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Abstract

Many existing mechanisms for achieving differential privacy (DP) on infinite-dimensional
functional summaries typically involve embedding these functional summaries into finite-
dimensional subspaces and applying traditional multivariate DP techniques. These mech-
anisms generally treat each dimension uniformly and struggle with complex, structured
summaries. This work introduces a novel mechanism to achieve pure DP for functional
summaries in a separable infinite-dimensional Hilbert space, named the Independent Com-
ponent Laplace Process (ICLP) mechanism. This mechanism treats the summaries of inter-
est as truly infinite-dimensional functional objects, thereby addressing several limitations
of the existing mechanisms. Several statistical estimation problems are considered, and we
demonstrate how one can enhance the utility of private summaries by oversmoothing the
non-private counterparts. Numerical experiments on synthetic and real datasets demon-
strate the effectiveness of the proposed mechanism.

Keywords: Differential Privacy, Functional Data Analysis, Hilbert Space, Reproducing
Kernel Hilbert Space, Infinite-Dimensional Statistics.

1. Introduction

Data privacy has garnered critical attention in the last decade as substantial amounts of
individualized data are collected. The most widely used paradigm in formal data privacy
is differential privacy (DP), introduced by Dwork et al. (2006). DP provides a rigorous
and interpretable definition of data privacy, as it limits the amount of information attack-
ers can infer from publicly released database queries. Numerous mechanisms have been
developed for conventional data settings, such as scalar or vector-valued data. However,
advances in technologies enable us to collect and process densely observed data over some
temporal or spatial domains, which are coined functional data to differentiate them from
classic multivariate data (Ramsay et al., 2005; Kokoszka and Reimherr, 2017; Ferraty and
Romain, 2011). Although functional data analysis has been proven useful in various fields,
such as economics, finance, and genetics, and has been widely researched in the statistical
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community, there are only a few works concerning privacy preservation within the realm of
functional data.

When the statistical summaries are finite-dimensional, additive noise mechanisms are
the most commonly used mechanisms to achieve DP, which privatize statistical summaries
by adding calibrated noise from predetermined distributions, e.g., Laplace and Gaussian
mechanisms (Dwork et al., 2006, 2014). In this paper, we are concerned with establish-
ing an additive noise mechanism for functional summaries, namely infinite-dimensional
summaries, to achieve ε-DP. Given the challenge that functional summaries are typically
infinite-dimensional, most existing mechanisms embed the non-private summaries into a
finite-dimensional subspace by using finite basis expansions to approximate summaries and
applying classical multivariate privacy tools, such as perturbing the expansion coefficients
with i.i.d. noise (Zhang et al., 2012; Wang et al., 2013; Chandrasekaran et al., 2014; Alda
and Rubinstein, 2017). This finite-dimensional embedding process is typically unavoidable,
as when the summaries are infinite-dimensional, adding i.i.d. noise to each dimension is not
even feasible if one wants the private summaries to remain in a specific infinite-dimensional
function space. However, these mechanisms have several weaknesses. First, determining
the dimension of the subspace is crucial, as it plays a trade-off role between utility and pri-
vacy. While data-driven approaches might cause potential privacy leakage, a predetermined
dimension will lack adaptation to the data, potentially failing to capture the structure or
shape of the functional summaries or injecting excess noise. Second, in multivariate set-
tings, classical privacy tools that add i.i.d. noise to each dimension treat all dimensions
equally and allocate the privacy budget over each dimension uniformly, failing to recog-
nize the different levels of importance of coefficients across different dimensions and thus
injecting excess noise for “more important” dimensions. This substantially degrades the
utility and robustness of private functional summaries. Some previous works have shown
that capturing the covariance structure in the data might be able to reduce the amount of
noise injected in specific scenarios (Hardt and Talwar, 2010; Awan and Slavković, 2021).

1.1 Our Contributions

To overcome the downsides inherent in DP mechanisms that rely on finite-dimensional
embedding, we introduce a mechanism that treats both the functional summary and the
privacy noise as truly infinite-dimensional functional objects. Concretely, our contributions
can be summarized as follows:

1. We propose an ε-DP mechanism by perturbing functional summaries with a random
element called the Independent Component Laplace Process (ICLP) and name this
mechanism the ICLP mechanism. We establish the feasibility of the ICLP mechanism
(meaning it can achieve DP) in an infinite-dimensional separable Hilbert space, H, by
characterizing a subspace of H and showing that the feasibility holds if and only if
the difference between two functional summaries based on adjacent datasets resides
in this subspace. We also show how the proposed mechanism applies to the space of
continuous functions, even though this space is not a Hilbert space.

2. We provide strategies based on regularized empirical risk minimization (regularized
ERM) to obtain qualified functional summaries for the ICLP mechanism. We uncover
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the role regularization plays in the trade-off between utility and privacy. Specifically,
we show that one can achieve ε-DP with a matching order (or even a lower order) of
privacy error as the estimation error by slightly oversmoothing the functional sum-
maries in the functional mean protection problem. We also show that the application
can go beyond classic functional data settings, as it is also applicable to the realm of
more classic non-parametric smoothing problems like kernel density estimation.

3. To obtain privacy-safe regularization parameters in regularized ERM, we propose a
privacy-safe selection approach so that choosing the parameters is only tied to the
covariance structure of the ICLP noise, thus achieving end-to-end privacy. This ap-
proach overcomes the potential privacy leakage in conventional data-driven methods.

The proposed mechanism differentiates itself from existing mechanisms, such as Zhang et al.
(2012); Dwork et al. (2014); Alda and Rubinstein (2017), that rely on finite-dimensional
embedding and treat each dimension uniformly by adding i.i.d. noise to each dimension
in the following senses. First, the ICLP mechanism avoids finite-dimensional subspace
embeddings and frees the assumption that every dataset in the database shares the same
finite-dimensional subspace. Second, unlike existing mechanisms, the ICLP mechanism
treats each dimension heterogeneously, allowing it to achieve a more effective noise injection
process while handling truly infinite-dimensional functional summaries and noise.

1.2 Related Works

In the overlap of functional summaries and differential privacy, the landmark paper is Hall
et al. (2013), which provided a framework for achieving (ε, δ)-DP on infinite-dimensional
functional objects but focused on a finite grid of evaluation points. The follow-up work in
Mirshani et al. (2019) pushed Hall et al. (2013)’s result forward and established (ε, δ)-DP
over the full functional path for objects in Banach spaces. In more general spaces, Reimherr
and Awan (2019a) considered elliptical perturbations to achieve (ε, δ)-DP in locally convex
vector spaces, including all Hilbert spaces, Banach spaces, and Fréchet spaces. They also
showed the impossibility of achieving ε-DP for infinite-dimensional functional objects with
elliptical distributions.

Turning to ε-DP, a series of works has been proposed by resorting to finite-dimensional
representations, such as polynomial bases, trigonometric bases, or Bernstein polynomial
bases, to approximate target functional summaries (Wang et al., 2013; Chandrasekaran
et al., 2014; Alda and Rubinstein, 2017) and loss functions (Zhang et al., 2012). These
mechanisms then perturb the expansion coefficients in Rm via the m-dimensional i.i.d.
Laplace mechanism (Dwork et al., 2014). Privatizing m-dimensional coefficients is feasi-
ble through the K-norm mechanism (Hardt and Talwar, 2010; Awan and Slavković, 2021),
which encompasses the multivariate i.i.d. Laplace mechanism as a particular instance. How-
ever, to the best of our knowledge, no existing literature combines the K-norm mechanism
with finite-dimensional embedding techniques to achieve DP for functional summaries. In
addition to additive noise mechanisms, Awan et al. (2019) extended the exponential mech-
anism (McSherry and Talwar, 2007) to arbitrary Hilbert spaces and showed its application
to functional principal component analysis. From the robust noise injection perspective, a
heterogeneous noise injection scheme (Phan et al., 2019) was proposed by assigning different
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weighted privacy budgets to each coordinate to further improve the robustness of private
summaries.

1.3 Notations and Organization

The following notations are used throughout the rest of this work and follow standard
conventions. For asymptotic notations: f(n) = O(g(n)) or f(n) . O(g(n)) means for all c
there exists k > 0 such that f(n) ≤ cg(n) for all n ≥ k; f(n) � g(n) means f(n) = O(g(n))
and g(n) = O(f(n)); f(n) = o(g(n)) means for any c > 0 there exists k > 0 such that
f(n) ≤ cg(n) for all n ≥ k.

The rest of the paper is organized as follows. In Section 2, we provide preliminaries
on functional summaries and spaces, differential privacy, and a generalization of finite-
dimensional embedding mechanisms. In Section 3, we formally propose the ICLP mecha-
nism and establish its feasibility in separable Hilbert spaces (Theorem 8) and in the space
of continuous functions (Theorem 9). In Section 4, we propose approaches for constructing
qualified summaries for the ICLP mechanism and apply them to various statistical applica-
tions with utility analysis. Implementation of the mechanism is provided in Section 5. We
evaluate the performance of the proposed mechanism on both synthetic datasets and real-
world applications in Sections 6 and 7. Concluding remarks are given in Section 8. Many
technical results, including proofs, lemmas, and propositions, are deferred to the Appendix

2. Preliminaries

2.1 Functional Summaries and Spaces

First, we define the functional summary. Let H be an infinite-dimensional real separable
Hilbert space with inner product 〈·, ·〉H. For a set X , we define D = X n as the collection
of all possible n-unit datasets, and let D be an element of D. This paper considers the
functional summary statistic of interest as an element of H, i.e., f : D → H.

Next, we briefly introduce the background of random elements in H and some spaces
we will work on in this paper. We refer readers to Hsing and Eubank (2015) for a detailed
introduction. A random element X ∈ H is said to have mean µ ∈ H and (linear) covariance
operator C : H→ H if

E[〈X,h〉H] = 〈µ, h〉H and Cov(〈X,h1〉H, 〈X,h2〉H) = 〈Ch1, h2〉H,

for any h, h1, h2 in H. When E ‖X − µ‖2H < ∞, the covariance operator C exists, is self-
adjoint, positive semidefinite, and trace class (thus Hilbert-Schmidt and compact) (Bosq,
2000; Hsing and Eubank, 2015). According to the spectral theorem for self-adjoint compact
operators, C admits the eigen decomposition as

C(h) =
∑
j≥1

λj〈h, φj〉Hφj , ∀h ∈ H,

where {λj}j≥1 and {φj}j≥1 are the eigenvalues and eigenfunctions of C, respectively.
We define two norms associated with C as

‖h‖C =

√√√√ ∞∑
j=1

〈h, φj〉2H
λj

and ‖h‖1,C =

∞∑
j=1

|〈h, φj〉H|√
λj

.
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We denote the two subspaces of H induced by ‖·‖C and ‖·‖1,C asHC = {h ∈ H : ‖h‖C <∞}
and H1,C = {h ∈ H : ‖h‖1,C < ∞}, respectively. Note ‖·‖C is the classic Cameron-Martin
norm induced by C (Bogachev, 1998) and HC is called the Cameron-Martin space of C.
The ‖·‖1,C-norm is analogous to a weighted `1-norm. The space H1,C is included in HC ,
i.e., h ∈ H1,C leads to h ∈ HC .

We also define the power operator of C. For any s ≥ 0, the power operator Cs is defined
as

Cs(h) =
∑
j≥1

λsj〈h, φj〉Hφj , ∀h ∈ H,

meaning Cs shares the same eigenfunctions as C while the eigenvalues are raised to the
power of s. We define its corresponding power space as

HCs =

h ∈ H : ‖h‖Cs :=

√√√√ ∞∑
j=1

〈h, φj〉2H
λsj

<∞

 .

The space H1,Cs and its associated norm ‖ · ‖1,Cs follow a similar definition.

2.2 Differential Privacy

For a given non-private functional summary statistic fD, we denote its private version as
f̃D, which is a random element of H indexed by D. We state the definition of differential
privacy in terms of conditional distributions (Wasserman and Zhou, 2010).

Definition 1 Let f̃D be the privatized functional summary of fD. Assume {PD : D ∈ D}
is the family of probability measures over Ω induced by {f̃D : D ∈ D}. We say f̃D achieves
(ε, δ)-DP if for any two adjacent datasets (different in only one record) D and D′, and any
measurable set A ∈ F , one has

PD(A) ≤ eεPD′(A) + δ. (1)

In particular, if δ = 0, we say f̃D achieves ε-DP.

The definition implies that the summaries of two adjacent datasets should have almost the
same probability distribution. The privacy budget ε controls how much privacy will be lost
while releasing the result, and a small ε implies a higher similarity between PD and PD′ ,
and thus increased privacy. Before introducing different DP mechanisms, we first define
the global sensitivity of a summary statistic, a central concept of DP (Dwork et al., 2006).
For a functional summary f : D → H and a norm ‖ · ‖ in the Hilbert space H, the global
sensitivity of the summary fD with respect to the norm ‖ · ‖ is given by

∆ = sup
D∼D′

‖fD − fD′‖,

whereD ∼ D′ meansD andD′ are adjacent datasets. Here, the norm ‖·‖ is typically tailored
based on the employed DP mechanism, e.g., K-norm for the K-norm mechanism (Hardt
et al., 2010; Awan and Slavković, 2021), Cameron-Martin space norm for the Gaussian
mechanism in separable Banach space (Mirshani et al., 2019). Given that global sensitivity
quantifies how much a summary can change with the modification of a single record in the
dataset, the additive noise must be calibrated proportionally to the global sensitivity.
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2.3 Finite-Dimensional Representation-wise Laplace

We introduce the Finite-Dimensional Representation-wise Laplace (FRL) mechanism, which
generalizes almost all current additive noise mechanisms for ε-DP that rely on finite-
dimensional representations, such as Wang et al. (2013); Chandrasekaran et al. (2014);
Alda and Rubinstein (2017); Zhang et al. (2012), to name a few. Let {ej}j≥1 be an or-
thonormal basis in H. Then, one can approximate the summary using M basis functions,
i.e.,

f̂D =
M∑
j=1

fDjej with fDj = 〈fD, ej〉H.

Expanding the functional summaries via a finite basis facilitates dimension reduction so that
the classic multivariate i.i.d. Laplace mechanism (Dwork et al., 2014) can be implemented
to privatize the coefficient vector (fD1, · · · , fDM ). Specifically, the privatized summary can
be expressed as

f̃D =
M∑
j=1

(fDj + Zj)ej , with Zj
i.i.d.∼ Lap(0,∆/ε)

where ∆ is the global sensitivity in `1-distance. The FRL mechanism privatizes the func-
tional summary f̂D without regard to the varying importance of different components.
Although some components are more crucial for the estimation, the FRL mechanism treats
all components equally during the privatization process, thereby reducing the utility of the
privatized summary. Additionally, the truncation level M controls the trade-off among
variance, bias, and privacy. This mechanism forces one to either introduce more noise or
accept higher bias when more components are required to deal with complex functional
summaries.

The m-dimensional coefficient vector can also be privatized using the K-norm mech-
anism (Hardt and Talwar, 2010; Awan and Slavković, 2021), by perturbing the coeffi-
cients through a multivariate random variable in RM , whose density is proportional to
exp{−ε‖ · ‖K} for a given K-norm in RM . Utilizing the `1-norm results in the aforemen-
tioned multivariate i.i.d. Laplace mechanism (the FRL mechanism). However, as noted in
Awan and Slavković (2021), when M is large, determining the optimal K-norm is often non-
trivial, and sampling these multivariate random variables can be challenging. Due to these
challenges and the prevalence of all existing ε-DP mechanisms employing finite-dimensional
representation with i.i.d. Laplace noise for functional summaries, our discussion primarily
focuses on the FRL mechanism. We leave the exploration of using other K-norms with
finite-dimensional representation for privatizing functional summaries for future studies.

3. The Independent Component Laplace Process Mechanism

In this section, we first formally define the Independent Component Laplace Process and
then propose an additive noise mechanism called the ICLP mechanism. Specifically, to
achieve ε-DP, we will release the privatized summary that takes the form of f̃D = fD +σZ,
where σ is a positive scalar and Z is an ICLP noise. Initially, we assume fD lies in a real
separable Hilbert space H and establish the ε-DP guarantee. We then show that privacy
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protection can also hold for the space of continuous functions (which is not a Hilbert space)
under certain assumptions on the covariance operator. The proofs of all the theorems can
be found in Appendix A.

3.1 Independent Component Laplace Process

The proposed random element is motivated by Mirshani et al. (2019), who achieved (ε, δ)-
DP for functional summaries in Banach spaces. Formally, their additive noise mechanism
can be expressed as f̃D = fD + σZ, where Z ∼ GP (0, C) is a centered Gaussian process
with covariance operator C. There is a dual perspective of this mechanism. By applying
the Karhunen-Loéve Theorem (Kosambi, 2016), the mechanism is equivalent to

f̃D = fD + σZ =

∞∑
j=1

(〈fD, φj〉+ σ 〈Z, φj〉)φj , (2)

where {λj}j≥1 and {φj}j≥1 are the eigenvalues and eigenfunctions of C and {〈Z, φj〉}j≥1

are independent Gaussian random variables with zero mean and variance λj . This decom-
position indicates that the mechanism perturbs each coefficient with independent Gaussian
random variables. Unfortunately, the existing Laplace process cannot play a role analogous
to the Gaussian process under such a decomposition, as it is an elliptical distribution. It has
been proven that no elliptical distribution can achieve ε-DP in infinite-dimensional spaces.
Specifically, in an infinite-dimensional space, adding any elliptical distribution is equivalent
to adding noise from a randomly scaled Gaussian process, which satisfies only the weaker
notion of (ε, δ)-DP. We refer readers to Theorem 4 of Reimherr and Awan (2019a) for more
details. Motivated by this dual perspective via the Karhunen-Loéve expansion and the fact
that the most widely used additive noise mechanism for ε-DP in the univariate case is the
Laplace mechanism, we consider using independent Laplace random variables with hetero-
geneous variances in the decomposition (2). This is equivalent to perturbing the functional
summary with a particular random element defined as follows.

Definition 2 Let X be a random element in H with E ‖X‖2H <∞ and C be its covariance
operator. Denote the eigenvalues and eigenfunctions of C as {λj}j≥1 and {φj}j≥1. We
say X is an Independent Component Laplace Process (ICLP) with mean µ if it admits the
following decomposition

X = µ+
∞∑
j=1

√
λjZjφj , (3)

where Zj are i.i.d. Laplace random variables with zero mean and variance 1.

Remark 3 If the objective is to achieve ε-DP, alternative i.i.d. sequences of random vari-
ables {Zj}j≥1 with zero mean and unit variance, characterized by a well-constructed density,
are technically viable. However, this requires that the density tail of these random variables
be calibrated “just right” to comply with ε-DP. Typically, their density tails should be as
heavy, or closely similar, to the Laplace distribution. Otherwise, using light-tailed random
variables, like Gaussian, will cause the probability inequality (1) of ε-DP to fail for sets in
the tails.
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The collection of square-integrable random elements of H is itself a Hilbert space with inner
product E〈X,Y 〉H. The following theorem states that if a random element X is defined via
the infinite sum decomposition in Definition 2, it is still well-defined in H.

Theorem 4 For a given non-negative decreasing real sequence {λj}j≥1 that is summable,
and an orthonormal basis {φj}j≥1 for H, the random element X defined via (3) is well-
defined within H.

3.2 Feasibility in Separable Hilbert Spaces

When the summary fD of interest is infinite-dimensional, it turns out that the summary fD
depends heavily on the structure of the random element Z in the additive noise mechanism.
Otherwise, it is possible to make the global sensitivity infinite, and thus, no finite amount
of noise would be able to achieve DP. For example, in Mirshani et al. (2019), the privatized
summary is f̃D = fD + σZ, where Z is a zero-mean Gaussian process with covariance
operator C. It has been proved that the summary fD must be “compatible” with the
Gaussian process Z, i.e., fD − fD′ lies in the Cameron-Martin space of Z for any adjacent
datasets D,D′, to achieve (ε, δ)-DP, or no finite σ will make the mechanism satisfy (ε, δ)-
DP. Given that our problem setting is also infinite-dimensional, a similar analysis is needed
for the ICLP mechanism. In this section, we will investigate the feasibility of the ICLP
mechanism, i.e., identifying the specific conditions under which there always exists a finite
σ such that the privatized summary fD + σZ via the ICLP mechanism achieves ε-DP.

To investigate the feasibility of a randomized mechanism for ε-DP, one can start with
the equivalence or orthogonality of probability measures. As discussed in Awan et al. (2019)
and Reimherr and Awan (2019a), the probability measures induced by an ε-DP mechanism
are necessarily equivalent (though this is not sufficient for DP) in a probabilistic sense;
otherwise, it is impossible to achieve DP if the measures are orthogonal. More specifically,
if the mechanism produces a private summary f̃D that is probabilistically orthogonal to
f̃D′ , i.e., there exists a A ∈ F such that PD(A) = 0 and PD′(A) = 1, then the mechanism
cannot be DP since fD and fD′ can be distinguished with probability one on A. In the
following, we use this perspective to develop the feasibility of the ICLP mechanism. Denote
the probability measure family induced by the ICLP mechanism as {PD : D ∈ D}. In the
following theorem, we provide necessary and sufficient conditions for pairwise equivalence
in {PD : D ∈ D}.

Theorem 5 (Equivalence of ICLP probability measures) Let D,D′ ∈ D be two ad-
jacent datasets, f̃D, f̃D′ be the privatized summaries based on the ICLP mechanism. Denote
the corresponding probability measures over H as PD and PD′, and the covariance operator
of ICLP as C. Then PD and PD′ are equivalent if and only if

fD − fD′ ∈ HC = {h ∈ H : ‖h‖C <∞} . (4)

Theorem 5 shows that if the difference between fD and fD′ resides in the Cameron-Martin
space of C, then the probability family will be pairwise equivalent. An analogous result
for the equivalence of elliptical distributions appears in Theorem 2 of Reimherr and Awan
(2019a), even though the ICLP is not an elliptical distribution. However, it turns out that,
unlike elliptical distributions, pairwise equivalence is not enough for the ICLP mechanism to
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achieve ε-DP. To see the reason behind this, one must consider the density of PD in H. Since
there is no common base measure in H that plays the same role as the Lebesgue measure
in Rd, it is more complicated to consider the density in H. Fortunately, we are adding the
same type of noise to the functional summaries. Therefore, we only need the density as the
Radon-Nikodym derivative of PD with respect to P0, where P0 is the probability measure
induced by σZ.

Theorem 6 (Density of ICLP) Let Ph and P0 be the probability measures induced by
{h + σZ} and σZ respectively. Suppose h ∈ H1,C , then the Radon–Nikodym derivative of
PD with respect to P0 is given by

dPh
dP0

(z) = exp

{
− 1

σ

(
‖z − h‖1,C − ‖z‖1,C

)}
, (5)

P0 almost everywhere and is unique.

Now, we are ready to show why the condition (4) is insufficient for ε-DP. Indeed, even
though fD−fD′ ∈ HC guarantees the pairwise equivalence between PD and PD′ , it does not
guarantee the density in Equation (5) is well-defined and thus cannot be upper bounded,
which is a requirement for ε-DP however. Meanwhile, HC is enough for (ε, δ)-DP with
Gaussian process with covariance C (Mirshani et al., 2019) since it allows densities to be
unbounded up to a set with P0 measure less than δ. In the following theorem, we will show
the appropriate space in which fD − fD′ should reside is the subspace of H1,C .

Theorem 7 (Impossibility of The ICLP Mechanism) Under the same conditions of
Theorem 5, let H1,C = {f ∈ H : ‖f‖1,C <∞} be a subspace of HC and if

fD1 − fD2 ∈ HC \ H1,C ,

then there is no σ ∈ R+ such that the ICLP mechanism, f̃D = fD + σZ, satisfies ε-DP.

Indeed, if fD resides in the gap between HC and H1,C , the sensitivity of fD will be infinite,
and there is no possibility to calibrate the ICLP noise with any finite σ to achieve ε-DP.
Now, with the proper space in Theorem 7 and the feasible density in Theorem 6, we can
establish the ICLP mechanism formally.

Theorem 8 (The ICLP Mechanism) Let fD be the functional summary and Z be an
ICLP with covariance operator C. Define the global sensitivity of the ICLP mechanism as

∆ = sup
D∼D′

‖fD − fD′‖1,C and σ = ∆/ε. (6)

Then the privatized version of fD, f̃D = fD + σZ, achieves ε-DP.

3.3 Example of HC and H1,C for Smooth Functions

In this section, we provide a concrete example of the spaces HC and H1,C , in which the
smoothness of the elements in these spaces is of primary interest. Consider the Hilbert
space H as L2(X ) where X ⊆ Rd. For the ICLP covariance function C defined over X ×X ,
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the eigenfunctions {φj}j≥1 are an orthonormal basis of L2(X ). Suppose the eigenvalues of
C decay polynomially with order β, i.e., λj � j−β. Then the space HC and H1,C thus can
be expressed as

HC =

f =
∞∑
j=1

fjφj ∈ L2(X ) :
∑
j=1

j2βf2
j <∞

 ,

H1,C =

f =
∞∑
j=1

fjφj ∈ L2(X ) :
∑
j=1

jβ|fj | <∞

 .

If {φj}j≥1 are the Fourier basis, HC corresponds to a Sobolev space of order β, containing
functions with weak derivatives up to order β that are L2-integrable. H1,C corresponds
to a Hölder space of order β, consisting of those functions with continuous derivatives up
to order bβc, and the bβc-th derivative is β − bβc Hölder continuous. We refer readers to
Section 2.3 of Yang et al. (2017) for further details.

3.4 Extensions To the Space of Continuous Functions

Theorem 8 implies that the ICLP mechanism provides privacy protection for a wide range of
infinite-dimensional functional objects in separable Hilbert spaces. The DP post-processing
inequality (Dwork et al., 2014) is a fundamental property for functional summaries since one
may only be practically interested in a few scalar summaries. However, the post-processing
inequality only applies to measurable mappings. If H = L2([0, 1]), then this eliminates
the possibility of releasing point-wise evaluations of the functional summary since such
mappings are not measurable operators in L2([0, 1]). Therefore, in this section, we extend
the ICLP mechanism to the space of continuous functions, i.e., C(T ) with T a compact
set over Rd, where such operators are measurable (and thus protected). We show that the
ICLP, under mild conditions, is also in C(T ).

Theorem 9 (Feasibility in the Space of Continuous Functions) Let C : T ×T → R
be a symmetric, positive definite, bivariate function over compact domain T . If C is α-
Hölder continuous in each coordinate, i.e., there exists a positive constant MC , and α ∈
(0, 1] such that |C (t1, s)− C (t2, s)| ≤ MC |t1 − t2|α, then there exists an ICLP, Z, with
covariance function C and a modification Z̃ : T ×Ω→ R of Z that is a continuous process,
such that

1. Z̃ is sample continuous, i.e., ∀ω ∈ Ω, Z̃ω(t) is continuous with respect to t ∈ T ;

2. For any t ∈ T , P (Z̃(t) = Z(t)) = 1.

Meaning that there exists a stochastic process in C(T ) equally distributed as the ICLP except
on a zero-measure set.

All the ICLP mechanism results for H in Section 3.2 are now applicable to functional
summaries in C(T ). Furthermore, the point-wise evaluation is now a measurable operation
and thus is protected. We also note that the proof of Theorem 9 is not just a standard
result from stochastic processes but relies heavily on the structure of the ICLP.
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4. Qualified Summary Obtainment and Privacy-Preserving Tasks

In this section, we present different approaches to constructing non-private summaries for
the ICLP mechanism. Specifically, these constructions must ensure that the difference of
functional summaries, fD − fD′ , lies in H1,C for any adjacent datasets D and D′, thus
qualifying the summaries for the ICLP mechanism. After introducing these approaches,
we also apply the ICLP mechanism to achieve privacy protection in different statistical
estimation problems with corresponding statistical analysis.

4.1 Generalized Obtainment of Qualified Summaries

Based on Theorems 7 and 8, to achieve ε-DP via the ICLP mechanism, the difference of
non-private summaries calculated from any adjacent datasets D and D′ should reside in
H1,C . We call a summary f that satisfies such conditions a qualified summary. However,
constructing such f directly is a challenging task. It is easier to address the problem by
restricting the individual functional summary fD residing in H1,C for any D ∈ D, which
automatically leads to fD − fD′ ∈ H1,C . Therefore, we leverage regularized ERM to obtain
qualified summaries fD such that fD ∈ H1,C .

Formally, let L(f,D) : H × D → R be a loss function. The ICLP with Absolute Regu-
larization (ICLP-AR) estimator is defined as follows,

(ICLP-AR) : f̂D = argmin
f∈H

{
L(f,D) + ψ ‖f‖1,Cη

}
for η ≥ 1, (7)

where Cη is the power kernel of C that shares the same eigenfunctions as C while the
eigenvalues are raised to ληj and ψ is the regularization parameter.

The benefits of using a power kernel Cη are twofold. First, the space corresponding to
‖·‖1,Cη is a subspace ofH1,C , guaranteeing that f̂D ∈ H1,C . Second, it allows more flexibility
to control the regularity (usually smoothness) of the constructed functional summaries.
Later on, we will see that even though η = 1 is a natural setting, setting η > 1, i.e.,
constructing a slightly over-smoothing summary, can be helpful for utility and even make
privacy error negligible compared to estimation error. However, as we will see in Section
4.2, there are some serious drawbacks to using the ‖ · ‖1,C-norm regularization.

Therefore, we consider restricting the functional summary in the power space of HC ,
i.e., HCη and using ‖ · ‖Cη -norm regularization in regularized ERM as our final strategy,
which turns out to work quite well theoretically and practically. Formally, for a given η > 1,
by the Cauchy-Schwarz inequality we have

‖h‖1,C =
∞∑
j=1

|hj |√
λj

=

∞∑
j=1

|hj |

λ
η
2
j

λ
η−1
2

j ≤ ‖h‖Cη
√

trace(Cη−1).

Therefore, by taking η > 1 such that Cη−1 is a trace-class operator, we obtain the functional
summary via the following ICLP with Quadratic Regularization (ICLP-QR) strategy,

(ICLP-QR) : f̂D = argmin
f∈H

{
L(f,D) + ψ ‖f‖2Cη

}
for η > 1. (8)

Since the power space HCη is an RKHS and ‖ · ‖Cη takes quadratic form, we name this
approach ICLP-QR. Here, η is strictly greater than 1 leads to HCη ⊆ H1,C ⊆ HC , which

11
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ensures the feasibility of the ICLP mechanism. Similar to ICLP-AR, the η in ICLP-QR
also plays a role in balancing the utility and the privacy of the functional summary.

4.2 Protection for Mean

We consider the problem of privatizing the mean summary. Assume X1, · · · , Xn are i.i.d.
random elements drawn from an arbitrary real separable Hilbert space H with mean el-
ement EXi = µ0 ∈ H. Our goal is to release a private estimator for the true mean µ0

that satisfies ε-DP. When using the FRL mechanism, one can start with the sample mean
µ̂D = 1

n

∑n
i=1Xi, which is an unbiased estimator of µ0. For the ICLP mechanism, we use

regularized ERM with the square loss to obtain qualified non-private summaries, i.e.,

µ̂D = argmin
θ∈H

{
1

n

n∑
i=1

‖Xi − θ‖2H + ψP (θ)

}
, (9)

with P (θ) = ‖θ‖1,Cη or ‖θ‖2Cη corresponding to ICLP-AR and ICLP-QR respectively.

To obtain the global sensitivity and utility analysis for the proposed strategies, we first
state some standard assumptions in the DP literature regarding the norm of the observed
data and the eigenvalue decay rate of C.

Assumption 1 (Boundedness) Assume for any sample path X, its H-norm is bounded
by τ , i.e., ‖X‖H ≤ τ .

The bounded norm assumption is commonly used in the DP literature, primarily to en-
sure finite global sensitivity. This assumption is often adapted to align with specific DP
paradigms and mechanisms. For instance, in employing the Gaussian mechanism to attain
(ε, δ)-DP, it is customary to assume that the `2-norm of the data is bounded, in line with the
global sensitivity being assessed via ‖ · ‖`2 . Conversely, for the Laplace mechanism, which
aims for ε-DP, the focus shifts to the `1-norm, with global sensitivity gauged through ‖ ·‖`1 .
In cases where a more general norm in Rd is used, such as in the exponential mechanism,
the data is presumed to have such a finite general norm. See the mean estimation example
in Reimherr and Awan (2019b).

In the context of the ICLP mechanism, where global sensitivity is evaluated under
‖ · ‖1,C , it seems logical to posit that ‖X‖1,C ≤ τ for some finite τ . However, the ‖ · ‖1,C-
norm is intrinsically linked to C, dependent on the eigenvalues and eigenfunctions of the
covariance used in ICLP. This reliance implies that assuming ‖X‖1,C ≤ τ could narrow
the ICLP mechanism’s applicability. Practically, it would mean that feasible Xi should be
drawn from X whose covariance eigenfunctions align with those of ICLP’s covariance C, a
condition often unverifiable in practice. Therefore, we consider a more general and relaxed
boundedness assumption by assuming ‖X‖H ≤ τ , which is more likely to be met in most
practical applications.

Assumption 2 (Eigenvalue Decay Rate (EDR)) Suppose the eigenvalue decay rate of
C is β > 1, i.e., there exist constants c1 and c2 such that

c1j
−β ≤ λj ≤ c2j

−β, ∀i = 1, 2, · · · .

12
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Note that the eigenvalues λj and EDR are only determined by the ICLP covariance C. The
polynomial eigenvalue decay rate assumption is standard in the non-parametric literature.
For example, if C satisfies the Sacks–Ylvisaker conditions (Sacks and Ylvisaker, 1966, 1968,
1970) of order s, then λj � j−2(s+1). If setting C equal to the reproducing kernel of the
univariate Sobolev space Wm

2 ([0, 1]) results in λj � j−2m, see Micchelli and Wahba (1979)
for more instances.

In the following theorems, we derive the closed form of the estimators and provide their
global sensitivity analysis for the FRL, ICLP-AR, and ICLP-QR mechanisms.

Theorem 10 (Global Sensitivity Analysis) Suppose Assumption 1 holds, then

1. (FRL) Suppose the functional summary used in FRL is a truncated sample mean
function, i.e., µ̂D =

∑M
j=1〈X̄, φj〉Hφj, then

∆ = max
D,D′
‖µ̂D − µ̂D′‖`1 ≤

2Mτ

n
.

2. (ICLP-AR) The solution of ICLP-AR in (9) is

µ̂D =
∞∑
j=1

s
ψ,2λ

η/2
j

(〈
X̄, φj

〉
H
)
φj , (10)

for all η ≥ 1 and sa,b(x) = sgn(x) (|x| − a/b)+ is the soft thresholding function with
threshold a/b. Then, there exists an integer J∗ such that the global sensitivity of µ̂D
satisfies

sup
D∼D′

‖µ̂D − µ̂D′‖1,C ≤
2τ

n

J∗∑
j=1

λ
− 1

2
j .

3. (ICLP-QR) The solution of ICLP-QR in (9) is

µ̂D =
∞∑
j=1

ληj
ληj + ψ

〈
X̄, φj

〉
φj , (11)

for all η > 1 + β−1. Then, the global sensitivity of µ̂D satisfies

sup
D∼D′

‖µ̂D − µ̂D′‖1,C ≤
2τ

n

∞∑
j=1

 λ
η− 1

2
j

ληj + ψ

 .

Remark 11 The integer J∗ := min{j ≥ 1 : τ ≤ ψ/2λ
η/2
j } in the ICLP-AR estimator

can indeed be viewed as a truncation number as the coefficients after J∗ will be shrunk to
0, i.e., the summation in (10) is indeed finite. The upper bound for global sensitivity is
based on the fact that, in the worst-case scenario, the coefficients are not shrunk to zero,
and thus, the soft thresholding adjustments are canceled out. Therefore, unfortunately, the
ICLP-AR estimator does not produce a better sensitivity than the FRL approach, while the
soft thresholding introduces extra bias into the summary. On the other hand, the coefficients
of the ICLP-QR estimator (11) will not be shrunk exactly to zero. Hence, one is able to
perturb the functional summary with the truly infinite-dimensional ICLP.
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We now analyze the error of the non-private summary µ̂D and the private summary µ̃D. We
call E ‖µ̂D−µ0‖2H the estimation error and the quantity E ‖µ̃D−µ̂D‖2H the privacy error. We
also call the mean square error (MSE) of µ̃D, E ‖µ̃D − µ0‖2H, the privacy-estimation error,
which represents the amount of error in estimating the population mean by the private
summary.

Theorem 12 Suppose Xi are i.i.d. observations drawn from population X with mean func-
tion µ0, and Assumptions 1 and 2 hold. We also assume µ0 ∈ HCη for some η > 1 + β−1.
Let µ̂D be non-private estimators under different approaches and µ̃D as their private version.
Then

E ‖µ̃D − µ0‖2H =



O

(
8M3τ2

n2ε2
+

1

n
+M−ηβ

)
, (FRL)

O

(
4τ2

n2ε2
(J∗)β+2 +

1

n
+ ψ

)
, (ICLP-AR)

O

(
8τ2

n2ε2
tr(Cη−1)ψ

− 2
η

(β+2
2β

)
+

1

n
+ ψ

)
. (ICLP-QR)

The first term in the privacy-estimation error is the privacy error, while the last two terms
constitute the estimation error. Notably, the optimal estimation error rate for mean function
estimation in H is O(n−1). By tuning the regularization parameters in different mechanisms,
one can ensure that the privacy error either matches or is of a lower order than the estimation
error. This tuning allows the private summary to perform as well as the non-private one
in terms of error rate. In the following corollary, we provide the optimal order for these
regularization parameters such that the privacy error is O(n−1) or o(n−1).

Corollary 13 Under the same conditions as Theorem 12,

1. (FRL) Setting n
1
ηβ .M . n

1
3 leads to

E ‖µ̃D − µ0‖2H = O(n−1).

2. (ICLP-AR) Setting (nε2)
− ηβ

2(β+2) . ψ . n−1 with η ≥ 2(1 + 2β−1) leads to

E ‖µ̃D − µ0‖2H = O(n−1).

In particular, setting ψ � n−1 and η > 2(1 + 2β−1),

E ‖µ̃D − µ̂D‖2H = o(n−1).

3. (ICLP-QR) Setting (nε2)
− ηβ
β+2 . ψ . n−1 with η ≥ 1 + 2β−1 leads to

E ‖µ̃D − µ0‖2H = O(n−1).

In particular, setting ψ � n−1 and η > 1 + 2β−1,

E ‖µ̃D − µ̂D‖2H = o(n−1).
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Corollary 13 suggests that by optimally choosing the finite-dimensional number M in the
FRL mechanism or the regularization parameter ψ in ICLP-QR, the privacy error will
not dominate the privacy-estimation error, making the privacy-estimation error match the
optimal estimation error of O(n−1). Additionally, in ICLP-QR, slightly oversmoothing via
regularization (choosing η > 1+2β−1) results in the privacy error being a lower order of the
estimation error, making it asymptotically negligible. This phenomenon is referred to as
“free privacy” since privatizing the summaries will not affect their statistical performance.
Similarly, ICLP-AR can also achieve the optimal error rate O(n−1) and even gain “free
privacy” like ICLP-QR. However, ICLP-AR requires higher oversmoothing to achieve the
optimal rate compared to ICLP-QR. This could be attributed to our error analysis using
the largest integer J∗ (beyond which all coefficients are zero), representing the worst-case
scenario. In real-world applications, the actual value of J∗ is usually smaller than what we
use in our analysis, leading to a performance that might be slightly worse than that of the
FRL mechanism, see Section 6. However, it’s important to note that the true value of J∗

is not analyzable within the current framework.

This section primarily focuses on the mean estimation and privacy protection problem,
a common problem in the functional data analysis where the samples Xi are random func-
tions in a function space (Rice and Silverman, 1991; Cai and Yuan, 2011). Although this
problem is relatively simple, its approaches and analysis can be methodologically extended
to other problems where estimations can be boiled down to estimating the average func-
tional statistic. For example, in functional data analysis, the covariance function estimation
is essentially the average of the sample {(Xi(t) − X̄(t))(Xi(s) − X̄(s))}ni=1; estimating the
coefficient in the function-on-scalar linear regression model is essentially the average of the
sample {XiYi(t)}ni=1. Given the inherently repetitive nature of these problems, we only pro-
vide the analysis of the mean protection and refer readers to Appendix C for more detailed
discussions on the parallels between these problems.

4.3 Beyond Mean Protection

In this part, we demonstrate how the ICLP mechanism is not only feasible for functional
summaries but also can be applied to more general learning problems where the summary
of interest is a function.

Kernel Density Estimation. Let D = {x1, · · · , xn} ⊆ T , where T is a compact set over
Rd, be i.i.d. samples from a distribution with density f0. For any given ICLP covariance
kernel K, we adopt the ICLP-QR by picking the density estimation kernel as Kη with η > 1.
For a given d× d symmetric and positive definite bandwidth matrix H, the kernel density
estimator under the ICLP-QR strategy takes the form of

K̂D(x) =
1

n

n∑
i=1

Kη
H (x− xi) =

1

n
√
det(H)

n∑
i=1

Kη
(
H−

1
2 (x− xi)

)
. (12)

We now provide the global sensitivity and utility analysis of K̂D(x) in the following theorem.
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Theorem 14 Suppose Kη(·, ·) is point-wise bounded by a constant MK , then the global
sensitivity ∆ of K̂D(x) in (12) satisfies

∆ = sup
D∼D′

∥∥∥K̂D − K̂D′

∥∥∥
1,K
≤ 2MK

n
√
det(H)

√
tr(Kη−1).

Furthermore, taking H to be a diagonal matrix with the same entry, i.e., H = hI, and
assuming f

′′
0 is absolutely continuous,

∫
T (f

′′′
0 (x))2dx <∞ and

∫
T K

η(x)dx = 1. Then

E

∫
T

(
f̃D(x)− f0(x)

)2
dx ≤ O

( c1

n2h2d
+ h4 +

c2

nhd

)
,

for some constants c1 and c2.

Remark 15 If h is taken to be h � n
1

4+d , then R = O(n−
4

4+d ), which matches the optimal
kernel density estimation rate (Wasserman, 2006).

The connection between estimating kernel and the noise kernel also appeared in Hall et al.
(2013), where they stated that one could achieve (ε, δ)-DP by adding a Gaussian process with
its covariance function equal to the kernel used in estimation. For privacy-safe bandwidth,

h, we can pick h � n
1

4+d to ensure privacy is gained for free. However, a private version of
the “rule of thumb”, see Rao and Scott (1992) and Hall et al. (2013) is also feasible.

Functionals via Regularized ERM. The functional summaries one desires to release
may come from learning algorithms such as regularization-based algorithms. In Section 4.1,
we proposed using such algorithms to obtain qualified functional summaries. Here, we
generalize the approach to broader scenarios such as non-parametric regression and classifi-
cation. Let D = {d1, · · · , dn} be the collection of n samples, where di is a tuple with finite
size. Given a loss function L, we consider the following regularized ERM problem:

f̂D = argmin
f∈HCη

{
1

n

n∑
i=1

L(di, f) + ψ‖f‖Cη
}

for some η > 1. (13)

When di’s are couples, i.e., di = (yi, xi), (13) can be viewed as non-parametric classification
(where yi’s take discrete value) or regression (where yi’s take continuous value) problems.
The solution of (13) can be expressed as f̂D =

∑n
i=1 aiC

η(·, di) by the Representer Theorem
(Kimeldorf and Wahba, 1971). However, although the Representer Theorem provides an
elegant solution for (13), it is not suitable for calculating the global sensitivity since all the
elements in the vector (a1, · · · , an) change when we swap one individual in the dataset. In
the following theorem, we provide a sensitivity analysis for f̂D under certain regularized
conditions.

Theorem 16 Suppose f̂D is the solution of (13) and the loss function L in (13) is an M -
admissible loss function (Bousquet and Elisseeff, 2002), then the global sensitivity for f̂D
satisfies

∆ = sup
D∼D′

∥∥∥f̂D − f̂D′∥∥∥
1,C
≤ M

ψn

√
sup
x
Cη(x, x)

√
tr(Cη−1).
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Remark 17 One can also prove that the privacy error E ‖f̃D−f̂D‖2L2 is bounded by c1(ψn)−2.
We do not provide a utility analysis for this case study as the statistical error can vary based
on different settings of the problem and is out of the scope of this paper.

The application scenario is broad since the upper bound for the global sensitivity holds for
any convex and locally M -admissible loss function and bounded kernel with finite trace. For
example, support vector machines with hinge loss, non-parametric regressions with square
loss, and logistic regressions with log(1 + x) loss are all applicable settings.

4.4 Privacy-Safe Regularization Parameter Selection

Determining the regularization parameters in different mechanisms, such as the finite-
dimensional number M (for subspace embedding mechanisms) and ψ (for the ICLP mech-
anism), is crucial to ensure the reasonable performance of the private releases. Tuning
regularization parameters in statistical modeling has been well studied, and Cross Valida-
tion (CV), or one of its many variants, is the most widely used approach. However, CV
focuses on balancing variance and bias in the estimation error, not the trade-off between
privacy and estimation error. To fit CV into the DP framework, Private Cross Validation
(PCV) was proposed in Mirshani et al. (2019), which aims to find the “sweet spot” between
privacy error and estimation error. However, as data-driven approaches, neither CV nor
PCV is truly privacy-safe since the regularization parameters may contain information about
the data. There are some approaches one can use to obtain end-to-end privacy-guaranteed
regularization parameters. For example, one can use out-of-sample public datasets (Zhang
et al., 2012) or one can spend extra privacy budget on the tuning process (Chaudhuri et al.,
2011; Chaudhuri and Vinterbo, 2013).

Since the ICLP mechanism is tied to a kernel, one can obtain privacy-safe regulariza-
tion parameters by picking kernels whose eigenvalues decay polynomially, satisfying the
conditions in Theorem 12 so that the optimal values for M and ψ in Theorem 12 can be
directly used as regularization parameter inputs. We name this approach “Privacy Safe
Selection” (PSS). PSS does not degrade the privacy guarantee since the employed regular-
ization parameters rely only on the sample size, the privacy budget, and the additive noise’s
covariance function. We would like to note that PSS is not a data-driven approach since
its acquisition never depends on the data. In practice, the constants for the optimal values
in PSS can affect the performance of the ICLP mechanism. In our experiments, we observe
that by appropriately normalizing the sample trajectories and the trace of the covariance
kernel, setting the constant to 1 usually leads to satisfactory performance.

5. Algorithm and Implementation

Based on the definition of the ICLP, the generic implementation of the mechanism can be
achieved using the Karhunen-Loéve expansion.

1. Given any Mercer kernel C, obtain its eigenvalues {λj}j≥1 and eigenfunctions {φj}j≥1.

2. Generate ICLP noise by Z =
∑∞

j=1

√
λj
2 Zjφj where Zj

i.i.d.∼ Lap(1).

3. Calibrate Z to desired privacy level by the global sensitivity ∆ and privacy budget ε.
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However, the summation in generating Z cannot be implemented in finite time and
usually is terminated at a large integer. Therefore, in practice, we utilize its approximated
version, Algorithm 1.

Algorithm 1: Approximated ICLP mechanism

1 Given the covariance kernel C and K different points (x1, x2, · · · , xK) on the
compact domain T , calculate the value of C on the grid expanded by
(x1, x2, · · · , xK), i.e.,

Ĉ =

C(x1, x1) · · · C(x1, xK)
...

. . .
...

C(xK , x1) · · · C(xK , xK)


2 Obtain K estimated eigenvalues {λ̂k}Kk=1 and eigenfunctions {φ̂k}Kk=1 of Ĉ by

eigendecomposition.
3 for k in 1,2,· · · , K do

4 Set f̂Dk = 〈f̂D, φ̂k〉 and generate Zk from

√
λ̂k
2 Lap(1)

5 f̃Dk = f̂Dk + σZk where σ =
√

2∆
ε

6 Return f̃ =
∑K

k=1 f̃Dkφj .

A natural question about Algorithm 1 is whether all the theoretical analyses still hold if
the privacy noise is sampled in a finite approximation manner instead of the “true” infinite
sum. The answer is positive as long as the same cutoff K is used both in constructing
privacy noise and expressing the original estimate, followed directly by the post-processing
inequality. However, a key advantage of our theoretical analyses is that the privacy guar-
antees will still hold regardless of what K is used. Another problem regarding Algorithm
1 is that even though larger K will lead to more accurate estimates of eigenvalues and
eigenfunctions, it also increases the computational burden as the algorithm relies on the
Karhunen-Loéve expansion. Next, we investigated how different cutoff values, K, will affect
computational time by comparing the average computation time for generating 100 ICLPs
to 100 Gaussian Processes. We choose the Gaussian Process as the competitor since it is
the stochastic process used to achieve (ε, δ)-DP for functional data, and sampling Gaus-
sian processes is nothing more than sampling a multivariate Gaussian with covariance Ĉ.
Theoretically, generating one ICLP and one Gaussian process are both in time complexity
O(n3) since both Cholesky decomposition and eigen decomposition are O(n3). In Table 1,
we report the average time to generate 100 ICLPs and 100 Gaussian Processes for different
covariance kernels. We found that generating 100 Gaussian Processes is about 30% to 50%
faster than generating 100 ICLPs in practice.

6. Experiments

In this section, we numerically evaluate the effectiveness of the ICLP mechanism and other
comparable mechanisms, like the FRL and Bernstein mechanisms.

18



Pure Differential Privacy for Functional Summaries

C K ICLP GP C K ICLP GP

Exponential
100 0.567688 0.273463

Matérn(ν = 3
2)

100 0.571014 0.270682
200 2.778597 1.683808 200 2.636642 1.617183
500 29.98454 20.90210 500 29.38142 20.56870

Gaussian
100 0.553025 0.268379

Matérn(ν = 5
2)

100 0.551222 0.271477
200 2.617800 1.610193 200 2.618398 1.615180
500 29.26284 20.41770 500 29.29077 20.53389

Table 1: Computation time (in seconds) for generating 100 ICLPs and Gaussian Processes
under different cutoff values K and covariance kernels C over [0, 1].

6.1 Simulation for Mean Function Protection

In this section, we conduct the simulation for the mean function privacy protection problem
discussed in Section 4.2. We use the isotropic Matérn kernel (Cressie and Huang, 1999) as
the covariance kernel for the ICLP noise. It takes the form

Cα(s, t) =
1

Γ(ν)2α−1

(√
2αd(s, t)

ρ

)α
Kα

(√
2αd(s, t)

ρ

)
where Kα is the modified Bessel function. This is motivated by the fact that the result-
ing RKHS of Cα ties to a particular Sobolev space, allowing us to control the smoothness
directly. Specifically, the RKHS associated with the Matérn kernel Cα over Rd is norm-

equivalent to the Sobolev space Hα+ d
2 and thus the corresponding eigenvalues decay poly-

nomially as λj � j−2(α+ d
2

). In the following experiments, we set d = 1, ρ = 0.1, the privacy
budget ε = 1, and α = 1.5 such that λj � j−4. For the functional samples, we consider
H = L2([0, 1]) and generate samples as

Xi(t) = µ0(t) + ei(t)

where ei(t) are Gaussian processes with zero mean and radial basis function kernel as
covariance function. For the true mean function µ0, we consider the following four different
forms:

S-1: µ0(t) = 10t ∗ exp(−t).

S-2: µ0(t) = 0.3f0.3,0.05(t) + 0.7 ∗ f0.8,0.05(t).

S-3: µ0(t) = 0.2 ∗ (f0,0.03(t) + f0.2,0.05(t) + f0.5,0.05(t)− f0.75,0.03(t) + f1,0.03(t)).

S-4: µ0(t) =
∑25

j=1Rijφj(t), where Rij
i.i.d.∼ U [−1, 1].

Here, fa,b is the probability density function of the normal distribution with mean a and
variance b2. The trajectory complexity of the samples generated from these mean functions
rises sequentially. For example, S-1 is a monotonically increasing function, S-2 is a bimodal
function, and S-3 and S-4 are functions exhibiting multiple rapid fluctuations. We evaluate
these mechanisms via privacy-estimation errors, estimation errors, and privacy errors. These
errors are calculated via Monte Carlo by generating 1000 privatized mean estimators.
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We also conduct the experiments in different settings. For example, we consider gen-
erating the error stochastic process ei from Gaussian processes with different covariance
functions or from basis expansion with heavy-tailed distributions. We also consider the
ICLP covariance kernel as the Matérn kernel with α = 2.5. We refer to Appendix D for
these additional experimental results.

6.1.1 Comparison of PCV and PSS

In Section 4.4, we introduced PSS for parameter selection. Here, we demonstrate its effec-
tiveness by comparing it with the data-driven method PCV. For both the ICLP-AR and
ICLP-QR, we set η and ψPSS to be the values in Theorem 12 such that the privacy error is
the same order as the estimation error. For PCV, we obtain ψPCV by 10-fold PCV within
the range of [0.1ψPSS, 10ψPSS]. In the FRL mechanism, the PSS approach is more am-
biguous as the PSS values for truncation number such that µ̃ reaches the optimal rate is a
collection of integers, i.e., M = {M1, · · · ,MK}. We calculate the estimation error for each
M ∈ M and take the smallest estimation error as the PSS result. For PCV, we consider a
wider range of M by adding and subtracting 3 to its maximum and minimum elements.
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Figure 1: Privacy-estimation error for PSS and PCV approaches to select parameter ψ
under different mechanisms, sample size, and true mean functions. Reported values are
averages of 100 independent replicated experiments. Both axes are in the base 10 log scale.

In Figure 1, we report the privacy-estimation error for each mechanism under different
sample sizes n. For the relatively simple µ0 in S-1, the error decay curves of the PSS almost
line up with the PCV ones for FRL and ICLP-QR. In S-2 and S-3, the ICLP mechanism
still has consistent error decay curves between the PSS and PCV, while the PSS curve of the
FRL mechanism exhibits a step-down pattern. This pattern occurs because the maximum
number in M is determined by the sample size. Therefore, with complex curves and small
sample sizes, the FRL mechanism does not have enough components to estimate the mean
function well. As the sample size increases, the availability of more components improves
the estimation. In S-4, PCV performs slightly better than the PSS approach for both
mechanisms. This is expected since the FRL mechanism requires more dimensions, ICLP-
QR requires less regularization, and PCV consistently behaves this way. Since it has been
shown that selecting regularization parameters via the PSS approach provides a reasonable
and consistent performance compared to PCV, we use the PSS approach in the following
experiments to be fully privacy-safe.
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6.1.2 Comparison of Different Mechanisms

Under the same settings, we compare the performance of different mechanisms under dif-
ferent sample sizes n, which include the FRL, ICLP-AR, ICLP-QR, and the Bernstein
mechanisms1. We also include the Gaussian mechanism for achieving (ε, δ)-DP (with ε = 1
and δ = 0.01) on functional summaries via Gaussian process (Mirshani et al., 2019), and
we refer to it as GP-ADP. This provides insight into what is gained by moving from ε-DP
to (ε, δ)-DP.
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Figure 2: Privacy-estimation, estimation, and privacy errors for different mechanisms under
different sample sizes n and true mean functions. The values reported are averages over
100 independent replicated experiments. Both axes are in the base 10 log scale.

Figure 2 illustrates the error decay results of different mechanisms as µ0 and n are varied.
Focusing on the privacy-estimation error, the ICLP-QR consistently outperforms all other
ε-DP mechanisms across various scenarios. This indicates that the ICLP-QR is effective
in releasing privatized summaries with high utility. On the other hand, GP-ADP performs
slightly better than the ICLP-QR, especially when n is larger. This is not surprising, as
moving to a more relaxed privacy paradigm can lead to private summaries with higher

1. The implementation of the Bernstein mechanism is based on R package diffpriv. We use the sample
mean X̄ as the non-private summary by setting the cover size parameter as 20.
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utility. On the other hand, the ICLP-AR exhibits the worst performance, primarily due to
its high estimation error. This poor performance is likely caused by the exact bias introduced
by the soft thresholding function, which would require an extremely large sample size to
reduce the threshold and eliminate the bias. The FRL and Bernstein mechanisms are close
to the ICLP-QR in S-1, showing their effectiveness in simpler mean function scenarios,
but they fail to mimic the behaviors of the ICLP-QR when mean functions become more
complex, i.e., S-2 to S-4.

Regarding the trade-off between estimation and privacy error, the ICLP-QR mechanism
exhibits similar privacy error to the FLR mechanism while significantly outperforming it in
estimation error. This confirms the ICLP mechanism’s advantages from two perspectives.
First, by treating the summary as infinite-dimensional, the ICLP mechanism provides better
non-private estimations than the finite-dimensional FLR mechanism, which suffers from
worse estimation errors due to fewer components involved. Second, despite adding noise
to infinite dimensions, the ICLP mechanism only requires a similar amount of noise as the
FLR mechanism, indicating it achieves more effective noise injection by treating different
dimensions heterogeneously.

6.2 Simulation for Kernel Density Estimator Protection

To demonstrate the wide range of application scenarios of the ICLP mechanism, we conduct
simulations on kernel density estimations. We consider the setting under R and R2 with
samples generated from two mixture Gaussian distributions.

1. R setting:

xi
i.i.d.∼

2∑
i=1

piN (µi, 0.1; 0, 1),

where N (µ, σ; a, b) is a truncated normal distribution over [a, b] with p1 = 0.6, p2 =
0.4, µ1 = 0.3, µ2 = 0.7.

2. R2 setting:

xi
i.i.d.∼

2∑
i=1

piN
(
µi,
(

1 0.5
0.5 1

)
;
(

5
−5

)
,
(

5
−5

))
,

where N (µ,Σ; a,b) is a multivariate truncated normal distribution over [a1, b1] ×
[a2, b2] with p1 = 0.6, p2 = 0.4, µ1 = (−3,−3), µ2 = (3, 2).

We compare the FRL, ICLP-QR, and Bernstein mechanisms. For the ICLP-QR and the
Bernstein mechanism, we pick multiple smoothing parameters η and lattice numbers to
demonstrate how they affect private curves and surfaces. For the FRL mechanism, we
select the truncated number that provides the best fit under PCV criteria. We use the
Gaussian kernel in R and the exponential kernel in R2 to build the kernel density estimator.
We use h � n1/(4+d) where d = 1, 2 to ensure we gain privacy for free and remain privacy
safe. The results are reported in Figure 3 and Figure 4.

For the univariate setting, the ICLP-QR performs similarly to the FRL mechanism; a
higher η produces less variability in the curves but tends to be over-smoothed. The Bernstein
mechanism needs over 30 lattice points in the interval to capture the bimodal pattern but
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results in producing a messy tail at both ends. A lower lattice number produces better tails
but fails to capture the bimodal pattern.
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Figure 3: Non-private (Blue) and 10 random realization of private (Red) KDEs. (a) ICLP
mechanism with η = 1.25 (b) ICLP mechanism with η = 1.5 (c) FRL and (d)-(f) Bernstein
mechanism with lattice number equal to 10, 30, 50.

(a) (b) (c)

(d) (e) (f)

Figure 4: 3D plot of non-private (Blue) and private (Red) KDEs over R2. (a)-(c) ICLP
mechanism with η = 1.01, 1.05, 1.2 (d) FRL and (e)-(f) Bernstein mechanism with lattice
number equal to 5, 10.
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For the multivariate setting, one can see that by slightly oversmoothing, the ICLP-
QR produces privatized KDEs that are very close to the non-private ones. A smaller η
(Figure 4a) is more precise at peaks but will be “noisy” around lower density regions, while
a larger η (Figure 4c) produces smooth lower density regions but causes underestimation
at peaks. Figure 4b shows there is a clear “sweet point” to trade off the smoothness and
underestimation. The FRL mechanism performs similarly to the underestimated ICLP
case, but the peaks of the privatized KDE do not fully align with the non-private one. On
the other hand, the Bernstein mechanism fails to produce surfaces similar to those of the
non-private estimator, even when we increase the number of lattice points.

7. Real Data Applications

This section presents two real data applications of the proposed methods to study the release
of functional summaries for different functional data datasets.

7.1 Application on Medical and Energy Usage Functional Data

This application aims to release a private mean function that satisfies ε-DP for the following
two functional data datasets. The first dataset is the Brain scans Diffusion Tensor Imaging
(DTI) dataset2. The DTI dataset provides fractional anisotropy (FA) tract profiles for the
corpus callosum (CCA) of the right corticospinal tract (RCST) for patients with multiple
sclerosis and for controls. Specifically, we study the CCA dataset, which includes 382
patients measured at 93 equally spaced locations of the CCA. The second dataset contains
historical electricity demand in Adelaide3. The dataset consists of half-hourly electricity
demands from Sunday to Saturday in Adelaide between July 6, 1997, and March 31, 2007.
Our analysis focuses on Monday specifically, meaning the dataset consists of measurements
from 508 days at 48 equally spaced time points.

Eletricity (C1.5)
FRL
Bernstein
ICLP−AR
ICLP−QR
Non−Private

Eletricity (C2.5)
FRL
Bernstein
ICLP−AR
ICLP−QR
Non−Private

DTI (C1.5)
FRL
Bernstein
ICLP−AR
ICLP−QR
Non−Private

DTI (C2.5)
FRL
Bernstein
ICLP−AR
ICLP−QR
Non−Private

Figure 5: Non-private and private mean functions for different mechanisms with ε = 1. The
curves in light grey indicate the original samples.

2. Available in the R package refund.
3. Available in the R package fds.
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Eletricity Demand
C1.5 C2.5

ε FRL ICLP-AR ICLP-QR Bernstein FRL ICLP-AR ICLP-QR Bernstein

1/8 0.28280.1981 2.21101.5374 3.91102.9464 1.37261.2935 0.28050.1645 2.22791.5880 4.16143.5764 1.42611.3547

1/4 0.17310.0419 0.61400.3859 1.03910.8066 0.34590.2783 0.17030.0376 0.60530.4227 1.11680.8931 0.34680.2963

1/2 0.14530.0098 0.21170.1276 0.34150.1897 0.08950.0686 0.14270.0094 0.20920.0954 0.34970.2276 0.09200.0692

1 0.13830.0025 0.11060.0352 0.16490.0728 0.02410.0171 0.13600.0026 0.11090.0374 0.16390.0655 0.02510.0168

2 0.13660.0007 0.08580.0151 0.12040.0238 0.00800.0044 0.13420.0006 0.08570.0167 0.11640.0233 0.00890.0049

4 0.13620.0002 0.07930.0074 0.10890.0105 0.00390.0011 0.13380.0002 0.07940.0072 0.10440.0090 0.00480.0012

DTI
C1.5 C2.5

ε FRL ICLP-AR ICLP-QR Bernstein FRL ICLP-AR ICLP-QR Bernstein

2 0.63050.2878 6.24734.2907 4.42453.9617 3.19962.6794 0.63030.2867 6.21554.8556 4.74534.0892 3.08412.7095

3 0.44180.0663 1.61221.0886 1.26911.1059 0.80390.6994 0.44370.0762 1.62751.1514 1.30490.9318 0.78200.7225

4 0.39520.0165 0.49290.3046 0.47010.2522 0.20400.1627 0.39740.0158 0.49070.3274 0.47930.2431 0.20280.1790

5 0.38360.0045 0.20800.0824 0.27470.0756 0.05550.0369 0.38590.0040 0.20730.0890 0.27480.0804 0.05810.0395

6 0.38090.0010 0.13610.0285 0.22650.0265 0.01860.0106 0.38300.0010 0.13660.0287 0.22310.0325 0.02160.0107

7 40.38010.0003 0.11870.0133 0.21430.0133 0.00940.0028 0.38230.0003 0.11870.0137 0.21020.0126 0.01260.0029

Table 2: Expected L2-distance between the private mean function and the sample mean for
both electricity demand and DTI(cca) datasets. The numbers in the subscript indicate the
standard error (×10−3).

Since the true mean function is not available in real data applications, we evaluate
the performance of each mechanism using the expected L2-distance between the private
summary, µ̃, and the non-private sample means, µ̂, i.e., E ‖µ̃−µ̂‖2L2 . We consider the Matérn
kernel with α = 1.5 and 2.5 and ρ = 0.1. The expected L2-distance is approximated using
Monte Carlo with 1000 generated µ̃. The results are reported in Table 2, with each value
being an average of 100 replicate experiments. We also plot one private mean estimator for
each mechanism in Figure 5.

From Table 2, it can be observed that the expected L2-distance decreases similarly as the
privacy budget increases for both datasets. One can see that the expected L2-distance of the
FRL soon stops changing, indicating that most of the errors of the FRL are concentrated on
estimation errors. This indicates that in order to avoid adding too much noise to the later
components, the FRL mechanism has to compromise on using fewer leading components,
leading to higher estimation errors. This can also be seen in Figure 5, where the FRL
mechanism only produces a privatized mean function that estimates the overall shape but
fails to capture local details. The ICLP-AR and the Bernstein mechanisms have similar
performance patterns and much worse results with small privacy budgets. Finally, the
ICLP-QR performs the best among all approaches as its privatized mean functions can
estimate the shapes precisely and have much smaller expected L2-distances compared to
the non-private mean.

7.2 Application on Human Mortality Data

Publishing the entire age-at-death distribution for a given country or region usually provides
more comprehensive information about human lifespan and health status than publishing
crude mortality rates. A private version of this distributional summary ensures that an
attacker cannot infer information about individuals or groups in a particular age range.
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The mortality data for each region are collected from the United Nations World Population
Prospects 2019 Databases4. The dataset records the number of deaths for each region and
age. The goal of this application is to release private mortality distributions for various
regions.

Mechanisms

Region
ICLP-QR
(η = 1.01)

ICLP-QR
(η = 1.05)

FRL Bernstein
(K = 10)

Bernstein
(K = 20)

Eastern Africa 1.68510.507 5.2497.549 5.2527.881 3.82312.243 2.40011.896

Middle Africa 1.1220.451 5.2810.410 4.8702.152 3.9690.313 2.0900.327

Northern Africa 2.3980.680 8.8730.656 3.9911.807 11.3150.546 5.7100.646

Southern Africa 2.4871.491 6.4270.919 2.9901.809 3.9640.666 2.3950.763

Western Africa 1.58813.699 5.7759.216 5.75211.482 4.34715.649 2.60915.493

Central Asia 5.8042.715 11.8291.547 7.3193.739 13.1631.346 8.1161.808

Eastern Asia 3.5514.414 13.4466.872 3.9006.958 15.87814.110 8.1629.175

Southern Asia 2.0402.267 8.6193.737 2.9682.962 10.0448.099 4.9624.888

South-Eastern Asia 2.2591.871 9.4983.565 2.5662.323 10.4288.328 5.1574.778

Western Asia 2.1950.585 8.6890.624 3.7682.005 9.3800.510 4.6400.578

Eastern Europe 3.9903.658 13.5014.924 4.8175.762 15.5429.356 8.4386.414

Northern Europe 7.3181.626 19.0871.187 7.1741.493 22.8461.218 13.3391.304

Southern Europe 7.4570.977 21.0760.931 7.1371.083 27.5000.852 15.8730.927

Western Europe 6.8192.184 19.9592.782 6.4453.417 25.6065.375 14.7603.965

Caribbean 6.4532.890 11.2472.022 5.9813.634 10.7141.580 7.2312.296

Central America 1.6360.548 7.7770.685 1.1460.537 5.6370.480 2.6160.448

South America 2.2442.498 9.4614.096 2.8863.276 9.2946.744 4.7004.333

Northern America 2.2051.734 10.6052.792 1.5372.297 10.0285.546 4.7463.153

Australia/New Zealand 23.52511.299 29.4955.040 22.7828.189 28.3395.053 23.9837.582

Table 3: Expected L2-distance between release KDEs and non-private KDEs for each region
with ε = 1. The numbers in the subscript indicate the standard error (×10−3).

We estimate the probability density function for each region and privatize the estimates
via the ICLP mechanism and its competitors. The privacy budget is set to 1. We evaluate
the performance using E ‖f̃ − f̂‖2L2 where f̃ is the private KDE and f̂ is the non-private
counterpart. The expectation is approximated using Monte Carlo using 200 private KDEs.
The results are reported in Table 3. We also visualized the private KDEs for each region
and mechanism in Appendix E.

From Table 3, the ICLP-QR with η = 1.01 has smaller errors in developing regions,
while the FRL mechanism performs better in developed regions. This is reasonable, as
developed regions usually have better medical conditions, making the mortality age con-
centrate between 70 and 80 and their densities unimodal. Thus, a few leading components
are sufficient to represent the density function in these regions. Conversely, the situation
is different in developing regions, where the infant mortality rates are higher, making their
densities multimodal and requiring more components for better estimation.

4. Available at https://population.un.org/wpp/Download.
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8. Conclusion

In this paper, we introduce a new mechanism, the ICLP mechanism, to achieve ε-DP for
infinite-dimensional functional summaries. This mechanism offers a wide range of output
privacy protections with more flexible data assumptions and a more effective noise injection
process compared to current mechanisms that rely on finite-dimensional embedding. We
establish its feasibility in separable Hilbert spaces and spaces of continuous functions. Dif-
ferent approaches are proposed for constructing qualified summaries compatible with the
ICLP mechanism, along with parameter selection via PSS, to guarantee end-to-end pro-
tection. We also demonstrate that one can balance utility and privacy by controlling the
degree of regularization in these strategies. This is demonstrated in the mean protection
example by showing that slightly over-smoothing the summary allows the private summary
to achieve the optimal rate for non-private mean estimation.

Despite its advantages, the ICLP mechanism has some limitations and presents oppor-
tunities for future research. As discussed in Section 5, implementing the ICLP mechanism
relies on the Karhunen-Loéve expansion, which can be computationally expensive. Devel-
oping a computational approach that does not depend on the Karhunen-Loéve expansion is
an important future direction. Additionally, although various experimental results indicate
that by appropriately processing the sample trajectories and the ICLP covariance kernel,
omitting the constant for PSS values can produce satisfactory performance, we believe a
more careful investigation of the constant can further enhance performance.
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Appendix A. Proofs for Section 3

A.1 Proof of Theorem 4

Proof Let X be a random element defined via decomposition (3) with covariance operator
C, where C belongs to the trace class. To prove that X is well-defined in H, we only need
to show E〈X,X〉H <∞. Note that

E〈X,X〉H = E
∞∑
j=1

∑
k≥1

√
λj
√
λkZjZk〈φj , φk〉H = E

 ∞∑
j=1

λjZ
2
j

 .
Since Zj are i.i.d. Laplace random variables with zero mean and variance 1, we have

E
[
λjZ

2
j

]
=

∞∑
j=1

λj = Tr(C) <∞.

Then, by the Fubini theorem,

E〈X,X〉H = E

 ∞∑
j=1

λjZ
2
j

 =
∞∑
j=1

E
[
λjZ

2
j

]
<∞,

which proves the existence of X.

A.2 Proof of Theorem 5

Proof We first define an isometric isomorphism between the Hilbert space H and the
`2 space to avoid considering probability measures over H. Given an orthonormal basis
{φj}∞j=1 of H, define a mapping T : H → `2 by T (f) = {〈f, φj〉}∞j=1. The inverse of T
is T −1({〈f, φj〉)∞j=1} =

∑∞
j=1〈f, φj〉φj and T preserves the norms, i.e., ‖T (f)‖`2 = ‖f‖H.

Thus, this mapping is an isometric isomorphism between H and `2, and we can consider
the probability measure over `2 rather than over H.

For a Laplace random variable X ∼ Lap(µ, b) over R, it induces a probability measure
over (R,B), where B is the Borel set over R, as

γµ,b(dx) =
1

2b
exp

(
−|x− µ|

b

)
dx.

Denote {λj}j≥1 and {φj}j≥1 as the eigenvalues and eigenfunctions of the covariance operator
C, respectively, and let λj = 2b2j . By the Existence of Product Measures Theorem (Tao,
2011), PD ◦ T is a unique probability measure defined as γ(fD, C) :=

∏∞
j=1 γfDj ,bj over

(R∞,B∞) := (
∏∞
j=1 Rj ,

∏∞
j=1 Bj). We further restrict γ(fD, C) on (`2, σ(`2)) and keep

denoting it by γ(fD, C). Since T is an isometric isomorphism mapping between H and
`2 space, to prove PD and PD′ are equivalent, it is sufficient to prove that the product
probability measures γ(fD, C) and γ(fD′ , C) are equivalent. Now, we prove Theorem 5 by
showing γ(h,C) and γ(0, C) are equivalent if and only if h ∈ HC .
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For the “if” part, we apply Kakutani’s theorem (Kakutani, 1948). The two measures
are equivalent if the following sum converges

∞∑
j=1

log

∫
R

√
γj(hj , bj)

γj(0, bj)
γj(0, bj)(dx).

This leads to the applicable space for h as

H∗C =

h ∈ H :

∞∑
j=1

[
|hj |
2bj
− log(1 +

|hj |
2bj

)

]
<∞

 .

To prove H∗C = HC , we only need to show that for a non-negative sequence {aj}j≥1, the
series

∑∞
j=1[an − log(1 + an)] converges if and only if

∑2
j=1 a

2
n converges. Let f(x) = x −

log(1+x) and g(x) = x2. Besides, note that limn→∞ f(an) = 0 if and only if limn→∞ an = 0.
Thus,

• If
∑∞

j=1[an− log(1 + an)] <∞, then limn→∞ f(an) = 0 and so limn→∞ an = 0. Then,

lim
n→∞

f(an)

g(an)
= lim

n→∞

an − log(1 + an)

a2
n

=
1

2

therefore by the limit comparison test
∑∞

j=1 a
2
n converges too.

• If
∑∞

j=1 a
2
n <∞, by the same statement as above also holds and therefore

∑∞
j=1[an−

log(1 + an)] <∞.

For the “only if” part, the proof is the same as Theorem 2 in Reimherr and Awan (2019a).

A.3 Proof of Theorem 6

Proof We prove Theorem 6 by showing the form of Radon-Nikodym derivative of {PD :
D ∈ D} with respect to P0 is the same as derivative of γ(h,C) with respect to γ(0, C), and
it takes the form of

dPh
dP0

(z) = exp

{
− 1

σ

(
‖z − h‖1,C − ‖z‖1,C

)}
. (14)

First, we need to show that the right-hand side of Equation (14) is well-defined when
h ∈ H1,C . Define

HM (z) =

M∑
j=1

|zj − hj | − |zj |
bj

and H(z) = lim
M→∞

HM (z).
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We show there exists a set A with P0(A) = 1 such that H(z) exists and is finite on A.
Suppose zj ∼ Lap(0, bj), then

Var (HM (z)) =
M∑
j=1

Var

(
|zj − hj | − |zj |

bj

)

=

M∑
j=1

3b2j − b2j exp

{
−2|hj |

bj

}
− exp

{
−|hj |
bj

}
(b2j − 4bj |hj |)

=
M∑
j=1

−b2j
(

1 + exp

{
−|hj |
bj

})2

+ 4b2j

(
1 +
|hj |
bj

exp

{
−|hj |
bj

})

=

M∑
j=1

b2j

(
4−

(
1 + exp

{
−|hj |
bj

})2
)

+ 4b2j
|hj |
bj

exp

{
−|hj |
bj

}
.

The second equality is based on the following facts that E|zj − hj | = |hj |+ exp{−|hj |/bj},
E |zj | = bj and Cov(|zj − hj |, |zj |) = |hj |bj + exp {−|hj |/bj} (b2j + bj |hj |/2). By Fatou’s
Lemma and the condition h ∈ H1,C , we have Var(H(z)) < ∞. The set A is Ω and with
P0-measure 1. Therefore, if h ∈ H1,C , the right-hand side of Equation (14) exists and is
well-defined.

Second, we show that (14) is the Radon-Nikodym derivative of h+ σZ with respect to
σZ. Define

g(x) = exp

{
−
√

2

σ

(
‖x− h‖1,C − ‖x‖1,C

)}
and dP ∗h (x) = g(x)dP0(x).

Then, we only need to show that Ph and P ∗h are the same probability measure. We accom-
plish this by showing they have the same moment-generating function.

MGFPh(t) = EPh exp {〈X, t〉H}

=

∞∏
j=1

∫
R

exp {xjtj} dγhj ,bj (xj)

=

∞∏
j=1

exp {hjtj}
1− (bjtj)2

.
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where the second inequality comes from the result that Ph is product measure of γhj ,bj . For
the moment generate function of P ∗h ,

MGFP ∗h (t) = EP ∗h exp {〈X, t〉H}
= EQ g(X) exp {〈X, t〉H}

=
∞∏
j=1

∫
R

exp

{
− 1

σ

(
|xj − hj | − |xj |

bj

)
+ xjtj

}
dγ0,bj (xj)

=
∞∏
j=1

∫
R

exp {xjtj} dγhj ,bj (xj)

=

∞∏
j=1

exp {hjtj}
1− (bjtj)2

= MGFPh(h).

Therefore, Ph and P ∗h have the same moment-generating functions and thus are the same
probability measure.

A.4 Proof of Theorem 7

Proof We prove the theorem via contradiction. Assume if fD ∈ HC\H1,C , for any given
fixed ε, there exists a σ ∈ R+ such that the ICLP mechanism release fD + σZ still satisfies
ε-DP. Then, by the post-processing property of differential privacy, for any transformation
G : H → H, G(fD) is also ε-DP. Now, for any J ∈ N, consider G to be a projection
mapping into first J components, i.e., GJ(fD) =

∑J
j=1〈fD, φj〉φj . Therefore, for any J ∈ N

and fD ∈ HC\H1,C , GJ(fD) is ε-DP, i.e.,

exp

−
√

2

σ

J∑
j=1

(
|〈fD − z, φj〉|√

2bj
− |〈z, φj〉|√

2bj

) ≤ exp {ε} ,

except for z ∈ A where A is zero-measure set.

DefineBj = {zj : |zj | > |〈fD, φj〉|} and SJ =
{
z ∈ `2 : zj ∈ Bj , ∀1 ≤ j ≤ J and zj ∈ R, ∀j > J

}
.

Then for all z ∈ SJ ,

exp

−
√

2

σ

J∑
j=1

(
|〈fD − z, φj〉|√

2bj
− |〈z, φj〉|√

2bj

) = exp


√

2

σ

J∑
j=1

(
|〈fD, φj〉|√

2bj

) ≤ exp {ε} .

However, since h ∈ HC\H1,C , for any given fixed ε, one can always find an J so that

exp

 1

σ

J∑
j=1

|〈fD, φj〉|
bj

 > exp {ε}

and therefore contradiction holds and no such σ ∈ R+ exists.
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The remaining thing is to prove that SJ is not a zero-measure set. By the Existence of
Product Measure in Tao (2011),

γ0,C(SJ) =
J∏
j=1

γ0,
√

2bj
(Bj)

where the right-hand side of the equation is greater than 0 by definition of Bj .

A.5 Proof of Theorem 8

Proof By Theorem 6, the density of f̃D with respect to to σZ is

dPD
dP0

(z) = exp

{
− 1

σ

(
‖z − fD‖1,C − ‖z‖1,C

)}
.

We aim to show that for any measurable subset A ⊆ H, one has

PD(A) ≤ eεPD′(A),

which is equivalent to show

PD(A) =

∫
A
dPD(x) =

∫
A

dPD
dPD′

(x)dPD′(x) ≤ eε
∫
A
dPD′(x).

Notice
dPD
dPD′

(x) =
dPD
dP0

(x)/
dPD′

dP0
(x)

= exp

{
− 1

σ

(
‖x− fD‖1,C − ‖x− fD′‖1,C

)}
≤ exp

{
1

σ
‖fD′ − fD‖1,C

}
.

Recall the global sensitivity for the ICLP mechanism is defined as

∆ = sup
D∼D′

‖fD − fD′‖1,C .

By taking σ = ∆
ε , we have dPD

dPD′
(x) ≤ eε, ∀x ∈ H. Thus, the desired inequality holds, i.e.,

PD(A) =

∫
A

dPD
dPD′

(x)dPD′(x) ≤ eε
∫
A
dPD′(x).
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A.6 Proof of Theorem 9

Proof First, we decompose the ICLP as Z(t) − Z(s) =
∑
λ

1/2
j Zj(φj(t) − φj(s)), which

leads to

E[exp{t(Z(t)−Z(s))}] =
∞∏
j=1

1

1− t2λj(φj(t)− φj(s))2
= exp

−
∞∑
j=1

log

(
1− t2λj

2
(φj(t)− φj(s))2

)
with t satisfies 0 ≤ t2λj(φj(t) − φj(s))2 < 1 for all j. Let Ct = C(t, ·) for any t ∈ T , then
by the α-Hölder continuous property of C, we have

λj(φj(t)− φj(s))2 = λj〈Ct − Cs, φj〉2C
≤ 〈Ct − Cs, Ct − Cs〉C
= C(t, t)− 2C(t, s) + C(s, s)

≤ 2MC |t− s|α,

where MC is the Hölder-continuous constant, and this leads to

0 ≤ t ≤ (
1

MC
)
1
2 |t− s|−

α
2 .

For x ∈ [0, 1), define function f(x) = − log(1− x), by the mean value theorem, we have

− log(1− x) = f(x) = f(0) + xf ′(ζ) =
x

1− ζ
≤ x

1− x
,

for some ζ ∈ (0, x). Therefore, applying the above inequality, we have

− log(1− t2λj
2

(φj(t)− φj(s))2) ≤
t2λj

2 (φj(t)− φj(s))2

1− t2λj
2 (φj(t)− φj(s))2

≤ t2λj
2

(φj(t)− φj(s))2 max
k

{
(1− t2λk

2
(φk(t)− φk(s))2)−1

}
.

Choosing t such that (1− t2λk
2 (φk(t)− φk(s))2)−1 ≤M0 <∞, we have

E[exp{t(Z(t)− Z(s))}] ≤ exp

{
M0

t2

2

∑
λj(φj(t)− φj(s))2

}
= exp

{
M0t

2

2
(C(t, t)− 2C(t, s) + C(s, s))

}
≤ exp

{
M0MCt

2|t− s|α
}
.

By the Chernoff bound, we have

P (|Z(t)− Z(s)| ≥ a) ≤ E[exp{t(Z(t)− Z(s))}]
exp{ta}

≤ exp
{
M0MCt

2|t− s|α − ta
}
.
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The minimizer of the right-hand with respect to t is t0 = a
2M0MC |t−s|α . With restriction of

t, we get a ≤ 2M0|t− s|
1
2
α.

We consider the following two cases:

Case 1 : Suppose a ≤ 2M0|t− s|
1
2
α, the minimizer is t0 = a

2M0MC |t−s|α . We have

P (|Z(t)− Z(s)| ≥ a) ≤ exp
{
−M̃1a

2|t− s|−α
}
,

for some generic constant M̃1. Define a(x) = C|x|β with β ≥ 1
2α, and two series as

∞∑
n=1

a(2−n) =
∞∑
n=1

2−nβ and
∞∑
n=1

2n exp{−M̃2|2n|α−2β}.

The first series converges if β < 1. However, to make the second one converge, we need
α > 2β, which leads to α > α contradiction.

Case 2 : Suppose a > 2M0|t− s|
1
2
α, then the minimizer is t0 = ( 1

MC
)
1
2 |t− s|−

1
2
α, then

exp
{
M0MCt

2|t− s|α − ta
}

= exp

{
M0 −

(
1

MC

) 1
2

|t− s|−
1
2
αa

}
.

By picking function a(x) = 2M0|x|β > 2M0|x|
1
2
α, with β ∈ (0, 1

2α), we have
∑∞

j=1 a(2−n) <
∞ and

∞∑
j=1

2nb(2−n) :=

∞∑
j=1

2n exp

{
M0 −

(
1

MC

) 1
2

|2−n|−
1
2
αa(2−n)

}

=

∞∑
j=1

2n exp

{
M0 −

(
1

MC

) 1
2

|2n|
1
2
α−β

}
.

Since β ∈ (0, 1
2α), we have

∑∞
j=1 2nb(2−n) <∞.

Therefore, combining the results from both cases, we have

∞∑
n=1

2nP
(
|Z(t+ 2−n)− Z(t)| ≥ 2−n

)
<∞.

Finally, the rest of the proof follows the same proof of Theorem 5.2.8 in Lunardi et al.
(2015).

Appendix B. Proofs for Section 4

B.1 Proof of Theorem 10

Proof For the FRL, ICLP-AR, and ICLP-QR mechanisms, we first derive their exact
solution and then conduct the global sensitivity analysis. For two n sample adjacent datasets
D and D′, we assume they only differ in the first observation, i.e., X1 and X ′1.
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FRL: For FRL, the estimator can be expressed as

f̂D =
M∑
j=1

〈X̄, φj〉Hφj

Its private version can be obtained by applying the multivariable version of the Laplace
mechanism to the coefficients f̂D,1:M = (〈X̄, φ1〉H, · · · , 〈X̄, φM 〉H), i.e.,

f̂D =
M∑
j=1

{
〈X̄, φj〉H + Zj

}
φj , with Zj

i.i.d.∼ Lap

(
0,

∆

ε

)
where ∆ = supD∼D′ ‖f̂D,1:M − f̂D′,1:M‖`1 . Given the bounded norm in Assumption 1,

∆ = sup
D∼D′

‖f̂D,1:M − f̂D′,1:M‖`1 ≤
1

n

M∑
j=1

|〈X1 −X ′1, φj〉H| ≤
2Mτ

n
.

ICLP-AR: To obtain the closed form of the ICLP-AR estimator, we expand Xi − θ by
the eigenfunctions φj , i.e.

1

n

n∑
i=1

‖Xi − θ‖2H + ψ‖θ‖1,Cηl =
1

n

n∑
i=1

∥∥∥∥∥∥
∞∑
j=1

〈Xi − θ, φj〉Hφj

∥∥∥∥∥∥
2

H

+ ψ‖θ‖1,Cηl

=
1

n

n∑
i=1

∞∑
j=1

〈Xi − θ, φj〉2H + ψ‖θ‖1,Cηl

=

∞∑
j=1

{
1

n

n∑
i=1

(Xij − θj)2 + ψ
|θj |
λ
ηl/2
j

}
(15)

Solving the minimization problem within the bracket, then for each j, we have

θ̂j = sgn(X̄j)

(
X̄j −

ψ

2λ
ηl/2
j

)+

.

This leads to the ICLP-AR estimator as

µ̂lD =

∞∑
j=1

θ̂jφj =

∞∑
j=1

s
ψ,2λ

ηl/2

j

(〈
X̄, φj

〉
H
)
φj .

For the global sensitivity,

sup
D∼D′

‖µ̂lD − µ̂lD′‖1,C = sup
D∼D′

Jτ∑
j=1

|s
ψ,λ

ηl/2

j

(〈
X̄D, φj

〉
H
)
− s

ψ,λ
ηl/2

j

(〈
X̄D′ , φj

〉
H
)
|

λ
1
2
j

≤ sup
D∼D′

Jτ∑
j=1

|
〈
X̄D − X̄D′ , φj

〉
H |

λ
1
2
j

≤ 2τ

n

Jτ∑
j=1

1

λ
1
2
j

,

where the first inequality is based on the fact that, in the worst case, the j-th coefficients
based on D and D′ will not be shrunk to 0 simultaneously and thus should have the same
sensitivity without soft-threshold function.
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ICLP-QR: Recall the object function

F (θ) =
1

n

n∑
i=1

‖Xi − θ‖2H + ψ‖θ‖2Cηr .

and after dropping everything not involving θ, we have

F (θ) = −2〈X̄, θ〉H + 〈θ, θ〉H + ψ〈θ, θ〉Cηr
= −2〈X̄, Cηrθ〉Cηr + 〈θ, Cηrθ〉Cηr + ψ〈θ, θ〉Cηr .

The second equality is based on Hilbert space’s own dual, i.e., 〈·, ·〉H = 〈·, C(·)〉HC . Thus
the minimizer of the F (θ) is

µ̂rD = (Cηr + ψI)−1Cηr(X̄)

=
∞∑
j=1

ληrj
ληrj + ψ

〈
X̄, φj

〉
H φj

where the second equality follow by expansion µ̂rD under the eigenfunction φj . For the
global sensitivity, the upper bound for supD∼D′ ‖µ̂rD − µ̂rD′‖1,C is

sup
D∼D′

‖µ̂D − µ̂D′‖1,C = sup
D∼D′

∞∑
j=1

λ
ηr− 1

2
j

ληrj + ψ

∣∣〈X̄ − X̄ ′, φj〉H∣∣
≤ 2τ

n

∞∑
j=1

λ
ηr− 1

2
j

ληrj + ψ
,

where the inequality is based on Cauchy-Schwarz inequality and the ‖Xi‖H ≤ τ .

B.2 Proof of Theorem 12

Proof

FRL: For the privacy error,

E ‖µ̃− µ̂‖2H =
2∆2

ε2
·M ≤ 8τ2

ε2n2
M3.

For the estimation error,

E ‖µ̂− µ0‖2H =
1

n

M∑
j=1

E〈X1 − µ0, φj〉2H +
∞∑

j=M+1

〈µ0, φj〉2H

.
1

n
+

∞∑
j=M+1

〈µ0, φj〉2H

.
1

n
+ ληM‖µ0‖2Cη

.
1

n
+M−ηβ.
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The first inequality is based on Assumption 1, while the second one is based on the fact
that µ0 ∈ HCη .

ICLP-AR: For the privacy error,

E ‖µ̃− µ̂‖2H =
∆2

ε2

J∗∑
j=1

λj

.
4τ2

ε2n2

 J∗∑
j=1

j
β
2

1 ∞∑
j=1

j−β


.

1

ε2n2
(J∗)β+2

Next, we turn to estimation error. Define µ0,ψ =
∑∞

j=1 f
ψ,2λ

ηl
2
j

(〈µ0, φj〉)φj , by triangular

inequality

E ‖µ̂− µ0‖2H ≤ E ‖µ̂− µ0,ψ‖2H + ‖µ0,ψ − µ0‖2H .

For the bias term, let A =

{
j : |µj | ≥ ψ

2λ
ηl/2

j

}
, then

‖µ0,ψ − µ0‖2H =
∑
A

(
µ0j − f

ψ,2λ
ηl
2
j

(µ0j)

)2

+
∑
Ac

(
µ0j − f

ψ,2λ
ηl
2
j

(µ0j)

)2

.

Starting with the summation over A, since
λ
− ηl2
j

2 <
|µ0j |
ψ we have

∑
A

(
µ0j − f

ψ,2λ
ηl
2
j

(µ0j)

)2

=
∑
A

ψ2

4ληlj
≤ ψ

∑
A

|µ0j |

2λ
ηl
2
j

≤ ψ

2
‖µ0‖1,Cηl .

Turning to summation over Ac, since |µ0j | ≤ ψ

2λ
ηl
2
j

,

∑
Ac

(
µ0j − f

ψ,2λ
ηl
2
j

(µ0j)

)2

=
∑
Ac

µ2
0j ≤ ψ

∑
Ac

|µ0j |

2λ
ηl
2
j

≤ ψ

2
‖µ0‖1,Cηl .

Therefore, the overall bias is bounded by

‖µ0,ψ − µ0‖2H ≤
ψ

2
‖µ0‖1,Cηl .

Now consider variance term E ‖µ̂− µ0,ψ‖2H,

‖µ̂− µ0‖2H =

∞∑
j=1

(
f
ψ,2λ

ηl
2
j

(
X̄j

)
− f

ψ,2λ
ηl
2
j

(µ0j)

)2

.
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Similar to the bias part, the summation can be decomposed into the sum of four disjoint
pieces

A0,0 = {|X̄j | ≤ ψ/2λ
ηl
2
j , |µj | ≤ ψ/2λ

ηl
2
j },

A0,1 = {|X̄j | ≤ ψ/2λ
ηl
2
j , |µj | > ψ/2λ

ηl
2
j },

A1,0 = {|X̄j | > ψ/2λ
ηl
2
j , |µj | ≤ ψ/2λ

ηl
2
j },

A1,1 = {|X̄j | > ψ/2λ
ηl
2
j , |µj | > ψ/2λ

ηl
2
j }.

When j ∈ A0,0, the summation is zero. Consider j ∈ A0,1, since |X̄j | ≤ ψ

2λ
ηl
2
j

,

(
f
ψ,2λ

ηl
2
j

(
X̄j

)
− f

ψ,2λ
ηl
2
j

(µ0j)

)2

=

(
f
ψ,2λ

ηl
2
j

(µ0j)

)2

=

µ0j − sgn(µ0j)
ψ

2λ
ηl
2
j

2

≤
(
µ0j − X̄j

)2
.

By symmetry, we get the same bound over A1,0. So lastly we consider summation over A1,1

For j ∈ A1,1 we have

(
f
ψ,2λ

ηl
2
j

(
X̄j

)
− f

ψ,2λ
ηl
2
j

(µ0j)

)2

=

µ0j − X̄j −
(
sgn(µ0j)− sgn(X̄j)

) ψ

2λ
ηl
2
j

2

.

If both µ0j and X̄j have the same sign, then this is just (µ0j − X̄j)
2. If they have opposite

signs, then we have ∣∣∣∣∣∣(sgn(µ0j)− sgn(X̄j)
) ψ

2λ
ηl
2
j

∣∣∣∣∣∣ ≤ ∣∣µ0j − X̄j

∣∣ .
Therefore, (

f
ψ,2λ

ηl
2
j

(
X̄j

)
− f

ψ,2λ
ηl
2
j

(µ0j)

)2

≤ 4
(
µ0j − X̄j

)2
, for j ∈ A1,1.

Finally, the overall variance term is bounded by

E ‖µ̂− µ0‖2H ≤ 4 E
∥∥X̄ − µ0

∥∥2

H ≤
4

n
E ‖X1‖2H . n−1.

ICLP-QR: Recall the global sensitivity,

sup
D∼D′

‖µ̂D − µ̂D′‖1,C ≤
2τ

n

∞∑
j=1

λ
ηr− 1

2
j

ληrj + ψ
.
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For the summation term, observe that given η > 1
2 + 1

β

∞∑
j=1

λ
ηr− 1

2
j

ληrj + ψ
≤
∫ ∞

0

C1x
β
2

C2 + xηβ
dx · ψ−

1
η

(
1
β

+ 1
2

)

≤

{∫ M

0

C1x
β
2

C2 + xηβ
dx+

∫ ∞
M

x
β
2
−ηβdx

}
· ψ−

1
η

(
1
β

+ 1
2

)

. ψ
− 1
η

(
1
β

+ 1
2

)
,

where the first inequality is based on Assumption 2 and change of variable. Therefore, for
privacy error, we have

E ‖µ̃− µ̂‖2H =
∆2

ε2

∞∑
j=1

λj . (nε)−2 · ψ−
2
η

(
1
β

+ 1
2

)
.

For estimation error, the n−1 part comes from variance while for bias, we have

‖E µ̂− µ0‖2H =
∞∑
j=1

(
ψ

ληrj + ψ

)2

〈µ0, φj〉2 ≤ ψ‖µ0‖2Cηr . ψ,

where the last inequality is by assuming ‖µ0‖Cηr < ∞. Combining privacy error and esti-
mation error, one gets the desired results.

B.3 Proof of Theorem 14

Proof Recall that the exact form of the kernel density estimator is

K̂D(x) =
1

n
√
det(H)

n∑
i=1

Kη
(
H−

1
2 (x− xi)

)
.

Then, by the definition of global sensitivity, we have

∆ = sup
D∼D′

∥∥∥K̂D − K̂D′

∥∥∥
1,K
≤ 1

n
√
det(H)

∥∥∥Kη(H−
1
2xn)−Kη(H−

1
2x
′
n)
∥∥∥
Kη

√
tr(Kη−1)

≤ 1

n
√
det(H)

√
tr(Kη−1)

√
2
(
Kη(0)−Kη(H−

1
2 (xn − x′n))

)
≤ 2MK

n
√
det(H)

√
tr(Kη−1).

The first inequality is based on the Cauchy–Schwarz inequality, which is also used in deriving
the ICLP-QR strategy. The last inequality holds by the assumption that Kη(·, ·) is point-
wise bounded.
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Turning to the utility, taking H to be a diagonal matrix with the same entry, then by
the assumptions stated in the Theorem 14 and by the Theorem 6.28 in Wasserman (2006),
the risk R satisfies

R = E

∫
T

(
f̃D(x)− f0(x)

)2
dx

≤ 2 ∗
(

E

∫
T

(
f̃D(x)− f̂D(x)

)2
dx+ E

∫
T

(
f̂D(x)− f0(x)

)2
dx

)
≤ O

( c1

n2h2d
+ h4 +

c2

nhd

)
.

for some constants c1 and c2.

B.4 Proof of Theorem 16

Proof Recall while deriving the ICLP-QR strategy, for a given η > 1 such that tr(Cη−1)
is finite, we have

‖h‖1,C ≤ ‖h‖Cη
√

trace(Cη−1).

Substituting h by f̂D − f̂D′ leads to

‖f̂D − f̂D′‖1,C ≤
∥∥∥f̂D − f̂D′∥∥∥

Cη

√
trace(Cη−1),

meaning that we need to found the upper bound for ‖f̂D − f̂D′‖Cη . Let t ∈ [0, 1], δD′,D =

f̂D′ − f̂D and LD(f) = 1
n

∑n
i=1 Ldi,f . Note that f̂D′ and f̂D are the minimizers of (9), we

have

LD

(
f̂D

)
+ ψ

∥∥∥f̂D∥∥∥2

Cη
≤ LD

(
f̂D + tδD′,D

)
+ ψ

∥∥∥f̂D + tδD′,D

∥∥∥2

Cη
,

and

LD

(
f̂D′
)

+ ψ
∥∥∥f̂D′∥∥∥2

Cη
≤ LD

(
f̂D′ − tδD′,D

)
+ ψ

∥∥∥f̂D′ − tδD′,D∥∥∥2

Cη
.

Combining the two inequalities above, we have

LD

(
f̂D

)
−LD

(
f̂D + tδD′,D

)
+ LD

(
f̂D′
)
− LD

(
f̂D′ − tδD′,D

)
≤ ψ

(∥∥∥f̂D + tδD′,D

∥∥∥2

Cη
−
∥∥∥f̂D∥∥∥2

Cη
+
∥∥∥f̂D′ − tδD′,D∥∥∥2

Cη
−
∥∥∥f̂D′∥∥∥2

Cη

)
.

Then, using the same proof techniques in Section 4.3 of Hall et al. (2013), we have

‖f̂D − f̂D′‖Cη ≤
M

ψn

√
sup
x
Cη(x, x),

which completes the proof.
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Appendix C. Extension of Mean Function

In Section 4.2, we only considered the mean protection. In this section, we demonstrate
that many statistical estimation problems in the context of functional data analysis can
be reduced down to mean estimation. Therefore, the mean protection technique and the
corresponding theoretical analysis derived in Section 4.2 can be applied to these problems as
well. Specifically, we consider the estimation and protection of (1) the covariance function
and (2) the coefficient function in function-on-scalar linear regression.

C.1 Covariance Function

For a given sample X1, · · · , Xn ∈ H, where H represents some function spaces. Our goal is
to estimate its covariance function, i.e.,

C(s, t) = E (X(s)− µ(s)) (X(t)− µ(t))

where µ is the mean function, and the empirical sample covariance function is

C̄(s, t) =
1

n

n∑
i=1

(
Xi(s)− X̄(s)

) (
Xi(t)− X̄(t)

)
.

Thus, estimating the covariance function can also be viewed as estimating the mean function
of (Xi(s)− µ(s))(Xi(t)− µ(t)).

To obtain the qualified summary, one can also apply quadratic regularization. For the
ICLP covariance function K, denote the tensor product space as

HKη⊗Kη := HKη ⊗HKη ,

and RKHS associated with reproducing kernel

Kη ⊗Kη((s1, t1), (s2, t2)) = Kη(s1, s2)Kη(t1, t2).

With slight abuse of notation, we let ⊗ also denote the tensor product of elements in H,
and then the ICLP with quadratic regularization can be expressed as

Ĉ = argmin
C∈HKη⊗Kη

{
1

n

n∑
i=1

∥∥(Xi − X̄)⊗ (Xi − X̄)− C
∥∥2

H⊗H + ψ‖C‖2HKη⊗Kη

}
which leads to

Ĉ = (Kη ⊗Kη + ψI)−1Kη ⊗Kη(C̄).

Further assuming {λj}j≥1 and {φj}j≥1 as the eigenvalues and eigenfunctions of K, then

Ĉ(s, t) =
∑
j,l≥1

ληl λ
η
l

ληl λ
η
l + ψ

〈
C̄, φjφl

〉
H⊗H φj(s)φl(t).

The expression of Ĉ is analogous to the expression of µ̂ under the quadratic regularization
in Section B.1. Therefore, similar global sensitivity and utility analysis can be applied to
Ĉ as well since privatizing the covariance function is using the same ICLP via tensor basis,
i.e.,

X(s, t) =
∑
j,l≥1

√
λkλlZklφk(s)φl(t)

where Zk,l are i.i.d. Laplace random variables with mean 0 and variance 1.

41



Lin and Reimherr

C.2 Function-on-Scalar Linear Regression

We consider the following Function-on-Scalar linear regression, i.e.,

Yi(t) = XT
i β(t) + εi(t), for i = 1, · · · , n

where Yi(t) and ei(t) are functional response and error that lies in Hilbert space H, covariates
Xi ∈ Rp and coefficient function β(t) ∈ H⊗p when H⊗p denotes p-fold Cartesian product of
H. Estimating and privatizing the coefficient functions β(t) is of primary interest.

One can obtain the estimation via the classical ordinary least square (OLS) estimator,
i.e.,

β̂ = argmin
β∈H⊗p

1

n

n∑
i=1

∥∥Yi −XT
i β
∥∥2

H .

The OLS estimator is then

β̂(t) =

(
1

n

n∑
i=1

XiX
T
i

)−1(
1

n

n∑
i=1

Yi(t)Xi

)
.

Noticing the functional components involved in β̂(t) are Yi(t), thus estimating the coefficient
function can also be viewed as estimating the mean function of Yi(t)Xi and the applied the
inverse matrix with scalar elements.

In classical simple linear regression, where both response and covariate are scalars, i.e.

yi = xiβ + εi, for i = 1, · · · , n.

Let x := (x1, · · · , xn) and y := (y1, · · · , yn) To achieve ε-DP for the OLS estimator, one
typically privatizes the empirical variance of x and the empirical covariance between x and y,
rather than privatizing the β̂ directly, see Alabi et al. (2020). Specifically, let x̄ = 1

n

∑n
i=1 xi,

ȳ = 1
n

∑n
i=1 yi, ncov(x,y) = 〈x− x̄1,y− ȳ1〉`2 , and nvar(x) = 〈x− x̄1,x− x̄1〉`2 . Assuming

the sensitivity of ncov(x,y) and nvar(x) are both 1 without losing generality. Then, the
private OLS estimator that achieves ε-DP is

β̃ =
ncov(x,y) + Z1

nvar(x) + Z2

where Z1 and Z2 are independent random variables generated from Lap(0, 1
γε) and Lap(0, 1

(1−γ)ε)

respectively with γ ∈ (0, 1).

Turning back to the Function-on-Scalar regression case, one can privatize the statistic
T1 := 1

n

∑n
i=1XiX

T
i and T2 := 1

n

∑n
i=1 Yi(t)Xi separately by splitting the privacy budget ε

in to γε (for T1) and (1− γ)ε (for T2). While T1 is a p× p matrix with scalar elements, one
can privatize it with a classical multivariate privacy tool with budget γε. For the statistic
T2, it is the mean function of Yi(t)Xi and thus, we can directly apply the mean function
protection we develop in Section 4.2.
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Appendix D. Additional Results for Mean Protection

This section presents additional experimental results that are conducted in different settings
for mean protection. First, we consider generating the error function from a basis expansion
instead of a stochastic process. Second, we set the covariance function of the ICLP as the
Matérn kernel with α = 2.5, resulting in β = 3. The Matérn kernel has been widely used to
control the eigenvalue decay rate in kernel-based methods; see Wang and Jing (2022); Lin
and Reimherr (2024a,b)

D.1 Results for Different Error Function

We generate the functional sample curves as

Xi(t) = µ0(t) + ei where ei(t) =

100∑
j=1

Uijφj(t)

where Uij are i.i.d. random variables from a t distribution with degree of freedom 5. We
conduct the same experiments and report the results in Figure 6. One interesting observa-
tion is that when ei are generated from a basis expansion with heavy-tailed coefficients, the
PSS and PCV are more aligned with each other in S-2 and S-3.

D.2 Results for Different ICLP Covariance

We set the ICLP covariance function as the Matérn kernel with α = 2.5, resulting in
λj � j−6. We repeat the comparison between PSS and PCV and the experiments that
compare different mechanisms under different n.

The results are reported in Figure 7 for the error function as a Gaussian stochastic
process and Figure 8 for the error function generated from a basis expansion. It can be
observed from the figure that the results based on C 5

2
are almost the same as those based

on C 3
2
.
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(a) Privacy-estimation error for PSS and PCV.
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(b) Privacy-estimation, estimation, and privacy errors with PSS.

Figure 6: Error decay curves for different mechanisms, sample sizes, and true mean func-
tions. The ICLP covariance function is the Matérn Kernel C 3

2
, and the error function ei is

generated via basis expansion with coefficients randomly drawn from a t distribution.
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(a) Privacy-estimation error for PSS and PCV.
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(b) Privacy-estimation, estimation, and privacy errors with PSS.

Figure 7: Error decay curves for different mechanisms, sample sizes, and true mean func-
tions. The ICLP covariance function is the Matérn Kernel C 5

2
, and the error function ei is

generated from the Gaussian process with RBF kernels.
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(a) Privacy-estimation error for PSS and PCV.
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(b) Privacy-estimation, estimation, and privacy errors with PSS.

Figure 8: Error decay curves for different mechanisms, sample sizes, and true mean func-
tions. The ICLP covariance function is the Matérn Kernel C 5

2
, and the error function ei is

generated via basis expansion with coefficients randomly drawn from a t distribution.
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Appendix E. Visualization of the Human Mortality Application

In Section 7.2, we only reported the expected L2-distance of private KDEs to their non-
private counterparts. Here, we present the visualization of the comparison between non-
private KDEs and private KDEs for different mechanisms in Figure 9.
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Figure 9: Non-private and private kernel density estimates of age-at-death density in dif-
ferent regions under different mechanisms with ε = 1.
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