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Abstract

Modern technology has contributed to the rise of high-dimensional data in various do-
mains such as bio-informatics, chemometrics, and face recognition. In the recent literature,
random projections and, in particular, randomly-projected ensembles based on the clas-
sical Linear Discriminant Analysis (LDA), have been proposed for classification problems
involving such high-dimensional data. In this work, we study the two main classes of
randomly-projected LDA ensemble classifiers, namely discriminant averaging and vote av-
eraging. Through asymptotic analysis in a growth regime where the problem dimensions
are assumed to grow at constant rates to each other for a fixed ensemble size, we determine
the exact mechanism through which the ensemble size affects the classification performance.
Furthermore, we investigate whether projection selection truly matters in an ensemble set-
ting, and, ultimately, derive the optimal form of the randomly-projected LDA ensemble.
Motivated by these findings, we propose a framework for efficient tuning of the optimal
classifier’s ensemble size and projection dimension based on an estimator of the classifier
probability of misclassification which is consistent under the assumed growth regime. The
proposed framework is shown to outperform the existing rule-of-thumb, as well as other
methods for parameter tuning, on both real and synthetic data.
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1. Introduction

Since its inception in 1936 (Fisher, 1936), Linear Discriminant Analysis (LDA) has remained
a popular choice of classifier across a wide variety of domains. This is not surprising, as the
LDA classifier exhibits numerous optimality properties (Niyazi et al., 2022) and, despite its
simplicity, has proven to be a powerful competitor among more sophisticated methods (Lim
et al., 2000; Hand, 2006).

The contemporary emergence of high-dimensional data in the form of text, images, mass
spectra, and gene microarrays, poses a challenge for conventional classification methods.
While statistical inference generally suffers performance-wise from the curse of dimension-
ality in high-dimensional data settings, the LDA classifier, in particular, becomes intractable
when data dimensionality exceeds sample size. This is due to the singularity of the sample
covariance estimator under these conditions which are commonly encountered in data sets
for various applications, such as chemometrics, face recognition, and tumor classification.
On such data, both linear and non-linear models tend to perform comparably (Yuan et al.,
2012), with the former enjoying faster training times and greater stability (Beleites and
Salzer, 2008). As a result, many high-dimensional variants of LDA have been proposed over
the years. For instance, one popular category of variants is based on alternative estimators
of the covariance/precision matrix. This includes regularized estimators, yielding the family
of Regularized-LDA (R-LDA) (Guo et al., 2007) variants, and simplified estimators, yielding
variants such as diagonal LDA (Hastie et al., 2009). Principle components analysis, ran-
dom projection, and other dimensionality reduction techniques, compose another category
of variants which operate based on the principle of reducing data dimensionality relative to
the sample size so that the sample covariance matrix is invertible. In addition to solving the
singularity problem, these techniques are able to achieve significant computational savings
as a result of the reduced problem dimensions. For detailed accounts of these methods and
others, the reader is referred to the papers of Mai (2013) and Sharma and Paliwal (2015).
In the current work, we focus on high-dimensional variants of LDA based on dimensionality
reduction by random projection. In particular, we study ensembles of randomly-projected
LDA (RP-LDA) discriminants.

Durrant and Kabán (2010) were the first to study the classifier consisting of a single
RP-LDA discriminant. The single RP-LDA discriminant classifier is known to perform
poorly in practice, while ensemble classifiers which combine multiple RP-LDA discriminants
perform relatively well. The literature on RP-LDA ensemble classifiers can broadly be
divided into two categories: discriminant-averaging ensembles (Durrant and Kabán, 2015;
Peressutti et al., 2015) and vote-averaging ensembles (Schclar and Rokach, 2009; Cannings
and Samworth, 2017). Discriminant-averaging ensembles average all RP-LDA discriminants
followed by thresholding the result to obtain the final class prediction. Interestingly, this is
equivalent to estimating the precision matrix in the LDA discriminant by the finite version
of the Marzetta estimator (Marzetta et al., 2011). Vote-averaging ensembles average the
class prediction corresponding to each individual RP-LDA discriminant before thresholding
to obtain the final prediction. The main difference between various implementations within
each category is whether the projections are subjected to a preliminary selection process
for inclusion within the ensemble based on some criterion of their expected performance.

2



Discriminant and Vote-Averaging Randomly-Projected LDA Ensembles

Although theoretical analyses of both categories of RP-LDA ensembles exist, these stud-
ies have their limitations and raise several key questions. Durrant and Kabán (2015) derive
error bounds for the basic form of the discriminant-averaging RP-LDA ensemble classifier
without selection; however, the analysis is based on an abstraction wherein the ensemble
size grows to infinity, revealing the converged Marzetta estimator of the precision matrix
within the classifier discriminant. This, in addition to a Gaussian data assumption, form
the basis for the asymptotic analysis of the discriminant-averaging ensemble conducted by
Niyazi et al. (2020a), where it is found that the ensemble behaves as a a special case of
R-LDA. This result implies that the discriminant-averaging RP-LDA ensemble classifier
can never outperform a properly-tuned R-LDA classifier on Gaussian data. Cannings and
Samworth (2017) provide bounds on the error difference between the vote-averaging RP-
LDA ensemble (with and without selection) and the Bayes error, but this bound is not
a function of the number of projections in the ensemble. While these findings are useful,
an analysis which takes into account the number of projections allows for a more accurate
characterization of the practical performance of these classifiers.

Kabán (2017, 2020) studies the performance of the finite versus the converged version
of the Marzetta estimator of the precision matrix and finds that in order to achieve a
certain tolerance on the spectral norm of the difference between the two, the ensemble size
must grow linearly with the data dimension. A shortcoming of this approach is that it
neither provides a measure of efficacy of the finite Marzetta estimator with respect to the
true measures of interest in classification, such as misclassification rate, nor does it provide
practical guidelines on how to choose the number of projections. Of particular concern is
the selection of an ensemble size that is sufficient to achieve satisfactory performance, yet
not so large that the computational savings provided by dimensionality reduction are lost.

Another glaring gap within the literature is the lack of a thorough comparison between
the discriminant averaging and vote averaging RP-LDA ensembles. An attempt at this was
made by Cannings (2021); however, bearing in mind that the target data sets for these types
of classifiers are small samples of high dimensional data, it must be noted that this study
is extremely limited with regards to the dimensionality and variety of data considered. In
any case, beyond merely comparing the two types of ensembles, one would ultimately like
to know the overall best way of combining any given set of RP-LDA discriminants.

The current work addresses the aforementioned issues through a comprehensive study of
randomly-projected linear discriminant ensembles by asymptotic analysis under Gaussian
data assumptions using Random Matrix Theory (RMT) tools in a growth regime where
the data and projection dimensions grow together. This growth regime is chosen specifi-
cally in order to more accurately represent the small-sample finite regime, where the data
dimensionality is greater than the number of samples, in contrast to the classical regime,
where the number of samples is much greater than the data dimensionality. The analysis
yields a number of insightful results stemming from the asymptotic distributions of the
discriminant-averaging and vote-averaging RP-LDA ensemble classifiers and limits of their
discriminant statistics and probabilities of misclassification. The main findings are:

• The class-conditional discriminant means of the discriminant-averaging RP-LDA en-
semble are asymptotically identical, regardless of ensemble size.
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• The class-conditional discriminant means of the vote-averaging RP-LDA ensemble are
asymptotically identical, regardless of ensemble size.

• The asymptotic class-conditional variance of the discriminant-averaging RP-LDA en-
semble is a convex combination of that of the single RP-LDA discriminant and the
infinite ensemble. The asymptotic variance corresponding to the single RP-LDA dis-
criminant is shown to be strictly greater than the asymptotic variance of the infinite
ensemble.

• The asymptotic class-conditional variance of the vote-averaging RP-LDA ensemble
is a convex combination of that of a vote on a single RP-LDA discriminant, that
is, a Bernoulli variance, and a fraction of this Bernoulli variance. Thus, the asymp-
totic variance corresponding to the single vote is strictly greater than the asymptotic
variance of the infinite ensemble.

• Each class-conditional discriminant of the discriminant-averaging RP-LDA ensemble
is asymptotically Gaussian with parameters being the limits of their corresponding
exact discriminant statistics.

• Each class-conditional discriminant of the vote-averaging RP-LDA ensemble is asymp-
totically a normalized constantly-correlated Binomial with parameters being the limits
of their corresponding exact probabilities of success and correlations between trials.

To elaborate on the above, one of the major contributions of this study is that it shows
the direct effect of the RP-LDA ensemble size on its classification performance through the
asymptotic class-conditional discriminant means and variances. More specifically, since the
ensemble size acts to decrease the variance of the discriminant from its maximum at a single
projection to its minimum when the ensemble size grows to infinity, while maintaining a
constant mean separation, the misclassification rate decreases monotonically with increasing
ensemble size. This is true for both the discriminant-averaging and vote-averaging RP-LDA
ensemble classifiers. Additionally, access to the single RP-LDA discriminant asymptotic
distribution allows for a derivation of the asymptotically optimal way of constructing the
ensemble via the Neyman-Pearson lemma and Maximum A Posteriori (MAP) rule. These
results reveal that, for Gaussian data, the optimal ensemble is linear in form, that is, it
is a form of discriminant averaging, wherein all projections are weighted equally, implying
that projection selection is asymptotically sub-optimal in the context of RP-LDA ensemble
classification.

The theoretical analysis in this paper leads to several significant implications for the
deployment of RP-LDA ensemble classifiers in practice, which are verified through sim-
ulations on both real and synthetic data. Firstly, our simulations suggest that there is
generally no need to look beyond the basic discriminant-averaging RP-LDA ensemble clas-
sifier. Although the theoretical guarantee on which this is based assumes Gaussian data, we
find that, on real data, this classifier generally performs just as well, if not better, than its
immediate competitors. Secondly, as mentioned previously, classifier performance can only
increase with increasing ensemble size. Thus, the infinite ensemble represents the classifier’s
full classification potential, and finite ensemble performance may be assessed relative to the
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infinite ensemble. Based on this, a framework for tuning the discriminant-averaging RP-
LDA ensemble size and projection dimension is proposed. An estimator of the probability
of misclassification which is consistent in the RMT growth regime is derived for use in this
framework. This estimator has the advantage of greater computational efficiency compared
to conventional empirically-produced estimators of the test error, such as cross-validation,
as well as dispensing of the need for additional data. Different variants of the tuning algo-
rithm are implemented on real and synthetic data and compared in terms of performance
and computational complexity.

The rest of this paper is structured as follows. Section 2 sets the background for this
work in terms of classification setting and the classifiers to be studied. Section 3 presents the
results pertaining to the asymptotic analysis using RMT, while Section 4 translates these
findings into practice. Finally, Section 5 concludes this work and discusses its limitations.

Throughout the paper, scalars are denoted by plain lower-case letters, vectors by bold
lower-case letters, and matrices by bold upper-case letters. The symbol Ip is used to repre-
sent the p × p identity matrix, the symbol 1p represents the all-ones p × 1 vector, and the
symbol 0p represents the all-zeros p× 1 vector. The notation || · || is used to symbolize the
Euclidean norm when its argument is a vector and the spectral norm when its argument is
a matrix. Almost-sure convergence is denoted by

a.s.−−→ or a � b which means a−b a.s.−−→ 0. As
defined by Benaych-Georges and Couillet (2016), for a sequence of random square matrices

A and B of size n, A ↔ B means that 1
ntr {D (A−B)} p−→ 0 and dT1 (A−B) d2

p−→ 0 for
all sequences D of deterministic n × n matrices of bounded norms and all deterministic
sequences of vectors d1, d2 of bounded norms. The function Φ(·) denotes the standard
Gaussian Cumulative Distribution Function (CDF), Q (·) is the standard Gaussian comple-
mentary CDF, that is, the Q-function or survival function, namely Q (·) := 1 − Φ(·), and
the ∼ symbol stands for ‘distributed as’.

2. Problem Formulation

This section lays out the classification setting and formally defines the discriminant-averaging
and vote-averaging RP-LDA ensemble classifiers which are studied in this work.

2.1 Classification Setting

This paper assumes a data setting where the training set, T , as well as the test point,
x ∈ Rp, are drawn from a Gaussian mixture model consisting of two classes C0 and C1

having means µ0 and µ1, respectively, a common covariance Σ, and prior probabilities π0

and π1, respectively, that is,

x|x ∈ Ci ∼ N (µi,Σ), i = 0, 1, (1)

and
πi := P [x ∈ Ci], i = 0, 1.

Furthermore, T consists of a total of n labelled training points with ni points belonging to
class Ci, i = 0, 1, that is, n = n0 + n1.

Estimates µ̂i, i = 0, 1, Σ̂, and π̂i, i = 0, 1, of µi, i = 0, 1, Σ, and πi, i = 0, 1, re-
spectively, are computed from the training data. The estimates are defined as follows. Let
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X0 ∈ Rp×n0 and X1 ∈ Rp×n1 be matrices whose columns are the individual training sam-
ples corresponding to C0 and C1 respectively, then µ̂0 := 1

n0
X01n0 , µ̂1 := 1

n1
X11n1 , Σ̂ :=

(n0−1)Σ̂0+(n1−1)Σ̂1

n0+n1−2 , π̂0 := n0
n , and π̂1 := n1

n where Σ̂0 := 1
n0−1

(
X0 − µ̂01

T
n0

) (
X0 − µ̂01

T
n0

)T
and Σ̂1 := 1

n1−1

(
X1 − µ̂11

T
n1

) (
X1 − µ̂11

T
n1

)T
. These estimates are used to construct vari-

ous discriminants which are in turn subjected to a threshold. The thresholding determines
the predicted class of the test point x. Formally, given a discriminant W (x), the decision
rule C(x) takes the form

C(x) =

{
1, if W (x) > ζ

0, otherwise,

where ζ ∈ R is a classifier-specific threshold, and C(x) = i, i = 0, 1, indicates the class
prediction Ci. Note that there is no loss of generality with respect to the exact value of ζ
chosen for the analyses of any of the classifiers considered in this work, as the main subject
of analysis in each case is the discriminant.

2.2 The Single Randomly-Projected LDA Discriminant

Denote by R ∈ Rd×p a Gaussian projection with i.i.d. entries distributed as N (0, 1/d). In
order to construct a randomly-projected LDA discriminant, the training data T is projected
as RX0 and RX1. The sample statistic estimates are then computed based on this projected
data. It is easy to show (see Niyazi et al., 2020a) that the resulting single randomly-projected
LDA discriminant, denoted by WRP-LDA (x,R), has the form

WRP-LDA (x,R) = µ̂T Σ̂−1
R

(
x− µ̂0 + µ̂1

2

)
+ ln

π̂1

π̂0
, (2)

where Σ̂−1
R = RT (RΣ̂RT )−1R. The discriminant is then subjected to a threshold of 0 to

obtain the final classification.
Of interest in the analysis of this paper is the discriminant’s behavior in terms of the

mean separation between and variance of the distribution of projected points from each
of the two classes. We denote the class-conditional means and variances of this particular
discriminant by

mi(1) := E [WRP-LDA (x,R) |x ∈ Ci] , i = 0, 1 (3)

and
σ2(1) := Var [WRP-LDA (x,R) |x ∈ Ci] , i = 0, 1, (4)

respectively, where the expectation and variance are with respect to the training data,
test point, and the random projection, conditioned on the test point’s class (the ‘1’ in the
argument indicates that these quantities correspond to a single random projection). As it
is difficult to compute these quantities exactly, they are analyzed asymptotically in Section
3.1.

As mentioned in Section 1, the randomly-projected LDA variant based on a single
random projection does not perform well in practice. The two main ensemble-based schemes
that have been proposed in order to improve upon the performance of this classifier are the
discriminant-averaging and vote-averaging ensembles. These are considered in the next
section.
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2.3 Randomly-Projected LDA Ensemble Classifiers

This section defines the discriminants and class-conditional discriminant statistics of the
discriminant-averaging and vote-averaging RP-LDA ensemble classifiers which are analyzed
in this paper.

2.3.1 Discriminant-Averaging Ensemble

A discriminant-averaging ensemble of RP-LDA discriminants averages multiple discrimi-
nants, each of which corresponds to an independently-realized random projection. In this
paper, we focus on a particular discriminant-averaging ensemble which weights the contri-
bution of each projection equally rather than according to some measure of how ‘good’ they
are. In fact, we establish later in the paper that this equally-weighted discriminant-averaging
scheme is asymptotically optimal under the data distribution assumptions detailed in Sec-
tion 2.1.

Now, let us formally define the discriminant-averaging ensemble of interest. Letting
Rk correspond to the kth projection among M random projections R1,R2, . . . ,RM , the
discriminant-averaging scheme which assigns equal weights to each RP-LDA discriminant
is constructed as (Durrant and Kabán, 2015)

Wdisc-avg(x,R1, . . . ,RM ) =
1

M

M∑
k=1

WRP-LDA (x,Rk) . (5)

One can imagine a scheme in which the weights of 1/M in (5) vary for each discriminant as
a function of its random projection. Furthermore, the weights may take on binary values of
zero and one, thus excluding certain projections altogether. This is referred to as ‘projection
selection’ in this paper.

Peressutti et al. (2015) employ a kind of projection selection where selection occurs
through a process of generating a projection to form a single RP-LDA discriminant, followed
by subjecting the resulting classifier to a predefined threshold on training error. This is
repeated until a satisfactory projection is found, and until a minimum number of satisfactory
discriminants are collected. There is no direct correspondence between this scheme and (5),
as the total number of projections (M) is not known in advance.

In their paper, Peressutti et al. (2015) do not compare the proposed selection scheme
against no selection. Moreover, they select the projections based on the same data that is
used to evaluate classifier performance: the projections are chosen using the resubstitution
error on the training set and the final ensemble evaluated using cross-validation on the same
training set. This results in an overestimate of the performance gain that can be attributed
to selection (Cawley and Talbot, 2010). We take care to avoid this bias in this work through
nesting the selection within the cross-validation loops, as is detailed in Section 3.2.2.

The discriminant (5) is subjected to a threshold of 0 to obtain the final classification.
The recommended projection dimension setting of this classifier according to empirical

observations made by Durrant and Kabán (2015) is d =
rank{Σ̂}

2 . We denote the equally-
weighted discriminant-averaging RP-LDA ensemble discriminant’s class-conditional means
and variances by

mi(M) := E [Wdisc-avg(x,R1, . . . ,RM )|x ∈ Ci] , i = 0, 1 (6)
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and

σ2(M) := Var [Wdisc-avg(x,R1, . . . ,RM )|x ∈ Ci] , i = 0, 1, (7)

respectively.
Moreover, of theoretical interest in this study is the ‘infinite ensemble’ for which the

number of randomly-projected LDA discriminants in the ensemble, each corresponding to
an independent projection, grows to infinity. Its discriminant is defined as (Durrant and
Kabán, 2015)

WM=∞(x) := lim
M→∞

Wdisc-avg(x,R1, . . . ,RM )

= µ̂TER

[
Σ̂−1

R

](
x− µ̂0 + µ̂1

2

)
+ ln

π̂1

π̂0
, (8)

where ER[·] is the expectation with respect to the random projection R, conditioned on

the training data and test point, and ER

[
Σ̂−1

R

]
is, in fact, the Marzetta estimator of the

precision matrix (Durrant and Kabán, 2015; Marzetta et al., 2011). This classifier sets an
upper bound on finite ensemble performance, which may be approached by employing a
very large number of projections. The work by Durrant and Kabán (2015) suggests that it
suffices to use the discriminant in (5) with M = 100 to approximate (8) in practice, since,
according to their simulations, there is very little empirical difference between ensembles
with M = 100 projections versus M = 3000 projections. We denote the infinite ensemble
discriminant’s class-conditional means and variances by

mM=∞
i := E [WM=∞(x)|x ∈ Ci] , i = 0, 1

and

σ2
M=∞ := Var [WM=∞(x)|x ∈ Ci] , i = 0, 1,

respectively. The asymptotic analysis of these quantities is presented in Section 3.1.

2.3.2 Vote-Averaging Ensemble

In contrast to the discriminant introduced in the previous section. which averages the RP-
LDA discriminants, a vote-averaging ensemble discriminant averages the final class votes
obtained by thresholding each RP-LDA discriminant. In terms of the set of M random
projections {Rk}Mk=1, the equally-weighted vote-averaging ensemble discriminant is defined
as (Cannings and Samworth, 2017)

Wvote-avg(x,R1, . . . ,RM ) =
1

M

M∑
k=1

1 {WRP-LDA (x,Rk) > 0} . (9)

The discriminant is subjected to a threshold of 0.5 to obtain the final classification. This
threshold corresponds to a majority vote.

With the aim of exploiting observed differences in classification performance among
random projections, Cannings and Samworth (2017) propose a projection selection scheme
on top of the basic vote-averaging RP-LDA ensemble. They generate a number B1 ∈ N
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of disjoint groups of a number B2 ∈ N of projections each and select the projection from
each group which yields the lowest error rate according to an error estimator of choice. The
final set of projections is used to build the discriminant in (9) composed of a total of B1

projections. Technically, this corresponds to (9) with a total of B1 ×B2 projections taking
on binary weights of zeros and ones. Again, Cannings and Samworth (2017) do not compare
their proposed selection scheme to no selection in an ensemble setting. The simulations in
subsequent sections of this paper look further into both the question of whether the intuitive
basis for projection selection holds in an ensemble setting, and the question of how to choose
the number of projections for an ensemble.

The next section presents insights into the behavior of both of these classifiers based on
asymptotic analysis using RMT tools.

3. Asymptotic Insights

This section draws several insights into the behavior of RP-LDA classifiers from the asymp-
totic analyses of the single RP-LDA discriminant, the discriminant-averaging RP-LDA finite
ensemble discriminant, the discriminant-averaging RP-LDA infinite ensemble discriminant,
and the vote-averaging RP-LDA ensemble discriminant. For two-class, p-dimensional, Gaus-
sian data as in (1), n the number of data samples with ni samples corresponding to each
class, and d the projection dimension, the conditions under which these analyses hold are:

(a) 0 < lim inf pn < lim sup p
n <∞

(b) 0 < lim inf dn < lim sup d
n < 1

(c) 0 < lim inf dp < lim sup d
p < 1

(d) ni
n → ci ∈ (0, 1), i = 0, 1

(e) lim sup
p
‖µ0 − µ1‖2 <∞

(f) lim sup
p
‖Σ‖2 <∞

(g) lim inf
p

λmin (Σ) > 0.

Conditions (a), (b), (c) specify the relationships between the dimensions, p, n, and d, in
the growth regime considered where p, n, and d grow together at constant rates to each
other. More specifically, condition (a) implies that p and n grow together with either p > n
or p < n, condition (b) implies that d and n grow together with d strictly less than n,
and condition (c) implies that d and p grow together with d strictly less than p. Note that
the fact that the ratios in conditions (a)-(c) are strictly greater than zero ensures that the
involved dimensions grow together, whereas a ratio of zero would mean that the denominator
grows faster than the numerator. By the same logic, condition (d) ensures that there is a
sizable portion of points, ni, i = 0, 1, from each class as the number of training points, n,
grows. The two conditions (e) and (f) are technicalities stemming from the use of random
matrix theory tools. Finally, condition (g) is necessary so that all members of the sequence,
RΣ̂RT (which is inverted in Σ̂−1

R ) as d, p and n grow, are invertible. Note that the ensemble
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size, M , is fixed relative to the problem dimensions n, p, and d, unless the notation M =∞
is used, in which case M is allowed to diverge beforehand so that the presented asymptotic
results correspond to the converged ensemble.

Remark 1 Condition (g) may not hold in practice. As such, it may be relaxed to the
condition that there exists at least one eigenvalue of Σ for which the limit infimum is
bounded away from zero. This, however, comes at the cost of additional conditions on the
projection dimension d. More specifically, if there are p− k such eigenvalues (and therefore
k eigenvalues which tend to zero), then we must have d < p− k in order for all members of
the sequence RΣ̂RT to be invertible. In practice, d is tuned to optimize performance, and
so one need not delve into these technicalities.

The remainder of this paper references the term deterministic equivalent. This is defined
in the following.

Definition 2 (Müller and Debbah, 2016) The Deterministic Equivalent (DE) of the se-
quence of random variables Xn is a deterministic sequence X̄n which approximates Xn in
the sense that Xn − X̄n

a.s.−−→ 0 as n→∞.

According to the above definition, the difference between the random variable, Xn, and the
deterministic quantity, X̄n, converges to zero. In this way, X̄n, itself need not converge for
it to exist. Moreover, X̄n yields an approximation of Xn for every n which becomes increas-
ingly more accurate with increasing n, in contrast to the typical limit which summarizes an
entire sequence with one statistic (Müller and Debbah, 2016).

DEs are widely used in the asymptotic analysis of systems which can be modeled through
random matrices such as those encountered in communication theory (Couillet and Debbah,
2011) and machine learning (Couillet and Liao, 2022). The following sections detail the
results of the asymptotic analysis of the RP-LDA classifiers defined in Section 2 using DEs.

3.1 Convergence of Discriminant Statistics and Asymptotic Distributions

This section presents the convergence results of the class-conditional statistics of the dis-
criminants (2), (5), (8), and (9), and their asymptotic distributions.

Our previous work (see Niyazi et al., 2020a) derived deterministic equivalents for the
class-conditional discriminant statistics of the discriminant-averaging RP-LDA infinite en-
semble. This work extends those results by deriving analogous results for the single RP-LDA
classifier and the discriminant-averaging RP-LDA finite ensemble. Additionally, it is shown
that the single RP-LDA discriminant, the discriminant-averaging RP-LDA finite ensemble
discriminant, and the discriminant-averaging RP-LDA infinite ensemble discriminant, each
conditioned on the class of the test point, are asymptotically Gaussian having parameters
which are the deterministic equivalents of their respective (exact) statistics. This allows for
comparison between the three classifiers, and thus an understanding of the effect of the en-
semble size M on the classification. For completeness, all three sets of results are presented
in what follows. The explicit expressions of the DEs are provided in the appendices.

Theorem 3 (Single RP-LDA discriminant asymptotic distribution) Under conditions (a)
to (g), for the single RP-LDA discriminant, WRP-LDA (x,R), defined in (2) and i = 0, 1,
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we have

1/σ̄(1) [(WRP-LDA (x,R) |x ∈ Ci)− m̄i(1)]
d−→ N (0, 1),

where m̄i(1) and σ̄2(1) (given by equations (15) and (40), respectively) are DEs of mi(1)
and σ2(1), respectively.

Proof See Appendix A and Appendix D.3.

Theorem 4 (Discriminant-averaging RP-LDA finite ensemble discriminant asymptotic dis-
tribution) Under conditions (a) to (g), for the discriminant-averaging RP-LDA finite en-
semble discriminant, Wdisc-avg (x,R1, . . . ,RM ), defined in (5), fixed M , and i = 0, 1, we
have

1/σ̄(M) [(Wdisc-avg (x,R1, . . . ,RM ) |x ∈ Ci)− m̄i(M)]
d−→ N (0, 1),

where m̄i(M) and σ̄2(M) (given by equations (15) and (44), respectively) are DEs of mi(M)
and σ2(M), respectively.

Proof See Appendix B and Appendix D.3.

Theorem 5 (Discriminant-averaging RP-LDA infinite ensemble discriminant asymptotic
distribution) Under conditions (a) to (g), for the discriminant-averaging RP-LDA infinite
ensemble discriminant, WM=∞(x), defined in (8) and i = 0, 1, we have

1/σ̄M=∞
[
(WM=∞ (x) |x ∈ Ci)− m̄M=∞

i

] d−→ N (0, 1),

where m̄M=∞
i and σ̄2

M=∞ (given by equations (15) and (45), respectively) are DEs of mM=∞
i

and σ2
M=∞, respectively.

Proof See Appendix D.4.

Furthermore, Corollary 6 below, concerned with the relationships between the DEs of
the class-conditional discriminant statistics, follows from Theorems 3, 4, and 5:

Corollary 6 (Asymptotic relationships between single RP-LDA, the discriminant-averaging
RP-LDA finite ensemble, and the discriminant-averaging infinite ensemble class-conditional
discriminant statistics)

m̄i(1) = m̄i(M) = m̄M=∞
i , i = 0, 1, (10)

σ̄2(1) > σ̄2
M=∞, (11)

and

σ̄2(M) =
1

M
σ̄2(1) +

(
1− 1

M

)
σ̄2
M=∞. (12)

11
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Proof See Appendices A.1 and B.1 for the proof of (10), Appendix A.2.1 for the proof of
(11), and Appendix B.2 for the proof of (12).

The results of Corollary 6 along with the asymptotic distributions stated in the preceding
theorems reveal that the class-conditional discriminants corresponding to the single RP-
LDA, discriminant-averaging RP-LDA finite ensemble, and discriminant-averaging RP-LDA
infinite ensemble classifiers, each tend to a Gaussian distribution with common means across
the discriminants. Furthermore, the single RP-LDA classifier discriminant has a variance
strictly greater than that of the discriminant-averaging infinite ensemble classifier, while
the discriminant-averaging finite ensemble classifier’s variance is a convex combination of
the two determined by coefficients 1/M and 1 − 1/M , respectively. Thus, as M increases,
the variance of the corresponding discriminant decreases from one extreme to another, all
while maintaining a constant mean separation. In light of Corollary 6, the deterministic
equivalents, m̄i(1), m̄i(M), and m̄M=∞

i , of the class-conditional means are subsequently
referred to by a common notation, m̄i, i = 0, 1.

Figure 1: Class-conditional asymptotic distributions of the discriminant-averaging ensemble
M = 10.

Figure 1 shows an example of the asymptotic class-conditional distributions of the
discriminant-averaging RP-LDA ensemble discriminant when M = 10. The figure depicts
the probability densities of the class-conditional discriminants, along with the mean sep-
aration, m̄1 − m̄0, and three standard deviations, 3σ̄(M). Notice that the distributions
overlap.

Figure 2 shows the same distributions depicted in Figure 1 alongside the class-conditional
asymptotic distributions of the single RP-LDA discriminant and the discriminant-averaging
RP-LDA infinite ensemble. Consistent with Corollary 6, the mean separation between class
distributions is maintained with increasing ensemble size M while their variance decreases.
This leads to less overlap between the distributions with increasing M , as quantified by

12
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Figure 2: Class-conditional asymptotic distributions of the discriminant-averaging ensemble
M = 1, M = 10, and M =∞.

2Φ

(
−1

2
m̄1(M)−m̄0(M)√

σ̄(M)

)
(which is a decreasing sequence of M since m̄1(M)−m̄0(M) > 0 by

Equation 15). This overlap is an indication of the ability of the discriminant to distinguish
between a test point in C0 versus C1. Thus, a lower overlap implies greater discrimination and
suggests a lower probability of misclassification of the classifier. To complement Figure 2,
we plot the probability of misclassification DE, ε̄ (based on the asymptotic distributions of
Theorems 3 and 4), corresponding to a discriminant-averaging RP-LDA ensemble classifier
as M is increased under a parameter setting where the Bayes error is about 0.05 in Figure
3. This plot shows that the asymptotic probability of misclassification is decreasing with
ensemble size M . The explicit expression for ε̄ is stated in Appendix C.1.

The final theorem in this section states that the asymptotic distribution of the vote-
averaging RP-LDA ensemble discriminant is a normalized correlated binomial random vari-
able with constant correlation between the trials. To see this, we re-write the decision rule
as

1

{
1

M
MWvote-avg(x,R1, . . . ,RM ) > 0.5

}
, (13)

wherein the discriminant in (9) is multiplied and divided by the factor M . The follow-
ing theorem formally states the distribution of the MWvote-avg(x,R1, . . . ,RM ) part of the
discriminant as it is expressed in (13).

Theorem 7 (Vote-averaging RP-LDA ensemble discriminant asymptotic distribution) Un-
der conditions (a) to (g), for M times the vote-averaging RP-LDA finite ensemble discrim-
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Figure 3: Plot of the probability of misclassification DE, ε̄, of the discriminant-averaging
RP-LDA ensemble classifier against increasing ensemble size M .

inant, Wvote-avg (x,R1, . . . ,RM ), defined in (9), fixed M , and i = 0, 1, we have

P {(MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci) > t} − P {CB (M, p̄i, ρ̄i) > t} −→ 0, ∀t ∈ R,

where M is the number of trials,

p̄i = Φ

(
m̄i√
σ̄2(1)

)

is the asymptotic probability of success in each trial, and

ρ̄i =
Ii − p̄2

i

p̄i (1− p̄i)

is the asymptotic correlation between each trial, where

Ii :=

∫
∞

0

∫
∞

0

1

2πλ
exp

− 1

2λ2

 2∑
j=1

(
αij
)2 − 2σ̄2

M=∞α
i
1α

i
2

 dα1dα2,

λ2 :=
(
σ̄2(1)

)2 − (σ̄2
M=∞

)2
, αi1 := α1 − m̄i, and αi2 := α2 − m̄i.

Proof See Appendix D.5.
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From Theorem 7, one infers that Wvote-avg (x,R1, . . . ,RM ) |x ∈ Ci is asymptotically a
correlated binomial normalized by the factor 1/M . It is straightforward to show that the
mean of this asymptotic distribution is

p̄i, i = 0, 1,

and its variance is

1

M
p̄i (1− p̄i) +

(
1− 1

M

)
ρ̄ip̄i (1− p̄i) , i = 0, 1.

Therefore, the mean separation between the asymptotic distributions is a constant p̄1 − p̄0

regardless of the ensemble size M and, since ρ̄i ∈ [0, 1], each of their respective variances
decrease from p̄i (1− p̄i) at M = 1 (a Bernoulli variance corresponding to single trial) to
ρ̄ip̄i (1− p̄i) as M tends to infinity. Thus the asymptotic class-conditional discriminants
of the vote-averaging ensemble exhibit similar behavior to the asymptotic class-conditional
discriminants of the discriminant-averaging ensemble; the mean separation between the
distributions stays constant with M while the variances decrease.

A direct comparison between the mean separations and variances of the asymptotic dis-
tributions corresponding to each classifier is quite difficult. We take an alternative approach
to comparing the two schemes in the next section by showing—via the Neyman-Pearson
lemma—that among all RP-LDA discriminant combining schemes, the equally-weighted
discriminant-averaging RP-LDA ensemble is asymptotically optimal for Gaussian data.
Further detail regarding the form of the asymptotic PMF of the vote-averaging RP-LDA
ensemble classifier can be found in Appendix D.5 and Appendix C.3.

3.2 Asymptotically Optimal Ensemble of Randomly-Projected LDA
Discriminants

By employing individual randomly-projected LDA discriminants as observations, this sec-
tion constructs asymptotically optimal ensembles in terms of the Receiver Operating Char-
acteristic (ROC) and the probability of misclassification via the Neyman-Pearson lemma and
the MAP rule, respectively. These results rely on knowledge of the asymptotic joint PDF of
a collection of single RP-LDA discriminants. Letting the vector of M randomly-projected
LDA discriminants be denoted by W = [WRP-LDA (x,R1) , . . . ,WRP-LDA (x,RM )]T , the
asymptotic PDF of W|x ∈ Ci, i = 0, 1, is presented in the following theorem.

Theorem 8 (Asymptotic joint distribution of M RP-LDA discriminants) Under conditions
(a) to (g), for fixed M , the vector W conditioned on the class of the test point is such that

P {(W|x ∈ Ci) > t} − P
{
N
(
ζ̄i, Π̄

)
> t
}
−→ 0, ∀t ∈ RM , i = 0, 1,

where ζ̄i = m̄i1M and Π̄ =
(
σ̄2(1)− σ̄2

M=∞
)
IM+σ̄2

M=∞1M1TM , that is, W|x ∈ Ci converges
in distribution to a Gaussian random vector with expectation ζ̄i and covariance Π̄.

Proof See Appendix D.1.
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Now, let us reconsider the classification problem in the context of hypothesis testing.
Consider the null hypothesis x belongs to C0 and the alternative hypothesis x belongs to
C1. For any classifier, let α be the probability of a false positive, that is, classifying the test
point to C1 while it actually belongs to C0, and β the probability of false negative, that is,
classifying the test point to C0 while it actually belongs to C1. The most powerful α-level
test is, by definition, the test which minimizes β or, equivalently, maximizes the probability
of a true positive, 1− β, at a fixed α.

Based on the asymptotic PDF of Theorem 8, the asymptotically most powerful α-level
test is as follows.

Theorem 9 (Neyman-Pearson RP-LDA ensemble classifier based on the asymptotic joint
distribution of a set of RP-LDA discriminants) The asymptotically most powerful α-level
test is to classify x to C1 if

Wdisc-avg(x,R1, . . . ,RM ) > η

and to C0 otherwise, where η is such that

P {(Wdisc-avg(x,R1, . . . ,RM )|x ∈ C0) > η} = α.

Proof See Appendix D.2.

The above result shows that the classifier yielding the optimal ROC is in fact the equally-
weighted discriminant-averaging RP-LDA ensemble which assigns equal weights of 1/M
to each of the projections R1, . . . ,RM . This means that for classification purposes, in
the context of an ensemble, the projections are asymptotically identical. Non-uniform
weights, including binary weights, lead to asymptotically sub-optimal classification in this
data setting. Note also that this classifier is linear in the test point.

Using the asymptotic PDF of W, we are also able to derive the asymptotically Bayes
combination of RP-LDA discriminants which minimizes the probability of misclassification.
It is presented in the following theorem.

Theorem 10 (Asymptotic MAP RP-LDA ensemble classifier) The asymptotic MAP RP-
LDA ensemble classifier classifies to C1 when

m̄

σ̄2(M)

[
Wdisc-avg(x,R1, . . . ,RM )− m̄0 + m̄1

2

]
+ ln

π1

π0
> 0, (14)

and to C0 otherwise.

Proof The classifier which maximizes the posterior probability P [x ∈ Ci|W], minimizes the
probability of misclassification (Hastie et al., 2009). Maximizing the posterior probability
in the two-class scenario is equivalent to the following decision rule on the ratio of posterior
probabilities

π1f [W|x ∈ C1]

π0f [W|x ∈ C0]
> 0,

where f(·) denotes a PDF. By Theorem 8, this ratio tends asymptotically to (14).

Theorem 10 shows that a slight modification of (5) yields the asymptotically lowest proba-
bility of misclassification for an RP-LDA ensemble. Note that:
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• Like the asymptotic Neyman-Pearson RP-LDA ensemble classifier of Theorem 9, the
asymptotic MAP RP-LDA ensemble classifier is also linear in x and it is easy to show
that m̄1−m̄0

σ̄2(M)
> 0. As a result, its ROC matches that of the discriminant-averaging

RP-LDA ensemble classifier (which is optimal according to Theorem 9).

• This classifier corresponds to a particular operating point on the ROC of the discriminant-
averaging ensemble classifier.

• When π0 = π1, it is easy to show that the asympotic MAP RP-LDA ensemble classifier
has exactly the same decision rule as the discriminant-averaging RP-LDA ensemble
classifier.

For the sake of completeness, the error analyses of the discriminant-averaging, asymp-
totic MAP, and vote-averaging RP-LDA ensembles are detailed in Appendix C, wherein
deterministic equivalents of the probability of misclassification are provided for each classi-
fier.

3.2.1 Demonstrations on Synthetic Data

This section showcases the results of Theorems 9 and 10 on synthetic data. The main
goal of the simulations in this section is to show that the discriminant-averaging RP-LDA
discriminant combining scheme performs at least as good as a classifier (in terms of ROC
and error rate) as the discriminant-averaging-with-projection-selection, vote-averaging, and
vote-averaging-with-projection-selection RP-LDA discriminant combining schemes.

Recall from Section 2.3.2 that we consider projection selection schemes which perform
the selection by generating B1 disjoint groups of B2 projections each and select the projec-
tion from each group which yields the lowest error rate according to an error estimator of
choice. The final set of projections is used to build the ensemble composed of a total of B1

projections. So that the comparison between selection and non-selection schemes is fair, we
must set B1 × B2 in the selection schemes to M . This is because selection can be viewed
as assigning weights of zeros and ones to each projection for a given set of projections,
while an equally-weighted scheme assigns each projection in the same set of projections a
weight of 1/M . The total number of weighted projections in both cases must be equal;
otherwise, one of the methods has the advantage of a larger initial set of projections. In
the following simulations, we consider discriminant-averaging and vote-averaging ensembles
with M = 200 and discriminant-averaging and vote-averaging plus projection selection en-
sembles with B1 = 50 and B2 = 4, so that B1 × B2 = 200. The projections are selected
using the resubstitution estimate on the training set.

For the synthetic data simulations, the data follows the Gaussian mixture model specified
by (1) with

µ0 =
1

p1/4

[
1Td√pe 0Tp−d√pe−2 2 2

]T
, µ1 = 0p, and Σ =

10

p
1p1

T
p + 0.1Ip,

where dxe denotes ceil(x). The Bayes error for this distribution is 0.0401. This value is
computed using Equation (11) of the paper by Niyazi et al. (2022).

We generate 500 independent realizations of the training and test sets. The problem
dimensions for each realization of the training set are n = 100, p = 1000, and π0 = π1 = 0.5.
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Each realization of the testing set consists of 1000 data points. All data are generated in
proportion to the prior probabilities.

Figure 4 shows the ROCs of each of the four classifiers averaged over the realizations
of the training and test sets by fixing the x-axis for each realization and averaging over
y-axis; the (averaged) True Positive Rate (TPR) is plotted against the False Positive Rate
(FPR). Here, the projection dimension of all four classifiers is set to d = 49 (half the
rank of the sample covariance estimate). The plot shows that discriminant averaging and
vote averaging perform very similarly, with discriminant averaging being slightly better.
Discriminant averaging with selection and vote averaging with selection are slightly worse
than the equally-weighted schemes. The shading indicates the 99% confidence intervals,
which are on the order of 10−3, and so are barely visible. The Area Under the Curve
(AUC) values corresponding to each classifier in Figure 4 are 0.8435, 0.8340, 0.8059, and
0.7843, respectively. Pairwise one-sided t-tests between the discriminant-averaging-without-
selection mean AUC and each of the other classifiers are performed. For each experiment,
the null hypothesis is that the discriminant-averaging-without-selection RP-LDA ensemble
classifier mean AUC and the other classifier’s mean AUC (over the training sets) are equal.
The alternative hypothesis is that the discriminant-averaging-without-selection RP-LDA
ensemble classifier mean AUC is greater than the other classifier’s mean AUC. The pairwise
one-sided t-tests reject the null hypothesis at the 1% significance level for every pair of
classifiers. These results are consistent with Theorem 9, in the sense that they demonstrate
that discriminant averaging is optimal in terms of ROC and outperforms all other methods,
whether they involve selection or not.

Figure 5 plots the average testing errors of the four classifiers against the projection
dimension d over 500 realizations of the training and test set along with 99% confidence
intervals (shaded). As the class priors are assumed to be equal, the discriminant-averaging
RP-LDA ensemble classifier is equivalent to the asymptotic MAP RP-LDA ensemble in this
case. Again, discriminant averaging and vote averaging perform similarly, with discriminant
averaging being slightly better, while the selection schemes are generally worse. This is con-
sistent with Theorem 10, since discriminant-averaging is asymptotically the MAP classifier
in this equal prior scenario.

3.2.2 Demonstrations on Real Data

This section showcases the results of Theorems 9 and 10 on real data. As in the previous
section, we consider discriminant-averaging and vote-averaging RP-LDA ensemble classifiers
with M = 200 and discriminant-averaging and vote-averaging plus projection selection RP-
LDA ensemble classifiers with B1 = 50 and B2 = 4, so that B1 × B2 = 200, where the
projections are selected using the resubstitution estimate on the training set. Here, we do
not report the confidence intervals on our results as there is no unbiased estimate of the
variance of the k-fold cross-validation procedure (Bengio and Grandvalet, 2003) which we
use to compute the ROCs and error rates for these data sets.

We consider the colon tumor gene microarray data set provided by Alon et al. (1999),
the gastrointestinal lesion colonoscopy imaging data recorded under both white light and
narrow band imaging provided by Mesejo et al. (2016), both the full and reduced dimen-
sion versions of the leukemia gene microarray data set provided by Golub et al. (1999),
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Figure 4: Average ROCs of discriminant-averaging, vote-averaging, discriminant-averaging-
with-selection, and vote-averaging-with-selection RP-LDA ensemble classifiers on
Gaussian mixture model data where the shading indicates 99% confidence inter-
vals.

both full and reduced dimension versions of the prostate cancer gene microarray data set
provided by Singh et al. (2002), and ‘aa’ and ‘ao’ phoneme pairs from the data set pro-
vided by Hastie et al. (1995). These data sets are referred to as ‘colon’, ‘gastro WL’, ‘gas-
tro NB’, ‘leukemia big’, ‘leukemia small’, ‘prostate full’, ‘prostate’, and ’phoneme aa ao’
respectively. The only preprocessing done to this data consisted of removing zero-variance
predictors from the gastrointestinal lesion data sets. The number of training samples, di-
mensionality, and proportion of data points belonging to the majority class are listed in
Table 1. Note that ’phoneme aa ao’ actually consists of n = 1717 training samples, but to
mimic a small sample situation where p > n, we randomly select a set of n = 100 sam-
ples for training and utilize the remaining 1617 samples for testing. The proportion of the
majority class reported in Table 1 for this data set is based on the full training set. The
artificially-constructed training set is sampled according to these class proportions.

Since all data sets have a relatively small number of samples, the error rates are estimated
using iterated 10-fold cross validation, that is, 10 iterations of the 10-fold cross-validation
estimate are computed and averaged to obtain the final estimate, with the exception of
‘phoneme aa ao’, for which we have a test set. To avoid cross-contamination between the
data used for projection selection and the data used for performance evaluation, the resub-
stitution error computation for projection selection is nested within the cross-validation loop
(as opposed to preceding the loop) so that the selection is performed using the training folds
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Figure 5: Average testing error of discriminant-averaging, vote-averaging, discriminant-
averaging-with-selection, and vote-averaging-with-selection RP-LDA ensemble
classifiers on Gaussian mixture model data where the shading indicates 99% con-
fidence intervals.

Data set n p Proportion of majority class

‘colon’ 62 2000 0.65

‘gastro WL’ 76 689 0.72

‘gastro NB’ 76 689 0.72

‘leukemia small’ 72 3571 0.65

‘leukemia big’ 72 7128 0.65

‘prostate’ 102 2135 0.51

‘prostate full’ 102 6032 0.51

‘phoneme aa ao’ 100 256 0.60

Table 1: Data sets and their properties

of the cross-validation procedure at each iteration, and not on the whole training set. The
classifier is then evaluated on the testing fold. This is similar to the nested cross-validation
procedure described by Cawley and Talbot (2010).

The AUCs corresponding to the ROCs of the discriminant-averaging, vote-averaging,
discriminant-averaging-with-selection, and vote-averaging-with-selection RP-LDA ensem-
ble classifiers applied to each of the data sets in Table 1 are reported in Table 2. Each of
the ‘prostate full’ and ‘phoneme aa ao’ data sets reflect the findings of Theorem 9 in that
discriminant averaging does better than all other schemes, including discriminant averaging
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with selection. Interestingly, vote averaging does better than vote averaging with selec-
tion on these data sets as well. On the ‘colon’ and ‘leukemia small’ data sets, the AUCs
corresponding to all four classifiers are virtually the same. For the data sets ‘gastro WL’,
‘gastro NB’, ‘leukemia big’, and ‘prostate’, we have performances which are inconsistent
with Theorem 9. More specifically, on these data sets, discriminant averaging performs
similarly to discriminant averaging with selection, vote averaging performs similarly to vote
averaging with selection, but vote averaging performs better than discriminant averaging.
Such a discrepancy is not surprising as these data sets are not necessarily Gaussian and
do not necessarily meet the common covariance assumption in (1). Nevertheless, looking
closer at the ROCs corresponding to these data sets plotted in Figures 6-8, we observe that,
within the range of practical TPR and FPR, discriminant averaging performs close to, or
even better than, the remaining schemes.

Data set
AUC

disc-avg disc-avg with sel. vote-avg vote-avg with sel.

‘colon’ 0.853 0.856 0.850 0.854

‘gastro WL’ 0.813 0.812 0.834 0.833

‘gastro NB’ 0.75 0.74 0.762 0.762

‘leukemia small’ 0.9960 0.9963 0.9960 0.9957

‘leukemia big’ 0.9911 0.9900 0.9929 0.9931

‘prostate’ 0.9493 0.9518 0.958 0.961

‘prostate full’ 0.787 0.765 0.770 0.74

‘phoneme aa ao’ 0.8478 0.8409 0.8474 0.8358

Table 2: AUCs corresponding to the ROCs of the discriminant-averaging, discriminant-
averaging-with-selection, vote-averaging, and vote-averaging-with-selection RP-
LDA ensemble classifiers applied to real data.

Figures 9 to 14 plot the iterated 10-fold CV estimates of the error rate of the discriminant-
averaging, vote-averaging, and discriminant-averaging-with-selection, and vote-averaging-
with-selection RP-LDA ensemble classifiers on the real data sets listed in Table 1 against
varying projection dimension d. As explained previously, the selection process based on
the resubstitution error estimate is nested within the cross-validation in order to avoid bias
due to using the same data to select the projections for and evaluate the performance of
the selection classifiers. Because the ‘gastro WL’ and ‘gastro NB’ data sets are significantly
imbalanced with 72% of the data points made up by the majority class, and error rate is not
the metric of interest in such cases, these data sets are omitted in this set of simulations.
The proportions of the remaining data sets are close to balanced, and so for that reason it is
reasonable to assume that the equally-weighted discriminant-averaging RP-LDA ensemble
classifier performs similarly to the asymptotic MAP classifier as per Theorem 10.

In all figures, it can be observed that discriminant averaging and vote averaging perform
similarly, while discriminant averaging with selection and vote averaging with selection per-
form similarly. The selection schemes exhibit slightly lower errors than the equally-weighted
schemes at smaller values of d. This is inconsistent with our expectation that discriminant
averaging outperforms all other schemes, and may be explained by the fact that our RMT
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Figure 6: ROCs of the discriminant-averaging, vote-averaging, discriminant-averaging-
with-selection, and vote-averaging-with-selection RP-LDA ensemble classifiers on
the ‘gastro WL’ data set.

asymptotic analysis assumes d, n, and p to be in proportion to each other, whereas low
values of d may constitute a different asymptotic regime. On the higher values of d, dis-
criminant averaging and vote averaging outperform the selection schemes. In addition,the
minimum error among all classifiers for each data set occurs within this range. The mini-
mum error is achieved by vote averaging at d = 25 on the ‘colon’ data set, by discriminant
averaging at d = 27 on the ‘leukemia big’ data set, by discriminant averaging, vote averag-
ing, and discriminant averaging with selection at d = 43 on the ‘leukemia small’ data set, by
discriminant averaging with selection at d = 19 on the ‘prostate’ data set, by vote averaging
at d = 17 on the ‘prostate full’ data set, and by discriminant averaging at d = 37, vote
averaging at d = 39 and vote averaging with selection at d = 21 on the ‘phoneme aa ao’
data set. Thus, it is reasonable to conclude, that on these data sets, selection generally
gives no significant advantage over equally-weighted schemes, and that equally-weighted
discriminant averaging, in particular, seems to perform as well as any other scheme.

To conclude, Section 3 derived asymptotic distributions of the discriminant-averaging
and vote-averaging RP-LDA ensemble discriminants. It also proved that the optimal form
of RP-LDA ensemble classifier under Gaussian data assumptions is the equally-weighted
discriminant-averaging RP-LDA ensemble classifier. This finding is confirmed by simula-
tions on synthetic data, as well as on real data,where it is shown that selection generally
offers no additional performance advantage over equally-weighted schemes, and that dis-
criminant averaging performs as good, if not better, than vote averaging on most data
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Figure 7: ROCs of the discriminant-averaging, vote-averaging, discriminant-averaging-
with-selection, and vote-averaging-with-selection RP-LDA ensemble classifiers on
the ‘gastro NB’ data set.

sets. Based on these findings, the next section studies the equally-weighted discriminant-
averaging RP-LDA ensemble classifier from a practical perspective: choosing the number
of projections M and tuning the projection dimension d through the use of G-estimators.

4. Turning Theory into Practice

In this section, we focus on practical implications of the analysis of the previous section
in conjunction with G-estimators to propose a working framework for RP-LDA ensemble
classification. The main lessons to take from the previous section are:

1. The optimal ensemble under Gaussian data assumptions is a linear function of the
RP-LDA discriminants, that is, it is a form of discriminant averaging, as opposed to a
non-linear scheme like vote averaging. As demonstrated in the previous section, both
schemes perform very similarly on real data. Thus, there is no need to look beyond
linear schemes.

2. Derivations under Gaussian data assumptions show that it is the number of projections
which is critical for the classification performance of the discriminant-averaging RP-
LDA ensemble, not the projections themselves. In fact, as evidenced by the previous
section, projection selection under these assumptions may result in a performance loss.
Furthermore, projection selection adds an extra cost in the form of computing error

23



Niyazi et al.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: ROCs of the discriminant-averaging, vote-averaging, discriminant-averaging-
with-selection, and vote-averaging-with-selection RP-LDA ensemble classifiers on
the ‘prostate’ data set.

estimators for each single RP-LDA ensemble classifier corresponding to a member of
the set of projections in order to implement the selection process.

Based on these findings, this section proposes methods for the practical implementation of
the equally-weighted discriminant-averaging RP-LDA ensemble classifier. We first present
G-estimators of the most common classification metrics of this classifier. We then propose
and demonstrate a method for tuning the number of projectionsM and projection dimension
d on real and synthetic data.

4.1 G-estimators

A G-estimator of a quantity is an estimator of that quantity which is consistent in the RMT
regime. This section provides G-estimators of the class-conditional discriminant statistics
of the equally-weighted discriminant-averaging RP-LDA ensemble classifier, from which G-
estimators of metrics such as the true positive/negative rate, false positive/negative rate,
probability of misclassification, and positive/negative predictive value are constructed. This
is detailed in what follows.

The main building blocks of the G-estimators of interest are G-estimators m̂i, i = 0, 1,
σ̂2(1), and σ̂2

M=∞ such that

m̂i − m̄i
a.s.−−→ 0, i = 0, 1,
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Figure 9: Iterated 10-fold nested CV estimate of the error rate of the discriminant-
averaging, vote-averaging, discriminant-averaging-with-selection, and vote-
averaging-with-selection RP-LDA ensemble classifiers on the ‘colon’ data set.

which implies m̂i � mi(1), m̂i � mi(M), and m̂i � mM=∞
i , that is, m̂i is a G-estimator of

all three classifier class-conditional means,

σ̂2(1)− σ2(1)
a.s.−−→ 0,

and
σ̂2
M=∞ − σ2

M=∞
a.s.−−→ 0.

Theorem 11 presents the explicit expressions for these G-estimators. As in Section 3.1,
these results are derived under conditions (a) to (g), and assume that M is fixed relative
to the problem dimensions, p, n, and d, except when M =∞ is specified, in which case M
is allowed to diverge beforehand so that the results apply to the converged ensemble. Note
that the G-estimators m̂i, i = 0, 1, and σ̂2

M=∞ were first derived by Niyazi et al. (2020a).
They are restated here for completeness.

Theorem 11 (G-estimators of the class-conditional discriminant statistics of the
discriminant-averaging RP-LDA ensemble classifier) Under conditions (a) to (g), the G-
estimators m̂i, i = 0, 1, σ̂2(1), and σ̂2

M=∞ are given by

m̂i := (−1)i+1

1

2
µ̂T
(

Σ̂ +
1

ν̂
Ip

)−1

µ̂−

1
ni−1tr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}

1− 1
n−2tr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}
+ ln

π̂1

π̂0
, i = 0, 1,
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Figure 10: Iterated 10-fold CV estimate of the error rate of the discriminant-averaging,
vote-averaging, discriminant-averaging-with-selection, and vote-averaging-with-
selection RP-LDA ensemble classifiers on the ‘leukemia big’ data set.

σ̂2(1) :=

 1

1− 1
n−2tr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}


2

µ̂T
(

Σ̂ +
1

ν̂
Ip

)−1

Σ̂

(
Σ̂ +

1

ν̂
Ip

)−1

µ̂

+
1

ν̂2

(
1

1− 1
n−2

tr
{

Σ̂(Σ̂+ 1
ν̂
Ip)
−1
}
)2

1
ptr

{(
Σ̂ + 1

ν̂ Ip

)−1
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}

1− 1
dtr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
} µ̂T

(
Σ̂ +

1

ν̂
Ip

)−2

µ̂,

and

σ̂2
M=∞ :=

1 +

1
n−2tr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}

1− 1
n−2tr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}


2

µ̂T
(

Σ̂ +
1

ν̂
Ip

)−1

Σ̂

(
Σ̂ +

1

ν̂
Ip

)−1

µ̂,

where ν̂ is such that

1− 1

d
tr

{
Σ̂

(
Σ̂ +

1

ν̂
Ip

)−1
}

= 0.
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Figure 11: Iterated 10-fold nested CV estimate of the error rate of the discriminant-
averaging, vote-averaging, discriminant-averaging-with-selection, and vote-
averaging-with-selection RP-LDA ensemble classifiers on the ‘leukemia small’
data set.

Proof See Appendix E.1.

In addition, it can be shown that the G-estimator σ̂2(M) of σ2(M), for fixed M , such that

σ̂2(M)− σ2(M)
a.s.−−→ 0,

is simply

σ̂2(M) =
1

M
σ̂2(1) +

(
1− 1

M

)
σ̂2
M=∞.

The next theorem presents the G-estimators of some common binary classification metrics
of the equally-weighted discriminant-averaging RP-LDA ensemble in terms of the preceding
G-estimators. Note that we take C0 to be the negative class and C1 to be the positive class.

Theorem 12 (G-estimators of some common classification metrics of the discriminant-
averaging RP-LDA ensemble classifier)

• TPR: ˆTPR := Φ

(
m̂1√
σ̂2(M)

)

• TNR: ˆTNR := Φ

(
− m̂0√

σ̂2(M)

)
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Figure 12: Iterated 10-fold nested CV estimate of the error rate of discriminant-averaging,
vote-averaging, discriminant-averaging-with-selection, and vote-averaging-with-
selection RP-LDA ensemble classifiers on the ‘prostate’ data set.

• FPR: ˆFPR := Φ

(
m̂0√
σ̂2(M)

)

• FNR: ˆFNR := Φ

(
− m̂1√

σ̂2(M)

)
• Probability of misclassification: ε̂ := π̂0

ˆFPR + π̂1
ˆFNR

• PPV: ˆPPV := π̂1 ˆTPR

π̂0 ˆFPR+π̂1 ˆTPR

• NPV: ˆNPV := π̂0 ˆTNR

π̂0 ˆTNR+π̂1 ˆFNR

Proof See Appendix E.2.

In the next section, we propose a general procedure for tuning the parameters of the
discriminant-averaging RP-LDA ensemble classifier. We also demonstrate how G-estimators
may be made use of in this context.

4.2 Tuning the Discriminant-Averaging RP-LDA Ensemble Parameters

This section maps out a procedure for tuning the number of projections M and projection
dimension d of the equally-weighted discriminant-averaging RP-LDA ensemble classifier.
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Figure 13: Iterated 10-fold nested CV estimate of the error rate of the discriminant-
averaging, vote-averaging, discriminant-averaging-with-selection, and vote-
averaging-with-selection RP-LDA ensemble classifiers on the ‘prostate full’ data
set.

To begin with, note that, as shown in Section 3, for a given d, performance improves
with increasing M so that the upper bound on the performance of the finite version of
the discriminant-averaging RP-LDA ensemble classifier is the performance of the infinite
version of the discriminant-averaging RP-LDA ensemble classifier. In other words, the ratio
of infinite ensemble error to finite ensemble error is always less than or equal to one.

As M is constrained by computational efficiency, one may specify the trade-off between
performance and computational efficiency as a fraction of the infinite ensemble performance,
denoted by ψ. More specifically, ψ = infinite ensemble error

finite ensemble error . This idea is illustrated in Fig-
ure 15, which shows this ratio approaching 1 with increasing M . As alluded to earlier, the
infinite ensemble cannot be realized practically, but must be approximated by a large num-
ber of projections. Figure 15 uses 3000 projections to approximate the infinite ensemble.
As indicated on the figure, a performance of ψ = 0.98 is achieved at M = 112. Setting
M = 112 results in significant computational savings as compared to the full set of 3000
projections which approximate the infinite ensemble. Based on this, we propose the follow-
ing experimental approach to tuning M and d, which uses 5000 projections to approximate
the infinite ensemble. It is important to realize that this procedure is part of the classifier
training, and should be applied to the training set. The two stages of this procedure are:
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Figure 14: Iterated 10-fold nested CV estimate of the error rate of the discriminant-
averaging, vote-averaging, discriminant-averaging-with-selection, and vote-
averaging-with-selection RP-LDA ensemble classifiers on the ‘phoneme aa ao’
data set.

1. Tune d for an ensemble with M = 5000. This approximates the optimal projection
dimension for an infinite ensemble. Compute the corresponding error, which serves
as the “infinite” ensemble performance benchmark.

2. Now starting at a small M (for example, M = 100), compute the error and the
resulting ratio of the “infinite” ensemble error (from step 1) to this finite ensemble
error. Check if the preset ψ is achieved. If not, increment M . Repeat in this manner
until a ratio of ψ is achieved. The value of M at which ψ is achieved is the final
setting of M for the finite ensemble which achieves at least ψ level of performance
relative to the “infinite” ensemble.

While it is possible to add a third stage to this procedure in which d is further tuned for
the particular finite ensemble obtained in the second stage, we find that this can result in
a performance loss in practice, probably due to overfitting to the training data.

Algorithm 1 presents the previously outlined procedure in more detail. Here, R(M,d)
is any training-data-based estimate of the probability of misclassification of a discriminant-
averaging RP-LDA ensemble classifier composed of M projections each having a projection
dimension of d. Of course, Algorithm 1, especially lines 1-3, may be very computationally
intensive depending on the choice of error estimator R(M,d). The G-estimator of the
infinite ensemble error derived by Niyazi et al. (2020a) and the G-estimator of the finite
ensemble error derived in this work (see Section 4.1, Theorem 12) can significantly reduce
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Figure 15: Ratio of “infinite” to finite discriminant-averaging RP-LDA ensemble classifier
error on Gaussian mixture model data. A ratio of 0.98 is achieved at M = 112.

Algorithm 1 Tuning the discriminant-averaging RP-LDA ensemble parameters M and d

Require: ψ < 1
1: for d′ = 1 : rank{Σ̂} do
2: Compute R (5000, d′) . Set M = 5000 to approximate an infinite ensemble
3: end for
4: d← argmind′ R (5000, d′) . Tune d for “infinite” ensemble
5: RM=∞ ← R(5000, d) . Set minimum “infinite” ensemble error estimate
6: M ′ ← 100
7: Compute R(M ′, d)
8: while RM=∞

R(M ′,d) < ψ do . Set M so that ψ is satisfied

9: M ′ ←M ′ + 100
10: Compute R(M ′, d)
11: end while
12: M ←M ′

computational costs. We propose using the former for the calculation in line 2, and the
latter for the calculations in lines 7 and 10. For further savings, the M tuning procedure
in lines 6-12 may be bypassed through the following formula based on an approximation of
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the probability of misclassification using G-estimators:

M ≈ ceil

(σ̂2(1)− σ̂2
M=∞

)
W0

(
ψ2 m̂2

1

σ̂2
M=∞

exp
(

m̂2
1

σ̂2
M=∞

))
m̂2

1 − σ̂2
M=∞W0

(
ψ2 m̂2

1

σ̂2
M=∞

exp
(

m̂2
1

σ̂2
M=∞

))
 ,

where W0(·) is the principal branch of the Lambert W function. This approximation is
valid when the class priors are equal. It is derived in Appendix E.3. In what follows, we
refer to this approximation as ‘the heuristic’.

We now report the errors achieved by tuning the discriminant-averaging RP-LDA en-
semble classifier by Algorithm 1 on both real and synthetic data. As mentioned previously,
R-LDA presents an upper limit to the performance of the discriminant-averaging RP-LDA
ensemble classifier; however, R-LDA works with the full data dimensions, making it more
computationally-demanding than the discriminant-averaging RP-LDA ensemble classifier.
The objective of the following simulations is to show that the performance of R-LDA can be
approached by the discriminant-averaging RP-LDA ensemble classifier at a lower compu-
tational complexity through the proposed tuning procedure. For this reason, only R-LDA
and the discriminant-averaging RP-LDA ensemble classifier (with various ways of tuning its
parameters) are considered in this set of simulations. The reader is referred to the work by
Durrant and Kabán (2015) for a comprehensive comparison of the discriminant-averaging
RP-LDA ensemble classifier with the state of the art.

Remark 13 We also report the complexities of R-LDA and the discriminant-averaging RP-
LDA ensemble classifier at execution. They are computed as O

(
p3
)

and O(M(np + d3))
(Durrant and Kabán, 2015), respectively.

We first consider synthetic data generated from the Gaussian mixture model specified at
the beginning of Section 3.2.1. The testing error is evaluated on a testing set consisting of
105 data points from each class. All test errors are rounded to three decimal places. Table
3 presents the testing errors and parameter settings of the discriminant-averaging RP-LDA
“infinite” ensemble classifier, R-LDA, and various tunings of the discriminant-averaging
RP-LDA finite ensemble classifier for a given training and test set.

The R-LDA precision matrix estimator takes the form (Σ̂+γIp)
−1, where γ is a positive

scalar. The parameter setting of the “infinite” ensemble is determined by setting M = 5000
and tuning d optimally according to the iterated 10-fold CV estimate of error on the training
set. Similarly, the parameter setting of R-LDA is determined by tuning γ optimally (over
the interval 10−6 to 5 in increments of 0.01) according to the iterated 10-fold CV estimate
of error on the training set. The parameter settings of the finite ensemble are determined by
different variants of Algorithm 1 at ψ = 0.95. The first sub-row under the finite ensemble
uses the iterated 10-fold CV on the training set as the error estimator R(M,d). The second
sub-row uses the G-estimator for the infinite and finite ensembles on the training set in
place of all error estimators in Algorithm 1. The third sub-row uses the heuristic described
previously to compute M directly and the G-estimators for the infinite ensemble in the
second step. Finally, the fourth sub-row uses Durrant’s rule-of-thumb (see Section 2) to set
M and d without any need for error estimation. To reduce fluctuations due to the random
projections, the ‘Test error’ values reported in the table are testing errors averaged over
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500 sets of projections, except for the first row which is averaged over 5 sets, since each set
consists of 5000 projections. The 99% confidence interval for each of these averages is also
calculated and found to be on the order of 10−4 for all ensembles except the ensemble tuned
by Durrant’s rule of thumb for which it is on the order of 10−3. Additionally, the tuning
times (in seconds) for each of the classifiers in Table 3 is reported in Table 4.

Table 3 shows that R-LDA achieves the lowest testing error of 0.214 followed by the
finite ensemble tuned by heuristic at 0.218. On the other hand, according to Table 4,
R-LDA takes the longest time to tune (about 12 minutes) out of all classifiers. Another
consideration is complexity at execution, that is, when the classifier is used to classify a
test point. As the computational complexity of R-LDA at execution is O

(
p3
)
, while that

of the discriminant-averaging RP-LDA ensemble classifier is O(M(np+ d3)) (Durrant and
Kabán, 2015), using a large M may negate the computational savings gained by projection,
in which case it is better to use R-LDA. For Table 3 in particular, the complexity of R-
LDA is on the order of 109 operations, while that of the ensemble tuned by the heuristic
is on the order of 108 operations. The heuristic also has the advantage of minimal tuning
at training time as reflected in Table 4. The worst performance goes to Durrant’s rule-
of-thumb which yields an error of 0.245. Its complexity at execution is, however, on the
order of 107 and, moreover, has the fastest tuning time at a fraction of a second (since all
that is required is to compute the sample covariance matrix rank). The finite ensemble
tuned by cross-validation also has a relatively high test error of 0.241 at a corresponding
complexity at execution on the order of 107, although the training procedure is much more
involved (around 8 minutes). The “infinite” ensemble tuned by cross-validation and the
finite ensemble tuned by G-estimators yield test errors of 0.224 and 0.220, respectively, at a
common complexity at execution on the order of 108; they exhibit higher errors in addition
to offering no computational advantages over the finite ensemble tuned by the heuristic.

Classifier Test error Parameters

disc-avg “infinite” ensemble
tuned by CV

0.224 d = 31

R-LDA 0.214 γ = 1.03

disc-avg
finite ensemble

tuned by:

CV 0.241 M = 200, d = 31
G-estimators 0.220 M = 400, d = 66
G-estimators

+
Heuristic

0.218 M = 552, d = 66

Durrant’s
rule-of-thumb

0.245 M = 100, d = 49

Table 3: Table of average testing errors and parameter settings of the discriminant-
averaging “infinite” ensemble classifier, where d is tuned based on cross-validation,
and the discriminant-averaging RP-LDA finite ensemble classifier where M and d
are tuned by Algorithm 1 based on cross-validation, G-estimators, and the heuris-
tic on Gaussian mixture model data. Here ψ = 0.95. For comparison, the Bayes
error is 0.0401.
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Classifier Tuning time (s)

R-LDA 700.654

disc-avg
finite ensemble

tuned by:

CV 498.517
G-estimators 8.800
G-estimator

+
Heuristic

0.608

Durrant’s
rule-of-thumb

0.135

Table 4: Tuning time (in seconds) of each of the classifiers in Table 3.

For real data, we consider the ‘phoneme aa ao’ data set. Again, we use 5000 projections
to approximate the infinite ensemble. Table 5 can be interpreted exactly as Table 3. Here
ψ = 0.99 and, as in the synthetic data simulation, the reported testing errors are averaged
over 500 trials except for the first row where the testing error is averaged over 5 trials.
All test errors are rounded to three decimal places. The 99% confidence intervals of the
averages are all on the order of 10−4. Table 6 reports the tuning time (in seconds) for each
of the classifiers in Table 5.

Classifier Test error Parameters

disc-avg “infinite” ensemble
tuned by CV

0.206 d = 11

R-LDA 0.210 γ = 4.76

disc-avg
finite ensemble

tuned by:

CV 0.206 M = 2500, d = 11
G-estimators 0.199 M = 100, d = 31
G-estimators

+
Heuristic

0.199 M = 82, d = 31

Durrant’s
rule-of-thumb

0.214 M = 100, d = 50

Table 5: Table of average testing errors and parameter settings of the discriminant-
averaging RP-LDA “infinite” ensemble classifier, where d is tuned based on cross-
validation, and the discriminant-averaging RP-LDA finite ensemble classifier where
M and d are tuned by Algorithm 1 based on cross-validation, G-estimators, and
the heuristic on the ‘phoneme aa ao’ data set. Here ψ = 0.99.

Table 5 shows that the two strategies of tuning a finite ensemble using the G-estimators
and the heuristic achieve the lowest testing error of 0.199. Both have complexities at execu-
tion on the order of 106. Their tuning times, as report in Table 6 are fractions of a second.
The fact that these finite ensembles perform better than the “infinite” ensemble tuned by
cross-validation can be explained by the better choice of d obtained by the G-estimators
(d = 31) as compared to cross-validation (d = 11). This is confirmed by computing the
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Classifier Tuning time (s)

R-LDA 76.010

disc-avg
finite ensemble

tuned by:

CV 277.467
G-estimators 0.610
G-estimator

+
Heuristic

0.073

Durrant’s
rule-of-thumb

0.002

Table 6: Tuning time (in seconds) of each of the classifiers in Table 5.

testing error of an ensemble with M = 5000 and d = 31 which turns out to be 0.195.
Durrant’s rule-of-thumb has the worst performance on this data, yielding an error of 0.214
at a complexity (at execution time) on the order of 107 operations. It, however, has the
least tuning time at 2 milliseconds. The “infinite” ensemble, R-LDA and the finite ensem-
ble tuned by cross-validation have complexities at execution on the order of 108, 107, and
107, respectively, as well as relatively high tuning times, and so have higher errors than the
G-estimator and heuristic schemes while offering no computational advantages.

The matlab code for the tuning framework based on the G-estimator of error and the
heuristic can be found at https://github.com/niyazil/DA-RP-ensemble_tuning.

5. Conclusion and Limitations

In this work, we studied randomly-projected LDA ensemble classifiers. In particular,
we looked into two main categories of these classifiers: discriminant-averaging and vote-
averaging RP-LDA ensemble classifiers. We conducted an asymptotic analysis of the en-
sembles using RMT tools in a regime where the data and projection dimensions are assumed
to grow at constant rates to each other. As a result, we derived their asymptotic distribu-
tions as well as limits of their class-conditional discriminant statistics.

Some important outcomes of this study include a newfound knowledge of the direct effect
of ensemble size on classification performance, the optimal way of constructing an ensemble
out of a set of RP-LDA discriminants, and whether or not projection selection matters for
these classifiers. More specifically, we show that ensemble size improves RP-LDA ensemble
classifier performance through decreasing the class-conditional discriminant variances while
maintaining their mean separations with increasing ensemble size. Moreover, we find that
equally-weighted discriminant-averaging is the asymptotically optimal method of combining
RP-LDA discriminants for Gaussian data. In particular, a zero-one binary weight scheme—
equivalent to projection selection—is not optimal, and neither are non-linear schemes such
as vote-averaging. These findings are confirmed on real and synthetic data.

Following from these findings, we propose a framework for tuning the discriminant-
averaging RP-LDA ensemble classifier parameters. We incorporate G-estimators derived
from the RMT analysis into this framework in order to improve computational complexity
at training. This is demonstrated on both real and synthetic data.
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One limitation of this work is that the analysis is based entirely on a binary classifier,
while in practice, a multi-class classifier may be needed for some problems. This is not
an issue, as the binary classifier readily extends to a multi-class setting as done by Sifaou
et al. (2020), who consider another variant of the LDA binary classifier derived under the
assumption of two Gaussian classes. In general, in order to apply a binary classifier to the
multi-class setting, one may consider a one-versus-the-rest approach or a one-versus-one
approach (Bishop, 2006). Grouping multiple classes together as in the one-versus-the-rest
approach violates the assumption of Gaussian classes (since ‘the rest’ is a Gaussian mixture
model). Thus, the one-versus-one approach is the only viable option, but can lead to
ambiguous classification (Bishop, 2006). As pointed out by Sifaou et al. (2020), ambiguities
can be resolved by deciding on the class with a higher discriminant score.

Another apparent limitation of this work is the assumption of Gaussian random pro-
jections. This assumption is inherited from the literature, mainly the body of work done
by Durrant and Kabán (2015) and Cannings and Samworth (2017). This is not strictly
required by the results in our paper as, for our derivations, all that is needed is for the
distribution of the projection to be invariant to orthogonal projection as well as to ensure
that the fourth moment of this distribution is finite. Our results then hold for any such
random projection. Gaussian projections are, however, desirable, as their behavior is well-
understood within the field of randomized numerical linear algebra, as well as having strong
performance guarantees. Yet the choice of Gaussian projections comes at the cost of other
desirable properties. For example, sparse projections or sub-Gaussian projections provide
various advantages over the classical Gaussian projection, such as simplicity and computa-
tional efficiency. The properties of these alternative distributions in the context of RP-LDA
ensemble classification would make an interesting potential future research direction.

On another note, we require that the data itself be Gaussian in order to be able to derive
an explicit expression for the probability of misclassification on top of which we build all
of our results. This condition can be relaxed using a Central Limit Theorem argument.
This is validated by the real data simulations where the data does not necessarily meet the
Gaussian assumption.
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Appendix A. Single RP-LDA Classifier Class-Conditional Discriminant
Statistics

This section of the appendices derives the DEs for the single RP-LDA classifier class-
conditional discriminant statistics as well as related proofs.

A.1 Means

In this section, we derive the DE of the quantity mi(1), i = 0, 1, defined in (3). Using the
law of total expectation, we have

mi(1) = ET ,R [E [WRP-LDA (x,R) |x ∈ Ci, T ,R]]

= ET ,R
[
µ̂T Σ̂−1

R

(
µi −

µ̂0 + µ̂1

2

)
+ ln

π̂1

π̂0

]
= ET

[
µ̂TER

[
Σ̂−1

R

](
µi −

µ̂0 + µ̂1

2

)
+ ln

π̂1

π̂0

]
, i = 0, 1.

Starting from the expression in the last line, we can proceed with the derivation of the
DE as we would with the class-conditional mean of the discriminant-averaging RP-LDA
infinite ensemble classifier discriminant. Note that this is exactly why we end up having the
equivalence m̄i(1) = m̄M=∞

i . Based on the derivation by Niyazi et al. (2020a), for i = 0, 1,

m̄i(1) =
1

2
lim
β→0

ν̃1(β)

[
(−1)i+1µT

(
p

n− 2
gΣ + Ip

)−1

µ+

(
1

n0
− 1

n1

)
tr

{
Σ

(
p

n− 2
gΣ + Ip

)−1
}]

+ ln
π1

π0
, (15)

where g satisfies the system of equations defined by

p

n− 2
g =

lim
β→0

ν̃1(β)

1 + g̃
(16)

and

g̃ =

lim
β→0

ν̃1(β)

n− 2
tr

{
Σ

(
Ip +

p

n− 2
gΣ

)−1
}
, (17)

and

lim
β→0

ν̃1(β) =

p
n−2y

∗

1− p
n−2y

∗ 1
n−2tr

{
Σ
(
Ip + p

n−2y
∗Σ
)−1

} ,
where y∗ is the unique root of the function

h(y) = 1− p

d
+

1

d
tr

{(
Ip +

p

n− 2
yDΣ

)−1
}
,

which exists when p > d. Since m̄i(1) = m̄M=∞
i , we denote both DEs by m̄i.
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A.2 Variance

In this section, we derive the DE of the quantity σ2(1) defined in (4). By making use of
the law of total variance with conditioning on the training data and projections (which are
independent of the test point x by assumption), we have

σ2(1) = ET ,R [Var [WRP-LDA (x,R) |x ∈ Ci, T ,R]]+VarT ,R [E [WRP-LDA (x,R) |x ∈ Ci, T ,R]]
(18)

The second term tends almost-surely to zero, as it is decaying. This can be shown using
Lemma 3.1 in the paper by Hachem et al. (2013).

Now, based on the data assumptions on x, the inner term of the first term in (18) is
exactly

Var [WRP-LDA (x,R) |x ∈ Ci, T ,R] = µ̂TRT (RΣ̂RT )−1RΣRT (RΣ̂RT )−1Rµ̂. (19)

We derive the DE of (19) in what follows. The first term in (18) is then the expectation of
this DE by the Vitali convergence theorem, since it can be shown that (19) is a uniformly
integrable sequence of random variables. This class of random variables has the property
that for a sequence Xn such that Xn � X, we also have E[Xn] � E[X].

Note that the rank of the p × p matrix Σ̂ is at most min {p, n− 2}. Therefore, Σ̂ is

singular when p > n − 2. Let r = rank
(
Σ̂
)

. Then Σ̂ = UDUT = UrDrU
T
r , where

Ur ∈ Rp×r contains the r eigenvectors of Σ̂ corresponding to non-zero eigenvalues and
Dr ∈ Rr×r contains the non-zero eigenvalues of Σ̂ along its diagonal. This is the compact
form of Σ̂. Note that since Σ̂ is symmetric (and thus a normal matrix), its pseudoinverse is
Σ̂+ = UrD

−1
r UT

r . This is made use of later in the derivation. Also note that since we are
deriving a DE (which should depend only on true statistics), access to the actual value of r
is forbidden as it depends on the sample covariance matrix. Nonetheless, we can make use
of the fact that under the Gaussian assumptions, r = min {p, n− 2} almost-surely. Keep in
mind that UT

r Ur = Ir, while, in general, UrU
T
r 6= Ip, except when r = p, that is, p ≤ n−2.

We can decompose U as U = [Ur Ũr], where Ũr ∈ Rp×(p−r) has as its columns the

eigenvectors corresponding to the zero eigenvalues of Σ̂. Then Ip = UUT = UrU
T
r +ŨrŨ

T
r .

Let Rr := RUr ∈ Rd×r and R̃r := RŨr ∈ Rd×(p−r). Define the resolvent Q2(β) as

Q2(β) := (RΣ̂RT + βId)
−1

= (RrDrR
T
r + βId)

−1,

then

A(β) := RT (RΣ̂RT + βId)
−1RΣRT (RΣ̂RT + βId)

−1R

= RTQ2(β)R
(
UrU

T
r + ŨrŨ

T
r

)
Σ
(
UrU

T
r + ŨrŨ

T
r

)
RTQ2(β)R

= RTQ2(β)RrU
T
r ΣUrR

T
r Q2(β)R + RTQ2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)R

+ RTQ2(β)R̃rŨ
T
r ΣUrR

T
r Q2(β)R + RTQ2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)R.

Overall,

Var [WRP-LDA (x,R) |x ∈ Ci, T ,R] = lim
β→0

µ̂TA(β)µ̂.
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Now we find the DE of the term µ̂TA(β)µ̂ after which we take the limit as β → 0.

µ̂TA(β)µ̂ = µ̂T
(
UrU

T
r + ŨrŨ

T
r

)
A(β)

(
UrU

T
r + ŨrŨ

T
r

)
µ̂

= µ̂TUrU
T
r A(β)UrU

T
r µ̂+ µ̂TUrU

T
r A(β)ŨrŨ

T
r µ̂

+ µ̂T ŨrŨ
T
r A(β)UrU

T
r µ̂+ µ̂T ŨrŨ

T
r A(β)ŨrŨ

T
r µ̂. (20)

We consider each term in (20) one by one. The derivations which follow use the fact that
the odd moments of a zero-mean Gaussian random variable are zero. This yields asymptotic
simplifications when taking the expectation with respect to R̃r which is independent of Rr

and never appears in a resolvent.
For the first term in (20), we have

µ̂TUrU
T
r A(β)UrU

T
r µ̂ = µ̂TUrR

T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂

+ µ̂TUrR
T
r Q2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂

+ µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂

+ µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂

� µ̂TUrR
T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂ (21)

+ µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂. (22)

For the second term in (20), we have

µ̂TUrU
T
r A(β)ŨrŨ

T
r µ̂ = µ̂TUrR

T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂

+ µ̂TUrR
T
r Q2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂

+ µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂

+ µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂

� µ̂TUrR
T
r Q2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂ (23)

+ µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂. (24)

For the third term in (20), we have

µ̂T ŨrŨ
T
r A(β)UrU

T
r µ̂ = µ̂T ŨrR̃

T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂

+ µ̂T ŨrR̃
T
r Q2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂

+ µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂

+ µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂

� µ̂T ŨrR̃
T
r Q2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂ (25)

+ µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂. (26)
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Finally, the fourth term in (20) satisfies

µ̂T ŨrŨ
T
r A(β)ŨrŨ

T
r µ̂ = µ̂T ŨrR̃

T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂

+ µ̂T ŨrR̃
T
r Q2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂

+ µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂

+ µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂

� µ̂T ŨrR̃
T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂ (27)

+ µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂. (28)

We derive asymptotic equivalents with respect to the projections first. Define Q1(β) =(
D

1/2
r RT

r RrD
1/2
r + βIr

)−1
. For (21), we have

µ̂TUrR
T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂

= µ̂TUrD
−1/2
r D1/2

r RT
r Q2(β)RrD

1/2
r D−1/2

r UT
r ΣUrD

−1/2
r D1/2

r RT
r Q2(β)RrD

1/2
r D−1/2

r UT
r µ̂

= µ̂T Σ̂+ΣΣ̂+µ̂− 2βµ̂T Σ̂+ΣUrD
−1/2
r Q1(β)D−1/2

r UT
r µ̂

+ β2µ̂TUrD
−1/2
r Q1(β)D−1/2

r UT
r ΣUrD

−1/2
r Q1(β)D−1/2

r UT
r µ̂,

where the second-to-last line makes use of the following relation obtained from the matrix-
inversion lemma:

D1/2
r RT

r (RrD
1/2
r D1/2

r RT
r + βId)

−1RrD
1/2
r = β

[
1

β
Ir −

(
D1/2
r RT

r RrD
1/2
r + βIr

)−1
]
.

From the paper by Kammoun et al. (2019), we have

Q1(β)↔ T1(β),

where

T1(β) =
1

β
(Ir + ν̃1(β)Dr)

−1

T̃1(β) =
1

β
(
1 + r

dν1(β)
)Id

and

ν1(β) =
1

β

1

r
tr
{

Dr (Ir + ν̃1(β)Dr)
−1
}

ν̃1(β) =
1

β
(
1 + r

dν1(β)
) . (29)
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Using the above relations, we have

µ̂TUrR
T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)RrU

T
r µ̂

� µ̂TUr

(
Dr +

1

ν̃1(β)
Ir

)−1

UT
r ΣUr

(
Dr +

1

ν̃1(β)
Ir

)−1

UT
r µ̂

+

(
1

ν̃1(β)

)2

µ̂TUr

(
Dr +

1

ν̃1(β)
Ir

)−2

UT
r µ̂

(
β2θ(C)θ̃

1− β2θ(Dr)θ̃

)
,

where

β2θ(Dr) =
β2

r
tr {DrT1(β)DrT1(β)}

=
1

(ν̃1(β))2

1

r
tr

{
D

(
D +

1

ν̃1(β)
Ip

)−1

D

(
D +

1

ν̃1(β)
Ip

)−1
}
,

β2θ(C) =
β2

r
tr {DrT1(β)CT1(β)}

=
1

r
tr
{
UT
r ΣUr

}
− 2

r
tr

{
UTΣUD

(
D +

1

ν̃1(β)
Ip

)−1
}

+
1

r
tr

{
D

(
D +

1

ν̃1(β)
Ip

)−1

UTΣU

(
D +

1

ν̃1(β)
Ip

)−1

D

}

=
1

(ν̃1(β))2

1

r
tr

{(
D +

1

ν̃1(β)
Ip

)−1

UTΣU

(
D +

1

ν̃1(β)
Ip

)−1
}
− 1

r
tr
{

Ũ
T
r ΣŨr

}
,

(30)

and

θ̃ =
r

d

(
1

β
(
1 + r

dν1(β)
))2

=
r

d
(ν̃1(β))2 ,

where C := D
−1/2
r UT

r ΣUrD
−1/2
r .

Now consider (22). Let a = Q2(β)RrU
T
r µ̂ and R̃r have rows r̃1, . . . , r̃d. We have the

intermediate convergence

µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂ =

∑
i,j

aiaj r̃
T
i Ũ

T
r ΣŨrr̃j

�
∑
i

a2
i

1

d
tr
{

Ũ
T
r ΣŨr

}
=

1

d
tr
{

Ũ
T
r ΣŨr

}
µ̂TUrR

T
r Q2

2(β)RrU
T
r µ̂.

We can show that

µ̂TUrR
T
r Q2

2(β)RrU
T
r µ̂ �

1

d
tr
{
Q2

2(β)
}
µ̂TUr

(
1

d
tr {Q2(β)}Dr + Ir

)−2

UT
r µ̂.
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Using the paper by Kammoun et al. (2019), we have

Q2(β)↔ T2(β), (31)

where

T2(β) =
1

β (1 + ν̃2(β))
Id

T̃2(β) =
1

β
(Ir + ν2(β)Dr)

−1

and

ν2(β) =
1

β (1 + ν̃2(β))

ν̃2(β) =
1

β

1

d
tr
{

Dr (Ir + ν2(β)Dr)
−1
}
. (32)

From (31), we have
1

d
tr {Q2(β)} � 1

d
tr {T2(β)} .

Now, let’s find the DE of 1
dtr
{
Q2

2(β)
}

. First, using the systems of equations in (29) and
(32), we can show that ν2(β) = ν̃1(β). Since

1

d
tr
{
Q2

2(β)
}

= −
d
[

1
dtr {Q2(β)}

]
dβ

,

then

1

d
tr
{
Q2

2(β)
}
� −

d
[

1
dtr {T2(β)}

]
dβ

,

that is, the limit of the derivative is the derivative of the limit. To justify this, first note that
1
dtr {Q2(β)} is a Stieltjes transform which is analytic outside the support of the spectrum

of RΣ̂RT . Since the support of the spectrum is bounded away from zero, taking β → 0
ensures that 1

dtr {Q2(β)} is analytic. Similarly, 1
dtr {T2(β)} is a Stieltjes transform which is

analytic outside the support of the limiting spectrum of RΣ̂RT , and since the support of the
limiting spectrum is bounded away from zero, taking β → 0 ensures that the 1

dtr {T2(β)}
is analytic. Since both 1

dtr {Q2(β)} and its limit 1
dtr {T2(β)} are analytic, it follows that

all derivatives of 1
dtr {Q2(β)} of any order converge to the corresponding derivatives of

1
dtr {T2(β)}. Then, because

1

d
tr {T2(β)} =

1

d
tr

{
1

β(1 + ν̃2(β))

}
= ν2(β)

= ν̃1(β),

we have
1

d
tr
{
Q2

2(β)
}
� −ν̃ ′1(β).

42



Discriminant and Vote-Averaging Randomly-Projected LDA Ensembles

We can solve the following set of equations (obtained by differentiating the system of equa-
tions (29)) for ν̃ ′1(β):

ν ′1(β) = − ν̃
′
1(β)

β

1

r
tr
{

Dr (Ir + ν̃1(β)Dr)
−1 Dr (Ir + ν̃1(β)Dr)

−1
}

− 1

β2

1

r
tr
{

Dr (Ir + ν̃1(β)Dr)
−1
}

= −ν̃ ′1(β)βθ(Dr)−
1

β
ν1(β)

ν̃ ′1(β) = −r
d

ν ′1(β)

β

1(
1 + r

dν1(β)
)2 − 1

β2
(
1 + r

dν1(β)
)

= −ν ′1(β)βθ̃ − 1

β
ν̃1(β),

from which

ν̃ ′1(β) =
ν1(β)θ̃ − 1

β ν̃1(β)

1− β2θ(Dr)θ̃
.

So, overall we have

µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)RrU

T
r µ̂

� − ν̃
′
1(β)

d
tr
{

Ũ
T
r ΣŨr

}
µ̂TUr

(
1

d
tr {T2(β)}Dr + Ir

)−2

UT
r µ̂

= − ν̃
′
1(β)

d
tr
{

Ũ
T
r ΣŨr

}
µ̂TUr (ν̃1(β)Dr + Ir)

−2 UT
r µ̂

= − ν̃ ′1(β)

(ν̃1(β))2

1

d
tr
{

Ũ
T
r ΣŨr

}
µ̂TUr

(
Dr +

1

ν̃1(β)
Ir

)−2

UT
r µ̂.

Applying the same techniques to (23), we can show that

µ̂TUrR
T
r Q2(β)RrU

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂ � ν̃1(β)µ̂TUr

(
Dr +

1

ν̃1(β)
Ir

)−1

UT
r ΣŨrŨ

T
r µ̂.

For (24), we have

µ̂TUrR
T
r Q2(β)R̃rŨ

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂ � 0.

The terms (25) and (26) are just the transpose of (23) and (24). For (27), we have

µ̂T ŨrR̃
T
r Q2(β)RrU

T
r ΣUrR

T
r Q2(β)R̃rŨ

T
r µ̂

� −µ̂T ŨrŨ
T
r µ̂

ν̃ ′1(β)

(ν̃1(β))2

1

d
tr

{
ΣUr

(
Dr +

1

ν̃1(β)
Ir

)−2

UT
r

}
,
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and for the final term (28), we have

µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂

=
∑
i,j,k,l

[
Ũ
T
r µ̂
]
i

[
Ũ
T
r µ̂
]
j

[
Ũ
T
r ΣŨr

]
k,l

r̃Ti Q2(β)r̃kr̃
T
l Q2(β)r̃j .

It is easy to see that only three cases survive asymptotically in this summation:

1. i = j = k = l;

2. i = k, j = l, i 6= j;

3. i = j, k = l, i 6= k.

For the first case,

∑
i=j=k=l

[
Ũ
T
r µ̂
]
i

[
Ũ
T
r µ̂
]
j

[
Ũ
T
r ΣŨr

]
k,l

r̃Ti Q2(β)r̃kr̃
T
l Q2(β)r̃j

=
∑
i

([
Ũ
T
r µ̂
]
i

)2 [
Ũ
T
r ΣŨr

]
i,i

r̃Ti Q2(β)r̃ir̃
T
i Q2(β)r̃i

�

[
2

d2
tr
{
Q2

2(β)
}

+

(
1

d
tr {Q2(β)}

)2
]∑

i

([
Ũ
T
r µ̂
]
i

)2 [
Ũ
T
r ΣŨr

]
i,i

� (ν̃1(β))2
∑
i

([
Ũ
T
r µ̂
]
i

)2 [
Ũ
T
r ΣŨr

]
i,i
, (33)

where the third line uses the expectation of the term r̃Ti Q2(β)r̃ir̃
T
i Q2(β)r̃i. For the second

case,

∑
i=k, j=l, i 6=j

[
Ũ
T
r µ̂
]
i

[
Ũ
T
r µ̂
]
j

[
Ũ
T
r ΣŨr

]
k,l

r̃Ti Q2(β)r̃kr̃
T
l Q2(β)r̃j

=
∑
i 6=j

[
Ũ
T
r µ̂
]
i

[
Ũ
T
r µ̂
]
j

[
Ũ
T
r ΣŨr

]
i,j

r̃Ti Q2(β)r̃ir̃
T
j Q2(β)r̃j

�
(

1

d
tr {Q2(β)}

)2∑
i 6=j

[
Ũ
T
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i
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. (34)
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For the third case, we have∑
i=j, k=l, i 6=k
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T
r µ̂
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i
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j
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]
k,l

r̃Ti Q2(β)r̃kr̃
T
l Q2(β)r̃j

=
∑
i 6=k

([
Ũ
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([
Ũ
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)2 [
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T
r ΣŨr

]
i,i

� 1

d
tr
{
Q2

2(β)
} 1

d
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{

Ũ
T
r ΣŨr

}
µ̂T ŨrŨ

T
r µ̂

� −ν̃ ′1(β)
1

d
tr
{

Ũ
T
r ΣŨr

}
µ̂T ŨrŨ

T
r µ̂. (35)

Combining (33), (34), and (35), we have overall

µ̂T ŨrR̃
T
r Q2(β)R̃rŨ

T
r ΣŨrR̃

T
r Q2(β)R̃rŨ

T
r µ̂

� (ν̃1(β))2 µ̂ŨrŨ
T
r ΣŨrŨ

T
r µ̂− ν̃ ′1(β)

1

d
tr
{

Ũ
T
r ΣŨr

}
µ̂T ŨrŨ

T
r µ̂. (36)

Combining the above derivations starting from (20) to (36), we have

µ̂TA(β)µ̂ � µ̂TUr

(
Dr +

1

ν̃1(β)
Ir

)−1

UT
r ΣUr

(
Dr +

1

ν̃1(β)
Ir
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1− β2θ(Dr)θ̃
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1

d
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Ũ
T
r ΣŨr

}] 1

(ν̃1(β))2 µ̂
TUr

(
Dr +

1

ν̃1(β)
Ir

)−2

UT
r µ̂

+ 2ν̃1(β)µ̂TUr

(
Dr +

1

ν̃1(β)
Ir

)−1

UT
r ΣŨrŨ

T
r µ̂

− µ̂T ŨrŨ
T
r µ̂

ν̃ ′1(β)

(ν̃1(β))2

1

d
tr

{
ΣUr

(
Dr +

1

ν̃ 1
(β)Ir

)−2

UT
r

}
+ (ν̃1(β))2 µ̂T ŨrŨ

T
r ΣŨrŨ

T
r µ̂− ν̃ ′1(β)

1

d
tr
{

Ũ
T
r ΣŨr

}
µ̂T ŨrŨ

T
r µ̂.

Through a series of manipulations in which we express everything in terms of D instead of
Dr and also by using the relation

ν̃ ′1(β) = − (ν̃1(β))2

1− β2θ(Dr)θ̃

obtained through the system of equations (29), and by expressing (30) as

β2θ(C) = β2θ(C′)− 1

r
tr
{

Ũ
T
r ΣŨr

}
,
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where

β2θ(C′) =
1

(ν̃1(β))2

1

r
tr

{(
D +

1

ν̃1(β)
Ip

)−1

UTΣU

(
D +

1

ν̃1(β)
Ip

)−1
}
,

we have the simplification

µ̂TA(β)µ̂ � µ̂TU

(
D +

1

ν̃1(β)
Ip

)−1

UTΣU

(
D +

1

ν̃1(β)
Ip

)−1

UT µ̂

+

(
β2θ(C′)θ̃

1− β2θ(Dr)θ̃

)
1

(ν̃1(β))2 µ̂
TU

(
D +

1

ν̃1(β)
Ip

)−2

UT µ̂. (37)

Now what must be done is to remove the randomness from the training. This appears in
µ̂, D, and in the current definition of ν̃1(β).

First, we derive lim
β→0

ν̃1(β) in such a way that it depends only on the true statistics.

Using the equations in (29), it can be shown that

1− p

d
+

1

lim
β→0

ν̃1(β)

1

d
tr


Σ̂ +

1

lim
β→0

ν̃1(β)
Ip

−1 = 0 (38)

Using the fact that Σ̂ = 1
n−2Σ1/2ZZTΣ1/2 for some Z ∈ Rp×(n−2) with i.i.d. standard

Gaussian entries and by eigendecomposing Σ as Σ = VDΣVT , we have

1

d
tr


Σ̂ +

1

lim
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Ip
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1
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 1
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−1
∼ 1

d
tr


 1

n− 2
D

1/2
Σ ZZTD

1/2
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ν̃1(β)
Ip

−1
From the paper by Kammoun et al. (2019), we have

W(γ)↔ E(γ),

where

W(γ) =

(
1

n− 2
D

1/2
Σ ZZTD

1/2
Σ − γIp

)−1

,

E(γ) = −1

γ

(
Ip +

p

n− 2
g(γ)DΣ

)−1

,

p

n− 2
g(γ) = −1

γ

1

1 + g̃(γ)
,

and

g̃(γ) = −1

γ

1

p
tr

{
p

n− 2
DΣ

(
Ip +

p

n− 2
g(γ)DΣ

)−1
}
,
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from which it follows that

1

d
tr


Σ̂ +

1

lim
β→0

ν̃1(β)
Ip

−1 �
lim
β→0

ν̃1(β)

d
tr


Ip +

p

n− 2
g

− 1

lim
β→0

ν̃1(β)

DΣ

−1 .

Let g := g

(
− 1

lim
β→0

ν̃(β)

)
and g̃ := g̃

(
− 1

lim
β→0

ν̃(β)

)
. We now have

1− p

d
+

1

d
tr

{(
Ip +

p

n− 2
gDΣ

)−1
}
� 0. (39)

Using (39), the quantity g can be solved for as the unique root y∗ of the monotonically
decreasing function

h(y) = 1− p

d
+

1

d
tr

{(
Ip +

p

n− 2
yDΣ

)−1
}

= 1− p

d
+

1

d

p∑
i=1

1

1 + p
n−2λi(Σ)y

,

which exists when p > d. It can be shown that g � y∗. Then combining (16) and (17), we
can solve for lim

β→0
ν̃1(β) in terms of g, and so we have

lim
β→0

ν̃1(β) =

p
n−2y

∗

1− p
n−2y

∗ 1
n−2tr
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DΣ

(
Ip + p

n−2y
∗DΣ
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} .

By dealing with the randomness from the sample covariance in (37) using similar tech-
niques, followed by taking the limit as β → 0, we obtain

lim
β→0

µ̂TA(β)µ̂ = µ̂TRT (RΣ̂RT )−1RΣRT (RΣ̂RT )−1Rµ̂
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,
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where

Ω =

 p
n−2g

lim
β→0

ν̃1(β)

2

1

n− 2
tr {DΣEDΣE} .

The final step is to remove the randomness coming from the sample means in µ̂. Using

µ̂ = µ+
Σ1/2Z11

n1
− Σ1/2Z01

n0
,

where Zi ∈ Rp×ni , i = 0, 1, has i.i.d. N (0, 1) entries, and taking the expectation over

Zi1, i = 0, 1, while making use of the fact that Zi1
ni
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)
, i = 0, 1, we have
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(40)
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A.2.1 Proof that the Single RP-LDA Discriminant Variance is
Asymptotically Greater than that of the Infinite Ensemble

We simply prove that σ̄2(1) > σ̄2
M=∞. Using the expressions in (40) and (45), we have

σ̄2(1)− σ̄2
M=∞ =
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µTVE2VTµ+
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+
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.

(41)

Now we must show that each of the constituent terms of (41) is positive. The term
1 − Ω fits the form of the term 1 − t2γn(t)γ̃n(t) in the paper by Hachem et al. (2008) in
which it was shown to be positive. Additionally, all traces and quadratic terms in the first
and second lines of (41) are positive since the matrices involved are positive definite. What
remains is the denominator of the fraction in the last line. This term comes from taking
the asymptotic limit of the term 1− lim

β→0
β2θ(Dr)θ̃ which can be expressed as

1− lim
β→0

β2θ(Dr)θ̃ = 1− p

d
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lim
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 . (42)
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Using (38), equation (42) simplifies to

1− lim
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Let G := lim
β→0

ν̃1(β)D + Ip. Then, using the relation A−1 −B−1 = A−1(B −A)B−1 with
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we have
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d
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> 0,

since lim
β→0

ν̃1(β)di+1 > 1, where di is the ith entry along the diagonal of the diagonal matrix

D.

Appendix B. Discriminant-Averaging RP-LDA Ensemble Classifier
Class-Conditional Discriminant Statistics

This section of the appendices derives the DEs for the discriminant-averaging RP-LDA
ensemble classifier class-conditional discriminant statistics.

B.1 Means

In this section, we derive the DE of the quantity mi(M), i = 0, 1, defined in (6). By the
law of total expectation, we have

mi(M) = ET ,R [E [Wdisc-avg(x,R1, . . . ,RM )|x ∈ Ci, T ,R]]

=
1

M

M∑
k=1

ET ,R [E [WRP-LDA (x,Rk) |x ∈ Ci, T ,R]]

� 1

M

M∑
k=1

m̄i(1)

= m̄i(1), i = 0, 1,
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where the convergence in the second-to-last line is proven in Appendix A.1. Thus, m̄i(M) =
m̄i(1) and we denote both DEs by m̄i.

B.2 Variance

In this section, we derive the DE of the quantity σ2(M), defined in (7). By the law of total
variance,

σ2(M) = ET ,R [Var [Wdisc-avg(x,R1, . . . ,RM )|x ∈ Ci, T ,R]]

+ VarT ,R [E [Wdisc-avg(x,R1, . . . ,RM )|x ∈ Ci, T ,R]] . (43)

For a similar reason to that in Appendix A.2, the second term in (43) is asymptotically
zero. Considering the inner term of the first term, we have

Var
[
Wdisc-avg

(
x, {Rk}Mk=1

)∣∣∣x ∈ Ci, T , {Rk}Mk=1

]
= Var

[
1

M

M∑
k=1

WRP-LDA (x,Rk)

∣∣∣∣∣x ∈ Ci, T , {Rk}Mk=1

]

=
1

M2

M∑
k=1

Var [WRP-LDA (x,Rk)|x ∈ Ci, T ,Rk]

+
1

M2

M∑
k 6=j

Cov [WRP-LDA (x,Rk) ,WRP-LDA (x,Rj)|x ∈ Ci, T ,Rk,Rj ]

� 1

M
σ̄2(1) +

M − 1

M2
σ̄2
M=∞

=
1

M
σ̄2(1) +

(
1− 1

M

)
σ̄2
M=∞, (44)

where the convergence in the second-to-last line follows from the proof in Appendix A.2
and also the fact that

Cov [WRP-LDA (x,Rk) ,WRP-LDA (x,Rj)|x ∈ Ci, T ,R]

= µ̂TRT
k (RkΣ̂RT

k )−1RkΣRT
j (RjΣ̂RT

j )−1Rjµ̂

� µ̂TER

[
RT (RΣ̂RT )−1R

]
ΣER

[
RT (RΣ̂RT )−1R

]
µ̂

� σ̄2
M=∞.

The exact expression of σ̄2
M=∞ is derived by Niyazi et al. (2020a) as

σ̄2
M=∞ =

1

1− Ω

[
µTVEDΣEVµ+

(
1

n0
+

1

n1

)
tr {DΣEDΣE}

]
. (45)

Appendix C. RP-LDA Ensemble Classifier Error Analysis

This section of the appendices derives the DEs for the probabilities of misclassification of the
discriminant-averaging, asymptotic MAP, and vote-averaging RP-LDA ensemble classifiers.
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C.1 Discriminant-Averaging RP-LDA Ensemble Classifier

The expected probability of misclassification DE of the discriminant-averaging RP-LDA
ensemble classifier composed of M RP-LDA discriminants is

ε̄ := π0Φ

(
m̄0√
σ̄2(M)

)
+ π1Φ

(
− m̄1√

σ̄2(M)

)
, (46)

where M = 1, 2, . . .. This statement claims the convergence of the expected probabil-
ity of misclassification of the discriminant-averaging RP-LDA ensemble (over training and
projections) to the probability of misclassification computed using the distribution of the
asymptotic discriminant stated in Theorem 4. This follows from the convergence in dis-
tribution in Theorem 4 of this paper and Lemma 2.11 in the book by Vaart (1998). Note
that the convergence is not in the probabilistic sense; the probability of misclassification is
conditioned on the training and random projections before applying Lemma 2.11 to obtain
its limit. The limit of the expected probability of misclassification over the training and
random projections (46) is then simply the expectation of the first limit. This follows by
the bounded convergence theorem since the probability measure is upper bounded by 1.

C.2 Asymptotic MAP RP-LDA Ensemble Classifier

The expected probability of misclassification DE of the asymptotic MAP RP-LDA ensemble
classifier composed of M RP-LDA discriminants is

π0Φ

−1
2

(m̄1−m̄0)2

σ̄2(M)
+ lnπ1π0√

(m̄1−m̄0)2

σ̄2(M)

+ π1Φ

−1
2

(m̄1−m̄0)2

σ̄2(M)
− lnπ1π0√

(m̄1−m̄0)2

σ̄2(M)

 ,

where M = 1, 2, . . .. This statement claims the convergence of the expected probability of
misclassification of the asymptotic MAP RP-LDA ensemble (over training and projections)
to the probability of misclassification computed using the distribution of the asymptotic
discriminant, which can be derived easily from Theorem 4. This result then follows from
this convergence in distribution and Lemma 2.11 in the book by Vaart (1998). Again, the
convergence is not in the probabilistic sense.

C.3 Vote-Averaging RP-LDA Ensemble Classifier

As stated in Theorem 7, the asymptotic distribution of the vote-averaging RP-LDA en-
semble class-conditional discriminant times M is a correlated binomial having M trials,
probability of success p̄i, i = 0, 1, and constant correlation ρ̄i between trial outcomes.
In this case, however, knowing the distribution is not enough to determine the asymptotic
probability of misclassification. This is because the correlated binomial PMF is not uniquely
specified by the correlation coefficient(s) between and probability of success of each trial.
Additional information pertaining to the conditional correlations is needed. Consequently,
multiple models for correlated binomials based on varying assumptions have been proposed.

One of these models is Moody’s model (Witt, 2004). Moody’s correlated binomial model
makes the assumption that the conditional correlations of the outcomes of any two trials
given that any subset of the others are all successes is constant. To test this model, we
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generate the empirical PMF of the vote-averaging RP-LDA ensemble classifier. This model
fits the empirical PMF well, at least up to M = 35, beyond which numerical issues occur
which hinder the accurate computation of Moody’s PMF. This seems to suggest that the
constant conditional correlation condition holds for our setup.

Through our own numerical investigation, we find that this condition, in fact, does
not hold, although the conditional correlations are close enough that the corresponding
conditional probabilities of success end up being very close to those predicted by Moody’s
model. Since Moody’s PMF is characterized by these conditional probabilities, this might
explain why we have a close match.

Denote by pi(k) the probability that MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci asymptotically
takes the value k. The asymptotic conditional PMF of the vote-averaging RP-LDA ensemble
discriminant (times M) according to Moody’s model is then

pi(k) =


1 +

∑M
j=1(−1)j

(
M
j

)∏j
i=1 p̄i, for k = 0(

M
k

)∑M−k
j=0

[
(−1)j

(
M−k
j

)∏j+k
l=1 p̄

(l)
i

]
, for k = 1, . . . ,M

0, otherwise,

where p̄
(j)
i = 1−(1− p̄i)(1− ρ̄i)j−1, j = 2, . . . ,M . Based on this, the asymptotic probability

of misclassification of the vote-averaging RP-LDA ensemble discriminant with a threshold
of 0.5 is

π0

∑
k>M/2

p0(k) + π1

∑
k≤M/2

p1(k).

Appendix D. Proof of Asymptotic Distributions and Optimal Ensemble
Construction

This section of the appendices derives the joint asymptotic distributions of a set of RP-LDA
discriminants as well as the asymptotic distributions of the class-conditional discriminants
of the discriminant-averaging RP-LDA finite ensemble classifier, the discriminant-averaging
RP-LDA infinite ensemble classifier, and the vote-averaging RP-LDA ensemble classifier. It
also derives the Neyman-Pearson RP-LDA ensemble classifier.

D.1 Asymptotic Joint Distribution of Multiple RP-LDA Discriminants

In this section, we prove the asymptotic joint distribution ofM single RP-LDA discriminants
as stated in Theorem 8.

Recall that W = [WRP-LDA (x,R1) , . . . ,WRP-LDA (x,RM )]T and let

Σ̂−1
Rk

:= RT
k (RkΣ̂RT

k )−1Rk, k = 1, . . . ,M.
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Conditioned on {Rk}Mk=1 and the training set T and for x ∈ Ci, W is a Gaussian vector
(through x) with

ζi := E
[
W
∣∣∣{Rk}Mk=1 , T ,x ∈ Ci

]

=


µ̂T Σ̂−1

R1

(
µi − µ̂0+µ̂1

2

)
+ ln π̂1π̂0

...

µ̂T Σ̂−1
RM

(
µi − µ̂0+µ̂1

2

)
+ ln π̂1π̂0

 , i = 0, 1,

and covariance Π with entries

Var [WRP-LDA (x,Rk) |Rk, T ,x ∈ Ci] = µ̂T Σ̂−1
Rk

ΣΣ̂−1
Rk
µ̂, k = 1, . . . ,M,

along the diagonal, and

Cov [WRP-LDA (x,Rk) ,WRP-LDA (x,Rj) |Rk,Rj , T ,x ∈ Ci]
= µ̂T Σ̂−1

Rk
ΣΣ̂−1

Rj
µ̂, j, k = 1, . . . ,M, j 6= k,

off the diagonal. From the derivations in Appendix A and Appendix B, we know that

ζi � ζ̄i
= m̄i1M , i = 0, 1,

Var [WRP-LDA (x,Rk) |Rk, T ,x ∈ Ci] � σ̄2(1), ∀k,

and

Cov [WRP-LDA (x,Rk) ,WRP-LDA (x,Rj) |Rk,Rj , T ,x ∈ Ci] � σ̄2
M=∞, ∀j 6= k.

Since M is fixed, then Π defined above converges pointwise, and so we also have

Π � Π̄

=


σ̄2(1) σ̄2

M=∞ · · · σ̄2
M=∞

σ̄2
M=∞

. . .
. . .

...
...

. . .
. . . σ̄2

M=∞
σ̄2
M=∞ · · · σ̄2

M=∞ σ̄2(1)


=
(
σ̄2(1)− σ̄2

M=∞
)
IM + σ̄2

M=∞1M1TM .

Now we prove that W converges in distribution to a Gaussian random vector through its
characteristic function.
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Denote the characteristic function of W given x ∈ Ci by φW,i (ω). Then

φW,i (ω) = E
[
exp

(
jωTW

)∣∣x ∈ Ci]
= E{Rk}Mk=1,T

[
E
[
exp

(
jωTW

)∣∣∣{Rk}Mk=1 , T ,x ∈ Ci
]]

= E{Rk}Mk=1,T

[
exp

(
jζTi ω −

1

2
ωTΠω

)]
= E{Rk}Mk=1,T

[
exp

(
j(ζi − ζ̄i)Tω

)
exp

(
−1

2
ωT
(
Π− Π̄

)
ω

)
exp

(
jζ̄Ti ω −

1

2
ωT Π̄ω

)]
� E{Rk}Mk=1,T

[
exp

(
jζ̄Ti ω −

1

2
ωT Π̄ω

)]
= exp

(
jζ̄Ti ω −

1

2
ωT Π̄ω

)
,

where the third line follows from the fact that, conditioned on the projections and training,
the discriminants are jointly Gaussian, and the second-to-last line is justified through the
dominated convergence theorem by the fact that characteristic functions are bounded. The
final line reveals a Gaussian characteristic function with mean ζ̄i and covariance Π̄, thus
the vector W given x ∈ Ci is asymptotically Gaussian.

D.2 Neyman-Pearson RP-LDA Ensemble Classifier

This section derives the Neyman-Pearson RP-LDA ensemble classifier of Theorem 9 which
is based on the asymptotic joint distribution of a set of RP-LDA discriminants.

According to the Neyman-Pearson lemma, for simple hypotheses, the test which rejects
the null hypothesis for large values of the ratio of likelihood of observations under the
alternative hypothesis to the likelihood of observations under the null hypothesis is the
most powerful α-level test. The likelihoods in this case are the joint PDFs of the RP-LDA
discriminants under each hypothesis. Although we do not know the exact joint distributions,
we do know that the discriminants are asymptotically Gaussian, as stated in Theorem 8.
So, asymptotically, the likelihood ratio statistic is

exp
(
−1

2

(
W− ζ̄1

)T
Π̄−1

(
W− ζ̄1

))
exp

(
−1

2

(
W− ζ̄0

)T
Π̄−1

(
W− ζ̄0

)) = exp

(
m̄1TMΠ̄−1

(
W− m̄0 + m̄1

2
1M

))
, (47)

where m̄ := m̄1 − m̄0. We can further simplify this by taking advantage of the special
structure of Π−1. Using the matrix inversion lemma (see Lemma 21 of the tutorial of
Müller and Debbah, 2016) and recalling that

σ̄2(M) =
1

M
σ̄2(1) +

(
1− 1

M

)
σ̄2
M=∞,

we have

Π̄−1 =
1

σ̄2(1)− σ̄2
M=∞

[
IM −

σ̄2
M=∞

Mσ̄2(M)
1M1TM

]
.
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The log of the likelihood ratio statistic in (47) then simplifies to

m̄

Mσ̄2(M)

M∑
k=1

[
WRP-LDA (x,Rk)−

m̄0 + m̄1

2

]
=

m̄

σ̄2(M)
Wdisc-avg

(
x, {Rk}Mk=1

)
− m̄2

1 − m̄2
0

2σ̄2(M)
.

(48)

For m̄ > 0, (48) is an increasing function of Wdisc-avg(x,R1, . . . ,RM ). Thus, rejecting the
null hypothesis for large values of (48) is equivalent to rejecting the null hypothesis for
large values of Wdisc-avg(x,R1, . . . ,RM ). This condition can easily be verified using the
definitions of m̄i, i = 0, 1, in Appendix A.1. The most powerful α-level test according to
the Neyman-Pearson lemma is then to classify x to C1 if

Wdisc-avg(x,R1, . . . ,RM ) > η

and to C0 otherwise, where η is such that

P {(Wdisc-avg(x,R1, . . . ,RM ) |x ∈ C0) > η} = α,

or, equivalently (asymptotically),

η = m̄0 +
√
σ̄2(M)Q−1 (α) ,

where Q−1(·) is the inverse Q-function.

D.3 Asymptotic Distribution of the Discriminant-Averaging RP-LDA Finite
Ensemble Classifier Class-Conditional Discriminants

The asymptotic distribution of the single RP-LDA discriminant follows trivially from the
proof of the joint asymptotic distribution of M RP-LDA discriminants in Appendix D.1,
by setting M = 1.

For the general case, using the fact that

Wdisc-avg

(
x, {Rk}Mk=1

)∣∣∣x ∈ Ci, T , {Rk}Mk=1 =
1

M

M∑
k=1

WRP-LDA (x,Rk)

∣∣∣∣∣x ∈ Ci, T , {Rk}Mk=1

is Gaussian with mean

1

M

M∑
k=1

µ̂T Σ̂−1
Rk

(
µi −

µ̂0 + µ̂1

2

)
+ ln

π̂1

π̂0
� m̄i

and variance

1

M2

M∑
k=1

Var [WRP-LDA (x,Rk)|x ∈ Ci, T ,Rk]

+
1

M2

M∑
k 6=j

Cov [WRP-LDA (x,Rk) ,WRP-LDA (x,Rj)|x ∈ Ci, T ,Rk,Rj ]

� 1

M
σ̄2(1) +

(
1− 1

M

)
σ̄2
M=∞,
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the asymptotic distribution can be proven by convergence of the relevant characteristic
function as in Appendix D.1.

D.4 Asymptotic Distribution of the Discriminant-Averaging RP-LDA Infinite
Ensemble Classifier Class-Conditional Discriminants

Using the fact that

WM=∞(x)|x ∈ Ci, T = µ̂TER

[
Σ̂−1

R

](
x− µ̂0 + µ̂1

2

)
+ ln

π̂1

π̂0

∣∣∣∣x ∈ Ci, T
is Gaussian with mean

µ̂TER

[
Σ̂−1

R

](
µi −

µ̂0 + µ̂1

2

)
+ ln

π̂1

π̂0
� m̄i

and variance

µ̂TER

[
Σ̂−1

R

]
ΣER

[
Σ̂−1

R

]
µ̂ � σ̄2

M=∞,

the asymptotic distribution can be proven by convergence of the relevant characteristic
function as in Appendix D.1.

D.5 Asymptotic Distribution of the Vote-Averaging RP-LDA Ensemble
Classifier Class-Conditional Discriminants

The class-conditional discriminant times M ,

MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci =
M∑
k=1

1 {WRP-LDA (x,Rk)} |x ∈ Ci,

is clearly a sum of correlated Bernoullis. The probability of success for each Bernoulli
and the correlations between Bernoullis vary through their random projections. Thus,
MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci is a correlated Binomial random variable with varying
probability of success for each trial and varying correlations between trials.

The PMF of MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci, given by

P {(MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci) = m} , m = 0, 1, . . . ,M,

can be obtained exactly as a function of the underlying discriminants

{WRP-LDA (x,Rk) |x ∈ Ci}Mk=1

by summing over all probabilities where exactly m of the single RP-LDA discriminants are
greater than zero. For example,

P {(MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci) = 1} =

P {WRP-LDA (x,R1) > 0,WRP-LDA (x,R2) < 0, . . . ,WRP-LDA (x,RM ) < 0|x ∈ Ci}
+ P {WRP-LDA (x,R1) < 0,WRP-LDA (x,R2) > 0,WRP-LDA (x,R3) < 0, . . . |x ∈ Ci}+ . . .

+ P {WRP-LDA (x,R1) < 0, . . . ,WRP-LDA (x,RM−1) < 0,WRP-LDA (x,RM ) > 0|x ∈ Ci} .
(49)
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Moreover, the corresponding CDF is simply a cumulative sum of the PMF.

We have from Theorem 8 that the class-conditional joint distribution of M single RP-
LDA discriminants converges to a Gaussian with mean ζ̄i and covariance Π̄. Thus the
PMF, and, as a result, the CDF of MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci, can be computed
asymptotically based on the limiting distribution. Formally, let W̄i = [W̄1,i, . . . , W̄M,i]

T

denote a Gaussian with ζ̄i and covariance Π̄. Since

lim
n,p,d→∞

P {(MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci) = m} − P

{
M∑
k=1

1
{
W̄k,i > 0

}
= m

}
= 0

through the fact that the left-hand side can be expressed as the limit on a sum of probabili-
ties involving single RP-LDA discriminants (as in (49)) and also the underlying convergence
in distribution of these discriminants shown in Theorem 8, then ∀x ∈ R,

lim
n,p,d→∞

P {(MWvote-avg(x,R1, . . . ,RM )|x ∈ Ci) ≤ x}

− P

{
M∑
k=1

1
{
W̄k,i > 0

}
≤ x

}
= 0, (50)

which is convergence in distribution.

The term
∑M

k=1 1
{
W̄k,i > 0

}
is a correlated Binomial consisting of M trials. It is

straightforward to compute the probability of success of its trials and correlations between
its trials as a function of the distribution of W̄i. Because of the structure of ζ̄i and Π̄, the
probabilities of success and correlations are constants denoted p̄i and ρ̄i. It is easy to show
that ρ̄i is always positive.

Note that (50) gives a way to approximate the PMF of MWvote-avg(x,R1, . . . ,RM )|x ∈
Ci (and thus the PMF of Wvote-avg(x,R1, . . . ,RM )|x ∈ Ci which is obtained by simply

dividing the PMF arguments by M). Since
{
W̄k,i

}M
k=1

are identically distributed, computing
the asymptotic PMF becomes a counting problem. These computations, however, involve
numerical integration. This can become restrictive when M is large, and for that reason we
propose the approximation of the asymptotic PMF by Moody’s correlated Binomial PMF
in Appendix C.3.

Appendix E. Derivation of G-estimators

This section of the appendices derives the G-estimators of the most common metrics of
binary classification. These rely on building blocks m̂i, i = 0, 1, σ̂2(1), and σ̂2

M=∞. As
m̂i, i = 0, 1 and σ̂2

M=∞ were derived in detail by Niyazi et al. (2020a), we consider only
σ̂2(1) in the current work. Section E.1 derives σ̂2(1), while Section E.2 proves Theorem 12.
Additionally, Section E.3 derives the approximation of the infinite to finite discriminant-
averaging RP-LDA ensemble classifier error ratio used to solve for M in the heuristic intro-
duced in Section 4.2.
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E.1 Derivation of σ̂2(1)

The first step is to derive the quantity lim
β→0

ν̃(β) as a function of the training (as opposed

to true statistics as was done in Appendix A). From the system of equations (29), we have

1− p

d
+

1

lim
β→0

ν̃(β)

1

d
tr


Σ̂ +

1

lim
β→0

ν̃(β)
Ip

−1 = 0. (51)

The trace term on the left-hand side can be rewritten as

1

lim
β→0

ν̃(β)

1

d
tr


Σ̂ +

1

lim
β→0

ν̃(β)
Ip

−1 =
1

d
tr

{(
lim
β→0

ν̃(β)D + Ip

)−1
}

=
1

d

p∑
i=1

1

1 + lim
β→0

ν̃(β)λi(Σ̂)
.

Now consider the monotonically decreasing function,

f(x) = 1− p

d
+

1

d

p∑
i=1

1

1 + xλi(Σ̂)
.

As x→ 0, f(x)→ 1 and as x→∞, f(x)→ 1− p
d < 0, when p > d, which is the typical use

case. Therefore, f(x) has a unique root, x∗, and lim
β→0

ν̃(β) = x∗. Since (51) can be rewritten

as

1− 1

d
tr

Σ̂

Σ̂ +
1

lim
β→0

ν̃(β)
Ip

−1 = 0,

then overall, the G-estimator of lim
β→0

ν̃(β), denoted ν̂, is such that

1− 1

d
tr

{
Σ̂

(
Σ̂ +

1

ν̂
Ip

)−1
}

= 0.

Now taking the limit as β goes to zero on the intermediate convergence in (37) and
replace lim

β→0
ν̃(β), denoted ν̂ by its G-estimator ν̂, we have

σ2(1) � µ̂T
(

Σ̂ +
1

ν̂
Ip

)−1

Σ

(
Σ̂ +

1

ν̂
Ip

)−1

µ̂

+
1

ν̂2

1
dtr

{(
Σ̂ + 1

ν̂ Ip

)−1
Σ
(
Σ̂ + 1

ν̂ Ip

)−1
}

1− 1
dtr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
} µ̂T (Σ̂ +

1

ν̂
Ip

)−2

µ̂.
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Only two terms involve the true statistic Σ, while the remaining terms are functions of the
sample statistics. These two terms can be estimated as 1

1− 1
n−2tr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}


2

µ̂T
(

Σ̂ +
1

ν̂
Ip

)−1

Σ̂

(
Σ̂ +

1

ν̂
Ip

)−1

µ̂

� µ̂T
(

Σ̂ +
1

ν̂
Ip

)−1

Σ

(
Σ̂ +

1

ν̂
Ip

)−1

µ̂

and  1

1− 1
n−2tr

{
Σ̂
(
Σ̂ + 1

ν̂ Ip

)−1
}


2

1

p
tr

{(
Σ̂ +

1

ν̂
Ip

)−1

Σ̂

(
Σ̂ +

1

ν̂
Ip

)−1
}

� 1

p
tr

{(
Σ̂ +

1

ν̂
Ip

)−1

Σ

(
Σ̂ +

1

ν̂
Ip

)−1
}
.

The proof uses the same techniques used in Section B of Appendix B of the paper by
Niyazi et al. (2020b). The same growth regime assumptions stated at the beginning of
Section 3 apply here.

E.2 Proof of Theorem 12

First we derive the exact probabilities as follows:

TPR = P
{
Wdisc-avg(x,R1, . . . ,RM ) > 0|T , {Rk}Mk=1 ,x ∈ C1

}
= Φ

(
m1√
σ2(M)

)
,

TNR = P
{
Wdisc-avg(x,R1, . . . ,RM ) < 0|T , {Rk}Mk=1 ,x ∈ C0

}
= Φ

(
− m0√

σ2(M)

)
,

FPR = P
{
Wdisc-avg(x,R1, . . . ,RM ) > 0|T , {Rk}Mk=1 ,x ∈ C0

}
= Φ

(
m0√
σ2(M)

)
,

and

FNR = P
{
Wdisc-avg(x,R1, . . . ,RM ) < 0|T , {Rk}Mk=1 ,x ∈ C1

}
= Φ

(
− m1√

σ2(M)

)
.
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We are then able to substitute the G-estimators for each of the quantities m0, m1, and
σ2(M) in the above expressions by a similar argument to that presented for Lemma 2 in
the paper by Niyazi et al. (2020a). The G-estimators for the following quantities are derived
in a similar fashion using the G-estimators of the above quantities:

ε = π0FPR + π1FNR,

PPV =
π1TPR

π0FPR + π1TPR
,

and

NPV =
π0TNR

π0TNR + π1FNR
.

E.3 Derivation of the Heuristic Approximation

Let ε̂M=∞ and ε̂(M) denote the G-estimators of the probabilities of misclassification of the
infinite and finite discriminant-averaging RP-LDA ensemble classifiers, respectively, where
the latter consists of M randomly-projected LDA discriminants. Then,

ε̂M=∞
ε̂(M)

=

π̂0Φ

(
m̂0√
σ̂2
M=∞

)
+ π̂1Φ

(
− m̂1√

σ̂2
M=∞

)
π̂0Φ

(
m̂0√
σ̂2(M)

)
+ π̂1Φ

(
− m̂1√

σ̂2(M)

) .
By assuming equal priors, π0 = π1, n0 = n1, π̂0 = π̂1, and m̂0 = −m̂1. Then

ε̂M=∞
ε̂(M)

=

Φ

(
− m̂1√

σ̂2
M=∞

)
Φ

(
− m̂1√

σ̂2(M)

)

=

Q

(
m̂1√
σ̂2
M=∞

)
Q

(
m̂1√
σ̂2(M)

) . (52)

The approximation,

Q(x) ≈
1/
√

2π exp
(
−x2/2

)
x

, x > 0,

follows from the right-hand side of the inequality,

x

1 + x2
1/
√

2π exp
(
−x2/2

)
< Q(x) <

1/
√

2π exp
(
−x2/2

)
x

, x > 0,
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which becomes tighter with increasing x (Borjesson and Sundberg, 1979). Applying this
inequality to (52) with x := m̂1√

σ̂2
M=∞

and y := m̂1√
σ̂2(M)

, we obtain

ε̂M=∞
ε̂(M)

≈
1/
√

2π exp
(
−x2/2

)
/x

1/
√

2π exp (−y2/2) /y
.

Setting this to ψ and solving for y (which is a function of the desired M), we have

y−1 exp
(
−y2/2

)
=
x−1 exp

(
−x2/2

)
ψ

.

Squaring and inverting both sides of this equation yields

y2 exp
(
y2
)

= ψ2x2 exp
(
x2
)
,

which can be solved for y2 =
m̂2

1
σ̂2(M)

by applying the principal branch of the Lambert W

function, W0(·), to both sides (since they are positive). Then

y2 =
m̂2

1

σ̂2(M)
= W0

(
ψ2x2 exp

(
x2
))
.

By making use of the fact that σ̂2(M) = 1
M σ̂

2(1) +
(
1− 1

M

)
σ̂2
M=∞ and x2 =

m̂2
1

σ̂2
M=∞

, while

solving for M , we have

M ≈ ceil

(σ̂2(1)− σ̂2
M=∞

)
W0

(
ψ2 m̂2

1

σ̂2
M=∞

exp
(

m̂2
1

σ̂2
M=∞

))
m̂2

1 − σ̂2
M=∞W0

(
ψ2 m̂2

1

σ̂2
M=∞

exp
(

m̂2
1

σ̂2
M=∞

))
 .
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