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Abstract

We consider a batch active learning scenario where the learner adaptively issues batches of
points to a labeling oracle. Sampling labels in batches is highly desirable in practice due
to the smaller number of interactive rounds with the labeling oracle (often human beings).
However, batch active learning typically pays the price of a reduced adaptivity, leading
to suboptimal results. In this paper we propose a solution which requires a careful trade
off between the informativeness of the queried points and their diversity. We theoretically
investigate batch active learning in the practically relevant scenario where the unlabeled
pool of data is available beforehand (pool-based active learning). We analyze a novel stage-
wise greedy algorithm and show that, as a function of the label complexity, the excess
risk of this algorithm matches the known minimax rates in a standard statistical learning
setting with linear function spaces. Our results also exhibit a mild dependence on the
batch size. These initial results are then extended to hold for general function spaces with
similar algorithmics. These are the first theoretical results that employ careful trade offs
between informativeness and diversity to rigorously quantify the statistical performance of
batch active learning in the pool-based scenario.

Keywords: Informativeness vs. diversity, Statistical learning, G-optimal design

1. Introduction

The aim of active learning is to reduce the data requirement of training processes through
the careful selection of informative subsets of the data across several interactive rounds. This
increased interactive power enables the adaptation of the sampling process to the actual
state of the learning algorithm at hand, yet this benefit comes at the price of frequent
re-training of the model and increased interactions with the labeling oracle (which is often
just a pool of human labelers).

The batch mode of active learning is one where labels are queried in batches of suitable
size, and the models are re-trained/updated either after each batch or even less frequently.
This sampling mode often corresponds to the way labels are gathered in practical large-scale
processing pipelines.
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Batch active learning tries to strike a reasonable balance between the benefits of adap-
tivity and the costs associated with interaction and re-training. Yet, since the sampling
is split into batches, and model updates can only be performed at the end of each batch,
a batch active learning algorithm has to prevent to the extent possible the sampling of
redundant points. The standard trade-off that arises is then to ensure that the sampled
points are informative enough for the model, if taken in isolation, while at the same time
being diverse enough so as to avoid sampling redundant labels.

We study batch active learning in the pool-based model, where an unlabeled pool of data
is made available to the algorithm beforehand, and the goal is to single out a subset of the
data so as to achieve the same statistical performance as if training were carried out on
the entire pool. In this setting, we describe and analyze novel algorithms that obtain fast
rates of convergence of their excess risk as a function of the number of requested labels.
Interestingly enough, in the linear case, optimal rates are obtained even if we allow the
batch size to grow with the pool size, the actual trade-off being ruled by the amount of
noise in the data. Another appealing aspect is that our algorithms guarantee a number of
re-training rounds which is at worst logarithmic, while being able to automatically adapt
to the level of noise.

We operate in specific realizable settings, starting with linear models as a warmup,
and then extending our results to the more general non-linear setting. Unlike what is
traditionally done by many algorithmic solutions to active learning available in the literature
(e.g., Balcan et al. (2007); Balcan and Long (2013); Zhang and Li (2021)), we do not
formulate strong assumptions on the input distribution. We establish careful trade-offs
between the informativeness and the diversity of the queried labels, and rigorously quantify
the statistical performance on batch active learning in a noisy pool-based setting. To our
knowledge, these are the first guarantees of this kind that apply to a noisy (hence realistic)
batch pool-based active learning scenario. See also the related work contained in Section 3.

A short version of the current paper appeared in ICML 2022 (see Gentile et al., 2022b),
and a longer version in Arxiv (Gentile et al., 2022a). The ICML version only contains
the linear model analysis. This extended version greatly generalizes the linear analysis of
Gentile et al. (2022b) to a broader class of nonlinear functions. This nonlinear analysis
introduces a novel concept of eluder-like dimension of a function space, and an associated
eluder-like confidence interval, which can have other applications beyond active learning—
see, e.g., the recent paper by Ye et al. (2023), which built upon the Arxiv version of this
paper (Gentile et al., 2022a).

1.1 Content and contributions

Our contributions can be described as follows.

1. We first present an efficient algorithm for pool-based batch active learning for noisy
linear models (Algorithm 1). This algorithm generates pseudo-labels by computing
sequences of linear classifiers that restrict their attention to exponentially small regions
of the margin space, and then trains a single model based on the pseudo-labels only.
The design inspiring the sampling within each stage is a G-optimal design, computed
through a greedy strategy. We show (Theorem 1) that under the standard i.i.d.
assumption of the (input, label) pairs, the model so trained enjoys an excess risk bound
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with respect to the Bayes optimal predictor which is best possible, when expressed in
terms of the total number of requested labels. The number of re-training stages (that
is, the number of linear classifiers computed to generate pseudo-labels) is at most
logarithmic in the pool size and, importantly, it automatically adapts to the noise
level without knowing it in advance.

2. Since the above algorithm does not operate on a constant batch size B, we show in
Section 4.2 an easy adaptation to the constant batch size, and make the observation
that B therein may also scale as T β, for some exponent β < 1 that depends on the
amount of noise (see comments surrounding Corollary 2), still retaining the above-
mentioned optimal rates.

3. Our algorithmic technique can be seen as a skeleton technique that can be applied
to more general situations, provided the estimators employed at each stage and the
diversity measure guiding the design have matching properties. We provide extensions
to the general nonlinear case in Section 5, and give an analysis that covers general
non-linear function spaces (Theorem 3). The non-linear extension relies on a novel
notion of eluder-like dimension of a function space, which allows us to show learnability
whenever the function space has eluder dimension at level ε of the form poly(1/ε).
Also this algorithm can be made to work in the constant batch size case, and the same
considerations as in the linear case apply to the general nonlinear case.

2. Preliminaries and Notation

We denote by X the input space (e.g., X = Rd), by Y the output space, and by D an
unknown distribution over X × Y. The corresponding random variables will be denoted
by x and y. We also denote by DX the marginal distribution of D over X . Given a
function h (also called a hypothesis or a model) mapping X to Y, the population loss (often
referred to as risk) of h is denoted by L(h), and defined as L(h) = E(x,y)∼D[loss(h(x), y)],
where loss(·, ·) : Y × Y → [0, 1] is a given loss function. For simplicity of presentation,
we restrict ourselves to a binary classification setting with 0-1 loss, so that Y = {−1,+1},
and loss(ŷ, y) = 11{ŷ 6= y} ∈ {0, 1}, being 11{·} the indicator function of the predicate at
argument. When clear from the surrounding context, we will omit subscripts like “(x, y) ∼
D” from probabilities and expectations.

We are given a class of models F = {f : X → [0, 1]} and the Bayes optimal predictor
h∗(x) = sgn (f∗(x)− 1/2), where

f∗(x) = P(y = 1|x)

is assumed to belong to class F (the so-called realizability assumption). This assumption
is reasonable whenever the model class F we operate on is wide enough. For instance, a
realizability (or quasi-realizability) assumption seems natural in overparameterized settings
implemented by nowadays’ Deep Neural Networks.

A simple example is a generalized linear model

f∗(x) = σ(〈w∗,x〉) , (1)
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where σ : R→ [0, 1] is a suitable sigmoidal function, e.g., σ(z) = ez

1+ez , w∗ is an unknown

vector in Rd, with bounded (Euclidean) norm ||w|| ≤ R for some R ≥ 1, and 〈·, ·〉 denotes
the usual inner product in Rd.

Throughout this paper, we adopt the commonly used low-noise condition on the marginal
distribution DX of Mammen and Tsybakov (1999): there are constant c > 0, ε0 ∈ (0, 1] and
exponent α ≥ 0 such that for all ε ∈ (0, ε0] we have

P
(
|f∗(x)− 1/2| < ε/2

)
≤ c εα . (2)

Note, in particular, that α→∞ gives the so-called hard margin condition P
(
|f∗(x)−1/2| <

ε
)

= 0 for all ε ≤ ε0 while, at the opposite end of the spectrum, exponent α = 0 (and c = 1)
corresponds to making no assumptions whatsoever on DX . For simplicity, we shall assume
throughout that the above low-noise condition holds for c = 1. The noise exponent α and
range constant ε0 are typically unknown, and our algorithms will not rely on the prior
knowledge of them.

We are given a class of models F , and a pool P of T unlabeled instances x1, . . . ,xT ∈ X ,
drawn i.i.d. according to a marginal distribution DX obeying condition (2) (with c = 1).
The associated labels y1, . . . , yT ∈ Y are such that the pairs (xt, yt), t = 1, . . . , T , are drawn
i.i.d. according to D, the labels being generated according to the conditional distribution
determined by some f∗ ∈ F . The labels are not initially revealed to us, and the goal of the
active learning algorithm is to come up at the end of training with a model ĥ : X → Y
whose excess risk L(ĥ)−L(h∗) is as small as possible, while querying as few labels as possible
for points in P.

The way labels are queried follows the standard batch active learning protocol. We
are given a batch size B ≥ 1. Label acquisition and learning proceeds in a sequence of
stages, ` = 1, 2, . . .. At each stage `, the algorithm is allowed to query B-many labels by
only relying on labels acquired in the past `− 1 stages. Note that each point xt in pool P
can only be queried once, which is somehow equivalent to assuming that the noise in the
corresponding label yt is persistent. We shall henceforth denote by NT (P) the total number
of labels (sometimes referred to as label complexity) queried by the algorithm at hand on
pool P, and by NT,B(P) the same quantity if we want to emphasize the dependence on B.

The analysis of our algorithms hinges upon a suitable measure of diversity, D(x, S), that
quantifies how far off a data point x ∈ X is from a finite set of points S ⊆ X . Though many
diversity measures may be adopted for practical purposes (e.g., Wei et al., 2015; Sener and
Savarese, 2018; Kirsch et al., 2019; Ash et al., 2020; Killamsetty et al., 2021; Kirsch et al.,
2021; Citovsky et al., 2021), the one enabling tight theoretical analyses for our algorithms
is one that is somehow coupled with the estimators our active learning algorithms rely
upon. Specifically, given diversity measure D(x, S), an estimator f̂ = f̂(S) in a fixed design
scenarios is coupled with D(x, S) if we can guarantee L∞ approximation bounds of the form

|f̂S(x)− f∗(x)| ≤ D(x, S) ∀x . (3)

In the case of linear function spaces over X = Rd, the estimators f̂ = f̂(S) will essentially
be least-squares predictors, and a coupled diversity measure will be spectral-like: D(x, S) =

〈x,x〉
1
2

A−1
S

= ||x||A−1
S

=
√
x>A−1

S x , that is, the Mahalanobis norm of x w.r.t. the positive

semi-definite matrix A−1
S , where AS = I +

∑
z∈S zz

> , being I the d × d identity matrix.
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Note that D(x, S) is large when x is aligned with small eigenvectors of AS , while it is small
if x is aligned with large eigenvectors of that matrix. In particular, D(x, S) achieves its
maximal value ||x||2 when x is orthogonal to the space spanned by S. Hence, x is “very
different” from S as measured by D(x, S) if x contributes a direction of the input space
which is not already spanned by S. We denote by |AS | the determinant of matrix AS .

In the more general nonlinear case, our diversity measure is similar in spirit to the eluder
dimension of Russo and Van Roy (2013), as well as to the more recent online decoupling
coefficient, as defined by Dann et al. (2021)—see Section 5 for details.

At an intuitive level, since the label requests are batched, and model updates are typi-
cally performed only at the end of each stage, a batch active learning algorithm is compelled
to operate within each stage by trading off the (predicted) informativeness of the selected
labels against the diversity of the data points whose labels are requested. Moreover, the
larger the batch size B the less adaptive the algorithm is forced to be, hence we expect B
to somehow play a role in the performance of the algorithm.

From a practical standpoint, there are indeed two separate notions of adaptivity to
consider. One is the number of interactive rounds with the labeling oracle, the other is
the number of times we re-train (or update) a model based on the labels gathered during
the interactive rounds. The two notions need not coincide. While the former essentially
accounts for the cost of interacting with human labelers, the latter is more related to the
cost of re-training/updating a (potentially very complex) learning system.

3. Related Work

While experimental studies on batch active learning are reported since the early 2000s (see,
e.g., Hoi et al., 2006), it is only with the deployment at scale of deep neural networks that
we have seen a general resurgence of interest in active learning, and batch active learning
in particular. The batch pool-based model studied here is the one that has spurred the
widest attention, as it corresponds to the way in practice labels are gathered in large-scale
processing pipelines. This interest has generated a flurry of recent investigations, mainly
of experimental nature, yet containing a lot of interesting and diverse approaches to batch
active learning. Among these are the papers by Gu et al. (2012, 2014); Sener and Savarese
(2018); Kirsch et al. (2019); Zhdanov (2019); Shui et al. (2020); Ash et al. (2020); Kim et al.
(2020); Killamsetty et al. (2021); Kirsch et al. (2021); Ghorbani et al. (2021); Citovsky et al.
(2021); Kothawade et al. (2021).

On the theoretical side, active learning is a well-studied sub-field of statistical learning.
General references in pool-based active learning include the papers by Dasgupta (2004,
2005); Hanneke (2014); Nowak (2011); Tosh and Dasgupta (2017), and specific algorithms
for half-spaces under classes of input distributions are contained, e.g., in Balcan et al. (2007);
Balcan and Long (2013); Zhang and Li (2021). However, none of these papers tackle the
practically relevant scenario of batch active learning. In fact, restricting to theoretical
aspects of batch active learning makes the research landscape far less populated. Below
we briefly summarize what we think are among the most relevant papers to our work,
as directly related to batch active learning, and then mention recent efforts in contiguous
fields, like adaptive sampling and subset selection, which may serve as a general reference
and inspiration.
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Batch active learning in the pool-based scenario is one of the motivating applications
in Chen and Krause (2013), where the main concern is to investigate general conditions
under which a batch greedy policy achieves similar performance as the optimal policy that
operates with the same batch size. Yet, the authors consider simple noise free scenarios,
while the important observation (Theorem 2 therein) that a batch greedy algorithm is also
competitive with respect to an optimal fully sequential policy (batch size one) does not
apply to active learning. Chen et al. (2015, 2017) are along similar lines, with the addition
of persistent noise, but do not tackle batch active learning problems.

A paper with a similar aim as ours, yet operating in the streaming setting of active
learning, is Amin et al. (2020). The authors show that some classes of fully sequential active
algorithms can be turned into sequential algorithms that query labels in batches and suffer
only an additive (times log factors) overhead in the label complexity. This transformation is
essentially obtained by freezing the state of the fully sequential algorithm, but it is unclear
whether any notion of diversity over the batch is enforced by the resulting batch algorithms.

A recent stream-based active learning paper that is worth mentioning is Camilleri et al.
(2021b), which shares a similar method and modeling assumptions as ours in leveraging
optimal design, but it does not deal with batch active learning. The main concern there is
essentially to improve the performance of adaptive sampling by reducing the variance of the
estimators. Moreover, a related work of Katz-Samuels et al. (2021) considered the batch
active learning setting for binary classification, with 0-1 valued hypothesis class trained via
binary classification loss instead of regression loss of this paper. Confidence interval result-
ing from binary classification loss minimization requires a concept similar to disagreement
coefficient (Hanneke, 2014), which is quite different from regression confidence interval in
statistics which we employ here. Therefore their problem setting and results are not com-
parable to ours.

Another couple of very recent works in the streaming setting of active learning which are
relevant to this paper (specifically, for the general function space setting) are Zhu and Nowak
(2022) and Sekhari et al. (2023). Both papers assume a sequential i.i.d. setting, hence they
are not batch pool-based. Being i.i.d. sequential (and not pool-based), their algorithms
are able to sidestep the dependence on our eluder dimension-like notion of complexity, and
instead rely on the so-called value-function disagreement coefficient (Foster et al., 2020),
which is likely to be smaller than eluder-like dimension complexity measures. Again, those
results are incomparable to ours.

Our algorithms borrow ideas from the classical experimental design literature (Pronzato
and Pázman, 2013), and is also motivated by works in active learning, such as Chaudhuri
et al. (2015); Mukherjee et al. (2022). However, these works consider different objective
functions than us. Specifically, they try to find designs with finite sample guarantees that
can minimize the log-loss or regression loss. In such settings, as long as there is noise,
they cannot achieve faster convergence rates than O(1/NT (P)). In contrast, our batch
active learning setting directly considers the classification objective, which can potentially
achieve faster rates than the corresponding regression problem when low noise conditions
are satisfied. Our algorithms employ stage-wise batch sample selection and elimination to
achieve such faster rates.

A learning problem somewhat similar to pool-based batch active learning is training
subset selection (sometimes called dataset summarization), whose goal is to come up with
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a compressed version of a (big) dataset that offers to a given learning algorithm the same
inference capabilities as if applied to the original dataset. The problem can be organized in
rounds (as in batch active learning) and bridging one to the other can in practice be done
by label hallucination/pseudo-labeling. Representative works include Wei et al. (2015);
Killamsetty et al. (2021); Borsos et al. (2021).

A final word before delving into the technical sections: Our work is theoretical in nature.
We try to understand the statistical sample efficiency of pool based batch active learning,
although some of the proposed methods in the paper may not pay specific attention to
the computational aspects of the involved procedures. Specifically, whereas our methods
are computationally efficient in the linear function case, they need not be in the general
nonlinear case.

4. Warmup: The Linear Case

As a warm up, we start by considering a simple linear model of the form f∗(x) = 1+〈w∗,x〉
2 ,

where both w∗ and x lie in the d-dimensional Euclidean unit ball (so that 〈w∗,x〉 ∈ [−1, 1]
and f∗(x) ∈ [0, 1]). Algorithm 1 contains in a nutshell the main ideas behind our algorithmic
solutions, which is to greedily approximate a G-optimal design in the selection of points at
each stage. The way it is formulated, Algorithm 1 does not operate with a constant batch
size B per stage. We will reduce to the constant batch size case in Section 4.2. The same
algorithmic skeleton will be applied to the general nonlinear case in Section 5.

The algorithm for the linear case takes as input a finite pool of points P of size T
and proceeds across stages ` = 1, 2, . . . by generating at each stage ` a (linear-threshold)
predictor sgn(〈w`,x〉), where w` is a ridge regression estimator computed only on the labeled
pairs (x`,1, y`,1), . . . , (x`,T` , y`,T`) collected during that stage. These predictors are used to
trim the current pool P`−1 by eliminating both the points on which w` is itself confident
(set C`) and those whose labels have just been queried (set Q`). At each stage `, the points
x`,t to query are selected in a greedy fashion by maximizing1 D(x,Q`) = ||x||A−1

`,t−1
over the

current pool P`−1 (excluding the already selected points Q`, which are contained in A`,t−1),
so as to make x`,t maximally different from Q`.

When stage ` terminates, we are guaranteed that we have collected a set of points Q`
such that all remaining points x in the pool satisfy D(x,Q`) ≤ ε`. Threshold ε`, defined
at the beginning of the stage, is exponentially decaying with `. It is this threshold that
determines the actual length of the stage, and rules the elimination of unqueried points
from the pool, along with the corresponding generation of pseudo-labels during the stage.

Algorithm 1 stops generating new stages when the size |P`| of pool P` triggers the
condition d/2−`+1 > 2−`+1|P`| (which is satisfied, in particular, when P` becomes empty).
In that case, the current stage ` becomes the final stage L.

Finally, the algorithm uses the subset of points ∪L`=1C` and the associated pseudo-labels
ŷ generated during the L stages to train a linear classifier ŵ (e.g., a support vector machine)
to zero empirical error on that subset. Our analysis (see Appendix A) shows that with high
probability such a consistent linear classifier exists. Each point x that remains in the pool,

1. As a matter of fact, the chosen x`,t need not be the maximizer of D(x,Q`), the analysis only requires
D(x`,t,Q`) > ε`.
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Algorithm 1: Pool-based batch active learning algorithm for linear models.

1 Input: Confidence level δ ∈ (0, 1], pool of instances P ⊆ Rd of size |P| = T
2 Initialize: P0 = P
3 for ` = 1, 2, . . . ,
4 Initialize within stage `:

• ε` = 2−`/(

√
2 log 2`(`+1)T

δ + 1)

• A`,0 = I, t = 0, Q` = ∅

while P`−1\Q` 6= ∅ and max
x∈P`−1\Q`

‖x‖A−1
`,t
> ε`

• t = t+ 1

• Pick x`,t ∈ argmax
x∈P`−1\Q`

‖x‖A−1
`,t−1

• Update A`,t = A`,t−1 + x`,tx
>
`,t

• Q` = Q` ∪ {x`,t}

Set T` = t, the number of queries made in stage `
if Q` 6= ∅

• Query the labels y`,1, . . . , y`,T` associated with the unlabeled data in Q`,
and compute

w` = A−1
`,T`

T∑̀
t=1

y`,tx`,t

• Set C` = {x ∈ P`−1\Q` : |〈w`,x〉| > 2−`}

• Compute pseudo-labels on each x ∈ C` as ŷ = sgn〈w`,x〉

else
w` = 0, C` = ∅

Set P` = P`−1\(C` ∪Q`)

if d/2−`+1 > 2−`+1|P`|

• L = `

• Exit the for-loop (L is the total number of stages)

5 Predict labels in pool P:

• Train an SVM classifier ŵ on ∪L`=1C` via the generated pseudo-labels ŷ

• Predict on each x ∈ (∪L`=1Q`) ∪ PL through sgn(〈ŵ,x〉)
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that is, each x ∈ (∪L`=1Q`)∪PL, is assigned label sgn(〈ŵ,x〉). Notice, in particular, that ŵ
is not trying to fit the queried labels of ∪L`=1Q`, but only the pseudo-labels of ∪L`=1C`.

It is also worth observing how Algorithm 1 resolves the trade-off between informativeness
and diversity we alluded to in previous sections. Once we reach stage `, what remains in
the pool are only the points x such that |〈w`−1,x〉| ≤ 2−`+1 (this is because we have
eliminated in stage ` − 1 all the points in C`−1). Hence, the remaining points which the
approximate G-optimal design operates with in stage ` are those which the previous model
w`−1 is not sufficiently confident on. The algorithm then puts all these low-confident points
on the same footing (that is, they are considered equally informative if taken in isolation),
and then relies on the approximate G-optimal design scheme to maximize diversity among
them. The set-wise diversity measure we end up maximizing is indeed a determinant-like
diversity measure. This is easily seen from the fact that

∑T`
t=1 ||x`,t||2A−1

`,t−1

≈ log |A`,T` | .
On one hand, this careful selection of points contributes to keeping the variance of

estimator w` under control. On the other hand, the fact that we stop accumulating labels
when max

x∈P`−1\Q`
‖x‖A−1

`,T`

≤ ε` essentially implies that sgn(〈w`,x〉) = sgn(〈w∗,x〉) on all

points x we generate pseudo-labels for, which in turn ensures that these pseudo-labels are
consistent with w∗.

Sequential experimental design has become popular, e.g., in the (contextual) bandits
literature, see Ch. 22 in Lattimore and Szepesvari (2020), and is explicitly contained in
recent works on best arm identification (e.g., Fiez et al., 2019; Camilleri et al., 2021a). Notice
that in those works a design is a distribution over the set of actions (which would correspond
to pool P in our case), and the algorithm is afforded to sample a given action xt multiple
times, obtaining each time a fresh reward value yt such that E[yt |xt] = 〈w∗,xt〉. This is
not conceivable in a pool-based active learning scenario where label noise is persistent, and
each “action” xt can only be played once. This explains why the design we rely upon here
is necessarily more restrained than in those papers.

4.1 Analysis

The following result applies to the linear function case.2

Theorem 1 Let T ≥ d and assume that ‖x‖2 ≤ 1 for all x ∈ P. Then with probability at
least 1−δ over the random draw of (x1, y1), . . . , (xT , yT ) ∼ D the excess risk L(ŵ)−L(w∗),
the label complexity NT (P), and the number of stages L generated by Algorithm 1 are
simultaneously upper bounded as follows:

L(ŵ)− L(w∗) ≤ C̄ C(δ, T, ε0)

(
max

{(
d

T

)α+1
α+2

,
d

T ε0

}
+

log
(

log T
δ

)
T

)
,

NT (P) ≤ C̄ C(δ, T, ε0)

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}
+ log2

(
log T

δ

))
,

L ≤ C̄

(
max

{
log
(
T
d

)
α+ 2

, log

(
4

ε0

)}
+ log

(
log T

δ

))
,

2. Detailed proofs are deferred to the appendices.
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for an absolute constant C̄ and

C(δ, T, ε0) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
.

4.2 Constant batch size

We now describe a simple modification to Algorithm 1 that makes it work in the constant
batch size case. Let us denote by T` the length of stage ` in Algorithm 1. The modified
algorithm simply runs Algorithm 1: If T` < B the modified algorithm relies on model w`

generated by Algorithm 1 without saturating the budget of B labels at that stage. On the
contrary, if T` ≥ B, the modified algorithm splits stage ` of Algorithm 1 into dT`/Be stages
of size B (except, possibly, for the last one), and then uses the queried set Q` generated
by Algorithm 1 across all those stages. Hence, in this case, the modified algorithm is not
exploiting the potential benefit of updating the model every B queried labels. For instance,
if B = 100 and T` = |Q`| = 240, the modified algorithm will split this stage into three
successive stages of size 100, 100, and 40, respectively, and then rely on the 240 labels
queried by Algorithm 1 across the three stages. In particular, the update of the model w`,
and the associated pseudo-label computation on sets C` is only performed at the end of the
third stage.

Notice that the modified algorithm we just described is a legitimate pool-based batch
active learning algorithm operating on a constant batch size B, and its analysis is a direct
consequence of the one in Theorem 1, after we take care of the possible over-counting that
may arise in the reduction. Specifically, observe that the final hypothesis ŵ produced by
the modified algorithm is the same as the one computed by Algorithm 1, hence the same
bound on the excess risk applies. As for label complexity, if we stipulate that a batch
algorithm operating on a constant batch size B will be billed B labels at each stage even
if it ends up querying less, then the label complexity of the modified algorithm will over-
count the number of labels simply due to the rounding off in dT`/Be. However, at each
of the L stages of Algorithm 1, the over-counting is bounded by B, so that, overall, the
label complexity of the constant batch size variant exceeds the one of Algorithm 1 by at
most an additive BL term which, due to the bound on L in Theorem 1, is of the form

max
{

B
α+2 log

(
T
d

)
, B log

(
1
ε0

)}
. This is summarized in the following corollary.

Corollary 2 With the same assumptions and notation as in Theorem 1, with probability at
least 1− δ over the random draw of (x1, y1), . . . , (xT , yT ) ∼ D the label complexity NT,B(P)
achieved by the modified algorithm operating on a batch of size B is bounded as follows:

NT,B(P) ≤ C̄ C(δ, T, ε0)

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}
+ log2

(
log T

δ

))

+B C̄

(
max

{
log
(
T
d

)
α+ 2

, log

(
4

ε0

)}
+ log

(
log T

δ

))
,

where C̄, C(δ, T, ε0) are the same as in Theorem 1.

A few comments are in order.

10
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1. An important practical aspect of this modified algorithm (inherited from Algorithm 1)
is the very mild number of re-trainings required to achieve the claimed performance.

Despite the total number of labels can be as large as T
2

α+2 , the number L of times the

model is actually re-trained is not T
2

α+2 /B, but only logarithmic in T , irrespective of
the noise level α (that is, even when the low-noise assumption (2) is vacuous). On
the other hand, it is also important to observe that the bound on L shrinks as α
increases, that is, when the problem becomes easier. Overall, these properties make
the algorithm attractive in practical learning scenarios where the re-training time
turns out to be the main bottleneck in the data acquisition process, and a learning
procedure is needed that automatically adapts the re-training effort to the hardness
of the problem.

2. Let us disregard lower order terms and only consider the asymptotic behavior as
T →∞. Comparing the excess risk bound in Theorem 1 to the label complexity bound

in Corollary 2, one can see that when B = O(T
2

α+2 ) we have with high probability

L(ŵ)− L(w∗) ≈ 1

(NT,B(P))
1+α
2

,

which is the minimax rate one can achieve for VC classes under the low-noise condition
(2) with exponent α (e.g., Castro and Nowak, 2008; Hanneke, 2009; Koltchinskii, 2010;
Dekel et al., 2012). Hence, in order to achieve high-probability minimax rates, one
need not try to make the algorithm more adaptive by having it operate with an even

smaller B: any B as small as T
2

α+2 will indeed suffice in our learning scenario.

3. Similar minimax bounds on excess risk against label complexity for linear function
spaces have been shown in the streaming setting in Dekel et al. (2012); Wang et al.
(2021), though their results only hold in the fully sequential case (that is, B = 1) and
only hold in expectation over the random draw of the data, not with high probability.

The fact that a batch greedy algorithm can be competitive with a fully sequential policy has
also been observed in problems which are similar in spirit to active learning, like influence
maximization (see, in particular, Chen and Krause, 2013). More recently, in the context
of adaptive sequential decision making, Esfandiari et al. (2021) have proposed an efficient
semi-adaptive policy that performs logarithmically-many rounds of interaction achieving
similar performance as the fully sequential policy. This paper improves on the original ideas
contained in Golovin and Krause (2017). Yet, when adapted to active learning, these results
turn out to apply to very stylized scenarios that assume lack of noise in the labels, and/or
disregard the computational aspects associated with maintaining a posterior distribution or
a version space (which would be of size O(T d) in our case).

5. The Nonlinear Case

We are now ready to consider the more general non-linear scenario described in Section 2.

Given an arbitrary set of points S = {x1, . . . ,xT } (not necessarily i.i.d. and possi-
bly with repeated items), denote by P (·) a permutations over the indices {1, . . . , T}, and

11
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〈xP (1), . . . ,xP (T )〉 the permutation of S corresponding to P . We define the dimension
Dim(F , S) of the class of functions F projected onto S as

Dim(F , S) = sup
P

T∑
t=1

D2
(
xP (t); 〈xP (1), . . . ,xP (t−1)〉

)
,

where

D2(x, 〈x1, . . . ,xt−1〉) = sup
f,g∈F

(f(x)− g(x))2∑t−1
i=1(f(xi)− g(xi))2 + 1

.

The function D(x, 〈x1, . . . ,xt−1〉) defined above is our (F-dependent) measure of diver-
sity of x from x1, . . . ,xt−1, and will be used to select diverse points x to query in each
batch.

We will give below notable examples where Dim(F , S) is suitably bounded. For now,
what is important to keep in mind is that our active learning analyses will be non-vacuous
whenever

DimT (F) = sup
S⊆X : |S|=T

Dim(F , S)

is sub-linear in T , e.g., DimT (F) = O(poly(log T )) or DimT (F) = O(T ζ), for ζ ∈ [0, 1). A
sufficient condition for this to happen is discussed next.

The reader familiar with the literature in non-linear contextual bandits will recognize
Dim(F , S) as a close relative to the so-called eluder dimension (Russo and Van Roy, 2013),
as well as to the more recent online decoupling coefficient, as defined in Dann et al. (2021).

We recall that for a function space F = {f : X → [0, 1]}, and scale ε > 0, the
eluder dimension dimE(F , ε) can be defined as follows. A point x ∈ X is ε-dependent
on points {x1, . . . ,xt} ⊆ X with respect to F if any pair of functions f, g ∈ F satisfying∑t

i=1(f(xi) − g(xi))
2 ≤ ε2 also satisfies (f(x) − g(x))2 ≤ ε2. Point x is ε-independent of

{x1, . . . ,xt} with respect to F if x is not ε-dependent on {x1, . . . ,xt}. Then dimE(F , ε) is
the length of the longest sequence of elements in X such that, for some ε′ ≥ ε, every element
in the sequence is ε′-independent from its predecessors in the sequence.

A number of papers provide bounds on the eluder dimension for various function classes.
The original bounds on tabular, linear, and generalized linear functions are found in Russo
and Van Roy (2013); Osband and Van Roy (2014). When the function class lies in a
reproducing kernel Hilbert space (rkhs), Huang et al. (2021) show that the eluder dimension
is equivalent to the notion of information gain (see also Remark 6 below). Further, Dong
et al. (2021) prove an exponential lower bound on the eluder dimension for ReLU networks.

As for the relationships between DimT (F) and dimE(F , ε), we show in Appendix B,
Lemma 23 therein, the following bound:3

DimT (F) ≤ C̄ inf
η≥1

(
dimE(F , T−

1
2η ) log2(T ) + T

1− 1
η

)
, (4)

where C̄ > 0 is a universal constant.

3. For a weighted version of our complexity measure, Ye et al. (2023) obtained a bound corresponding to
η = 1, which does not enable a trade off on η.

12
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For instance, if dimE(F , ε) = O((1/ε)β), for some β ≥ 0, then selecting η in (4) that
equalizes the two terms in the right-hand side (and disregarding the log2(T ) factor) gives a
bound of the form

DimT (F) = Õ(T
β

2+β ) ,

which is achieved for eluder dimension dimE(F , ε) at scale ε = (1/T )
1

2+β . As a consequence,
our bounds will be non-vacuous if the function space F satisfies

dimE(F , ε) = O((1/ε)β)

for some β < ∞. We stress that this is not possible to achieve if we rely on the typical
eluder dimension scale of ε = 1/T found in the non-linear bandit literature in the absence
of gap assumptions (e.g., Russo and Van Roy, 2013) or the scale ε = ∆ in the presence of
gap ∆ > 0 among actions/policies (e.g., Foster et al., 2020).

In the case where F is a class of linear functions on a d-dimensional space, it is known
that dimE(F , ε) = O(d log(1/ε)), and we can set in (4) η = 1 to obtain DimT (F) =
O(d log3 T ), which is worse than the usual d log T bound one is expecting. As a matter
of fact, in the linear (or generalized linear) case a more direct argument is possible (see
Remark 6 below) giving the desired DimT (F) = O(d log T ) bound.

The algorithm for the non-linear case is given as Algorithm 2. The pseudocode is similar
to the one in Algorithm 1, where we replace the diversity measure ‖x‖A−1

`,t−1
by D(x,Q`),

the margin 〈w`,x〉 by f̂`(x) − 1/2, and define the confidence levels through the quantity
KT (δ, `, γ) satisfying

KT (δ, `, γ) =

√√√√√8 log
2`(`+ 1)

(
eT
V γ

)V
δ

+ 2γT

(
8 +

√
8 log

8`(`+ 1)T 2

δ

)
+ 1 ,

where V is the VC-subgraph dimension (or Pollard’s pseudo-dimension) of F , i.e. the VC-
dimension of the 0/1-valued class of functions

{(x, θ)→ 11{f(x) ≤ θ} : f ∈ F , θ ∈ [0, 1]} .

The above expression for KT (δ, `, γ) is itself the result of upper bounding in the parametric
case (V <∞) the covering numbers N∞(F ,Q`, γ) (with γ = 1/T ) occurring in the analysis.
See, in particular, Lemma 26 in Appendix C. This upper bound via the VC-subgraph
dimension is not strictly necessary, and is only aimed at making the function KT (δ, `, 1/T )
occurring in the algorithm’s pseudo-code easier to interpret.

5.1 Analysis

The following is the main result of this paper.

Theorem 3 Let V be the VC-subgraph dimension of F , and T ≥ max{Dim(F ,P), V }.
Then with probability at least 1− δ over the random draw of (x1, y1), . . . , (xT , yT ) ∼ D the
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excess risk L(f̂)−L(f?), the label complexity NT (P), and the number of stages L generated
by Algorithm 2 with γ = 1/T are simultaneously upper bounded as follows:

L(f̂)− L(f?)

≤ C̄ C(δ, T, ε0)

(
max

{(
Dim(F ,P)

T

)α+1
α+2

,
Dim(F ,P)

Tε0

})

+ C̄

 log
(

log T
δ

)
+ V log T

T

 ,

NT (P) ≤ C̄ C(δ, T, ε0)

(
max

{
Dim(F ,P)

α
α+2T

2
α+2 ,

Dim(F ,P)

ε20

}
+ log2

(
log T

δ

))
,

L ≤ C̄

(
max

 log
(

T
Dim(F ,P)

)
α+ 2

, log

(
1

ε0

)+ log

(
log T

δ

))
,

for an absolute constant C̄ and

C(δ, T, ε0) = V log2

(
T

δ

)(
1 + log2

(
1

ε0

))
.

A few remarks are in order.

Remark 4 In Algorithm 2 the stopping condition

Dim(F ,P)/2−`+1 > 2−`+1|P`|

involves Dim(F ,P), which may be hard to compute in practice. In its stead, we can in-
troduce a tuning parameter ω and replace Dim(F ,P) therein by ω. As a consequence, the
bounds in Theorem 3 (ignoring constant factors and lower order terms) become

L(f̂)− L(f?) ≤ max

{(
Dim(F ,P)

T

)α+1
α+2

(
Dim(F ,P)

ω

) 1
α+2

+
(ω
T

)α+1
α+2

,
Dim(F ,P)

Tε0

}
,

NT (P) ≤ max

{
Dim(F ,P)

α
α+2 T

2
α+2

(
Dim(F ,P)

ω

) 2
α+2

,
Dim(F ,P)

ε20

}
,

L ≤ max

{
log
(
T
ω

)
α+ 2

, log

(
1

ε0

)}
.

Note that the excess risk is optimized when ω = Dim(F ,P).

Remark 5 For the sake of illustration, consider the case where Dim(F ,P) ≤ DimT (F) =
O(T ζ), for some ζ ∈ [0, 1), as is the case when dimE(F , ε) = O((1/ε)β) for some β < ∞.
In this case, one can easily see that with high probability (and disregarding constants and
log factors)

L(f̂)− L(f?) ≈
1

(NT (P))
(1−ζ)(1+α)

2+ζα

,
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Algorithm 2: Pool-based batch active learning algorithm for general non-linear
models.

1 Input: Confidence level δ ∈ (0, 1], pool of instances P ⊆ Rd of size |P| = T , scale
parameter γ

2 Initialize: P0 = P
3 for ` = 1, 2, . . . ,
4 Initialize within stage `:

• ε` = 2−`/KT (δ, `, γ)

• t = 0, Q` = ∅

while P`−1\Q` 6= ∅ and max
x∈P`−1\Q`

D(x,Q`) > ε`

• t = t+ 1

• Pick x`,t ∈ argmax
x∈P`−1\Q`

D(x,Q`)

• Update Q` = Q` ∪ {x`,t}

Set T` = t, the number of queries made in stage `
if Q` 6= ∅

• Query the labels y`,1, . . . , y`,T` associated with the unlabeled data in Q`,
and compute

f̂` = argmin
f∈F

T∑̀
t=1

(
1 + y`,t

2
− f(x`,t)

)2

• Set C` = {x ∈ P`−1\Q` : |f̂`(x)− 1/2| > 2−`}

• Compute pseudo-labels on each x ∈ C` as ŷ = sgn(f̂`(x)− 1/2)

else

f̂` = 1/2 (random guess), C` = ∅

Set P` = P`−1\(C` ∪Q`)

if Dim(F ,P)/2−`+1 > 2−`+1|P`|

• L = `

• Exit the for-loop (L is the total number of stages)

5 Predict labels in pool P:

• Find empirical 0–1 loss minimizer f̂ on ∪L`=1C` via the generated pseudo-labels ŷ

• Predict on each x ∈ (∪L`=1Q`) ∪ PL through sgn(f̂(x)− 1/2)
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which are similar to the bounds obtained in Wang et al. (2021) in the streaming setting
under assumptions that are similar in spirit.

Remark 6 One may be wondering whether it is generally possible to directly bound
DimT (F) in relevant cases. The only relevant cases we are currently aware of are: (i)
the linear and generalized linear cases we considered in Section 4 of this paper, and Sec-
tion 5 of Gentile et al. (2022b), where it is easy to show that DimT (F) = O(d log T ); (ii)
The case where F is made up of bounded functions in a rkhs. In this case, Dim(F , S) ≤
log |I +G(S)| , and DimT (F) ≤ max

S⊆X : |S|=T
log |I +G(S)| , where G(S) is the kernel Gram

matrix build out of the data in pool S. Hence, DimT (F) depends on the decay of the eigen-
values of the underlying kernel function. In this case, since F may not be a VC-class, we
also need to resort to known results for bounding covering numbers of function classes within
a rkhs (e.g., Zhou, 2002).

The argument for the linear case is particularly simple. Consider an arbitrary ordering
〈x1, . . . ,xT 〉 of S, and define

D2(xt, 〈x1, . . . ,xt−1〉) = sup
w1,w2∈Rd : ||w1||,||w2||≤1

(〈w1,xt〉 − 〈w2,xt〉)2∑t−1
i=1(〈w1,xi〉 − 〈w2,xi〉)2 + 1

= sup
w∈Rd : ||w||=2

(〈w,xt〉)2∑t−1
i=1(〈w,xi〉)2 + 1

= sup
w∈Rd : ||w||=2

w>xtx
>
t w

w>At−1w
,

where At−1 =
∑t−1

i=1 xix
>
i + 1

2I. Since w>xtx
>
t w ≤ (w>At−1w)(x>t A

−1
t−1xt), the above gives

D2(xt, 〈x1, . . . ,xt−1〉) ≤ x>t A
−1
t−1xt

and

Dim(F , S) =

T∑
t=1

D2(xt, 〈x1, . . . ,xt−1〉) = O(d log T )

by known inequalities (e.g., Azoury and Warmuth, 2001; Cesa-Bianchi et al., 2005; Abbasi-
Yadkori et al., 2011). A very similar argument can be carried out for the rkhs case by
switching to dual variables, leading to the claimed bound Dim(F , S) ≤ log |I +G(S)| . See,
e.g., Cesa-Bianchi et al. (2005), Section 3.2 therein.

Incidentally, the above also shows that the algorithm for the general non-linear case
(Algorithm 2) essentially recovers the one for the linear case (Algorithm 1) up to logarithmic
factors. To see this, observe that the quantity KT (δ, `, γ) at scale γ = 1/T defining ε` in
Algorithm 2 is similar to the log factor at the denominator in the expression for ε` in
Algorithm 1. More importantly, as argued above, in the linear case we have D(x, Q`) ≈
||x||A−1

`,t
, and Dim(F , S) = Õ(d), which are the corresponding quantities Algorithm 1 relies

upon.

Remark 7 A constant batch size version of Algorithm 2 can also be devised, and the asso-
ciated properties spelled out. The details are similar to those in Section 4.2 for the linear
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case, but the interplay with the batch size B now also depends on the behavior of Dim(F ,P)
or DimT (F), as a function of T = |P|. The details are easy extensions of the arguments
we carried out for the linear case (comments surrounding Corollary 2), and are therefore
omitted.

6. Conclusions and Open Questions

We have described and analyzed novel batch active learning algorithms in the pool-based
setting that in relevant cases achieve minimax rates of convergence of their excess risk as a
function of the number of queried labels. The minimax nature of our results is retained also
when the batch size B is allowed to scale polynomially (B ≤ T β, for β ≤ 1) with the size
T of the training set, the allowed exponent β depending on the actual level of noise in the
data. The algorithms have a number of re-training rounds which is at worst logarithmic,
and is able to automatically adapt to the noise level.

Our algorithms generate pseudo-labels by restricting to exponentially small regions of
the margin space.

The main content of this paper is the extension of the above results to the general
non-linear case through a notion of dimension Dim(F , S) that takes the adaptive nature
of active learning sampling into account. The resulting algorithm is a generalization of the
one for the linear case, while the corresponding analysis greatly generalizes the linear case
analysis, where we replace the greedy version of G-optimal design with a design guided by
the diversity measure induced by the function space at hand. We related Dim(F , S) to
the eluder dimension dimE(F , ε) of F at an appropriate scale ε, and pointed out that any
function space F such that dimE(F , ε) is polynomial in 1/ε is actually learnable in our
realizable scenario.

It would be nice to see whether it is possible to replace DimT (F) by some substantially
smaller notion of dimension, in both the algorithm and the analysis. For instance, it might
be possible to leverage the fact that our algorithm is selecting points xt by maximizing
D(x,Q`), so that the sequence x1,x2, . . . is not completely arbitrary. This would be similar
in spirit to the arguments by Brukhim et al. (2023), where the authors introduce a notion of
function complexity, called dissimilarity measure, that is able to exploit the specific structure
of optimistic bandit algorithms, leading to bounds that are in some cases substantially
sharper than those based on the eluder dimension.
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Appendix A. Proofs for Section 4

Consider Algorithm 1, and denote by T` the length of stage `.
We denote for any ε > 0,

Tε = {x ∈ P : |〈w∗,x〉| ≤ ε} .

Recall that in Algorithm 1 variable L counts the total number of stages (a random quantity),
while the size of the original pool |P| is denoted by T .

We first show that on the confident sets, that is, on sets C` where pseudo-labels are
generated, the learner has with high probability no regret. Before giving our key lemma, it
will be useful to define the events

E` =

{
max

x∈P`−1\Q`
|〈w` −w∗,x〉| ≤ 2−`

}
,

for ` = 1, . . . , L.

Lemma 8 For any positive L,

P

(
L⋂
`=1

E`

)
> 1− δ .

Proof We assume P`−1\Q` is not empty (it could be empty only in the final stage L).
We follow the material contained in Chapters 20 and 21 of the book of Lattimore and
Szepesvari (2020). Let ξ`,t = y`,t − 〈w∗,x`,t〉 and notice that ξ`,t are independent 1-sub-
Gaussian random variables conditioned on P`−1. Also, observe that, conditioned on past
stages 1, . . . , ` − 1, we are in a fixed design scenario, where the x`,t are chosen without
knowledge of the corresponding labels y`,t. We can write, for any x ∈ P`−1,

〈w` −w∗,x〉 = 〈A−1
`,T`

(
T∑̀
t=1

y`,tx`,t

)
−w∗,x〉

= 〈A−1
`,T`

(
T∑̀
t=1

x`,t〈w∗,x`,t〉+ ξ`,tx`,t

)
−w∗,x〉

= 〈A−1
`,T`

(A`,T` − I)w∗ +A−1
`,T`

(
T∑̀
t=1

ξ`,tx`,t

)
−w∗,x〉

= −〈w∗,x〉A−1
`,T`

+

T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t .

Since {ξ`,t}T`t=1 are 1-sub-Gaussian and independent conditioned on {x`,t}, the variance term∑T`
t=1〈x`,t,x〉A−1

`,T`

ξ`,t is
√∑T`

t=1〈x`,t,x〉2A−1
`,T`

-sub-Gaussian. We apply Lemma 29

P

∣∣∣ T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t

∣∣∣≥
√√√√2

T∑̀
t=1

〈x`,t,x〉2A−1
`,T`

log
2`(`+ 1)T

δ

 ≤ δ

`(`+ 1)T
.
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Now observe that

T∑̀
t=1

〈x`,t,x〉2A−1
`,T`

= ‖x‖2
A−1
`,T`

− ‖A−1
`,T`

x‖2 ≤ ‖x‖2
A−1
`,T`

.

We plug back into the previous inequality to obtain

P

(∣∣∣ T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t

∣∣∣≥√2‖x‖2
A−1
`,T`

log
2`(`+ 1)T

δ

)
≤ δ

`(`+ 1)T
.

Using a union bound, we get with probability at least 1− δ
`(`+1) ,

∣∣∣ T∑̀
t=1

〈x`,t,x〉A−1
`,T`

ξ`,t

∣∣∣ ≤√2‖x‖2
A−1
`,T`

log
2`(`+ 1)T

δ
,

holds uniformly for all x ∈ P`−1. For the bias term 〈w∗,x〉A−1
`,T`

, notice that A`,T` � I

implies

|〈w∗,x〉A−1
`,T`

| ≤ ‖x‖A−1
`,T`

‖w∗‖A−1
`,T`

≤ ‖x‖A−1
`,T`

.

Hence with probability at least 1− δ
`(`+1) ,

|〈w` −w∗,x〉| ≤

(√
2 log

2`(`+ 1)T

δ
+ 1

)
‖x‖A−1

`,T`

,

holds uniformly for all x ∈ P`−1.

Notice that by the selection criterion in Algorithm 1, max
x∈P`−1\Q`

‖x‖A−1
`,T`

≤ ε2` . As a

consequence, with probability at least 1− δ
`(`+1) ,

max
x∈P`−1\Q`

|〈w` −w∗,x〉| ≤

(√
2 log

2`(`+ 1)T

δ
+ 1

)
ε` .

Recalling the definition of ε` in Algorithm 1 and using an union bound over `, we get the
desired result.

As a simple consequence, we have the following lemma.

Lemma 9 Assume
⋂L
`=1 E` holds. Then Algorithm 1 generates pseudo-labels such that, on

all points x ∈ ∪L`=1C`, sgn(〈w`,x〉) = sgn(〈w∗,x〉).

Proof Simply observe that if x ∈ ∪L`=1C` is such that sgn(〈w`,x〉) = 1 then 〈w`,x〉 > 2−`,
which implies 〈w∗,x〉 > 0 by the assumption that E` holds. Similarly, sgn(〈w`,x〉) = −1
implies 〈w∗,x〉 < 0.

19



Gentile and Wang and Zhang

Lemma 10 The length T` of stage ` in Algorithm 1 is (deterministically) upper bounded
as

T` ≤
8d

ε2`
log

(
1

ε`

)
.

Proof Since in stage ` the algorithm terminates at T`, any round t < T` is such that

||x`,t+1||2A−1
`,t

> ε2` .

We denote | · | as the determinant of the matrix at argument and have the known identity

|A`,t+1| = |A`,t + x`,t+1x
>
`,t+1|

= |A`,t| · |I +A−1
`,t x`,t+1x

>
`,t+1|

= (1 + ||x`,t+1||2A−1
`,t

)|A`,t|

≤ 2|A`,t| ,

where the third equality holds since I +A
−1/2
`,t x`,t+1x

>
`,t+1A

−1/2
`,t has d− 1 eigenvalues 1 and

one eigenvalue 1 + ||x`,t+1||2A−1
`,t

.

Combining the above equality with the fact that log(1 + x) ≥ x
1+x ≥

x
2 for 0 ≤ x ≤ 1,

we get

||x`,t+1||2A−1
`,t

=
|A`,t+1|
|A`,t|

− 1 ≤ 2(log |A`,t+1| − log |A`,t|) .

Therefore,

2(log |A`,t+1| − log |A`,t|) > ε2` .

Summing over t = 0, . . . , T` − 1 yields,

2 log
|A`,T` |
|A`,0|

≥ ε2`T` .

Now, A`,0 = I, so that |A`,0| = 1, and

log |A`,T` | ≤ log (trace(A`,T`)/d)d ≤ d log

(
1 +

T`
d

)
,

yields
T`
d
≤ 2

ε2`
log

(
1 +

T`
d

)
.

Let G(x) = x
log(1+x) , and notice that G(x) is increasing for x > 0. We have

G

(
T`
d

)
≤ 2

ε2`
< G

(
4

ε2`
log

1

ε2`

)
,

where the second inequality holds since ε` ≤ ε1 < 1
4 .
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As a consequence,

T` ≤
8d

ε2`
log

(
1

ε`

)
,

as claimed.

The proof then proceeds by bounding two relevant quantities associated with the behavior
of Algorithm 1: the label complexity

NT (P) =
L∑
`=1

|Q`| ,

and the weighted cumulative regret over pool P of size T , defined as

RT (P) =
∑
x∈P

11{sgn〈ŵ,x〉 6= sgn〈w∗,x〉}|〈w∗,x〉| .

We will first present intermediate bounds on RT (P) and NT (P) as a function of L, and then
rely on the properties of the noise (hence the randomness on P) to complete the proofs.

To simplify the math display we denote

KT (δ, `) =

√
2 log

2`(`+ 1)T

δ
+ 1 ,

so that ε` = 1
2`KT (δ,`)

.

Lemma 10 immediately delivers the following bound on NT (P):

Theorem 11 For any pool realization P, the label complexity NT (P) of Algorithm 1 oper-
ating on a pool P of size T is bounded deterministically as

NT (P) ≤ 32

3
d log

(
2LKT (δ, L)

)
K2
T (δ, L)4L

Proof By definition

NT (P) =
L∑
`=1

T` ≤
L∑
`=1

8d

ε2`
log

(
1

ε`

)

≤ 8d log

(
1

εL

)
K2
T (δ, L)

L∑
`=1

4`

≤ 8

3
d log

(
2LKT (δ, L)

)
K2
T (δ, L)4L+1 ,

where the second inequality follows from the fact that both 1
ε`

and KT (δ, `) increase with

`, and the last inequality follows from
∑L

`=1 4` < 4
34L.

As for the regret RT (P), we have the following high probability result.
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Theorem 12 For any pool realization P, the weighted cumulative regret RT (P) of Algo-
rithm 1 operating on a pool P of size T is bounded as

RT (P) ≤ 64d log
(
2LKT (δ, L)

)
K2
T (δ, L)2L + d 2L−1 ,

assuming
⋂L
`=1 E` holds.

Proof We decompose the pool P as the union of following disjoint sets

P =
(
∪Ll=1C`

)
∪
(
∪Ll=1Q`

)
∪ PL

and, correspondingly, the weighted cumulative regret RT (P) as the sum of the three com-
ponents

RT (P) = R(∪Ll=1C`) +R(∪Ll=1Q`) +R(PL) .

Assume
⋂L
`=1 E` holds. First, notice that on C`,

sgn〈ŵ,x〉 = sgn〈w`,x〉 = sgn〈w∗,x〉

under the assumption that E` holds, thus points in ∪L`=1C` do not contribute weighted regret
for ŵ, i.e.,

R(∪Ll=1C`) = 0 .

Next, on PL, we have |〈wL,x〉| ≤ 2−L. Combining this with the assumption that EL holds,
we get |〈w∗,x〉| ≤ 2−L+1, which implies that the weighted cumulative regret on PL is
bounded as

R(PL) ≤ 2−L+1|PL| < d 2L−1 ,

the second inequality deriving from the stopping condition defining L in Algorithm 1.
Finally, on the queried points ∪Ll=1Q`, it is unclear whether sgn〈ŵ,x〉 = sgn〈w∗,x〉 or

not, so we bound the weighted cumulative regret contribution of each data item x therein
by |〈w∗,x〉|. Now, by construction, x ∈ Q` ⊂ P`−1, so that |〈w`−1,x〉| ≤ 2−`+1 which,
combined with the assumption that E`−1 holds, yields |〈w∗,x〉| ≤ 2−`+2. Since |Q`| = T`,
we have

R(∪L`=1Q`) ≤ 4
L∑
`=1

T` 2−`

and Lemma 10 allows us to write

R(∪Ll=1Q`) ≤ 32d

L∑
l=1

2−`

ε2`
log

(
1

ε`

)
≤ 64d log

(
2LKT (δ, L)

)
K2
T (δ, L)2L ,

the last inequality following from a reasoning similar to the one that lead us to Theorem
11.

Given any pool realization P, both the label complexity and weighted regret are bounded
by a function of L. Adding the ingredient of the low noise condition (2) helps us leverage
the randomness in P and further bound from above the number of stages L.
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Specifically, assume the low noise condition (2) holds for f∗(x) = 1+〈w∗,x〉
2 , for some

unknown exponent α ≥ 0 and unknown constant ε0 ∈ (0, 1]. Using a multiplicative Chernoff
bound, it is easy to see that for any fixed ε∗, with probability at least 1− δ,

|Tε∗ | ≤
3

2
(Tεα∗ + log(1/δ)) ,

the probability being over the random draw of the initial pool P. Now, since εL is itself a
random variable (since so is L), we need to resort to a covering argument. For any positive
number M , consider the following set of fixed ε values

KM =
{ ε0

2i/α
: i = 0, . . . ,M

}
.

Then with probability at least 1− δ,

|Tε| ≤
3

2

(
Tεα + log

(
M

δ

))
,

holds simultaneously over ε ∈ KM . Set M = log2 T and assume ε is the smallest value
in KM that is bigger than or equal to ε∗. If ε is not the smallest value in KM , then by
construction we have εα∗ ≤ εα < 2εα∗ so that, for all ε∗ >

ε0
2M/α

,

|Tε∗ | ≤ |Tε| ≤
3

2

(
Tεα + log

(
M

δ

))
< 3

(
Tεα∗ + log

(
M

δ

))
. (5)

On the other hand if ε∗ ≤ ε0
2M/α

we can write

|Tε∗ | ≤
∣∣∣T ε0

2M/α

∣∣∣≤ 3

2

(
Tεα0
2M

+ log

(
M

δ

))
≤ 3

2

(
1 + log

(
M

δ

))
< 3 log

(
M

δ

)
,

making Eq. (5) hold in this case as well.
We define the event

Ē =
⋂

ε∗∈(0,ε0]

{
|Tε∗ | < 3

(
Tεα∗ + log

(
M

δ

))}
.

Then
P
(
Ē
)
≥ 1− δ , (6)

for M = log2 T .
We set ε∗ to be the unique solution of the equation4

d/ε∗ = 3

(
Tεα+1
∗ + ε∗ log

(
M

δ

))
. (7)

Eq. (5) will be applied, in particular, to the margin value 2−L+2 when 2−L+2 ≤ ε0.
Armed with Eqs. (5) and (7) with M = log2 T , we prove a lemma that upper bounds

the number of stages L.

4. We need to further assume T > 2
3
d so as to make sure the solution exists.
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Lemma 13 Let ε∗ be defined through (7), with T > 2
3d. Assume both Ē and

⋂L
`=1 E` hold.

Then the number of stages L of Algorithm 1 is upper bounded as

L ≤ max

(
log2

(
1

ε∗

)
, log2

(
1

ε0

))
+ 2

≤ max

(
log2

[(
3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

]
, log2

(
1

ε0

))
+ 2

= max

(
O

(
1

α+ 2
log

(
T

d

)
+ log

(
log T

δ

))
, log

(
4

ε0

))
.

Here the O-notation only omits absolute constants.

Proof If at stage L− 1 the algorithm has not stopped, then we must have

d/2−L+2 ≤ 2−L+2|PL−1| .

Notice that if x ∈ PL−1 then |〈wL−1,x〉| ≤ 2−L+1. Combining it with the assumption that
EL−1 holds, we have |〈w∗,x〉| ≤ 2−L+2 which implies |PL−1| ≤ |T2−L+2 |.

We split the analysis into two cases. On one hand, when 2−L+2 > ε0, this condition
gives us directly

L ≤ log2(
1

ε0
) + 2 .

On the other hand if 2−L+2 ≤ ε0, then given Ē holds, |T2−L+2 | is upper bounded as

|T2−L+2 | ≤ 3

(
T 2(−L+2)α + log

(
M

δ

))
,

with M = log2 T . Plugging into the first display results in

d/2−L+2 ≤ 3

(
T2(−L+2)(α+1) + 2−L+2 log(

M

δ
)

)
,

which resembles (7) with 2−L+2 here playing the role of ε∗ therein. Then, from the definition
of ε∗ in (7) we immediately obtain 2−L+2 ≥ ε∗, thus L ≤ log2( 1

ε∗
) + 2. Moreover, from (7)

we see that d/ε∗ ≥ 3Tεα+1
∗ , which is equivalent to ε∗ ≤ ( d

3T )
1

α+2 . Replacing this upper
bound on ε∗ back into the right-hand side of (7) and dividing by d yields

1

ε∗
≤
(

3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
M

δ
) ,

which gives the claimed upper bound on L through L ≤ log2( 1
ε∗

) + 2.

Corollary 14 Let T > d. Then with probability at least 1 − 2δ over the random draw of
(x1, y1), . . . , (xT , yT ) ∼ D the label complexity NT (P) and the weighted cumulative regret

24



Fast Rates in Pool-Based Batch Active Learning

RT (P) of Algorithm 1 simultaneously satisfy the following:

NT (P) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
max

{
d

α
α+2T

2
α+2 ,

d

ε20

}
+ log2

(
log T

δ

))
RT (P) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
max

{
d
α+1
α+2T

1
α+2 ,

d

ε0

}
+ log

(
log T

δ

))
.

where the O-notation only omits absolute constants .

Proof Assume both Ē and
⋂L
`=1 E` hold. Recalling the definition of KT (δ, L), we have

KT (δ, L) = O

(√
log

(
T

δ

)
+ logL

)
= O

(√
log

(
T

δ

)
+ L

)
.

Similar to lemma 13, we split the analysis into two cases depending on whether or not 2−L+2

is bigger than ε0. If 2−L+2 ≤ ε0, we have

L ≤ log2

[(
3T

d

) 1
α+2

+ 3

(
1

d

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

]
,

therefore,

2L = O

((
T

d

) 1
α+2

+

(
1

d

)α+1
α+2

(
1

T

) 1
α+2

log

(
log T

δ

))
.

Plugging the above bounds into Theorem 11 gives

NT (P) = O
(
d
(
L+ logK2

T (δ, L)
)
K2
T (δ, L)4L

)
= O

((
L+K2

T (δ, L)
)
K2
T (δ, L)

(
d

α
α+2T

2
α+2 + log2

(
log T

δ

)))
= O

((
L+ log

(
T

δ

))2(
d

α
α+2T

2
α+2 + log2

(
log T

δ

)))

= log2

(
T

δ

)
O

(
d

α
α+2T

2
α+2 + log2

(
log T

δ

))
.

Similarly applying them to Theorem 12,

RT (P) = O
(
d
(
L+ logK2

T (δ, L)
)
K2
T (δ, L)2L

)
= O

((
L+K2

T (δ, L)
)
K2
T (δ, L)

(
d
α+1
α+2T

1
α+2 + log

(
log T

δ

)))
= O

((
L+ log

(
T

δ

))2(
d
α+1
α+2T

1
α+2 + log

(
log T

δ

)))

= log2

(
T

δ

)
O

(
d
α+1
α+2T

1
α+2 + log

(
log T

δ

))
,

where in the second equality we used the assumption that d < T .
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If 2−L+2 > ε0, then 2L ≤ 4
ε0

. Plugging these bounds into Theorem 11 and Theorem 12
gives

NT (P) = O

(
log2

(
T

δε0

)
d

ε20

)
= log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
d

ε20

)
RT (P) = O

(
log2

(
T

δε0

)
d

ε0

)
= log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
d

ε0

)
.

Lastly, (6) and lemma 8 together yield

P

(
Ē
⋂(

L⋂
`=1

E`

))
≥ 1− 2δ ,

which concludes the proof.

We now turn the bound on the weighted cumulative regret RT (P) in the previous
corollary into a bound on the excess risk. We can write

L(ŵ)− L(w∗) = E(x,y)∼D

[
11{y 6= sgn(〈ŵ,x〉)} − 11{y 6= sgn(〈w∗,x〉)}

]
= Ex∼DX

[
Ey∼DY|X

[
11{y 6= sgn(〈ŵ,x〉)} − 11{y 6= sgn(〈w∗,x〉)}

]]
= Ex∼DX

[
11{sgn(〈ŵ,x〉) 6= sgn(〈w∗,x〉)} |〈w∗,x〉|

]
,

where ŵ is the hypothesis returned by Algorithm 1. Now, simply observe that

11{sgn(〈ŵ,x〉) 6= sgn(〈w∗,x〉)} |〈w∗,x〉|

has the same form as the function φ(ŵ,x) in Appendix C on which the uniform convergence
result of Theorem 28 applies, with ε̂(δ) therein replaced by the bound on RT (P) borrowed
from Corollary 14. This allows us to conclude that with probability at least 1− δ

L(ŵ)−L(w∗) = log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

max

{(
d

T

)α+1
α+2

,
d

T ε0

}
+

log
(

log T
δ

)
T

 ,

as claimed in Theorem 1 in the main body of the paper.

Appendix B. Proofs for Section 5

The proof has the very same structure as the one in Section A. Hence we only emphasize
the main differences.

The starting point of the analysis is Proposition 2 in Russo and Van Roy (2013) which,
with our assumptions and notation, reads as follows.
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Lemma 15 Let f̂` be the estimator computed by Algorithm 2 at the end of stage `, and
Q` = {x`,1, . . . ,x`,T`} be the queried points in stage `. Then with probability at least 1− δ

`(`+1)
we have

T∑̀
t=1

(f?(x`,t)− f̂`(x`,t))2 ≤ 8 log
2`(`+ 1)N∞(F ,Q`, γ)

δ
+ 2γT`

8 +

√
8 log

8`(`+ 1)T 2
`

δ

 ,

where N∞(F ,Q`, γ) is the size of a γ-cover of function class F with respect to the infinity
norm.

Note that from Lemma 26 we can further bound N∞(F ,Q`, γ) by
(
eT
V γ

)V
, where V is

the VC-subgraph dimension of F . To simplify the math display we denote

KT (δ, `, γ) =

√√√√√8 log
2`(`+ 1)

(
eT
V γ

)V
δ

+ 2γT

(
8 +

√
8 log

8`(`+ 1)T 2

δ

)
+ 1 ,

so that ε` = 1
2`KT (δ,`,γ)

.

Moreover, we define, for any ε > 0,

Tε = {x ∈ P : |f∗(x)− 1/2| ≤ ε} .

Recall that in Algorithm 2 variable L counts the total number of stages, while T denotes
the size of the original pool P.

Similar to Appendix A, we define the events

E` =

{
max

x∈P`−1\Q`
|f∗(x)− f̂`(x)| ≤ 2−`

}
,

for ` = 1, . . . , L.

Lemma 16 For any positive L, we have

P

(
L⋂
`=1

E`

)
> 1− δ .

Proof We assume P`−1\Q` is not empty (it could be empty only in the final stage L).
Then for any ` and x ∈ P`−1\Q` we can write

(f?(x) − f̂`(x))2

=
(f?(x)− f̂`(x))2∑T`

t=1(f?(x`,t)− f̂`(x`,t))2 + 1

(
T∑̀
t=1

(f?(x`,t)− f̂`(x`,t))2 + 1

)

≤ sup
f,g∈F

(f(x)− g(x))2∑T`
t=1(f(x`,t)− g(x`,t))2 + 1

(
T∑̀
t=1

(f?(x`,t)− f̂`(x`,t))2 + 1

)

= D2(x;Q`)

(
T∑̀
t=1

(f?(x`,t)− f̂`(x`,t))2 + 1

)
≤ ε2`K

2
T (δ, `, γ) ,
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holds with probability at least 1 − δ
`(`+1) . This is due to Lemma 15 and the fact that

max
x∈P`−1\Q`

D(x,Q`) ≤ ε`.

Using the definition of ε` and union bound we get the desired result.

Similar to Appendix A, this yields the following consequence.

Lemma 17 Assume
⋂L
`=1 E` holds. Then Algorithm 2 generates pseudo-labels such that,

on all points x ∈ ∪L`=1C`, sgn(f̂`(x)− 1/2) = sgn(f∗(x)− 1/2).

Lemma 18 The length T` of stage ` in Algorithm 2 is (deterministically) upper bounded
as

T` ≤
Dim(F ,Q`)

ε2`
≤ Dim(F ,P)

ε2`
.

Proof Since in stage ` the algorithm terminates at T`, any round t < T` is such that

D2 (x`,t+1; 〈x`,1, . . . ,x`,t〉) > ε2` .

Summing this inequality up we get

Dim(F ,Q`) ≥ ε2`T` ,

as a consequence

T` ≤
Dim(F ,Q`)

ε2`
≤ Dim(F ,P)

ε2`
,

as claimed.

We then bound the label complexity

NT (P) =

L∑
`=1

|Q`| ,

and the weighted cumulative regret over pool P of size T ,

RT (P) =
∑
x∈P

11
{

sgn(f̂(x)− 1/2) 6= sgn(f∗(x)− 1/2)
}
|f∗(x)− 1/2| .

We will first present intermediate bounds on RT (P) and NT (P) as a function of L, and then
rely on the properties of the noise (hence the randomness on P) to complete the proofs.

Lemma 18 immediately delivers the following bound on NT (P):

Theorem 19 For any pool realization P, the label complexity NT (P) of Algorithm 2 oper-
ating on a pool P of size T is bounded deterministically as

NT (P) ≤ 4L+1

3
K2
T (δ, L, γ)Dim(F ,P) .

As for the regret RT (P), we have the following high probability result.
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Theorem 20 For any pool realization P, the weighted cumulative regret RT (P) of Algo-
rithm 1 operating on a pool P of size T is bounded as

RT (P) ≤ 2L+4K2
T (δ, L, γ)Dim(F ,P) ,

assuming
⋂L
`=1 E` holds.

Proof We decompose the pool P as the union of following disjoint sets

P =
(
∪Ll=1C`

)
∪
(
∪Ll=1Q`

)
∪ PL

and, correspondingly, the weighted cumulative regret RT (P) as the sum of the three com-
ponents

RT (P) = R(∪Ll=1C`) +R(∪Ll=1Q`) +R(PL) .

Assume
⋂L
`=1 E` holds. First, notice that on C`,

sgn(f̂(x)− 1/2) = sgn(f̂`(x)− 1/2) = sgn(f∗(x)− 1/2) ,

where the second equality is due to Lemma 17 and the first equality follows from the fact
that f̂ minimize the 0–1 loss on the generated pseudo-labels, thus incurs no loss since f∗
already incurs zero loss. As a consequence points in ∪L`=1C` do not contribute weighted

regret for f̂ , i.e.,

R(∪Ll=1C`) = 0 .

Next, on PL, we have |f̂L(x) − 1/2| ≤ 2−L. Combining this with the assumption that EL
holds, we get |f∗(x)− 1/2| ≤ 2−L+1, which implies that the weighted cumulative regret on
PL is bounded as

R(PL) ≤ 2−L+1|PL| < Dim(F ,P) 2L−1 ,

the second inequality deriving from the stopping condition defining L in Algorithm 2.

Finally, on the queried points ∪Ll=1Q`, it is unclear whether sgn(f̂(x)−1/2) = sgn(f∗(x)−
1/2) or not, so we bound the weighted cumulative regret contribution of each data item x
therein by |f∗(x) − 1/2|. Now, by construction, x ∈ Q` ⊂ P`−1, so that |f`−1(x) − 1/2| ≤
2−`+1 which, combined with the assumption that E`−1 holds, yields |f∗(x)− 1/2| ≤ 2−`+2.
Since |Q`| = T`, we have

R(∪L`=1Q`) ≤ 4

L∑
`=1

T` 2−`

and Lemma 18 allows us to write

R(∪Ll=1Q`) ≤ 4
L∑
l=1

2−`Dim(F ,P)

ε2`
≤ 2L+3K2

T (δ, L, γ)Dim(F ,P) ,

the last inequality following from a reasoning similar to the one that lead us to Theorem
19.
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Given any pool realization P, both the label complexity and weighted regret are bounded
by a function of L. Adding the ingredient of the low noise condition (2) helps us leverage
the randomness in P and further bound from above the number of stages L.

Specifically, assume the low noise condition (2) holds for f∗(x), for some unknown
exponent α ≥ 0 and unknown constant ε0 ∈ (0, 1]. We set ε∗ to be the unique solution of
the equation5

Dim(F ,P)/ε∗ = 3

(
Tεα+1
∗ + ε∗ log

(
M

δ

))
. (8)

Eq. (5) holds in this case by low noise condition and will be applied, in particular, to the
margin value 2−L+2 when 2−L+2 ≤ ε0.

Armed with Eqs. (5) and (8) with M = log2 T , we prove a lemma that upper bounds
the number of stages L. Recall the definition of event Ē :

Ē =
⋂

ε∗∈(0,ε0]

{
|Tε∗ | < 3

(
Tεα∗ + log

(
M

δ

))}
.

Lemma 21 Let ε∗ be defined through (7), with T > 2
3Dim(F ,P) and γ = 1/T . Assume

both Ē and
⋂L
`=1 E` hold. Then the number of stages L of Algorithm 2 is upper bounded as

L ≤ max

{
log2

(
1

ε∗

)
, log2

(
1

ε0

)}
+ 2

≤ max

{
log2

[(
3T

Dim(F ,P)

) 1
α+2

+ 3

(
1

Dim(F ,P)

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

]
,

log2

(
1

ε0

)}
+2

= max

{
O

(
1

α+ 2
log

(
T

Dim(F ,P)

)
+ log

(
log T

δ

))
, log

(
4

ε0

)}
.

Here the O-notation only omits absolute constants.

Proof If at stage L− 1 the algorithm has not stopped, then we must have

Dim(F ,P)/2−L+2 ≤ 2−L+2|PL−1| .

Notice that if x ∈ PL−1 then |f̂L−1(x)− 1/2| ≤ 2−L+1. Combining it with the assumption
that EL−1 holds, we have |f∗(x)− 1/2| ≤ 2−L+2 which implies |PL−1| ≤ |T2−L+2 |.

The rest of the proof remains unchanged compared to Lemma 13, except that we
replace d by Dim(F ,P).

5. We need to further assume T > 2
3
Dim(F ,P) so as to make sure the solution exists.
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Corollary 22 Let T > Dim(F ,P) and γ = 1/T . Then with probability at least 1−2δ over
the random draw of (x1, y1), . . . , (xT , yT ) ∼ D the label complexity NT (P) and the weighted
cumulative regret RT (P) of Algorithm 2 simultaneously satisfy the following:

NT (P) = V log2

(
T

δ

)(
1 + log2

(
1

ε0

))
×O

(
max

{
Dim(F ,P)

α
α+2T

2
α+2 ,

Dim(F ,P)

ε20

}
+ log2

(
log T

δ

))
RT (P) = V log2

(
T

δ

)(
1 + log2

(
1

ε0

))
×O

(
max

{
Dim(F ,P)

α+1
α+2T

1
α+2 ,

Dim(F ,P)

ε0

}
+ log

(
log T

δ

))
,

where the O-notation only omits absolute constants .

Proof Assume both Ē and
⋂L
`=1 E` hold. Recalling the definition of KT (δ, L, γ), we have

KT (δ, L, γ) =

√√√√√8 log
2`(`+ 1)

(
eT
V γ

)V
δ

+ 2γT

(
8 +

√
8 log

8`(`+ 1)T 2

δ

)
+ 1

= O


√√√√√√log


(
eT
V γ

)V
δ

+ γT

√
logL+ log

(
T

δ

)
+ logL

 .

We choose γ = 1
T and simplify the above display as

KT (δ, L,
1

T
) = O

(√
V log

(
T

δ

)
+ logL

)
= O

(√
V log

(
T

δ

)
+ L

)
.

Similar to Lemma 21, we split the analysis into two cases depending on whether or not
2−L+2 is bigger than ε0. If 2−L+2 ≤ ε0, we have

L ≤ log2

[(
3T

Dim(F ,P)

) 1
α+2

+ 3

(
1

Dim(F ,P)

)α+1
α+2

(
1

3T

) 1
α+2

log(
log2 T

δ
)

]
,

therefore,

2L = O

((
T

Dim(F ,P)

) 1
α+2

+

(
1

Dim(F ,P)

)α+1
α+2

(
1

T

) 1
α+2

log

(
log T

δ

))
.
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Plugging the above bounds into Theorem 19 gives

NT (P) = O

(
Dim(F ,P)

(
L+ logKT

(
δ, L,

1

T

))
K2
T (δ, L,

1

T
)4L
)

= O

((
L+ logKT

(
δ, L,

1

T

))
K2
T (δ, L,

1

T
)

(
Dim(F ,P)

α
α+2T

2
α+2 + log2

(
log T

δ

)))
= O

((
L+ V log

(
T

δ

))(
L+ log

(
T

δ

))(
Dim(F ,P)

α
α+2T

2
α+2 + log2

(
log T

δ

)))
=

(
L+ V log

(
T

δ

))(
L+ log

(
T

δ

))
O

(
Dim(F ,P)

α
α+2T

2
α+2 + log2

(
log T

δ

))
.

Similarly applying them to Theorem 20,

RT (P) = O

(
Dim(F ,P)

(
L+ logKT

(
δ, L,

1

T

))
K2
T (δ, L,

1

T
)2L
)

= O

((
L+KT

(
δ, L,

1

T

))
K2
T (δ, L,

1

T
)

(
Dim(F ,P)

α+1
α+2T

1
α+2 + log

(
log T

δ

)))
= O

((
L+ V log

(
T

δ

))(
L+ log

(
T

δ

))(
Dim(F ,P)

α+1
α+2T

1
α+2 + log

(
log T

δ

)))
= V log2

(
T

δ

)
O

(
Dim(F ,P)

α+1
α+2T

1
α+2 + log

(
log T

δ

))
,

where in the second equality we used the assumption that Dim(F ,P) < T .
If 2−L+2 > ε0, then 2L ≤ 4

ε0
. Plugging these bounds into Theorem 19 and Theorem 20

gives

NT (P) =O

(
V log2

(
T

δε0

)
Dim(F ,P)

ε20

)
= V log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
Dim(F ,P)

ε20

)
RT (P) =O

(
V log2

(
T

δε0

)
Dim(F ,P)

ε0

)
= V log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
Dim(F ,P)

ε0

)
Lastly, (6) and lemma 16 together yield

P

(
Ē
⋂(

L⋂
`=1

E`

))
≥ 1− 2δ ,

which concludes the proof.

We now turn the bound on the weighted cumulative regret RT (P) in the previous
corollary into a bound on the excess risk. We can write

L(f̂)− L(f?) = E(x,y)∼D

[
11
{
y 6= sgn(f̂(x)− 1/2)

}
− 11{y 6= sgn(f?(x)− 1/2)}

]
= Ex∼DX

[
Ey∼DY|X

[
11
{
y 6= sgn(f̂(x)− 1/2)

}
− 11{y 6= sgn(f?(x)− 1/2)}

]]
= Ex∼DX

[
11
{

sgn(f̂(x)− 1/2) 6= sgn(f?(x)− 1/2)
}
|f?(x)− 1/2|

]
,
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where f̂ is the hypothesis returned by Algorithm 2. Now, simply observe that

11
{

sgn(f̂(x)− 1/2) 6= sgn(f?(x)− 1/2)
}
|f?(x)− 1/2|

has the same form as the function φ(f̂ ,x) in Appendix C on which the uniform convergence
result of Theorem 28 (with 〈ŵ,x〉 replaced by f̂(x)−1/2) applies, with ε̂(δ) therein replaced
by the bound on RT (P) borrowed from Corollary 22. This allows us to conclude that, with
probability at least 1− δ,

L(f̂)− L(f?)

= V log2

(
T

δ

)(
1 + log2

(
1

ε0

))
O

(
max

{(
Dim(F ,P)

T

)α+1
α+2

,
Dim(F ,P)

Tε0

})

+O

 log
(

log T
δ

)
+ V log (2eT )

T

 ,

as claimed in Theorem 3 in the main body of the paper.
Lastly we show that our notion of complexity is upper bounded by the eluder dimension

at an appropriate scale.

Lemma 23 There exists a positive constant C̄ such that, for any T > 0,

sup
S⊂X : |S|=T

Dim(F , S) ≤ C̄ inf
η≥1

(
dimE(F , T−

1
2η ) log2(T ) + T

1− 1
η

)
.

Proof We only need to prove for any η ≥ 1 and a fixed sequence 〈x1, . . . ,xT 〉,

T∑
t=1

D2
(
xt; 〈x1, . . . ,xt−1〉

)
≤ C

(
dimE(F , T−

1
2η ) log2(T ) + T

1− 1
η

)
.

Recall that

D2
(
xt; 〈x1, . . . ,xt−1〉

)
= sup

f,g∈F

(f(xt)− g(xt))
2∑t−1

i=1(f(xi)− g(xi))2 + 1
.

Without loss of generality we can assume there exist ft and gt such that

sup
f,g∈F

(f(xt)− g(xt))
2∑t−1

i=1(f(xi)− g(xi))2 + 1
=

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

.

Given η ≥ 1, we split the [0, 1] interval into the blog2(T )c+ 1 intervals

[0, 2−blog2(T )c/η], (2−blog2(T )c/η, 2−(blog2(T )c−1)/η], . . . , (2−1/η, 1] .

Let
Ui = {xt ∈ S | (ft(xt)− gt(xt))2 ∈ (2−i/η, 2−(i−1)/η]}

and
Ublog2(T )c+1 = {xt ∈ S | (ft(xt)− gt(xt))2 ≤ 2−blog2(T )c/η} .
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Then

T∑
t=1

D2
(
xt; 〈x1, . . . ,xt−1〉

)
=

blog2(T )c∑
i=1

∑
xt∈Ui

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

+
∑

xt∈Ublog2(T )c+1

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

≤
blog2(T )c∑
i=1

∑
xt∈Ui

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

+ 2
1
ηT

1− 1
η .

Each Ui we further decompose into Ki = d|Ui|/dimE(F , 2−
i
2η )e+1 disjoint sets Ω1

i , . . . ,Ω
Ki
i

in the following way. Originally all Ωj
i (j = 1, . . . ,Ki) are empty. We sort the xt’s in Ui

according to their index and assign them one by one. Specifically, we assign xt to Ω
j(t)
i where

j(t) is the smallest index among 1, . . . ,Ki− 1 such that xt is 2
− i

2η -independent to elements

in Ω
j(t)
i ; if xt is 2

− i
2η -dependent to Ω1

i , . . . ,Ω
Ki−1
i , assign it to ΩKi

i . As a consequence,

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

≤ 2
− i−1

η

(j(t)− 1)2
− i
η + 1

=
2

1
η

j(t)− 1 + 2
i
η

,

where the inequality follows from xt’s 2
− i

2η -dependency on Ω1
i , . . . ,Ω

j(t)−1
i .

With the help of the above inequality,

∑
xt∈Ui

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

=

Ki−1∑
j=1

∑
xt∈Ωji

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

+
∑

xt∈Ω
Ki
i

(ft(xt)− gt(xt))2∑t−1
i=1(ft(xi)− gt(xi))2 + 1

≤
Ki−1∑
j=1

2
1
η |Ωj

i |

j − 1 + 2
i
η

+
2|ΩKi

i |

Ki − 1 + 2
i
η

≤ 2 dimE(F , 2−
i
2η )

Ki−1∑
j=1

1

j − 1 + 2
i
η

+ 2
|Ui|

Ki − 1

≤ 2 dimE(F , 2−
i
2η )(log(Ki) + 1) ,

where in the second inequalty we used the fact that |Ωj
i | ≤ dimE(F , 2−

i
η ), for j = 1, . . . ,Ki−

1.
Finally combining all the equations and using the fact that dimE(F , ·) is monotone

T∑
t=1

D2
(
xt; 〈x1, . . . ,xt−1〉

)
≤ 2dimE(F , T−

1
2η )

blog2(T )c∑
i=1

(log(Ki) + 1) + 2
1
ηT

1− 1
η

≤ C
(
dimE(F , T−

1
2η ) log2(T ) + T

1− 1
η

)
,
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as claimed.

Appendix C. Ancillary technical results

This section collects ancillary technical results that are used throughout the appendix.
We first recall the following version of the Hoeffding’s bound.

Lemma 24 Let a1, . . . , aT be T arbitrary real numbers, and {σ1, . . . , σT } be T i.i.d.
Rademacher variables, each taking values ±1 with equal probability. Then for any ε ≥ 0

P

(
T∑
t=1

σtat ≥ ε

)
≤ exp

(
− ε2

2
∑T

t=1 a
2
t

)
,

where the probability is with respect to {σ1, . . . , σT }.

Let us consider the linear case first. Define the function φ : Rd × P → [0, 1] as

φ(ŵ,x) = 11{sgn〈ŵ,x〉 6= sgn〈w∗,x〉}ρ(〈w∗,x〉) ,

where ρ(·) has range in [0, 1], and does not depend on ŵ.
We have the following standard covering result, which is a direct consequence of Sauer-

Shelah lemma (e.g., Sauer, 1972).

Lemma 25 Consider any given ST = {x1, . . . ,xT } ∈ Rd, and let

Φ(ST ) =
∣∣{[φ(ŵ,x1), . . . , φ(ŵ,xT )] : ŵ ∈ Rd}

∣∣ .
We have, when T ≥ d,

Φ(ST ) ≤
(
eT

d

)d
.

The following result gives a bound on L∞ covering number for VC subgraph class.

Lemma 26 Let f ∈ F be a [0, 1]-valued function of x ∈ X . Assume the binary function
11{z ≤ f(x)} defined on R×X has VC-dimension V , i.e. F has VC-subgraph dimension V .
Then given ST = {x1, . . . ,xT } ⊂ X , with T ≥ V ,

N(ε,F , L∞(ST )) ≤
(
eT

V ε

)V
.

Proof As N(·,F , L∞(ST )) is a decreasing function of ε, we can assume that 1/ε is an
integer. Consider discretization of [0, 1] by m = 1/ε points U1, . . . , Um so that ∀U ∈ [0, 1],
mini |U − Ui| ≤ ε. Consider mT points {(Uj , xi) : i, j}, by Sauer’s lemma, the cardinality

of {( 11{Uj ≤ f(xi)})i,j : f ∈ F} is at most
(
eT
V ε

)V
. Let f1, . . . , fN attain all distinctive

values of {( 11{Uj ≤ f(xi)})i,j : f ∈ F}. Given any f ∈ F , there exists fk such that
11{Uj ≤ f(xi)} = 11{Uj ≤ fk(xi)} for all i and j. It is easy to check that this implies that
|f(xi)− fk(xi)| ≤ ε for all xi ∈ ST .

The next result follows from a standard symmetrization argument.
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Lemma 27 Let X = Rd, ST = (x1, . . . ,xT ) be a sample drawn i.i.d. according to DX
and S′T = (x′1, . . . ,x

′
T ) be another sample drawn according to DX , with T ≥ d. Then with

probability at least 1− δ
T∑
t=1

φ(ŵ,x′t) ≤ 3
T∑
t=1

φ(ŵ,xt) + 8 log(1/δ) + 8d log(2eT/d) ,

uniformly over ŵ ∈ Rd.

Proof Let {σ1, . . . , σT } be independent Rademacher variables as in Lemma 24. We can
write, for any ε ≥ 0,

P

(
∃ŵ ∈ Rd :

T∑
t=1

φ(ŵ,x′t) ≥ 3
T∑
t=1

φ(ŵ,xt) + 2ε

)

= P

(
∃ŵ ∈ Rd :

T∑
t=1

[
φ(ŵ,x′t)− φ(ŵ,xt)

]
≥ 1

2

T∑
t=1

[
φ(ŵ,xt) + φ(ŵ,x′t)

]
+ε

)

= P

(
∃ŵ ∈ Rd :

T∑
t=1

σt

[
φ(ŵ,x′t)− φ(ŵ,xt)

]
≥ 1

2

T∑
t=1

[
φ(ŵ,xt) + φ(ŵ,x′t)

]
+ε

)

≤ P

(
∃ŵ ∈ Rd :

T∑
t=1

σtφ(ŵ,x′t) ≥
1

2

T∑
t=1

φ(ŵ,x′t) +
ε

2

)

+ P

(
∃ŵ ∈ Rd :

T∑
t=1

−σtφ(ŵ,xt) ≥
1

2

T∑
t=1

φ(ŵ,xt) +
ε

2

)

≤ 2 sup
ST

P

(
∃ŵ ∈ Rd :

T∑
t=1

σtφ(ŵ,xt) ≥
1

2

T∑
t=1

φ(ŵ,xt) +
1

2
ε
∣∣∣ST)

≤ 2

(
eT

d

)d
sup

ST ,ŵ∈Rd
P

(
T∑
t=1

σtφ(ŵ,xt) ≥
1

2

T∑
t=1

φ(ŵ,xt) +
1

2
ε
∣∣∣ST)

(from the union bound and Lemma 25)

≤ 2

(
eT

d

)d
sup

ST ,ŵ∈Rd
exp

(
−

(
∑T

t=1 φ(ŵ,xt) + ε)2

8
∑T

t=1 φ(ŵ,xt)2

)
(from Lemma 24)

≤ 2

(
eT

d

)d
exp(−ε/4) ,

the last inequality deriving from the fact that, since φ(ŵ,xt) ∈ [0, 1],

(
∑T

t=1 φ(ŵ,xt) + ε)2∑T
t=1 φ(ŵ,xt)2

≥
(
∑T

t=1 φ(ŵ,xt) + ε)2∑T
t=1 φ(ŵ,xt)

≥ 2ε .

Take ε such that δ = 2
(
eT
d

)d
exp(−ε/4), to obtain the claimed bound.
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Theorem 28 With the same notation and assumptions as in Lemma 27, let ŵ ∈ Rd be a
function of ST such that

1

T

T∑
t=1

φ(ŵ,xt) ≤ ε̂(δ)

holds with probability at least 1 − δ, for some ε̂(δ) ∈ [0, 1]. Then with probability at least
1− 3δ:

Ex∼Dφ(ŵ,x) ≤ 4ε̂(δ) +
22 log

(
1
δ

)
+ 11d log

(
2eT
d

)
T

.

Proof Use the multiplicative Chernoff bound

Ex∼Dφ(ŵ,x) ≤ 4

3T

T∑
t=1

φ(ŵ,x′t) +
32

3T
log(1/δ) ,

and then apply Lemma 27 to further bound the right-hand side.

To control noise terms, which are 1-subgaussian random variables, we provide the fol-
lowing lemma which is a direct implication of Chernoff bound.

Lemma 29 Suppose ξ is a σ-subgaussian random variable, then for any δ > 0,

P
(
|ξ| ≥

√
2σ2 log(2/δ)

)
≤ δ .

Let us now consider the nonlinear case analyzed in Section B. Similar to the linear case,
define the function φ : F × P → [0, 1] as

φ(f̂ ,x) = 11
{

sgn(f̂(x)− 1/2) 6= sgn(f?(x)− 1/2)
}
ρ(f?(x)) ,

and ρ(·) has range in [0, 1].
As for the counterparts to Theorem 28, simply observe that Lemma 25 and Lemma 27

hold in the more general case with d replaced by V , where F is a function class having
finite VC-subgraph dimension V .

In particular, given any ST = {x1, . . . ,xT } ∈ X , define

Φ(ST ) =
∣∣{[φ(f̂ ,x1), . . . , φ(f̂ ,xT )] : f̂ ∈ F}

∣∣ .
We then have, when T ≥ V ′,

Φ(ST ) ≤
V ′∑
i=0

(
T

i

)
where V ′ is the VC dimension of the binary-valued class{

sgn(f̂(x)− 1/2) : f̂ ∈ F
}
.
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Now it is easy to see that V ′ ≤ V , so that we also have

Φ(ST ) ≤
V∑
i=0

(
T

i

)
≤
(
eT

V

)V
.

With this modification, Theorem 28 holds with factor d log
(

2eT
d

)
therein replaced by

V log
(

2eT
V

)
, once we also replace 〈ŵ,x〉 by f̂(x)− 1/2.
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