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Abstract

We present Fortuna, an open-source library for uncertainty quantification in deep learning.
Fortuna supports a range of calibration techniques, such as conformal prediction that can
be applied to any trained neural network to generate reliable uncertainty estimates, and
scalable Bayesian inference methods that can be applied to deep neural networks trained
from scratch for improved uncertainty quantification and accuracy. By providing a coherent
framework for advanced uncertainty quantification methods, Fortuna simplifies the process
of benchmarking and helps practitioners build robust AI systems.

1. Introduction

Virtually every application of machine learning ultimately involves decision making under
uncertainty. Predictive uncertainty lets us evaluate the trustworthiness of model predictions,
prompts human intervention, or determines whether a model can be safely deployed in the
real-world. Proper uncertainty estimation is crucial for ensuring the reliability and safety
of machine learning applications.

Unfortunately, deep neural networks are often overconfident. In classification, overcon-
fidence means that the estimated probability of the predicted class is significantly higher
than the actual proportion of correctly classified input data points (Guo et al., 2017). Over-
confidence is problematic because it impacts decisions and ensuing actions. For example, a
doctor may have requested an additional test if she were to know that a diagnosis made by
an AI was less confident, and a self-driving car may have asked a human driver to take over
if it was unsure about the existence of an obstacle in front of the car. Hence, calibrated
uncertainty estimates are vital for assessing the reliability of machine learning systems,
triggering human intervention, or judging whether a model can be safely deployed.

There are many techniques for estimating and calibrating uncertainty estimates, includ-
ing temperature scaling (Guo et al., 2017), conformal prediction (Vovk et al., 2005) and
Bayesian inference (Gelman et al., 2013). While there are existing open-source implementa-
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Figure 1: Fortuna provides three usage modes, each starting from one of the colored panels.

tions of methods for uncertainty quantification (Nado et al., 2021; Chung et al., 2021; Ghosh
et al., 2021; Phan et al., 2019; Bingham et al., 2019; Tran et al., 2019; Ritter and Karaletsos,
2022), they tend to provide general-purpose probabilistic programming languages, without
support for scalable state-of-the-art methods, or individual implementations that do not
support a broad range of methods in a unified interface. While modern techniques are
highly scalable and practical, the lack of a unified framework has hindered the adoption of
uncertainty quantification in practice, a gap that we address by the release of Fortuna.

Fortuna is an open-source library for uncertainty quantification that brings together
state-of-the-art scalable methods from the literature and provides them to users through
a standardized and easy-to-use interface.1 Our goal is to make it simpler for practitioners
to deploy a variety of advanced uncertainty quantification techniques in regression and
classification tasks. Fortuna allows users to calibrate uncertainty estimates for trained deep
neural networks using techniques such as temperature scaling and conformal prediction.
Fortuna also provides scalable Bayesian inference methods for the training of neural networks
from scratch, which can improve both calibration and accuracy. Fortuna is written in JAX
(Bradbury et al., 2018), a fast growing NumPy-like framework that allows for native and
efficient computation of gradients essential for large-scale Bayesian inference, and adopts
Flax (Heek et al., 2020), which has been integrated in many other AI frameworks, including
Hugging Face (Wolf et al., 2020).

2. Usage modes

One can make use of Fortuna starting from (1) uncertainty estimates (Section 2.1), (2)
model outputs (Section 2.2), or (3) Flax models (Section 2.3). These modes are ordered in
terms of decreasing convenience, but increasing flexibility and control over the pipeline. We
illustrate these usage modes in Figure 1.

2.1 Starting from uncertainty estimates

Starting from uncertainty estimates is the easiest method of interacting with the library.
This usage mode offers conformal prediction methods for both classification and regression
tasks. These methods take uncertainty estimates in the form of a numpy.ndarray and
return a set of predictions with a user-specified probability level. In univariate regression
tasks, conformal sets can be thought of as confidence or credible intervals with a calibration
guarantee. However, if the provided uncertainty estimates are inaccurate, the resulting
conformal sets can be too large to be useful. For this reason, we recommend the usage
modes in 2.2 and 2.3 to start conformal methods from better uncertainty estimates.

1. Fortuna documentation and GitHub repository.
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At the time of writing, for classification the library supports the baseline conformal
prediction by Vovk et al. (2005) and the more advanced adaptive conformal prediction
by Romano et al. (2020). For regression, it offers conformalized quantile regression (Ro-
mano et al., 2019), conformal intervals from a scalar uncertainty measure (Angelopoulos
et al., 2022), Jackknife+, Jackknife-minmax and CV+ (Barber et al., 2021). For time series
regression, Fortuna supports EnbPI (Xu and Xie, 2021). For online settings with distri-
bution shifts, it supports Adaptive Conformal Inference (Gibbs and Candes, 2021). The
library further supports a variety of multivalid calibration methods, including Multicali-
brate (Hébert-Johnson et al., 2018; Roth, 2022) and BatchMVP (Jung et al., 2022). The
method of choice may depend on which uncertainty estimates the user wants to start from,
which conformal guarantees they want to achieve, or whether re-training the model is a
feasible option in their setting.

Example. We wish to calibrate credible intervals with coverage error given by error .
We assume to be given credible intervals ( test lower bounds and test upper bounds

) corresponding to different test input variables, and prediction intervals for several vali-
dation inputs ( val lower bounds and val upper bounds ), along with corresponding

validation targets ( val targets ). The following code produces conformal prediction
intervals as calibrated versions of the test prediction intervals.

from fortuna.conformal.regression import QuantileConformalRegressor

conformal_intervals = QuantileConformalRegressor ().conformal_interval(

val_lower_bounds=val_lower_bounds , val_upper_bounds=val_upper_bounds ,

test_lower_bounds=test_lower_bounds , test_upper_bounds=test_upper_bounds ,

val_targets=val_targets , error=error)

2.2 Starting from model outputs

This mode assumes that a model has already been trained, possibly in another framework,
and that model outputs for each input data point are available to Fortuna (i.e., estimates of
logits for classification or conditional expectations and variances for regression). This usage
mode allows for calibration of the model outputs, estimation of the uncertainty, computation
of the metrics, and generation of the conformal sets. Compared to the mode in Section 2.1,
this mode offers additional control over the final uncertainty estimates, at the price of a few
more lines of code. Nevertheless, if the model was trained as a point estimator, the resulting
epistemic uncertainty estimates may not be reliable, and the usage mode in Section 2.3 may
be even more preferable.

Models outputs are passed to an additional model written in Flax. The simplest and most
popular choice is temperature scaling, which scales the outputs of the model (specifically,
the logits in classification and the output uncertainty in regression) using a single parameter
(Guo et al., 2017). The temperature scaling method is provided explicitly in Fortuna.

Example. Assuming we have calibration and test model outputs ( calib outputs and

test outputs ) as well as calibration targets ( calib targets ), the following code
provides a minimal example of obtaining calibrated predictive entropy estimates for a clas-
sification task.
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from fortuna.output_calib_model import OutputCalibClassifier

output_calib_model = OutputCalibClassifier ()

status = output_calib_model.calibrate(calib_outputs=calib_outputs ,

calib_targets=calib_targets)

test_entropies = output_calib_model.predictive.entropy(outputs=test_outputs)

2.3 Starting from Flax models

The usage modes discussed above are agnostic to how model outputs or initial uncertainty
estimates are obtained. By contrast, the most flexible mode discussed here requires the
input of deep learning models written in Flax. By replacing traditional model training with
scalable Bayesian inference, one can improve the quantification of predictive uncertainty
and accuracy significantly (Wilson and Izmailov, 2020). Bayesian methods can represent
epistemic uncertainty — uncertainty in the model parameters due to lack of information.
Since neural networks can represent many different compelling solutions through different
parameter settings, Bayesian methods can be particularly useful in deep learning. For-
tuna offers various scalable Bayesian inference methods that provide uncertainty estimates,
as well as improved accuracy and calibration, at the price of a training time overhead.

At the time of writing, Fortuna supports Maximum-A-Posteriori (MAP) (Bassett and
Deride, 2019), Automatic Differentiation Variational Inference (ADVI) (Kucukelbir et al.,
2017), Deep Ensembles (Lakshminarayanan et al., 2017), Laplace approximation with di-
agonal Generalized Gauss-Newton (GNN) Hessian approximation (Daxberger et al., 2021;
Schraudolph, 2002), SWAG (Maddox et al., 2019), Stochastic Gradient Hamiltonian Monte
Carlo (Chen et al., 2014), Cyclical Stochastic Gradient Langevin Dynamics (Zhang et al.,
2022) and Spectral-normalized Neural Gaussian Process (Liu et al., 2020).

Example. If we have a Flax deep learning classifier ( model ) that maps inputs to
output dim logits, as well as training, validation, and calibration TensorFlow data load-

ers ( train data loader , val data loader , test data loader ), the following code
provides a minimal example for obtaining calibrated probability estimates.

from fortuna.data import DataLoader

train_data_loader = DataLoader.from_tensorflow_data_loader(train_data_loader)

calib_data_loader = DataLoader.from_tensorflow_data_loader(val_data_loader)

test_data_loader = DataLoader.from_tensorflow_data_loader(test_data_loader)

test_inputs_loader = test_data_loader.to_inputs_loader ()

from fortuna.prob_model import ProbClassifier

prob_model = ProbClassifier(model=model)

status = prob_model.train(train_data_loader=train_data_loader ,

calib_data_loader=calib_data_loader)

test_means = prob_model.predictive.mean(inputs_loader=test_inputs_loader)

3. Conclusion

We introduced Fortuna, a library for uncertainty quantification in deep learning. For-
tuna supports state-of-the-art methods in a coherent interface. To get started with Fortuna,
you can consult the GitHub repository, the documentation, and the AWS blog post.
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