
Journal of Machine Learning Research 25 (2024) 1-28 Submitted 3/23; Revised 7/24; Published 10/24

PyPop7: A Pure-Python Library for Population-Based
Black-Box Optimization

Qiqi Duan1,2,∗ 11749325@mail.sustech.edu.cn

Guochen Zhou2,∗ 12132378@mail.sustech.edu.cn

Chang Shao3,∗ chang.shao@student.uts.edu.au

Zhuowei Wang4 zhuowei.wang@csiro.au

Mingyang Feng5 11856010@mail.sustech.edu.cn

Yuwei Huang2 12332473@mail.sustech.edu.cn

Yajing Tan2 12332416@mail.sustech.edu.cn

Yijun Yang6 altmanyang@tencent.com

Qi Zhao2 zhaoq@sustech.edu.cn

Yuhui Shi2,† shiyh@sustech.edu.cn
1Harbin Institute of Technology, Harbin, China
2Southern University of Science and Technology, Shenzhen, China
3University of Technology Sydney, Sydney, Australia
4Space and Astronomy, CSIRO, Marshfield, Australia
5University of Birmingham, Birmingham, UK
6Tencent Inc., Shenzhen, China

Editor: Sebastian Schelter

Abstract

In this paper, we present an open-source pure-Python library called PyPop7 for black-box
optimization (BBO). As population-based methods (e.g., evolutionary algorithms, swarm
intelligence, and pattern search) become increasingly popular for BBO, the design goal of
PyPop7 is to provide a unified API and elegant implementations for them, particularly in
challenging high-dimensional scenarios. Since these population-based methods easily suf-
fer from the notorious curse of dimensionality owing to random sampling as one of core
operations for most of them, recently various improvements and enhancements have been
proposed to alleviate this issue more or less mainly via exploiting possible problem struc-
tures: such as, decomposition of search distribution or space, low-memory approximation,
low-rank metric learning, variance reduction, ensemble of random subspaces, model self-
adaptation, and fitness smoothing. These novel sampling strategies could better exploit
different problem structures in high-dimensional search space and therefore they often re-
sult in faster rates of convergence and/or better qualities of solution for large-scale BBO.
Now PyPop7 has covered many of these important advances on a set of well-established
BBO algorithm families and also provided an open-access interface to adding the latest or
missed black-box optimizers for further functionality extensions. Its well-designed source

∗. These three authors contributed equally.
†. Corresponding author.

c©2024 Qiqi Duan, Guochen Zhou, Chang Shao, Zhuowei Wang, Mingyang Feng, Yuwei Huang, Yajing Tan, Yijun
Yang, Qi Zhao, and Yuhui Shi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0386.html.

https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/pypop
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0386.html


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

code (under GPL-3.0 license) and full-fledged online documents (under CC-BY 4.0 license)
have been freely available at https://github.com/Evolutionary-Intelligence/pypop

and https://pypop.readthedocs.io, respectively.

Keywords: Black-box optimization, Evolutionary computation, Large-scale optimiza-
tion, Open-source software, Population-based optimization, Swarm intelligence

1. Introduction

An increasing number of population-based randomized optimization methods (Campelo and
Aranha, 2023; Aranha et al., 2022; Swan et al., 2022) have been widely applied to a diverse
set of real-world black-box problems such as direct search (Moritz et al., 2018) of deep
neural network-based policy for reinforcement learning (Salimans et al., 2017). In typical
black-box optimization (BBO) scenarios, the lack/unavailability of gradient information
severely limits the common usage of powerful gradient-based optimizers such as gradient
descent (Amari, 1998) and coordinate descent (Wright, 2015), a problem worsened by noisy
objective functions (Arnold and Beyer, 2003). Instead, a variety of black-box (aka zeroth-
order or derivative-free or direct search) optimizers from multiple research communities are
natural algorithm choices of practical acceptance in these challenging BBO cases (Varelas
et al., 2018). Please refer to e.g., the latest Nature review (Eiben and Smith, 2015) or the
classical Science review (Forrest, 1993) for an introduction to population-based (also called
evolution/swarm-based) optimization methods e.g., evolutionary algorithms (Miikkulainen
and Forrest, 2021; Bäck et al., 1997), swarm intelligence (Kennedy et al., 2001; Bonabeau
et al., 1999), and pattern search (Torczon, 1997).

Over the past ten years, rapid developments of deep models (LeCun et al., 2015;
Schmidhuber, 2015) and big data have generated a large number of new challenging high-
dimensional BBO problems, e.g., direct policy search of deep reinforcement learning (Sal-
imans et al., 2017; Moritz et al., 2018), black-box attacks of deep neural networks (Ilyas
et al., 2018), black-box prompt tuning of large language models (Sun et al., 2022), and
black-box optimization of complex generative models (Choudhury et al., 2023). These new
large-scale BBO problems have greatly urged plenty of researchers from different science
and engineering fields to scale up previous black-box optimizers via efficient improvements
to existing (mostly random) sampling strategies (Varelas et al., 2018) or to propose novel
versions of black-box optimizers targeted for large-scale scenarios, given the fact that ran-
dom sampling strategies adopted by most of them suffer easily from the notorious curse of
dimensionality (Nesterov and Spokoiny, 2017; Bellman, 1961).

In this paper, we design an open-source pure-Python software library called PyPop7,
in order to cover a large number of population-based black-box optimizers, especially their
large-scale variants/versions owing to their practical potential for BBO problems of interest.
Specifically, our goal is to provide a unified (API) interface and elegant implementations
for them, in order to promote research repeatability (Sonnenburg et al., 2007), systematic
benchmarking of BBO (Hansen et al., 2021; Meunier et al., 2022), and most importantly
their real-world applications. By product, we have also provided an open-access (API)
interface to add the latest or missed black-box optimizers as further functionality extensions
of this open-source library. Please refer to Figure 1 for its core conceptual framework,
which is mainly consisting of 6 basic components (computing engines, a family of black-box

2

https://www.gnu.org/licenses/gpl-3.0.en.html
https://creativecommons.org/licenses/by/4.0/deed.en
https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/DistributedEvolutionaryComputation


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

Figure 1: A conceptual framework of PyPop7 for black-box optimization (BBO), where
all optimizers colored in orange are mainly designed for large-scale BBO.

optimizers, a set of util functions, two test protocols, a series of benchmarking, and full-
fledged documentations). For details to each of them, please refer to Section 3 and Section 4
or its open-source repository (available at GitHub) and its online documentations (available
at readthedocs.io).

2. Related Work

In this section, we will introduce some existing Python libraries including population-
based optimizers for BBO (e.g., evolutionary algorithms and swarm intelligence) and com-
pare/highlight main differences between our work and them, as presented below.

Recently, Hansen et al. (2021) released a well-documented benchmarking platform called
COCO for comparing continuous black-box optimizers, after experiencing more than 10-
years developments. COCO, however, focuses on the systematic design of benchmarking
functions and does not provide any optimization algorithms up to now. Another similar
work is the popular NeverGrad platform from Facebook Research, which covers a relatively
limited number of large-scale algorithm versions (Rapin and Teytaud, 2018). Therefore, our
pure-Python library, PyPop7, can be seen as their complement particularly for large-scale
BBO. In our online tutorials, we have shown how to connect black-box optimizers from our
library with these two well-designed benchmarking platforms for BBO.

3

https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io/en/latest/
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/facebookresearch/nevergrad
https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io/en/latest/


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

In the past, DEAP (Fortin et al., 2012) provided a Python platform for rapid proto-
typing of population-based optimizers, but leaves the challenging performance-tuning task
to the end-users. This is obviously different from our library wherein performance-tuning
is attributed to the developers except the coding of the fitness function to be optimized.
Although PyBrain (Schaul et al., 2010) mainly provided a class of natural evolution strate-
gies (NES), now it seems to be not maintained anymore and does not cover many other
BBO versions in our library. The well-designed PaGMO (Biscani and Izzo, 2020) library for
parallel population-based optimizers has been actively maintained for more than 10 years.
However, its current focus turns to multi-objective optimization rather than large-scale
BBO, which is the focus of our paper.

Overall, our Python library (called PyPop7) have provided a large set of rich and pow-
erful optimizers for BBO from multiple research communities (e.g., artificial intelligence,
machine learning, evolutionary computation, meta-heuristics, swarm intelligence, operations
research, mathematical optimization, statistics, automatic control, and etc.).

3. A Modular Coding Framework of PyPop7

In this section, we will introduce the unified interface of PyPop7 (via objective-oriented pro-
gramming), testing protocols for pytest-based automatic checking and artificially-designed
repeatability reporting, its computational efficiency (via comparing PyPop7 with one pop-
ular counterpart), and benchmarking on modern ML tasks for large-scale BBO.

3.1 A Unified API for Black-Box Optimizers

For simplicity, extensibility, and maintainability (arguably three desirable properties for
any software), PyPop7 has provided a unified API for a large set of black-box optimizer
versions/variants within the modular coding structures based on powerful objective-oriented
programming (OOP) (Lutz, 2013). At first glance, its main organization framework is
briefly summarized in Figure 1, wherein two levels of inheritance are employed via OOP
for any instantiated optimizers in order to maximize reuse and unify the design of APIs.
For computational efficiency (crucial for large-scale BBO), our library depends mainly on
four open-source high-performance scientific/numeric computing libraries: NumPy (Harris
et al., 2020), SciPy (Virtanen et al., 2020), Scikit-Learn (Pedregosa et al., 2011) and Numba
as underlying computing engines.

In our library, currently all of these black-box optimizers have been roughly classified
into a total of 13 optimization algorithm classes, as presented below. To gain insights
into their application cases, we have built an online website to specifically collect their
applications, which have been published on many (though not all) top-tier journals and
conferences (such as, Nature, Science, PNAS, PRL, JACS, PIEEE, Cell, JMLR, etc.)1.

• Evolution Strategies: ES (Akimoto et al., 2022; Vicol et al., 2021; Ollivier et al., 2017;
Diouane et al., 2015; Bäck et al., 2013; Rudolph, 2012; Beyer and Schwefel, 2002;
Hansen and Ostermeier, 2001; Schwefel, 1984; Rechenberg, 1984),

1. It is a long-term open project, which is still actively updated in the near future.

4

https://github.com/DEAP/deap
https://github.com/pybrain/pybrain
https://github.com/esa/pagmo
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/pypop
https://docs.pytest.org/
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/pypop
https://numpy.org/
https://scipy.org/
https://scikit-learn.org/stable/
https://numba.pydata.org/
https://github.com/Evolutionary-Intelligence/DistributedEvolutionaryComputation
https://www.nature.com/
https://www.science.org/journal/science
https://www.pnas.org/
https://journals.aps.org/prl/
https://pubs.acs.org/journal/jacsat
https://proceedingsoftheieee.ieee.org/
https://www.cell.com/cell/home
https://www.jmlr.org/
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/es


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

• Natural Evolution Strategies: NES (Hüttenrauch and Neumann, 2024; Wei et al.,
2022; Wierstra et al., 2014; Yi et al., 2009; Wierstra et al., 2008),

• Estimation of Distribution Algorithms: EDA (Zheng and Doerr, 2023; Brookes et al.,
2020; Larrañaga, 2002; Baluja, 1996; Baluja and Caruana, 1995),

• Cross-Entropy Methods: CEM (Wang and Ba, 2020; Amos and Yarats, 2020; Hu
et al., 2007; Rubinstein and Kroese, 2004; Mannor et al., 2003),

• Differential Evolution: DE (Koob et al., 2023; Higgins et al., 2023; Li et al., 2022a;
Laganowsky et al., 2014; Storn and Price, 1997),

• Particle Swarm Optimizers: PSO (Melis et al., 2024; Bungert et al., 2024; Huang
et al., 2024; Bolte et al., 2024; Cipriani et al., 2022; Fornasier et al., 2021; Tang et al.,
2019; Kennedy and Eberhart, 1995),

• Cooperative Coevolution: CC (Gomez et al., 2008; Panait et al., 2008; Schmidhuber
et al., 2007; Fan et al., 2003; Potter and Jong, 2000; Gomez et al., 1999; Moriarty and
Mikkulainen, 1996; Moriarty and Miikkulainen, 1995; Potter and Jong, 1994),

• Simulated Annealing2: SA (Samyak and Palacios, 2024; Bouttier and Gavra, 2019;
Siarry et al., 1997; Bertsimas and Tsitsiklis, 1993; Corana et al., 1987; Kirkpatrick
et al., 1983; Hastings, 1970; Metropolis et al., 1953),

• Genetic Algorithms: GA (Chen et al., 2020; Whitley, 2019; Goldberg, 1994; Forrest,
1993; Mitchell et al., 1993; Goldberg and Holland, 1988; Holland, 1962),

• Evolutionary Programming: EP (Cui et al., 2006; Yao et al., 1999; Fogel, 1999; Fogel
and Fogel, 1995; Fogel, 1994; Fogel et al., 1965),

• Pattern/Direct Search: PS/DS (Kolda et al., 2003; Lagarias et al., 1998; Wright, 1996;
Nelder and Mead, 1965; Powell, 1964; Kaupe, 1963; Hooke and Jeeves, 1961; Fermi,
1952),

• Random Search: RS (Nesterov and Spokoiny, 2017; Stich, 2014; Bergstra and Bengio,
2012; Schmidhuber et al., 2001; Rosenstein and Barto, 2001; Solis and Wets, 1981;
Schumer and Steiglitz, 1968; Rastrigin, 1963; Brooks, 1958), and

• Bayesian Optimization: BO (Wang et al., 2020; Shahriari et al., 2016; Jones et al.,
1998).

To alleviate their curse of dimensionality (Bellman, 1957) for large-scale BBO, different
kinds of sophisticated strategies have been employed to enhance these black-box optimizers,
as presented in the following:

1) Decomposition of search distribution (Akimoto and Hansen, 2020; Bäck et al., 2013;
Schaul et al., 2011; Ros and Hansen, 2008) or search space (Panait et al., 2008; Gomez
and Schmidhuber, 2005; Siarry et al., 1997; Corana et al., 1987),

2. Note that SA is an individual-based rather than population-based optimization method.

5

https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/nes
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/eda
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/cem
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/de
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/pso
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/cc
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/sa
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/ga
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/ep
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/ds
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/rs
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/bo
https://github.com/Evolutionary-Intelligence/pypop/tree/main/pypop7/optimizers/sa


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

2) Recursive spatial partitioning, e.g., via Monte Carlo tree search (Wang et al., 2020),

3) Low-memory approximation for covariance matrix adaptation (He et al., 2021; Loshchilov
et al., 2019; Loshchilov, 2017; Krause et al., 2016),

4) Low-rank metric learning (Li and Zhang, 2018; Sun et al., 2013),

5) Variance-reduction (Gao and Sener, 2022; Brockhoff et al., 2010),

6) Ensemble of random subspaces constructed via random matrix theory (Demo et al.,
2021; Kabán et al., 2016),

7) Meta-model self-adaptation (Akimoto and Hansen, 2016; Lee and Yao, 2004),

8) Smoothing of fitness expectation (Hüttenrauch and Neumann, 2024; Gao and Sener,
2022; Nesterov and Spokoiny, 2017),

9) Smoothing of sampling operation (Bungert et al., 2024; Amos and Yarats, 2020; Deb
et al., 2002), and

10) Efficient allocation of computational resources (Garćıa-Mart́ınez et al., 2008).

In this new Python library PyPop7, we aim to provide high-quality open-source im-
plementations to many of these advanced techniques on population-based optimizers for
large-scale BBO in a unified way (which have been summarized in Figure 1).

3.2 Testing Protocols

Importantly, in order to ensure the coding correctness of black-box optimizers, we have pro-
vided an open-access code-based repeatability report for each black-box optimizer. Specif-
ically, for each black-box optimizer, all experimental details are given in a specific folder
(corresponding to a hyperlink in the Examples section of its online API documentation)
and main results generated for it are compared to reported results in its original literature.
For all optimizers with repeatability reports unavailable owing to specific reasons, their
Python3-based implementations have been checked carefully by three authors (and perhaps
other users) to avoid trivial bugs and errors. For any failed repeatability experiment, we try
our best to reach an agreement regarding some possible reason(s), which is also finally de-
scribed in its repeatability report. All repeatability code/results are summarized in Table 1,
wherein each hyperlink is used to navigate the used Python code or generated results.

Following the standard workflow practice of open-source software, we have used the pop-
ular pytest tool and the free circleci service to automate all light-weighted testing processes.

For any randomized black-box optimizer, properly controlling its random sampling pro-
cess is very important to repeat its entire optimization experiments. In our library, the
random seed for each black-box optimizer should be explicitly set in order to ensure maxi-
mal repeatability, according to the newest suggestion from NumPy for random sampling.

6

https://github.com/Evolutionary-Intelligence/pypop
https://docs.pytest.org
https://circleci.com/
https://numpy.org/doc/stable/reference/random/index.html
https://numpy.org/


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

Table 1: Repeatability Reports of All Black-Box Optimizers from PyPop7

Optimizer Repeatability Code Results Success Optimizer Repeatability Code Results Success

MMES repeat mmes.py figures YES FCMAES repeat fcmaes.py figures YES

LMMAES repeat lmmaes.py figures YES LMCMA repeat lmcma.py figures YES

LMCMAES repeat lmcmaes.py data YES RMES repeat rmes.py figures YES

R1ES repeat r1es.py figures YES VKDCMA repeat vkdcma.py data YES

VDCMA repeat vdcma.py data YES CCMAES2016 repeat ccmaes2016.py figures YES

OPOA2015 repeat opoa2015.py figures YES OPOA2010 repeat opoa2010.py figures YES

CCMAES2009 repeat ccmaes2009.py figures YES OPOC2009 repeat opoc2009.py figures YES

OPOC2006 repeat opoc2006.py figures YES SEPCMAES repeat sepcmaes.py data YES

DDCMA repeat ddcma.py data YES MAES repeat maes.py figures YES

FMAES repeat fmaes.py figures YES CMAES repeat cmaes.py data YES

SAMAES repeat samaes.py figure YES SAES repeat saes.py data YES

CSAES repeat csaes.py figure YES DSAES repeat dsaes.py figure YES

SSAES repeat ssaes.py figure YES RES repeat res.py figure YES

R1NES repeat r1nes.py data YES SNES repeat snes.py data YES

XNES repeat xnes.py data YES ENES repeat enes.py data YES

ONES repeat ones.py data YES SGES repeat sges.py data YES

RPEDA repeat rpeda.py data YES UMDA repeat umda.py data YES

AEMNA repeat aemna.py data YES EMNA repeat emna.py data YES

DCEM repeat dcem.py data YES DSCEM repeat dscem.py data YES

MRAS repeat mras.py data YES SCEM repeat scem.py data YES

SHADE repeat shade.py data YES JADE repeat jade.py data YES

CODE repeat code.py data YES TDE repeat tde.py figures YES

CDE repeat cde.py data YES CCPSO2 repeat ccpso2.py data YES

IPSO repeat ipso.py data YES CLPSO repeat clpso.py data YES

CPSO repeat cpso.py data YES SPSOL repeat spsol.py data YES

SPSO repeat spso.py data YES HCC N/A N/A N/A

COCMA N/A N/A N/A COEA repeat coea.py figures YES

COSYNE repeat cosyne.py data YES ESA repeat esa.py data N/A

CSA repeat csa.py data YES NSA N/A N/A N/A

ASGA repeat asga.py data YES GL25 repeat gl25.py data YES

G3PCX repeat g3pcx.py figure YES GENITOR N/A N/A N/A

LEP repeat lep.py data YES FEP repeat fep.py data NI

CEP repeat cep.py data YES POWELL repeat powell.py data YES

GPS N/A N/A N/A NM repeat nm.py data YES

HJ repeat hj.py data YES CS N/A N/A N/A

BES repeat bes.py figures YES GS repeat gs.py figures YES

SRS N/A N/A N/A ARHC repeat arhc.py data YES

RHC repeat rhc.py data YES PRS repeat prs.py figure YES

NI : Need to be Improved.

7

https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_mmes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/mmes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_fcmaes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/fcmaes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_lmmaes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/lmmaes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_lmcma.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/lmcma
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_lmcmaes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_lmcmaes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_rmes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/rmes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_r1es.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/r1es
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_vkdcma.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_vkdcma.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_vdcma.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_vdcma.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_ccmaes2016.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/ccmaes2016
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_opoa2015.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/opoa2015
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_opoa2010.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/opoa2010
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_ccmaes2009.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/ccmaes2009
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_opoc2009.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/opoc2009
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_opoc2006.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/opoc2006
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_sepcmaes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_sepcmaes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_ddcma.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_ddcma.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_maes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/maes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_fmaes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/fmaes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_cmaes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_cmaes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_samaes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/samaes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_saes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_saes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_csaes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/csaes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_dsaes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/dsaes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_ssaes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/ssaes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/es/_repeat_res.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/res
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_r1nes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_r1nes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_snes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_snes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_xnes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_xnes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_enes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_enes.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_ones.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_ones.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_sges.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/nes/_repeat_sges.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_rpeda.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_rpeda.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_umda.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_umda.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_aemna.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_aemna.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_emna.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/eda/_repeat_emna.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_dcem.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_dcem.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_dscem.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_dscem.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_mras.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_mras.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_scem.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cem/_repeat_scem.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_shade.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_shade.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_jade.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_jade.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_code.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_code.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_tde.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/tde
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_cde.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/de/_repeat_cde.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_ccpso2.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_ccpso2.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_ipso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_ipso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_clpso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_clpso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_cpso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_cpso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_spsol.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_spsol.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_spso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/_repeat_spso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cc/_repeat_coea.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/coea
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cc/_repeat_cosyne.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/cc/_repeat_cosyne.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/sa/_repeat_esa.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/sa/_repeat_esa.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/sa/_repeat_csa.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/sa/_repeat_csa.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ga/_repeat_asga.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/asga
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ga/_repeat_gl25.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ga/_repeat_gl25.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ga/_repeat_g3pcx.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/g3pcx
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ep/_repeat_lep.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ep/_repeat_lep.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ep/_repeat_fep.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ep/_repeat_fep.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ep/_repeat_cep.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ep/_repeat_cep.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ds/_repeat_powell.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ds/_repeat_powell.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ds/_repeat_nm.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ds/_repeat_nm.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ds/_repeat_hj.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/ds/_repeat_hj.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/rs/_repeat_bes.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/bes
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/rs/_repeat_gs.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/gs
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/rs/_repeat_arhc.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/rs/_repeat_arhc.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/rs/_repeat_rhc.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/rs/_repeat_rhc.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/rs/_repeat_prs.py
https://github.com/Evolutionary-Intelligence/pypop/tree/main/docs/repeatability/prs


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

3.3 Comparisons of Computational Efficiency

In this subsection, we will analyze the runtime efficiency (in the form of number of function
evaluations) of our implementations via empirically comparing them with those from one
widely-used BBO library (called DEAP). Note that DEAP (which was published in 2012)
mainly provided several (limited) baseline versions and has not covered the latest large-scale
variants comprehensively, till now.

The test-bed is one high-dimensional (2000-d) yet light-weighted test function (named
sphere), since using a light-weighted test function could make us focusing on the algorithm
implementation itself rather than the external fitness function provided by the end-users.
We postpone more benchmarking experiments in the following two subsections.

As we can see from Figures 2, 3, and 4, our algorithm implementations are always better
than DEAP’s corresponding implementations, from both the speedup of function evaluations
and the quality of final solutions perspectives, given the same maximal runtime (=3 hours).
After carefully inspecting their own Python source code, we can conclude that different
ways of storing and operating the population between two libraries (PyPop7 vs. DEAP)
result in such a significant gap on computational efficiency. For DEAP naive data types such
as list are used to store and operate the population (slowly) while for PyPop7 the highly-
optimized data type ndarray from NumPy is used as the base of population initialization
and evolution, along with other high-performance scientific computing libraries such as
SciPy , Scikit-Learn, and Numba. Computational efficiency is one main goal of our open-
source library, that is, developers rather than end-users are responsible for performance
optimization except the customized fitness function provided by the end-user. This design
practice can significantly reduce the programming and experimental overheads of end-users
for large-scale BBO.

3.4 Benchmarking on Computationally-Expensive Functions

To design a set of 20 computationally-expensive test functions, the standard benchmarking
practice has been used here, that is, the input vector of each test functions have been rotated
and shifted/transformed before fitness evaluations. For benchmarking on this large set of
2000-dimensional and computationally-expensive test functions, some of these large-scale
versions from our library obtain the best solution quality on nearly all test functions under
the same runtime limit (=3 hours) and the same fitness threshold (=1e-10). Please refer
to Figures 5, 6, 7, and 8 for detailed convergence curves of different algorithm classes on
different test functions. For example, for the PSO family, four large-scale variants (CLPSO,
CCPSO2, CPSO, and IPSO) obtained the best quality of solution on 9, 6, 3, and 2 test
functions, respectively.

3.5 Benchmarking on Block-Box Classifications

In this subsection, we choose one modern ML task (known as black-box classifications) as
the base of benchmarking functions. Following currently common practices of black-box
classifications, five loss functions (Bollapragada and Wild, 2023; Li et al., 2022b; Ruan
et al., 2020; Xu et al., 2020; Liu et al., 2019; Bollapragada et al., 2018; Liu et al., 2018) with
different landscape features are selected in our numerical experiments. Furthermore, five

8

https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/benchmarks/base_functions.py
https://github.com/DEAP/deap
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/Evolutionary-Intelligence/pypop
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
https://numpy.org/
https://scipy.org/
https://scikit-learn.org/stable/index.html
https://numba.pydata.org/
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/pso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/clpso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/ccpso2.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/cpso.py
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/optimizers/pso/ipso.py


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

Figure 2: Median comparisons of function evaluations and solution qualities of one base-
line version SES of evolution strategies from our library and the widely-used DEAP library
(under the same runtime for a fair comparison). Note that each of these two implemen-
tation versions is independently run 10 times on this 2000-dimensional, light-weighted test
function sphere. Here we do not use the standard rotation-shift operations, different from
the following computationally-expensive benchmarking process (of quadratic complexity),
in order to generate light-weighted function evaluations (of only linear complexity) even in
high dimensions.

datasets from different fields are used for data diversity: Parkinson’s disease, Semeion
handwritten digit, CNAE-9, Madelon, and QSAR androgen receptor, all of which
are now available at the UCI Machine Learning Repository. A combination of these 5 loss
functions and 5 datasets leads to a total of 25 test functions for black-box classifications
with up to > 1000 dimensions.

In our numerical experiments, we choose a total of 15 black-box optimizers from different
algorithm families, each of which is independently run 14 times on every test function. The
maximum of runtime to be allowed is set to 3 hours (Duan et al., 2023) and the threshold
of fitness is set to 1e-10 to avoid excessive accuracy optimization for all optimizers on each
test function.

As is clearly shown in Figure 9, no single black-box optimizer could entirely dominate the
top-ranking w.r.t. convergence curves, though some of different large-scale variants obtained
the best quality of solution on different test functions. For example, COCMA (Mei et al.,
2016; Potter and Jong, 1994) ranked the top on a total of 9 test functions. This may be due
to that it could well exploit the sparse problem structure on these functions particularly after
dataset normalization. Following it, VKDCMA (Akimoto and Hansen, 2016) and CLPSO
(Liang et al., 2006) obtained the best solution on 3 and 3 test functions, respectively.
Then, each of 5 black-box optimizers (MAES (Beyer and Sendhoff, 2017), SEPCMAES
(Ros and Hansen, 2008), LMCMA (Loshchilov, 2017), LMMAES (Loshchilov et al., 2019),
and R1NES (Sun et al., 2013)) showed the best on 2 test functions independently. Here
this ranking diversity on optimizers may empirically demonstrate the necessity to include

9

https://pypop.readthedocs.io/en/latest/es/saes.html
https://pypop.readthedocs.io/en/latest/es/es.html
https://github.com/DEAP/deap
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/benchmarks/base_functions.py
https://archive.ics.uci.edu/dataset/174/parkinsons
https://archive.ics.uci.edu/dataset/178/semeion+handwritten+digit
https://archive.ics.uci.edu/dataset/178/semeion+handwritten+digit
https://archive.ics.uci.edu/dataset/233/cnae+9
https://archive.ics.uci.edu/dataset/171/madelon
https://archive.ics.uci.edu/dataset/509/qsar+androgen+receptor


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

Figure 3: Median comparisons of function evaluations and solution qualities between three
large-scale ES versions of our library and DEAP’s CMA-ES. The experimental settings are
the same as Figure 2 (given the maximal runtime: 3 hours).

10

https://github.com/DEAP/deap


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

Figure 4: Median comparisons of function evaluations and solution qualities of PSO, EDA,
and DE between our library and the widely-used DEAP library. The experimental settings
are the same as Figure 2 (given the maximal runtime: 3 hours).

11

https://github.com/DEAP/deap


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

Figure 5: Median convergence rate comparisons of 7 PSO versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).

12



PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

Figure 6: Median convergence rate comparisons of 6 DE versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).

13



DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

Figure 7: Median convergence rate comparisons of 9 EDA versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).

14



PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

Figure 8: Median convergence rate comparisons of 23 ES versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).

15



DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

Figure 9: Comparisons of convergence curves of 15 large-scale optimizers on 25 black-box
classification tasks given the maximal runtime limit (3 hours) and the fitness threshold
(1e-10).

16



PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

different versions/variants of black-box optimizers in our library, seemingly in accordance
with the well-established No Free Lunch Theorems (NFLT) (Wolpert and Macready, 1997).

4. Two Use Cases for Large-Scale BBO

To empirically demonstrate how to properly use PyPop7, in this section we will provide two
optimization examples. The first is to show its easy-to-use programming interface unified
for all black-box optimizers. The following Python script shows how one large-scale ES
variant called LMMAES (Loshchilov et al., 2019) minimizes the popular Rosenbrock test
function (Kok and Sandrock, 2009).

1 >>> import numpy as np

2 >>> from pypop7.benchmarks.base_functions import rosenbrock # notorious test function
3 >>> ndim_problem = 1000 # dimension of fitness (cost) function to be minimized
4 >>> problem = {"fitness_function": rosenbrock, # fitness function to be minimized
5 ... "ndim_problem": ndim_problem, # function dimension
6 ... "lower_boundary": -5.0*np.ones((ndim_problem,)), # lower search boundary
7 ... "upper_boundary": 5.0*np.ones((ndim_problem,))} # upper search boundary
8 >>> from pypop7.optimizers.es.lmmaes import LMMAES # or using any other optimizers
9 >>> options = {"fitness_threshold": 1e-10, # fitness threshold to terminate evolution

10 ... "max_runtime": 3600, # to terminate evolution when runtime exceeds 1 hour
11 ... "seed_rng": 0, # seed of random number generation for repeatability
12 ... "x": 4.0*np.ones((ndim_problem,)), # initial mean of search distribution
13 ... "sigma": 3.0, # initial global step−size of search distribution
14 ... "verbose": 500} # to print verbose information every 500 generations
15 >>> lmmaes = LMMAES(problem, options) # to initialize this black−box optimizer
16 >>> results = lmmaes.optimize() # to run its time−consuming search process on high dimensions
17 >>> # to print the best−so−far fitness found and the number of function evaluations used
18 >>> print(results["best_so_far_y"], results["n_function_evaluations"])

The second is to present the benchmarking process of one black-box optimizer on the
well-documented COCO/BBOB platform (Varelas et al., 2020), which is shown below.

1 >>> import os

2 >>> import webbrowser # for post−processing in the browser
3 >>> import numpy as np

4 >>> import cocoex # experimentation module of ‘COCO’
5 >>> import cocopp # post−processing module of ‘COCO’
6 >>> from pypop7.optimizers.es.maes import MAES

7 >>> suite, output = "bbob", "COCO-PyPop7-MAES"

8 >>> budget_multiplier = 1e3 # or 1e4, 1e5, ...
9 >>> observer = cocoex.Observer(suite, "result_folder:" + output)

10 >>> minimal_print = cocoex.utilities.MiniPrint()

11 >>> for function in cocoex.Suite(suite, "", ""):

12 ... function.observe_with(observer) # to generate data for ‘cocopp’ post−processing
13 ... sigma = np.min(function.upper_bounds - function.lower_bounds) / 3.0

14 ... problem = {"fitness_function": function,

15 ... "ndim_problem": function.dimension,

16 ... "lower_boundary": function.lower_bounds,

17 ... "upper_boundary": function.upper_bounds}

18 ... options = {"max_function_evaluations": function.dimension * budget_multiplier,

19 ... "seed_rng": 2022,

17

https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io/en/latest/es/lmmaes.html
https://github.com/Evolutionary-Intelligence/pypop/blob/main/pypop7/benchmarks/base_functions.py
https://github.com/numbbo/coco


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

20 ... "x": function.initial_solution,

21 ... "sigma": sigma}

22 ... solver = MAES(problem, options)

23 ... print(solver.optimize())
24 >>> cocopp.main(observer.result_folder)

25 >>> webbrowser.open("file://" + os.getcwd() + "/ppdata/index.html")

For more examples, please refer to its online documentations: pypop.rtfd.io. Note that
we have provided at least one example for each black-box optimizer in its corresponding
API online document.

5. Conclusion

In this paper, we have provided an open-source pure-Python library (called PyPop7) for
BBO with modular coding structures and full-fledged online documentations. Up to now,
this light-weighted library has been used not only by our own work, e.g., (Duan et al., 2022)
and (Duan et al., 2023), but also by other work, such as, prompt tuning of vision-language
models (Yu et al., 2023), nonlinear optimization for radiotherapy3, and robotics planning/-
control (Zhang et al., 2024; Lee et al., 2023). Please refer to its online documentations for
an up-to-date summary of its applications.

As next steps, we plan to further enhance its capability of BBO from five aspects, as
shown in the following:

• Massive parallelism (Chalumeau et al., 2024; Lange, 2023),

• Constrains handling (Hellwig and Beyer, 2024),

• Noisy optimization (Häse et al., 2021; Hansen et al., 2009; Beyer, 2000),

• Meta-learning/optimization (Lange et al., 2023; Vicol, 2023; Li et al., 2023; Vicol
et al., 2021), and

• Automatic algorithm design, in particular automated algorithm selection/configura-
tion (Schede et al., 2022; Kerschke et al., 2019).

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China un-
der Grant 72401122, in part by Guangdong Basic and Applied Basic Research Foundation
under Grants No. 2024A1515012241 and 2021A1515110024, in part by the Shenzhen Fun-
damental Research Program under Grant No. JCYJ20200109141235597, and in part by the
Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant
No. 2017ZT07X386.

3. https://github.com/pyanno4rt/pyanno4rt

18

https://pypop.rtfd.io/
https://github.com/Evolutionary-Intelligence/pypop
https://pypop.rtfd.io/
https://github.com/pyanno4rt/pyanno4rt


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

References

Y. Akimoto and N. Hansen. Online model selection for restricted covariance matrix adap-
tation. In PPSN, pages 3–13, 2016.

Y. Akimoto and N. Hansen. Diagonal acceleration for covariance matrix adaptation evolu-
tion strategies. Evol. Comput., 28(3):405–435, 2020.

Y. Akimoto, A. Auger, et al. Global linear convergence of evolution strategies on more than
smooth strongly convex functions. SIAM J. Optim., 32(2):1402–1429, 2022.

S.-i. Amari. Natural gradient works efficiently in learning. Neural Comput., 10(2):251–276,
1998.

B. Amos and D. Yarats. The differentiable cross-entropy method. In ICML, pages 291–302,
2020.

C. Aranha, C. L. Camacho Villalón, et al. Metaphor-based metaheuristics, a call for action:
The elephant in the room. Swarm Intell., 16(1):1–6, 2022.

D. V. Arnold and H.-G. Beyer. A comparison of evolution strategies with other direct search
methods in the presence of noise. Comput. Optim. Appl., 24(1):135–159, 2003.

T. Bäck, D. Fogel, and Z. Michalewicz, editors. Handbook of evolutionary computation.
CRC Press, 1997.

T. Bäck, C. Foussette, et al. Contemporary evolution strategies. Springer, 2013.

S. Baluja. Genetic algorithms and explicit search statistics. In NeurIPS, 1996.

S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In
ICML, pages 38–46, 1995.

R. Bellman. Dynamic programming. Princeton University Press, 1957.

R. Bellman. Adaptive control processes: A guided tour. Princeton University Press, 1961.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305, 2012.

D. Bertsimas and J. Tsitsiklis. Simulated annealing. Stat. Sci., 8(1):10–15, 1993.

H.-G. Beyer. Evolutionary algorithms in noisy environments: Theoretical issues and guide-
lines for practice. Comput. Meth. Appl. Mech. Eng., 186(2-4):239–267, 2000.

H.-G. Beyer and H.-P. Schwefel. Evolution strategies – a comprehensive introduction. Nat.
Comput., 1:3–52, 2002.

H.-G. Beyer and B. Sendhoff. Simplify your covariance matrix adaptation evolution strategy.
IEEE Trans. Evol. Comput., 21(5):746–759, 2017.

19

https://doi.org/10.1007/978-3-319-45823-6_1
https://doi.org/10.1007/978-3-319-45823-6_1
https://doi.org/10.1162/evco_a_00260
https://doi.org/10.1162/evco_a_00260
https://doi.org/10.1137/20M1373815
https://doi.org/10.1137/20M1373815
https://doi.org/10.1162/089976698300017746
https://proceedings.mlr.press/v119/amos20a.html
https://doi.org/10.1007/s11721-021-00202-9
https://doi.org/10.1007/s11721-021-00202-9
https://doi.org/10.1023/A:1021810301763
https://doi.org/10.1023/A:1021810301763
https://www.taylorfrancis.com/books/9781420050387
https://doi.org/10.1007/978-3-642-40137-4
https://proceedings.neurips.cc/paper_files/paper/1996/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
https://doi.org/10.1016/B978-1-55860-377-6.50014-1
https://press.princeton.edu/books/paperback/9780691146683/dynamic-programming
https://press.princeton.edu/books/paperback/9780691625850/adaptive-control-processes
https://dl.acm.org/citation.cfm?id=2188395
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1016/S0045-7825(99)00386-2
https://doi.org/10.1016/S0045-7825(99)00386-2
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1109/TEVC.2017.2680320


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

F. Biscani and D. Izzo. A parallel global multiobjective framework for optimization: Pagmo.
J. Open Source Softw., 5(53):2338, 2020.

R. Bollapragada and S. M. Wild. Adaptive sampling quasi-newton methods for zeroth-order
stochastic optimization. Math. Program. Comput., 15(2):327–364, 2023.

R. Bollapragada, R. Byrd, et al. Adaptive sampling strategies for stochastic optimization.
SIAM J. Optim., 28(4):3312–3343, 2018.

J. Bolte, L. Miclo, et al. Swarm gradient dynamics for global optimization: The mean-field
limit case. Math. Program., 205(1-2):661–701, 2024.

E. Bonabeau, M. Dorigo, et al. Swarm intelligence: From natural to artificial systems.
Oxford University Press, 1999.

C. Bouttier and I. Gavra. Convergence rate of a simulated annealing algorithm with noisy
observations. J. Mach. Learn. Res., 20(4):1–45, 2019.

D. Brockhoff, A. Auger, et al. Mirrored sampling and sequential selection for evolution
strategies. In PPSN, pages 11–21, 2010.

D. Brookes, A. Busia, et al. A view of estimation of distribution algorithms through the
lens of expectation-maximization. In GECCOC, pages 189–190, 2020.

S. H. Brooks. A discussion of random methods for seeking maxima. Oper. Res., 6(2):
244–251, 1958.

L. Bungert, T. Roith, et al. Polarized consensus-based dynamics for optimization and
sampling. Math. Program., 2024.

F. Campelo and C. Aranha. Lessons from the evolutionary computation bestiary. Artif.
Life, 29(4):421–432, 2023.

F. Chalumeau, B. Lim, et al. QDax: A library for quality-diversity and population-based
algorithms with hardware acceleration. J. Mach. Learn. Res., 25(108):1–16, 2024.

T. Chen, J. van Gelder, et al. Classification with a disordered dopant-atom network in
silicon. Nature, 577(7790):341–345, 2020.

S. Choudhury, B. Narayanan, et al. Generative machine learning produces kinetic models
that accurately characterize intracellular metabolic states. bioRxiv, 2023.

C. Cipriani, H. Huang, et al. Zero-inertia limit: From particle swarm optimization to
consensus-based optimization. SIAM J. Math. Anal., 54(3):3091–3121, 2022.

A. Corana, M. Marchesi, et al. Minimizing multimodal functions of continuous variables
with the “simulated annealing” algorithm—corrigenda for this article is available here.
ACM Trans. Math. Softw., 13(3):262–280, 1987.

G. Cui, M. L. Wong, et al. Machine learning for direct marketing response models: Bayesian
networks with evolutionary programming. Manag. Sci., 52(4):597–612, 2006.

20

https://doi.org/10.21105/joss.02338
https://doi.org/10.1007/s12532-023-00233-9
https://doi.org/10.1007/s12532-023-00233-9
https://doi.org/10.1137/17M1154679
https://doi.org/10.1007/s10107-023-01988-8
https://doi.org/10.1007/s10107-023-01988-8
https://academic.oup.com/book/40811
https://jmlr.org/papers/v20/16-588.html
https://jmlr.org/papers/v20/16-588.html
https://doi.org/10.1007/978-3-642-15844-5_2
https://doi.org/10.1007/978-3-642-15844-5_2
https://doi.org/10.1145/3377929.3389938
https://doi.org/10.1145/3377929.3389938
https://doi.org/10.1287/opre.6.2.244
https://doi.org/10.1007/s10107-024-02095-y
https://doi.org/10.1007/s10107-024-02095-y
https://doi.org/10.1162/artl_a_00402
https://jmlr.org/papers/v25/23-1027.html
https://jmlr.org/papers/v25/23-1027.html
https://doi.org/10.1038/s41586-019-1901-0
https://doi.org/10.1038/s41586-019-1901-0
https://www.biorxiv.org/content/10.1101/2023.02.21.529387v3
https://www.biorxiv.org/content/10.1101/2023.02.21.529387v3
https://doi.org/10.1137/21M1412323
https://doi.org/10.1137/21M1412323
https://doi.org/10.1145/29380.29864
https://doi.org/10.1145/29380.29864
https://doi.org/10.1287/mnsc.1060.0514
https://doi.org/10.1287/mnsc.1060.0514


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

K. Deb, A. Anand, et al. A computationally efficient evolutionary algorithm for real-
parameter optimization. Evol. Comput., 10(4):371–395, 2002.

N. Demo, M. Tezzele, et al. A supervised learning approach involving active subspaces for
an efficient genetic algorithm in high-dimensional optimization problems. SIAM J. Sci.
Comput., 43(3):B831–B853, 2021.

Y. Diouane, S. Gratton, et al. Globally convergent evolution strategies. Math. Program.,
152(1):467–490, 2015.

Q. Duan, G. Zhou, et al. Collective learning of low-memory matrix adaptation for large-scale
black-box optimization. In PPSN, pages 281–294, 2022.

Q. Duan, C. Shao, et al. Cooperative coevolution for non-separable large-scale black-box
optimization: Convergence analyses and distributed accelerations. arXiv preprint, 2023.

A. E. Eiben and J. Smith. From evolutionary computation to the evolution of things.
Nature, 521(7553):476–482, 2015.

J. Fan, R. Lau, et al. Utilizing domain knowledge in neuroevolution. In ICML, pages
170–177, 2003.

E. Fermi. Numerical solution of a minimum problem. Technical report, Los Alamos Scientific
Lab., Los Alamos, NM USA, 1952.

D. B. Fogel. Evolutionary programming: An introduction and some current directions.
Stat. Comput., 4(2):113–129, 1994.

D. B. Fogel. An overview of evolutionary programming. In Evolutionary Algorithms, pages
89–109. Springer, 1999.

D. B. Fogel and L. J. Fogel. An introduction to evolutionary programming. In ECAE, pages
21–33, 1995.

L. J. Fogel, A. J. Owens, et al. Intelligent decision-making through a simulation of evolution.
Trans. Hum. Factors Electron., HFE-6(1):13–23, 1965.

M. Fornasier, L. Pareschi, et al. Consensus-based optimization on the sphere: Convergence
to global minimizers and machine learning. J. Mach. Learn. Res., 22(237):1–55, 2021.

S. Forrest. Genetic algorithms: Principles of natural selection applied to computation.
Science, 261(5123):872–878, 1993.

F.-A. Fortin, F.-M. D. Rainville, et al. DEAP: Evolutionary algorithms made easy. J.
Mach. Learn. Res., 13(70):2171–2175, 2012.

K. Gao and O. Sener. Generalizing gaussian smoothing for random search. In ICML, pages
7077–7101, 2022.

C. Garćıa-Mart́ınez, M. Lozano, et al. Global and local real-coded genetic algorithms based
on parent-centric crossover operators. Eur. J. Oper. Res., 185(3):1088–1113, 2008.

21

https://doi.org/10.1162/106365602760972767
https://doi.org/10.1162/106365602760972767
https://doi.org/10.1137/20M1345219
https://doi.org/10.1137/20M1345219
https://doi.org/10.1007/s10107-014-0793-x
https://doi.org/10.1007/978-3-031-14721-0_20
https://doi.org/10.1007/978-3-031-14721-0_20
https://arxiv.org/abs/2304.05020
https://arxiv.org/abs/2304.05020
https://doi.org/10.1038/nature14544
https://aaai.org/Library/ICML/2003/icml03-025.php
https://doi.org/10.2172/4377177
https://doi.org/10.1007/BF00175356
https://doi.org/10.1007/978-1-4612-1542-4_5
https://doi.org/10.1007/3-540-61108-8_28
https://doi.org/10.1109/THFE.1965.6591252
https://jmlr.org/papers/v22/21-0259.html
https://jmlr.org/papers/v22/21-0259.html
https://doi.org/10.1126/science.8346439
https://jmlr.org/papers/v13/fortin12a.html
https://proceedings.mlr.press/v162/gao22f.html
https://doi.org/10.1016/j.ejor.2006.06.043
https://doi.org/10.1016/j.ejor.2006.06.043


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

D. E. Goldberg. Genetic and evolutionary algorithms come of age. Commun. ACM, 37(3):
113–119, 1994.

D. E. Goldberg and J. H. Holland. Genetic algorithms and machine learning. Mach. Learn.,
3(2):95–99, 1988.

F. J. Gomez and J. Schmidhuber. Co-evolving recurrent neurons learn deep memory
POMDPs. In GECCO, pages 491–498, 2005.

F. J. Gomez, R. Miikkulainen, et al. Solving non-markovian control tasks with neuroevo-
lution. In IJCAI, pages 1356–1361, 1999.

F. J. Gomez, J. Schmidhuber, et al. Accelerated neural evolution through cooperatively
coevolved synapses. J. Mach. Learn. Res., 9:937–965, 2008.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strate-
gies. Evol. Comput., 9(2):159–195, 2001.

N. Hansen, A. S. P. Niederberger, et al. A method for handling uncertainty in evolutionary
optimization with an application to feedback control of combustion. IEEE Trans. Evol.
Comput., 13(1):180–197, 2009.

N. Hansen, A. Auger, et al. COCO: A platform for comparing continuous optimizers in a
black-box setting. Optim. Methods Softw., 36(1):114–144, 2021.

C. R. Harris, K. J. Millman, et al. Array programming with NumPy. Nature, 585(7825):
357–362, 2020.

F. Häse, M. Aldeghi, et al. Olympus: A benchmarking framework for noisy optimization
and experiment planning. Mach. Learn.: Sci. Technol., 2(3):035021, 2021.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

X. He, Z. Zheng, et al. MMES: Mixture model-based evolution strategy for large-scale
optimization. IEEE Trans. Evol. Comput., 25(2):320–333, 2021.

M. Hellwig and H.-G. Beyer. Analyzing design principles for competitive evolution strategies
in constrained search spaces. arXiv preprint, 2024.

S. I. Higgins, T. Conradi, et al. Limited climatic space for alternative ecosystem states in
africa. Science, 380(6649):1038–1042, 2023.

J. H. Holland. Outline for a logical theory of adaptive systems. J. ACM, 9(3):297–314,
1962.

R. Hooke and T. A. Jeeves. ”Direct search” solution of numerical and statistical problems.
J. ACM, 8(2):212–229, 1961.

J. Hu, M. C. Fu, et al. A model reference adaptive search method for global optimization.
Oper. Res., 55(3):549–568, 2007.

22

https://doi.org/10.1145/175247.175259
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1145/1068009.1068092
https://doi.org/10.1145/1068009.1068092
https://ijcai.org/Proceedings/99-2/Papers/097.pdf
https://ijcai.org/Proceedings/99-2/Papers/097.pdf
https://dl.acm.org/citation.cfm?id=1390712
https://dl.acm.org/citation.cfm?id=1390712
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1109/TEVC.2008.924423
https://doi.org/10.1109/TEVC.2008.924423
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1088/2632-2153/abedc8
https://doi.org/10.1088/2632-2153/abedc8
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1109/tevc.2020.3034769
https://doi.org/10.1109/tevc.2020.3034769
https://arxiv.org/abs/2405.05005
https://arxiv.org/abs/2405.05005
https://doi.org/10.1126/science.add5190
https://doi.org/10.1126/science.add5190
https://doi.org/10.1145/321127.321128
https://doi.org/10.1145/321062.321069
https://doi.org/10.1287/opre.1060.0367


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

H. Huang, J. Qiu, et al. Consensus-based optimization for saddle point problems. SIAM J.
Control Optim., 62(2):1093–1121, 2024.

M. Hüttenrauch and G. Neumann. Robust black-box optimization for stochastic search and
episodic reinforcement learning. J. Mach. Learn. Res., 25(153):1–44, 2024.

A. Ilyas, L. Engstrom, et al. Black-box adversarial attacks with limited queries and infor-
mation. In ICML, pages 2137–2146, 2018.

D. R. Jones, M. Schonlau, et al. Efficient global optimization of expensive black-box func-
tions. J. Glob. Optim., 13(4):455–492, 1998.

A. Kabán, J. Bootkrajang, et al. Toward large-scale continuous EDA: A random matrix
theory perspective. Evol. Comput., 24(2):255–291, 2016.

A. F. Kaupe. Algorithm 178: Direct search. Commun. ACM, 6(6):313–314, 1963.

J. Kennedy and R. Eberhart. Particle swarm optimization. In ICNN, pages 1942–1948
vol.4, 1995.

J. F. Kennedy, R. C. Eberhart, et al. Swarm intelligence. Morgan Kaufmann, 2001.

P. Kerschke, H. H. Hoos, et al. Automated algorithm selection: Survey and perspectives.
Evol. Comput., 27(1):3–45, 2019.

S. Kirkpatrick, C. D. Gelatt, et al. Optimization by simulated annealing. Science, 220
(4598):671–680, 1983.

S. Kok and C. Sandrock. Locating and characterizing the stationary points of the extended
rosenbrock function. Evol. Comput., 17(3):437–453, 2009.

T. G. Kolda, R. M. Lewis, et al. Optimization by direct search: New perspectives on some
classical and modern methods. SIAM Rev., 45(3):385–482, 2003.

V. Koob, R. Ulrich, et al. Response activation and activation–transmission in response-
based backward crosstalk: Analyses and simulations with an extended diffusion model.
Psyc. Rev., 130(1):102–136, 2023.

O. Krause, D. R. Arbonès, et al. CMA-ES with optimal covariance update and storage
complexity. In NeurIPS, pages 370–378, 2016.

A. Laganowsky, E. Reading, et al. Membrane proteins bind lipids selectively to modulate
their structure and function. Nature, 510(7503):172–175, 2014.

J. C. Lagarias, J. A. Reeds, et al. Convergence properties of the nelder-mead simplex
method in low dimensions. SIAM J. Optim., 9(1):112–147, 1998.

R. T. Lange. Evosax: JAX-based evolution strategies. In GECCO, pages 659–662, 2023.

R. T. Lange, T. Schaul, et al. Discovering evolution strategies via meta-black-box optimiza-
tion. In ICLR, 2023.

23

https://doi.org/10.1137/22M1543367
https://jmlr.org/papers/v25/22-0564.html
https://jmlr.org/papers/v25/22-0564.html
https://proceedings.mlr.press/v80/ilyas18a.html
https://proceedings.mlr.press/v80/ilyas18a.html
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1162/EVCO_a_00150
https://doi.org/10.1162/EVCO_a_00150
https://doi.org/10.1145/366604.366632
https://doi.org/10.1109/ICNN.1995.488968
https://www.sciencedirect.com/book/9781558605954/swarm-intelligence
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1162/evco.2009.17.3.437
https://doi.org/10.1162/evco.2009.17.3.437
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1037/rev0000326
https://doi.org/10.1037/rev0000326
https://proceedings.neurips.cc/paper_files/paper/2016/hash/289dff07669d7a23de0ef88d2f7129e7-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/289dff07669d7a23de0ef88d2f7129e7-Abstract.html
https://doi.org/10.1038/nature13419
https://doi.org/10.1038/nature13419
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1145/3583133.3590733
https://openreview.net/forum?id=mFDU0fP3EQH
https://openreview.net/forum?id=mFDU0fP3EQH


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

P. Larrañaga, editor. Estimation of distribution algorithms: A new tool for evolutionary
computation. Springer, 2002.

Y. LeCun, Y. Bengio, et al. Deep learning. Nature, 521(7553):436–444, 2015.

C.-Y. Lee and X. Yao. Evolutionary programming using mutations based on the levy
probability distribution. IEEE Trans. Evol. Comput., 8(1):1–13, 2004.

Y. Lee, K. Lee, et al. The planner optimization problem: Formulations and frameworks.
arXiv preprint, 2023.

O. Li, J. Harrison, et al. Variance-reduced gradient estimation via noise-reuse in online
evolution strategies. In NeurIPS, pages 45489–45501, 2023.

S. Li, T. Driver, et al. Attosecond coherent electron motion in auger-meitner decay. Science,
375(6578):285–290, 2022a.

Y. Li, M. Cheng, et al. A review of adversarial attack and defense for classification methods.
Am. Stat., 76(4):329–345, 2022b.

Z. Li and Q. Zhang. A simple yet efficient evolution strategy for large-scale black-box
optimization. IEEE Trans. Evol. Comput., 22(5):637–646, 2018.

J. Liang, A. Qin, et al. Comprehensive learning particle swarm optimizer for global opti-
mization of multimodal functions. IEEE Trans. Evol. Comput., 10(3):281–295, 2006.

S. Liu, B. Kailkhura, et al. Zeroth-order stochastic variance reduction for nonconvex opti-
mization. In NeurIPS, pages 3727–3737, 2018.

S. Liu, P.-Y. Chen, et al. SignSGD via zeroth-order oracle. In ICLR, 2019.

I. Loshchilov. LM-CMA: An alternative to L-BFGS for large-scale black box optimization.
Evol. Comput., 25(1):143–171, 2017.

I. Loshchilov, T. Glasmachers, et al. Large scale black-box optimization by limited-memory
matrix adaptation. IEEE Trans. Evol. Comput., 23(2):353–358, 2019.

M. Lutz. Learning python: Powerful object-oriented programming. O’Reilly, 2013.

S. Mannor, R. Y. Rubinstein, et al. The cross entropy method for fast policy search. In
ICML, pages 512–519, 2003.

Y. Mei, M. N. Omidvar, et al. A competitive divide-and-conquer algorithm for uncon-
strained large-scale black-box optimization. ACM Trans. Math. Softw., 42(2):13:1–24,
2016.

J. M. Melis, I. Siwanowicz, et al. Machine learning reveals the control mechanics of an
insect wing hinge. Nature, 628(8009):795–803, 2024.

N. Metropolis, A. W. Rosenbluth, et al. Equation of state calculations by fast computing
machines. J. Chem. Phys., 21(6):1087–1092, 1953.

24

https://link.springer.com/book/10.1007/978-1-4615-1539-5
https://link.springer.com/book/10.1007/978-1-4615-1539-5
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TEVC.2003.816583
https://doi.org/10.1109/TEVC.2003.816583
https://arxiv.org/abs/2303.06768
https://proceedings.neurips.cc/paper_files/paper/2023/hash/8e69a97cbdd91ac0808603fa589d6c17-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/8e69a97cbdd91ac0808603fa589d6c17-Abstract-Conference.html
https://doi.org/10.1126/science.abj2096
https://doi.org/10.1080/00031305.2021.2006781
https://doi.org/10.1109/TEVC.2017.2765682
https://doi.org/10.1109/TEVC.2017.2765682
https://doi.org/10.1109/TEVC.2005.857610
https://doi.org/10.1109/TEVC.2005.857610
https://proceedings.neurips.cc/paper_files/paper/2018/hash/ba9a56ce0a9bfa26e8ed9e10b2cc8f46-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/ba9a56ce0a9bfa26e8ed9e10b2cc8f46-Abstract.html
https://openreview.net/forum?id=BJe-DsC5Fm
https://doi.org/10.1162/EVCO_a_00168
https://doi.org/10.1109/TEVC.2018.2855049
https://doi.org/10.1109/TEVC.2018.2855049
https://www.oreilly.com/library/view/learning-python-5th/9781449355722/
https://aaai.org/Library/ICML/2003/icml03-068.php
https://doi.org/10.1145/2791291
https://doi.org/10.1145/2791291
https://doi.org/10.1038/s41586-024-07293-4
https://doi.org/10.1038/s41586-024-07293-4
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

L. Meunier, H. Rakotoarison, et al. Black-box optimization revisited: Improving algorithm
selection wizards through massive benchmarking. IEEE Trans. Evol. Comput., 26(3):
490–500, 2022.

R. Miikkulainen and S. Forrest. A biological perspective on evolutionary computation. Nat.
Mach. Intell., 3(1):9–15, 2021.

M. Mitchell, J. Holland, et al. When will a genetic algorithm outperform hill climbing. In
NeurIPS, pages 51–58, 1993.

D. E. Moriarty and R. Miikkulainen. Efficient learning from delayed rewards through
symbiotic evolution. In ICML, pages 396–404, 1995.

D. E. Moriarty and R. Mikkulainen. Efficient reinforcement learning through symbiotic
evolution. Mach. Learn., 22:11–32, 1996.

P. Moritz, R. Nishihara, et al. Ray: A distributed framework for emerging AI applications.
In OSDI, pages 561–577, 2018.

J. A. Nelder and R. Mead. A simplex method for function minimization. Comput. J., 7(4):
308–313, 1965.

Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions.
Found. Comput. Math., 17(2):527–566, 2017.

Y. Ollivier, L. Arnold, et al. Information-geometric optimization algorithms: A unifying
picture via invariance principles. J. Mach. Learn. Res., 18(18):1–65, 2017.

L. Panait, K. Tuyls, et al. Theoretical advantages of lenient learners: An evolutionary game
theoretic perspective. J. Mach. Learn. Res., 9:423–457, 2008.

F. Pedregosa, G. Varoquaux, et al. Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12(85):2825–2830, 2011.

M. A. Potter and K. A. Jong. A cooperative coevolutionary approach to function optimiza-
tion. In PPSN, pages 249–257, 1994.

M. A. Potter and K. A. D. Jong. Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evol. Comput., 8(1):1–29, 2000.

M. J. D. Powell. An efficient method for finding the minimum of a function of several
variables without calculating derivatives. Comput. J., 7(2):155–162, 1964.

J. Rapin and O. Teytaud. Nevergrad - a gradient-free optimization platform. GitHub, 2018.

L. Rastrigin. The convergence of the random search method in the external control of
many-parameter system. Autom. Remote Control, 24:1337–1342, 1963.

I. Rechenberg. The evolution strategy. a mathematical model of darwinian evolution. In
ISS, pages 122–132, 1984.

25

https://doi.org/10.1109/TEVC.2021.3108185
https://doi.org/10.1109/TEVC.2021.3108185
https://doi.org/10.1038/s42256-020-00278-8
https://proceedings.neurips.cc/paper/1993/hash/ab88b15733f543179858600245108dd8-Abstract.html
https://doi.org/10.1016/B978-1-55860-377-6.50056-6
https://doi.org/10.1016/B978-1-55860-377-6.50056-6
https://doi.org/10.1023/A:1018004120707
https://doi.org/10.1023/A:1018004120707
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1007/s10208-015-9296-2
https://jmlr.org/papers/v18/14-467.html
https://jmlr.org/papers/v18/14-467.html
https://dl.acm.org/citation.cfm?id=1390694
https://dl.acm.org/citation.cfm?id=1390694
https://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1162/106365600568086
https://doi.org/10.1162/106365600568086
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://GitHub.com/FacebookResearch/Nevergrad
https://archive.org/details/sim_automation-and-remote-control_1963-11_24_11/page/n1/mode/2up?view=theater
https://archive.org/details/sim_automation-and-remote-control_1963-11_24_11/page/n1/mode/2up?view=theater
https://doi.org/10.1007/978-3-642-69540-7_13


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

R. Ros and N. Hansen. A simple modification in CMA-ES achieving linear time and space
complexity. In PPSN, pages 296–305, 2008.

M. T. Rosenstein and A. G. Barto. Robot weightlifting by direct policy search. In IJCAI,
pages 839–846, 2001.

Y. Ruan, Y. Xiong, et al. Learning to learn by zeroth-order oracle. In ICLR, 2020.

R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: A unified approach to com-
binatorial optimization, monte-carlo simulation and machine learning. Springer, 2004.

G. Rudolph. Evolutionary strategies. In Handbook of Natural Computing, pages 673–698.
Springer, 2012.

T. Salimans, J. Ho, et al. Evolution strategies as a scalable alternative to reinforcement
learning. arXiv preprint, 2017.

R. Samyak and J. A. Palacios. Statistical summaries of unlabelled evolutionary trees.
Biometrika, 111(1):171–193, 2024.

T. Schaul, J. Bayer, et al. PyBrain. J. Mach. Learn. Res., 11:743–746, 2010.

T. Schaul, T. Glasmachers, et al. High dimensions and heavy tails for natural evolution
strategies. In GECCO, pages 845–852, 2011.

E. Schede, J. Brandt, et al. A survey of methods for automated algorithm configuration.
J. Artif. Intell. Res., 75:425–487, 2022.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Netw., 61:85–117,
2015.

J. Schmidhuber, S. Hochreiter, et al. Evaluating benchmark problems by random guessing.
In A Field Guide to Dynamical Recurrent Networks, pages 231–235. IEEE, 2001.

J. Schmidhuber, D. Wierstra, et al. Training recurrent networks by evolino. Neural Comput.,
19(3):757–779, 2007.

M. Schumer and K. Steiglitz. Adaptive step size random search. IEEE Trans. Autom.
Control, 13(3):270–276, 1968.

H. P. Schwefel. Evolution strategies: A family of non-linear optimization techniques based
on imitating some principles of organic evolution. Ann. Oper. Res., 1(2):165–167, 1984.

B. Shahriari, K. Swersky, et al. Taking the human out of the loop: A review of bayesian
optimization. Proc. IEEE, 104(1):148–175, 2016.

P. Siarry, G. Berthiau, et al. Enhanced simulated annealing for globally minimizing functions
of many-continuous variables. ACM Trans. Math. Softw., 23(2):209–228, 1997.

F. J. Solis and R. J.-B. Wets. Minimization by random search techniques. Math. Oper.
Res., 6(1):19–30, 1981.

26

https://doi.org/10.1007/978-3-540-87700-4_30
https://doi.org/10.1007/978-3-540-87700-4_30
https://www.ijcai.org/Proceedings/01/IJCAI-2001-k.pdf
https://openreview.net/forum?id=ryxz8CVYDH
https://link.springer.com/book/10.1007/978-1-4757-4321-0
https://link.springer.com/book/10.1007/978-1-4757-4321-0
https://link.springer.com/10.1007/978-3-540-92910-9_22
https://doi.org/10.48550/arXiv.1703.03864
https://doi.org/10.48550/arXiv.1703.03864
https://doi.org/10.1093/biomet/asad025
https://dl.acm.org/doi/10.5555/1756006.1756030
https://doi.org/10.1145/2001576.2001692
https://doi.org/10.1145/2001576.2001692
https://doi.org/10.1613/jair.1.13676
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/9780470544037.ch13
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/10.1109/TAC.1968.1098903
https://doi.org/10.1007/BF01876146
https://doi.org/10.1007/BF01876146
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1145/264029.264043
https://doi.org/10.1145/264029.264043
https://doi.org/10.1287/moor.6.1.19


PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization

S. Sonnenburg, M. L. Braun, et al. The need for open source software in machine learning.
J. Mach. Learn. Res., 8:2443–2466, 2007.

S. U. Stich. On low complexity acceleration techniques for randomized optimization. In
PPSN, pages 130–140, 2014.

R. Storn and K. Price. Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim., 11(4):341–359, 1997.

T. Sun, Y. Shao, et al. Black-box tuning for language-model-as-a-service. In ICML, pages
20841–20855, 2022.

Y. Sun, T. Schaul, et al. A linear time natural evolution strategy for non-separable functions.
In GECCOC, pages 61–62, 2013.

J. Swan, S. Adriaensen, et al. Metaheuristics “In the large”. Eur. J. Oper. Res., 297(2):
393–406, 2022.

D. Tang, Q. Ye, et al. Opening the black box: Hierarchical sampling optimization for hand
pose estimation. IEEE Trans. Pattern Anal. Mach. Intell., 41(9):2161–2175, 2019.

V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7(1):1–25,
1997.

K. Varelas, A. Auger, et al. A comparative study of large-scale variants of CMA-ES. In
PPSN, pages 3–15, 2018.

K. Varelas, O. A. El Hara, et al. Benchmarking large-scale continuous optimizers: The
bbob-largescale testbed, a COCO software guide and beyond. Appl. Soft Comput., 97:
106737, 2020.

P. Vicol. Low-variance gradient estimation in unrolled computation graphs with es-single.
In ICML, pages 35084–35119, 2023.

P. Vicol, L. Metz, et al. Unbiased gradient estimation in unrolled computation graphs with
persistent evolution strategies. In ICML, pages 10553–10563, 2021.

P. Virtanen, R. Gommers, et al. SciPy 1.0: Fundamental algorithms for scientific computing
in python. Nat. Meth., 17(3):261–272, 2020.

L. Wang, R. Fonseca, et al. Learning search space partition for black-box optimization
using monte carlo tree search. In NeurIPS, pages 19511–19522, 2020.

T. Wang and J. Ba. Exploring model-based planning with policy networks. In ICLR, 2020.

X. Wei, H. Yan, et al. Sparse black-box video attack with reinforcement learning. Int. J.
Comput. Vis., 130(6):1459–1473, 2022.

D. Whitley. Next generation genetic algorithms: A user’s guide and tutorial. In Handbook
of Metaheuristics, pages 245–274. Springer, 2019.

27

https://dl.acm.org/citation.cfm?id=1314577
https://doi.org/10.1007/978-3-319-10762-2_13
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://proceedings.mlr.press/v162/sun22e.html
https://doi.org/10.1145/2464576.2464608
https://doi.org/10.1016/j.ejor.2021.05.042
https://doi.org/10.1109/TPAMI.2018.2847688
https://doi.org/10.1109/TPAMI.2018.2847688
https://doi.org/10.1137/S1052623493250780
https://doi.org/10.1007/978-3-319-99253-2_1
https://doi.org/10.1016/j.asoc.2020.106737
https://doi.org/10.1016/j.asoc.2020.106737
https://proceedings.mlr.press/v139/vicol21a.html
https://proceedings.mlr.press/v139/vicol21a.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://proceedings.neurips.cc/paper/2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html
https://openreview.net/forum?id=H1exf64KwH
https://doi.org/10.1007/s11263-022-01604-w
https://doi.org/10.1007/978-3-319-91086-4_8


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

D. Wierstra, T. Schaul, et al. Natural evolution strategies. In CEC, pages 3381–3387, 2008.

D. Wierstra, T. Schaul, et al. Natural evolution strategies. J. Mach. Learn. Res., 15(27):
949–980, 2014.

D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE Trans. Evol.
Comput., 1(1):67–82, 1997.

M. Wright. Direct search methods: Once scorned, now respectable. In Numerical Analysis,
pages 191–208. Addison-Wesley, 1996.

S. J. Wright. Coordinate descent algorithms. Math. Program., 151(1):3–34, 2015.

P. Xu, F. Roosta, et al. Second-order optimization for non-convex machine learning: An
empirical study. In SDM, pages 199–207, 2020.

X. Yao, Y. Liu, et al. Evolutionary programming made faster. IEEE Trans. Evol. Comput.,
3(2):82–102, 1999.

S. Yi, D. Wierstra, et al. Stochastic search using the natural gradient. In ICML, pages
1161–1168, 2009.

L. Yu, Q. Chen, et al. Black-box prompt tuning for vision-language model as a service. In
IJCAI, pages 1686–1694, 2023.

Z. Zhang, Y. Wei, et al. An invariant information geometric method for high-dimensional
online optimization. arXiv preprint, 2024.

W. Zheng and B. Doerr. From understanding genetic drift to a smart-restart mechanism
for estimation-of-distribution algorithms. J. Mach. Learn. Res., 24(292):1–40, 2023.

28

https://doi.org/10.1109/CEC.2008.4631255
https://jmlr.org/papers/v15/wierstra14a.html
https://doi.org/10.1109/4235.585893
https://nyuscholars.nyu.edu/en/publications/direct-search-methods-once-scorned-now-respectable
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1137/1.9781611976236.23
https://doi.org/10.1137/1.9781611976236.23
https://doi.org/10.1109/4235.771163
https://doi.org/10.1145/1553374.1553522
https://doi.org/10.24963/ijcai.2023/187
https://arxiv.org/abs/2401.01579
https://arxiv.org/abs/2401.01579
https://jmlr.org/papers/v24/22-0628.html
https://jmlr.org/papers/v24/22-0628.html

	Introduction
	Related Work
	A Modular Coding Framework of PyPop7
	A Unified API for Black-Box Optimizers
	Testing Protocols
	Comparisons of Computational Efficiency
	Benchmarking on Computationally-Expensive Functions
	Benchmarking on Block-Box Classifications

	Two Use Cases for Large-Scale BBO
	Conclusion

