matrix for j = 0.

Using the above approach, the complexity for the regression step consists of computing
the matrix A and the vector Z and solving the regression via projected gradient flow. The
construction of the matrix requires O(NdJ?) computations. If solved via gradient descent,
the complexity depends on the number of iterations s > 0. The overall complexity will be
O(NdJ? + J?%s) in this case. If another numerical method is used to solve this regression
problem, the complexity will be different.

To analyze runtime, we apply the method to an experiment with multivariate Gaussian
distributions. The time complexity of depends on the number of observations in the target
and control distributions (denoted N), and the number of controls in the control set (denoted
J), since we work with the data points and not a grid approach. Thus we vary N and J
while keeping the dimension d fixed. We define C19 = I1¢9 + 0.61_19, where I;g denotes the
10 x 10 identity matrix and 7_1¢ denotes the 10 x 10 matrix that takes the value 1 everywhere
except on the diagonal entries, and takes the value 0 on the diagonal. For the target and
each of J controls, we draw samples of size N from the Gaussian distribution N (0, Cyp).

Each entry in Table 1 is the runtime (in seconds) averaged over 2,000 iterations in
seconds.
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J=3 J=5 J =10

N =10 0.003710 0.004332 0.006003
N =100 0.009927 0.014531 0.025691
N =200 0.024859 0.038397 0.072219
N =300 0.083083 0.133285 0.263616

Table 1: Runtimes (in seconds) averaged over 2,000 iterations.

Appendix F. Details of Medicaid Expansion Application

Our implementation is available at the GitHub repository here. The images used can be
found in the repository; the Medicaid data can be downloaded from the Dropbox folder here.

We use the ACS data with harmonized variables made available by IPUMS, a unified
source of Census and survey data collected around the world. The data is at the household-
person-year level. For our application, we select the household head and the spouse as
our unit of analysis. The continuous outcomes are adjusted using the person-level sample
weights available in the data.

We adopt the following sample restriction criteria: we included individuals

e of working age, i.e. between ages 18 and 65

e who has no missing outcomes (for those listed in the main text)
e who has no top-coded responses

e who are either household heads or their spouses

The sample size breakdown by states are follows:

State Observations

Target
MT 25,173

Control
AL 106,464
FL 427,397
GA 227,659
KS 74,812
MS 61,505
NC 233,804
SC 107,905
SD 22,563
TN 152,470
TX 598,222
WI 157,410
WY 15,666

Table 2: Summary of the full data sample used to obtain A\*.
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We randomly select N = 1500 observations from each unit for estimating A*. In the Python
implementation, if the entries of the target and control data are large enough, (8) becomes
too large for CVXPY to compute an optimal solution numerically. Therefore, we introduce
a stabilizing constant to prevent this. This stabilizing constant is determined by the mean
value and dimensions of the target distribution, and the number of controls. The optimal
weights we obtained are sparse and are displayed in Table 3.

State AL FL | GA | KS | MS NC SC SD TN | TX WI WY
Weight | 0.184 | 0 0 0 0.174 0 0.010 | 0.513 0 0 0.119 0

Table 3: Estimated Weights for Control States.

To obtain an estimate of a treatment effect, the replication of the target in pre-treatment
periods and post-treatment periods needs to be comparable. Therefore, after obtaining the
optimal weights A\*, we compute the corresponding free barycenter

J
2\
P(\) = argmin » W3 (P, F))
PeZy(RY) =7 2

and check if this barycenter replicates the target distribution well. Implementation-wise, we
computed the free-support barycenter, using the POT package (Flamary et al., 2021); this
does not fix the support of the barycenter a priori, and allows it to be different from those
of the control distributions. This is captured in Figures 17, and suggests that the barycenter
constructed with these weights replicates the observed data well.

With the optimal weights \*, we estimate the counterfactual outcomes of interest for
the four years after Medicaid expansion in Montana (namely, between 2017 and 2020). This
involves solving the barycenter problem again, this time for post-intervention periods. We
plot the densities and distributions of the counterfactual outcomes in Figures 11 and 12 of
the main text.
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(a) Covered by Medicaid. (b) Employment status.
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(c) Log wage. (d) Log labor hours supplied.

Figure 17: Replicated (blue) vs actual (orange) Montana from 2010 to 2016.

Counterfactual Actual

Log wages 0.85 0.93

Log hours worked 1.55 1.74

Table 4: Variances of log labor and log hours worked across the post-intervention years.
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Figure 18: In blue: counterfactual Montana in the post-intervention periods. In orange:
actual Montana in the post-intervention periods.

To perform inference on the estimated causal effect, we use a placebo permutation test
in analogy to Abadie et al. (2010); Gunsilius (2023). The idea is to repeatedly apply the
procedure described above to each control unit, pretending in turn each control unit is the
treated unit. Post-intervention, if there exists an actual effect for the treated unit (Montana,
in this application), then the estimated effect for the actual treatment unit should be among
the largest.
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0.100
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0.050 4
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2010 2012 2014 2016 2018 2020 2010 2012 2014 2016 2018 2020

(a) (b)

Figure 19: In orange: Montana. In blue: pretending each control state listed in Table 2
is a treated state. Panel (a) shows results obtained from using weights computed over all
years in the pre-intervention period. Panel (b) shows results obtained from using weights
computed from averaging weights obtained in each years in the pre-intervention period.
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We plot the 2-Wasserstein distance between the treated, joint distribution of all outcomes
and the pre-/post-intervention optimal projection (i.e. the barycenter problem with A*). We
present two sets of results in Figure 19: in panel (a), the optimal projection is computed
using A* estimated using all years in the pre-intervention period; in panel (b), the A* used
is constructed from taking a simple average of weights estimated in each year of the pre-
intervention period. Our results suggest that the estimated causal effect is valid in the post-
intervention period, as we consistently observe the largest difference coming from Montana,
especially from 2017-2019. The effect is less pronounced in 2020, however.

To accompany Figure 19, we also compute p-values, which we denote by and define as
= r‘(fjﬁ), where di; is the 2-Wasserstein distance from the optimal projection to actual
distribution when the target unit is Montana, r(di;) is the rank of dy; amongst dj;s at given
time ¢, and J is the number of control units. Results are described in Table 5. A smaller
p¢ value indicates larger treatment effect. We observed that r(dy;) = 1 for 2018 and 2019,
implying a nontrivial effect of the Medicaid expansion in Montana during these years. The
values are p; are comparably higher in 2017 and 2020, which we attribute to the fact that it
was the first year of the policy implementation, and the COVID-19 pandemic, respectively.

Year (t) | p: (Weights Using All Years) | p: (Averaged Weights Over All Years)
2017 0.231 0.308
2018 0.077 0.077
2019 0.077 0.077
2020 0.535 0.385

Table 5: Estimated p; £ Tt(]ili) in the post-intervention period.
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