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Abstract

In this paper, we present an open-source pure-Python library called PyPop7 for black-box
optimization (BBO). As population-based methods (e.g., evolutionary algorithms, swarm
intelligence, and pattern search) become increasingly popular for BBO, the design goal of
PyPop7 is to provide a unified API and elegant implementations for them, particularly in
challenging high-dimensional scenarios. Since these population-based methods easily suf-
fer from the notorious curse of dimensionality owing to random sampling as one of core
operations for most of them, recently various improvements and enhancements have been
proposed to alleviate this issue more or less mainly via exploiting possible problem struc-
tures: such as, decomposition of search distribution or space, low-memory approximation,
low-rank metric learning, variance reduction, ensemble of random subspaces, model self-
adaptation, and fitness smoothing. These novel sampling strategies could better exploit
different problem structures in high-dimensional search space and therefore they often re-
sult in faster rates of convergence and/or better qualities of solution for large-scale BBO.
Now PyPop7 has covered many of these important advances on a set of well-established
BBO algorithm families and also provided an open-access interface to adding the latest or
missed black-box optimizers for further functionality extensions. Its well-designed source
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code (under GPL-3.0 license) and full-fledged online documents (under CC-BY 4.0 license)
have been freely available at https://github.com/Evolutionary-Intelligence/pypop

and https://pypop.readthedocs.io, respectively.

Keywords: Black-box optimization, Evolutionary computation, Large-scale optimiza-
tion, Open-source software, Population-based optimization, Swarm intelligence

1. Introduction

An increasing number of population-based randomized optimization methods (Campelo and
Aranha, 2023; Aranha et al., 2022; Swan et al., 2022) have been widely applied to a diverse
set of real-world black-box problems such as direct search (Moritz et al., 2018) of deep
neural network-based policy for reinforcement learning (Salimans et al., 2017). In typical
black-box optimization (BBO) scenarios, the lack/unavailability of gradient information
severely limits the common usage of powerful gradient-based optimizers such as gradient
descent (Amari, 1998) and coordinate descent (Wright, 2015), a problem worsened by noisy
objective functions (Arnold and Beyer, 2003). Instead, a variety of black-box (aka zeroth-
order or derivative-free or direct search) optimizers from multiple research communities are
natural algorithm choices of practical acceptance in these challenging BBO cases (Varelas
et al., 2018). Please refer to e.g., the latest Nature review (Eiben and Smith, 2015) or the
classical Science review (Forrest, 1993) for an introduction to population-based (also called
evolution/swarm-based) optimization methods e.g., evolutionary algorithms (Miikkulainen
and Forrest, 2021; Bäck et al., 1997), swarm intelligence (Kennedy et al., 2001; Bonabeau
et al., 1999), and pattern search (Torczon, 1997).

Over the past ten years, rapid developments of deep models (LeCun et al., 2015;
Schmidhuber, 2015) and big data have generated a large number of new challenging high-
dimensional BBO problems, e.g., direct policy search of deep reinforcement learning (Sal-
imans et al., 2017; Moritz et al., 2018), black-box attacks of deep neural networks (Ilyas
et al., 2018), black-box prompt tuning of large language models (Sun et al., 2022), and
black-box optimization of complex generative models (Choudhury et al., 2023). These new
large-scale BBO problems have greatly urged plenty of researchers from different science
and engineering fields to scale up previous black-box optimizers via efficient improvements
to existing (mostly random) sampling strategies (Varelas et al., 2018) or to propose novel
versions of black-box optimizers targeted for large-scale scenarios, given the fact that ran-
dom sampling strategies adopted by most of them suffer easily from the notorious curse of
dimensionality (Nesterov and Spokoiny, 2017; Bellman, 1961).

In this paper, we design an open-source pure-Python software library called PyPop7,
in order to cover a large number of population-based black-box optimizers, especially their
large-scale variants/versions owing to their practical potential for BBO problems of interest.
Specifically, our goal is to provide a unified (API) interface and elegant implementations
for them, in order to promote research repeatability (Sonnenburg et al., 2007), systematic
benchmarking of BBO (Hansen et al., 2021; Meunier et al., 2022), and most importantly
their real-world applications. By product, we have also provided an open-access (API)
interface to add the latest or missed black-box optimizers as further functionality extensions
of this open-source library. Please refer to Figure 1 for its core conceptual framework,
which is mainly consisting of 6 basic components (computing engines, a family of black-box
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Figure 1: A conceptual framework of PyPop7 for black-box optimization (BBO), where
all optimizers colored in orange are mainly designed for large-scale BBO.

optimizers, a set of util functions, two test protocols, a series of benchmarking, and full-
fledged documentations). For details to each of them, please refer to Section 3 and Section 4
or its open-source repository (available at GitHub) and its online documentations (available
at readthedocs.io).

2. Related Work

In this section, we will introduce some existing Python libraries including population-
based optimizers for BBO (e.g., evolutionary algorithms and swarm intelligence) and com-
pare/highlight main differences between our work and them, as presented below.

Recently, Hansen et al. (2021) released a well-documented benchmarking platform called
COCO for comparing continuous black-box optimizers, after experiencing more than 10-
years developments. COCO, however, focuses on the systematic design of benchmarking
functions and does not provide any optimization algorithms up to now. Another similar
work is the popular NeverGrad platform from Facebook Research, which covers a relatively
limited number of large-scale algorithm versions (Rapin and Teytaud, 2018). Therefore, our
pure-Python library, PyPop7, can be seen as their complement particularly for large-scale
BBO. In our online tutorials, we have shown how to connect black-box optimizers from our
library with these two well-designed benchmarking platforms for BBO.

3

https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io/en/latest/
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/facebookresearch/nevergrad
https://github.com/Evolutionary-Intelligence/pypop
https://pypop.readthedocs.io/en/latest/


DUAN, ZHOU, SHAO, WANG, FENG, HUANG, TAN, YANG, ZHAO, and SHI

In the past, DEAP (Fortin et al., 2012) provided a Python platform for rapid proto-
typing of population-based optimizers, but leaves the challenging performance-tuning task
to the end-users. This is obviously different from our library wherein performance-tuning
is attributed to the developers except the coding of the fitness function to be optimized.
Although PyBrain (Schaul et al., 2010) mainly provided a class of natural evolution strate-
gies (NES), now it seems to be not maintained anymore and does not cover many other
BBO versions in our library. The well-designed PaGMO (Biscani and Izzo, 2020) library for
parallel population-based optimizers has been actively maintained for more than 10 years.
However, its current focus turns to multi-objective optimization rather than large-scale
BBO, which is the focus of our paper.

Overall, our Python library (called PyPop7) have provided a large set of rich and pow-
erful optimizers for BBO from multiple research communities (e.g., artificial intelligence,
machine learning, evolutionary computation, meta-heuristics, swarm intelligence, operations
research, mathematical optimization, statistics, automatic control, and etc.).

3. A Modular Coding Framework of PyPop7

In this section, we will introduce the unified interface of PyPop7 (via objective-oriented pro-
gramming), testing protocols for pytest-based automatic checking and artificially-designed
repeatability reporting, its computational efficiency (via comparing PyPop7 with one pop-
ular counterpart), and benchmarking on modern ML tasks for large-scale BBO.

3.1 A Unified API for Black-Box Optimizers

For simplicity, extensibility, and maintainability (arguably three desirable properties for
any software), PyPop7 has provided a unified API for a large set of black-box optimizer
versions/variants within the modular coding structures based on powerful objective-oriented
programming (OOP) (Lutz, 2013). At first glance, its main organization framework is
briefly summarized in Figure 1, wherein two levels of inheritance are employed via OOP
for any instantiated optimizers in order to maximize reuse and unify the design of APIs.
For computational efficiency (crucial for large-scale BBO), our library depends mainly on
four open-source high-performance scientific/numeric computing libraries: NumPy (Harris
et al., 2020), SciPy (Virtanen et al., 2020), Scikit-Learn (Pedregosa et al., 2011) and Numba
as underlying computing engines.

In our library, currently all of these black-box optimizers have been roughly classified
into a total of 13 optimization algorithm classes, as presented below. To gain insights
into their application cases, we have built an online website to specifically collect their
applications, which have been published on many (though not all) top-tier journals and
conferences (such as, Nature, Science, PNAS, PRL, JACS, PIEEE, Cell, JMLR, etc.)1.

• Evolution Strategies: ES (Akimoto et al., 2022; Vicol et al., 2021; Ollivier et al., 2017;
Diouane et al., 2015; Bäck et al., 2013; Rudolph, 2012; Beyer and Schwefel, 2002;
Hansen and Ostermeier, 2001; Schwefel, 1984; Rechenberg, 1984),

1. It is a long-term open project, which is still actively updated in the near future.
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• Natural Evolution Strategies: NES (Hüttenrauch and Neumann, 2024; Wei et al.,
2022; Wierstra et al., 2014; Yi et al., 2009; Wierstra et al., 2008),

• Estimation of Distribution Algorithms: EDA (Zheng and Doerr, 2023; Brookes et al.,
2020; Larrañaga, 2002; Baluja, 1996; Baluja and Caruana, 1995),

• Cross-Entropy Methods: CEM (Wang and Ba, 2020; Amos and Yarats, 2020; Hu
et al., 2007; Rubinstein and Kroese, 2004; Mannor et al., 2003),

• Differential Evolution: DE (Koob et al., 2023; Higgins et al., 2023; Li et al., 2022a;
Laganowsky et al., 2014; Storn and Price, 1997),

• Particle Swarm Optimizers: PSO (Melis et al., 2024; Bungert et al., 2024; Huang
et al., 2024; Bolte et al., 2024; Cipriani et al., 2022; Fornasier et al., 2021; Tang et al.,
2019; Kennedy and Eberhart, 1995),

• Cooperative Coevolution: CC (Gomez et al., 2008; Panait et al., 2008; Schmidhuber
et al., 2007; Fan et al., 2003; Potter and Jong, 2000; Gomez et al., 1999; Moriarty and
Mikkulainen, 1996; Moriarty and Miikkulainen, 1995; Potter and Jong, 1994),

• Simulated Annealing2: SA (Samyak and Palacios, 2024; Bouttier and Gavra, 2019;
Siarry et al., 1997; Bertsimas and Tsitsiklis, 1993; Corana et al., 1987; Kirkpatrick
et al., 1983; Hastings, 1970; Metropolis et al., 1953),

• Genetic Algorithms: GA (Chen et al., 2020; Whitley, 2019; Goldberg, 1994; Forrest,
1993; Mitchell et al., 1993; Goldberg and Holland, 1988; Holland, 1962),

• Evolutionary Programming: EP (Cui et al., 2006; Yao et al., 1999; Fogel, 1999; Fogel
and Fogel, 1995; Fogel, 1994; Fogel et al., 1965),

• Pattern/Direct Search: PS/DS (Kolda et al., 2003; Lagarias et al., 1998; Wright, 1996;
Nelder and Mead, 1965; Powell, 1964; Kaupe, 1963; Hooke and Jeeves, 1961; Fermi,
1952),

• Random Search: RS (Nesterov and Spokoiny, 2017; Stich, 2014; Bergstra and Bengio,
2012; Schmidhuber et al., 2001; Rosenstein and Barto, 2001; Solis and Wets, 1981;
Schumer and Steiglitz, 1968; Rastrigin, 1963; Brooks, 1958), and

• Bayesian Optimization: BO (Wang et al., 2020; Shahriari et al., 2016; Jones et al.,
1998).

To alleviate their curse of dimensionality (Bellman, 1957) for large-scale BBO, different
kinds of sophisticated strategies have been employed to enhance these black-box optimizers,
as presented in the following:

1) Decomposition of search distribution (Akimoto and Hansen, 2020; Bäck et al., 2013;
Schaul et al., 2011; Ros and Hansen, 2008) or search space (Panait et al., 2008; Gomez
and Schmidhuber, 2005; Siarry et al., 1997; Corana et al., 1987),

2. Note that SA is an individual-based rather than population-based optimization method.
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2) Recursive spatial partitioning, e.g., via Monte Carlo tree search (Wang et al., 2020),

3) Low-memory approximation for covariance matrix adaptation (He et al., 2021; Loshchilov
et al., 2019; Loshchilov, 2017; Krause et al., 2016),

4) Low-rank metric learning (Li and Zhang, 2018; Sun et al., 2013),

5) Variance-reduction (Gao and Sener, 2022; Brockhoff et al., 2010),

6) Ensemble of random subspaces constructed via random matrix theory (Demo et al.,
2021; Kabán et al., 2016),

7) Meta-model self-adaptation (Akimoto and Hansen, 2016; Lee and Yao, 2004),

8) Smoothing of fitness expectation (Hüttenrauch and Neumann, 2024; Gao and Sener,
2022; Nesterov and Spokoiny, 2017),

9) Smoothing of sampling operation (Bungert et al., 2024; Amos and Yarats, 2020; Deb
et al., 2002), and

10) Efficient allocation of computational resources (Garćıa-Mart́ınez et al., 2008).

In this new Python library PyPop7, we aim to provide high-quality open-source im-
plementations to many of these advanced techniques on population-based optimizers for
large-scale BBO in a unified way (which have been summarized in Figure 1).

3.2 Testing Protocols

Importantly, in order to ensure the coding correctness of black-box optimizers, we have pro-
vided an open-access code-based repeatability report for each black-box optimizer. Specif-
ically, for each black-box optimizer, all experimental details are given in a specific folder
(corresponding to a hyperlink in the Examples section of its online API documentation)
and main results generated for it are compared to reported results in its original literature.
For all optimizers with repeatability reports unavailable owing to specific reasons, their
Python3-based implementations have been checked carefully by three authors (and perhaps
other users) to avoid trivial bugs and errors. For any failed repeatability experiment, we try
our best to reach an agreement regarding some possible reason(s), which is also finally de-
scribed in its repeatability report. All repeatability code/results are summarized in Table 1,
wherein each hyperlink is used to navigate the used Python code or generated results.

Following the standard workflow practice of open-source software, we have used the pop-
ular pytest tool and the free circleci service to automate all light-weighted testing processes.

For any randomized black-box optimizer, properly controlling its random sampling pro-
cess is very important to repeat its entire optimization experiments. In our library, the
random seed for each black-box optimizer should be explicitly set in order to ensure maxi-
mal repeatability, according to the newest suggestion from NumPy for random sampling.
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Table 1: Repeatability Reports of All Black-Box Optimizers from PyPop7

Optimizer Repeatability Code Results Success Optimizer Repeatability Code Results Success

MMES repeat mmes.py figures YES FCMAES repeat fcmaes.py figures YES

LMMAES repeat lmmaes.py figures YES LMCMA repeat lmcma.py figures YES

LMCMAES repeat lmcmaes.py data YES RMES repeat rmes.py figures YES

R1ES repeat r1es.py figures YES VKDCMA repeat vkdcma.py data YES

VDCMA repeat vdcma.py data YES CCMAES2016 repeat ccmaes2016.py figures YES

OPOA2015 repeat opoa2015.py figures YES OPOA2010 repeat opoa2010.py figures YES

CCMAES2009 repeat ccmaes2009.py figures YES OPOC2009 repeat opoc2009.py figures YES

OPOC2006 repeat opoc2006.py figures YES SEPCMAES repeat sepcmaes.py data YES

DDCMA repeat ddcma.py data YES MAES repeat maes.py figures YES

FMAES repeat fmaes.py figures YES CMAES repeat cmaes.py data YES

SAMAES repeat samaes.py figure YES SAES repeat saes.py data YES

CSAES repeat csaes.py figure YES DSAES repeat dsaes.py figure YES

SSAES repeat ssaes.py figure YES RES repeat res.py figure YES

R1NES repeat r1nes.py data YES SNES repeat snes.py data YES

XNES repeat xnes.py data YES ENES repeat enes.py data YES

ONES repeat ones.py data YES SGES repeat sges.py data YES

RPEDA repeat rpeda.py data YES UMDA repeat umda.py data YES

AEMNA repeat aemna.py data YES EMNA repeat emna.py data YES

DCEM repeat dcem.py data YES DSCEM repeat dscem.py data YES

MRAS repeat mras.py data YES SCEM repeat scem.py data YES

SHADE repeat shade.py data YES JADE repeat jade.py data YES

CODE repeat code.py data YES TDE repeat tde.py figures YES

CDE repeat cde.py data YES CCPSO2 repeat ccpso2.py data YES

IPSO repeat ipso.py data YES CLPSO repeat clpso.py data YES

CPSO repeat cpso.py data YES SPSOL repeat spsol.py data YES

SPSO repeat spso.py data YES HCC N/A N/A N/A

COCMA N/A N/A N/A COEA repeat coea.py figures YES

COSYNE repeat cosyne.py data YES ESA repeat esa.py data N/A

CSA repeat csa.py data YES NSA N/A N/A N/A

ASGA repeat asga.py data YES GL25 repeat gl25.py data YES

G3PCX repeat g3pcx.py figure YES GENITOR N/A N/A N/A

LEP repeat lep.py data YES FEP repeat fep.py data NI

CEP repeat cep.py data YES POWELL repeat powell.py data YES

GPS N/A N/A N/A NM repeat nm.py data YES

HJ repeat hj.py data YES CS N/A N/A N/A

BES repeat bes.py figures YES GS repeat gs.py figures YES

SRS N/A N/A N/A ARHC repeat arhc.py data YES

RHC repeat rhc.py data YES PRS repeat prs.py figure YES

NI : Need to be Improved.
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3.3 Comparisons of Computational Efficiency

In this subsection, we will analyze the runtime efficiency (in the form of number of function
evaluations) of our implementations via empirically comparing them with those from one
widely-used BBO library (called DEAP). Note that DEAP (which was published in 2012)
mainly provided several (limited) baseline versions and has not covered the latest large-scale
variants comprehensively, till now.

The test-bed is one high-dimensional (2000-d) yet light-weighted test function (named
sphere), since using a light-weighted test function could make us focusing on the algorithm
implementation itself rather than the external fitness function provided by the end-users.
We postpone more benchmarking experiments in the following two subsections.

As we can see from Figures 2, 3, and 4, our algorithm implementations are always better
than DEAP’s corresponding implementations, from both the speedup of function evaluations
and the quality of final solutions perspectives, given the same maximal runtime (=3 hours).
After carefully inspecting their own Python source code, we can conclude that different
ways of storing and operating the population between two libraries (PyPop7 vs. DEAP)
result in such a significant gap on computational efficiency. For DEAP naive data types such
as list are used to store and operate the population (slowly) while for PyPop7 the highly-
optimized data type ndarray from NumPy is used as the base of population initialization
and evolution, along with other high-performance scientific computing libraries such as
SciPy , Scikit-Learn, and Numba. Computational efficiency is one main goal of our open-
source library, that is, developers rather than end-users are responsible for performance
optimization except the customized fitness function provided by the end-user. This design
practice can significantly reduce the programming and experimental overheads of end-users
for large-scale BBO.

3.4 Benchmarking on Computationally-Expensive Functions

To design a set of 20 computationally-expensive test functions, the standard benchmarking
practice has been used here, that is, the input vector of each test functions have been rotated
and shifted/transformed before fitness evaluations. For benchmarking on this large set of
2000-dimensional and computationally-expensive test functions, some of these large-scale
versions from our library obtain the best solution quality on nearly all test functions under
the same runtime limit (=3 hours) and the same fitness threshold (=1e-10). Please refer
to Figures 5, 6, 7, and 8 for detailed convergence curves of different algorithm classes on
different test functions. For example, for the PSO family, four large-scale variants (CLPSO,
CCPSO2, CPSO, and IPSO) obtained the best quality of solution on 9, 6, 3, and 2 test
functions, respectively.

3.5 Benchmarking on Block-Box Classifications

In this subsection, we choose one modern ML task (known as black-box classifications) as
the base of benchmarking functions. Following currently common practices of black-box
classifications, five loss functions (Bollapragada and Wild, 2023; Li et al., 2022b; Ruan
et al., 2020; Xu et al., 2020; Liu et al., 2019; Bollapragada et al., 2018; Liu et al., 2018) with
different landscape features are selected in our numerical experiments. Furthermore, five
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Figure 2: Median comparisons of function evaluations and solution qualities of one base-
line version SES of evolution strategies from our library and the widely-used DEAP library
(under the same runtime for a fair comparison). Note that each of these two implemen-
tation versions is independently run 10 times on this 2000-dimensional, light-weighted test
function sphere. Here we do not use the standard rotation-shift operations, different from
the following computationally-expensive benchmarking process (of quadratic complexity),
in order to generate light-weighted function evaluations (of only linear complexity) even in
high dimensions.

datasets from different fields are used for data diversity: Parkinson’s disease, Semeion
handwritten digit, CNAE-9, Madelon, and QSAR androgen receptor, all of which
are now available at the UCI Machine Learning Repository. A combination of these 5 loss
functions and 5 datasets leads to a total of 25 test functions for black-box classifications
with up to > 1000 dimensions.

In our numerical experiments, we choose a total of 15 black-box optimizers from different
algorithm families, each of which is independently run 14 times on every test function. The
maximum of runtime to be allowed is set to 3 hours (Duan et al., 2023) and the threshold
of fitness is set to 1e-10 to avoid excessive accuracy optimization for all optimizers on each
test function.

As is clearly shown in Figure 9, no single black-box optimizer could entirely dominate the
top-ranking w.r.t. convergence curves, though some of different large-scale variants obtained
the best quality of solution on different test functions. For example, COCMA (Mei et al.,
2016; Potter and Jong, 1994) ranked the top on a total of 9 test functions. This may be due
to that it could well exploit the sparse problem structure on these functions particularly after
dataset normalization. Following it, VKDCMA (Akimoto and Hansen, 2016) and CLPSO
(Liang et al., 2006) obtained the best solution on 3 and 3 test functions, respectively.
Then, each of 5 black-box optimizers (MAES (Beyer and Sendhoff, 2017), SEPCMAES
(Ros and Hansen, 2008), LMCMA (Loshchilov, 2017), LMMAES (Loshchilov et al., 2019),
and R1NES (Sun et al., 2013)) showed the best on 2 test functions independently. Here
this ranking diversity on optimizers may empirically demonstrate the necessity to include
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Figure 3: Median comparisons of function evaluations and solution qualities between three
large-scale ES versions of our library and DEAP’s CMA-ES. The experimental settings are
the same as Figure 2 (given the maximal runtime: 3 hours).
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Figure 4: Median comparisons of function evaluations and solution qualities of PSO, EDA,
and DE between our library and the widely-used DEAP library. The experimental settings
are the same as Figure 2 (given the maximal runtime: 3 hours).
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Figure 5: Median convergence rate comparisons of 7 PSO versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).
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Figure 6: Median convergence rate comparisons of 6 DE versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).
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Figure 7: Median convergence rate comparisons of 9 EDA versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).
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Figure 8: Median convergence rate comparisons of 23 ES versions on 20 high-dimensional
computationally-expensive test functions (with the standard rotation-and-shift operations
of quadratic complexity for benchmarking).
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Figure 9: Comparisons of convergence curves of 15 large-scale optimizers on 25 black-box
classification tasks given the maximal runtime limit (3 hours) and the fitness threshold
(1e-10).
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different versions/variants of black-box optimizers in our library, seemingly in accordance
with the well-established No Free Lunch Theorems (NFLT) (Wolpert and Macready, 1997).

4. Two Use Cases for Large-Scale BBO

To empirically demonstrate how to properly use PyPop7, in this section we will provide two
optimization examples. The first is to show its easy-to-use programming interface unified
for all black-box optimizers. The following Python script shows how one large-scale ES
variant called LMMAES (Loshchilov et al., 2019) minimizes the popular Rosenbrock test
function (Kok and Sandrock, 2009).

1 >>> import numpy as np

2 >>> from pypop7.benchmarks.base_functions import rosenbrock # notorious test function
3 >>> ndim_problem = 1000 # dimension of fitness (cost) function to be minimized
4 >>> problem = {"fitness_function": rosenbrock, # fitness function to be minimized
5 ... "ndim_problem": ndim_problem, # function dimension
6 ... "lower_boundary": -5.0*np.ones((ndim_problem,)), # lower search boundary
7 ... "upper_boundary": 5.0*np.ones((ndim_problem,))} # upper search boundary
8 >>> from pypop7.optimizers.es.lmmaes import LMMAES # or using any other optimizers
9 >>> options = {"fitness_threshold": 1e-10, # fitness threshold to terminate evolution

10 ... "max_runtime": 3600, # to terminate evolution when runtime exceeds 1 hour
11 ... "seed_rng": 0, # seed of random number generation for repeatability
12 ... "x": 4.0*np.ones((ndim_problem,)), # initial mean of search distribution
13 ... "sigma": 3.0, # initial global step−size of search distribution
14 ... "verbose": 500} # to print verbose information every 500 generations
15 >>> lmmaes = LMMAES(problem, options) # to initialize this black−box optimizer
16 >>> results = lmmaes.optimize() # to run its time−consuming search process on high dimensions
17 >>> # to print the best−so−far fitness found and the number of function evaluations used
18 >>> print(results["best_so_far_y"], results["n_function_evaluations"])

The second is to present the benchmarking process of one black-box optimizer on the
well-documented COCO/BBOB platform (Varelas et al., 2020), which is shown below.

1 >>> import os

2 >>> import webbrowser # for post−processing in the browser
3 >>> import numpy as np

4 >>> import cocoex # experimentation module of ‘COCO’
5 >>> import cocopp # post−processing module of ‘COCO’
6 >>> from pypop7.optimizers.es.maes import MAES

7 >>> suite, output = "bbob", "COCO-PyPop7-MAES"

8 >>> budget_multiplier = 1e3 # or 1e4, 1e5, ...
9 >>> observer = cocoex.Observer(suite, "result_folder:" + output)

10 >>> minimal_print = cocoex.utilities.MiniPrint()

11 >>> for function in cocoex.Suite(suite, "", ""):

12 ... function.observe_with(observer) # to generate data for ‘cocopp’ post−processing
13 ... sigma = np.min(function.upper_bounds - function.lower_bounds) / 3.0

14 ... problem = {"fitness_function": function,

15 ... "ndim_problem": function.dimension,

16 ... "lower_boundary": function.lower_bounds,

17 ... "upper_boundary": function.upper_bounds}

18 ... options = {"max_function_evaluations": function.dimension * budget_multiplier,

19 ... "seed_rng": 2022,
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20 ... "x": function.initial_solution,

21 ... "sigma": sigma}

22 ... solver = MAES(problem, options)

23 ... print(solver.optimize())
24 >>> cocopp.main(observer.result_folder)

25 >>> webbrowser.open("file://" + os.getcwd() + "/ppdata/index.html")

For more examples, please refer to its online documentations: pypop.rtfd.io. Note that
we have provided at least one example for each black-box optimizer in its corresponding
API online document.

5. Conclusion

In this paper, we have provided an open-source pure-Python library (called PyPop7) for
BBO with modular coding structures and full-fledged online documentations. Up to now,
this light-weighted library has been used not only by our own work, e.g., (Duan et al., 2022)
and (Duan et al., 2023), but also by other work, such as, prompt tuning of vision-language
models (Yu et al., 2023), nonlinear optimization for radiotherapy3, and robotics planning/-
control (Zhang et al., 2024; Lee et al., 2023). Please refer to its online documentations for
an up-to-date summary of its applications.

As next steps, we plan to further enhance its capability of BBO from five aspects, as
shown in the following:

• Massive parallelism (Chalumeau et al., 2024; Lange, 2023),

• Constrains handling (Hellwig and Beyer, 2024),

• Noisy optimization (Häse et al., 2021; Hansen et al., 2009; Beyer, 2000),

• Meta-learning/optimization (Lange et al., 2023; Vicol, 2023; Li et al., 2023; Vicol
et al., 2021), and

• Automatic algorithm design, in particular automated algorithm selection/configura-
tion (Schede et al., 2022; Kerschke et al., 2019).
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